xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 52338415)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38 
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59 
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62 
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 		     START, LAST, static, amdgpu_vm_it)
65 
66 #undef START
67 #undef LAST
68 
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73 
74 	/**
75 	 * @adev: amdgpu device
76 	 */
77 	struct amdgpu_device *adev;
78 
79 	/**
80 	 * @cb: callback
81 	 */
82 	struct dma_fence_cb cb;
83 };
84 
85 /**
86  * amdgpu_vm_level_shift - return the addr shift for each level
87  *
88  * @adev: amdgpu_device pointer
89  * @level: VMPT level
90  *
91  * Returns:
92  * The number of bits the pfn needs to be right shifted for a level.
93  */
94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
95 				      unsigned level)
96 {
97 	unsigned shift = 0xff;
98 
99 	switch (level) {
100 	case AMDGPU_VM_PDB2:
101 	case AMDGPU_VM_PDB1:
102 	case AMDGPU_VM_PDB0:
103 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
104 			adev->vm_manager.block_size;
105 		break;
106 	case AMDGPU_VM_PTB:
107 		shift = 0;
108 		break;
109 	default:
110 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
111 	}
112 
113 	return shift;
114 }
115 
116 /**
117  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
118  *
119  * @adev: amdgpu_device pointer
120  * @level: VMPT level
121  *
122  * Returns:
123  * The number of entries in a page directory or page table.
124  */
125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
126 				      unsigned level)
127 {
128 	unsigned shift = amdgpu_vm_level_shift(adev,
129 					       adev->vm_manager.root_level);
130 
131 	if (level == adev->vm_manager.root_level)
132 		/* For the root directory */
133 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
134 	else if (level != AMDGPU_VM_PTB)
135 		/* Everything in between */
136 		return 512;
137 	else
138 		/* For the page tables on the leaves */
139 		return AMDGPU_VM_PTE_COUNT(adev);
140 }
141 
142 /**
143  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
144  *
145  * @adev: amdgpu_device pointer
146  *
147  * Returns:
148  * The number of entries in the root page directory which needs the ATS setting.
149  */
150 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
151 {
152 	unsigned shift;
153 
154 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
155 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
156 }
157 
158 /**
159  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
160  *
161  * @adev: amdgpu_device pointer
162  * @level: VMPT level
163  *
164  * Returns:
165  * The mask to extract the entry number of a PD/PT from an address.
166  */
167 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
168 				       unsigned int level)
169 {
170 	if (level <= adev->vm_manager.root_level)
171 		return 0xffffffff;
172 	else if (level != AMDGPU_VM_PTB)
173 		return 0x1ff;
174 	else
175 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
176 }
177 
178 /**
179  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
180  *
181  * @adev: amdgpu_device pointer
182  * @level: VMPT level
183  *
184  * Returns:
185  * The size of the BO for a page directory or page table in bytes.
186  */
187 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
188 {
189 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
190 }
191 
192 /**
193  * amdgpu_vm_bo_evicted - vm_bo is evicted
194  *
195  * @vm_bo: vm_bo which is evicted
196  *
197  * State for PDs/PTs and per VM BOs which are not at the location they should
198  * be.
199  */
200 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
201 {
202 	struct amdgpu_vm *vm = vm_bo->vm;
203 	struct amdgpu_bo *bo = vm_bo->bo;
204 
205 	vm_bo->moved = true;
206 	if (bo->tbo.type == ttm_bo_type_kernel)
207 		list_move(&vm_bo->vm_status, &vm->evicted);
208 	else
209 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
210 }
211 
212 /**
213  * amdgpu_vm_bo_relocated - vm_bo is reloacted
214  *
215  * @vm_bo: vm_bo which is relocated
216  *
217  * State for PDs/PTs which needs to update their parent PD.
218  */
219 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
220 {
221 	list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
222 }
223 
224 /**
225  * amdgpu_vm_bo_moved - vm_bo is moved
226  *
227  * @vm_bo: vm_bo which is moved
228  *
229  * State for per VM BOs which are moved, but that change is not yet reflected
230  * in the page tables.
231  */
232 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
233 {
234 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
235 }
236 
237 /**
238  * amdgpu_vm_bo_idle - vm_bo is idle
239  *
240  * @vm_bo: vm_bo which is now idle
241  *
242  * State for PDs/PTs and per VM BOs which have gone through the state machine
243  * and are now idle.
244  */
245 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
246 {
247 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
248 	vm_bo->moved = false;
249 }
250 
251 /**
252  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
253  *
254  * @vm_bo: vm_bo which is now invalidated
255  *
256  * State for normal BOs which are invalidated and that change not yet reflected
257  * in the PTs.
258  */
259 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	spin_lock(&vm_bo->vm->invalidated_lock);
262 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
263 	spin_unlock(&vm_bo->vm->invalidated_lock);
264 }
265 
266 /**
267  * amdgpu_vm_bo_done - vm_bo is done
268  *
269  * @vm_bo: vm_bo which is now done
270  *
271  * State for normal BOs which are invalidated and that change has been updated
272  * in the PTs.
273  */
274 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
275 {
276 	spin_lock(&vm_bo->vm->invalidated_lock);
277 	list_del_init(&vm_bo->vm_status);
278 	spin_unlock(&vm_bo->vm->invalidated_lock);
279 }
280 
281 /**
282  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
283  *
284  * @base: base structure for tracking BO usage in a VM
285  * @vm: vm to which bo is to be added
286  * @bo: amdgpu buffer object
287  *
288  * Initialize a bo_va_base structure and add it to the appropriate lists
289  *
290  */
291 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
292 				   struct amdgpu_vm *vm,
293 				   struct amdgpu_bo *bo)
294 {
295 	base->vm = vm;
296 	base->bo = bo;
297 	base->next = NULL;
298 	INIT_LIST_HEAD(&base->vm_status);
299 
300 	if (!bo)
301 		return;
302 	base->next = bo->vm_bo;
303 	bo->vm_bo = base;
304 
305 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
306 		return;
307 
308 	vm->bulk_moveable = false;
309 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
310 		amdgpu_vm_bo_relocated(base);
311 	else
312 		amdgpu_vm_bo_idle(base);
313 
314 	if (bo->preferred_domains &
315 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
316 		return;
317 
318 	/*
319 	 * we checked all the prerequisites, but it looks like this per vm bo
320 	 * is currently evicted. add the bo to the evicted list to make sure it
321 	 * is validated on next vm use to avoid fault.
322 	 * */
323 	amdgpu_vm_bo_evicted(base);
324 }
325 
326 /**
327  * amdgpu_vm_pt_parent - get the parent page directory
328  *
329  * @pt: child page table
330  *
331  * Helper to get the parent entry for the child page table. NULL if we are at
332  * the root page directory.
333  */
334 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
335 {
336 	struct amdgpu_bo *parent = pt->base.bo->parent;
337 
338 	if (!parent)
339 		return NULL;
340 
341 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
342 }
343 
344 /**
345  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
346  */
347 struct amdgpu_vm_pt_cursor {
348 	uint64_t pfn;
349 	struct amdgpu_vm_pt *parent;
350 	struct amdgpu_vm_pt *entry;
351 	unsigned level;
352 };
353 
354 /**
355  * amdgpu_vm_pt_start - start PD/PT walk
356  *
357  * @adev: amdgpu_device pointer
358  * @vm: amdgpu_vm structure
359  * @start: start address of the walk
360  * @cursor: state to initialize
361  *
362  * Initialize a amdgpu_vm_pt_cursor to start a walk.
363  */
364 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
365 			       struct amdgpu_vm *vm, uint64_t start,
366 			       struct amdgpu_vm_pt_cursor *cursor)
367 {
368 	cursor->pfn = start;
369 	cursor->parent = NULL;
370 	cursor->entry = &vm->root;
371 	cursor->level = adev->vm_manager.root_level;
372 }
373 
374 /**
375  * amdgpu_vm_pt_descendant - go to child node
376  *
377  * @adev: amdgpu_device pointer
378  * @cursor: current state
379  *
380  * Walk to the child node of the current node.
381  * Returns:
382  * True if the walk was possible, false otherwise.
383  */
384 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
385 				    struct amdgpu_vm_pt_cursor *cursor)
386 {
387 	unsigned mask, shift, idx;
388 
389 	if (!cursor->entry->entries)
390 		return false;
391 
392 	BUG_ON(!cursor->entry->base.bo);
393 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
394 	shift = amdgpu_vm_level_shift(adev, cursor->level);
395 
396 	++cursor->level;
397 	idx = (cursor->pfn >> shift) & mask;
398 	cursor->parent = cursor->entry;
399 	cursor->entry = &cursor->entry->entries[idx];
400 	return true;
401 }
402 
403 /**
404  * amdgpu_vm_pt_sibling - go to sibling node
405  *
406  * @adev: amdgpu_device pointer
407  * @cursor: current state
408  *
409  * Walk to the sibling node of the current node.
410  * Returns:
411  * True if the walk was possible, false otherwise.
412  */
413 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
414 				 struct amdgpu_vm_pt_cursor *cursor)
415 {
416 	unsigned shift, num_entries;
417 
418 	/* Root doesn't have a sibling */
419 	if (!cursor->parent)
420 		return false;
421 
422 	/* Go to our parents and see if we got a sibling */
423 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
424 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
425 
426 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
427 		return false;
428 
429 	cursor->pfn += 1ULL << shift;
430 	cursor->pfn &= ~((1ULL << shift) - 1);
431 	++cursor->entry;
432 	return true;
433 }
434 
435 /**
436  * amdgpu_vm_pt_ancestor - go to parent node
437  *
438  * @cursor: current state
439  *
440  * Walk to the parent node of the current node.
441  * Returns:
442  * True if the walk was possible, false otherwise.
443  */
444 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
445 {
446 	if (!cursor->parent)
447 		return false;
448 
449 	--cursor->level;
450 	cursor->entry = cursor->parent;
451 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
452 	return true;
453 }
454 
455 /**
456  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
457  *
458  * @adev: amdgpu_device pointer
459  * @cursor: current state
460  *
461  * Walk the PD/PT tree to the next node.
462  */
463 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
464 			      struct amdgpu_vm_pt_cursor *cursor)
465 {
466 	/* First try a newborn child */
467 	if (amdgpu_vm_pt_descendant(adev, cursor))
468 		return;
469 
470 	/* If that didn't worked try to find a sibling */
471 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
472 		/* No sibling, go to our parents and grandparents */
473 		if (!amdgpu_vm_pt_ancestor(cursor)) {
474 			cursor->pfn = ~0ll;
475 			return;
476 		}
477 	}
478 }
479 
480 /**
481  * amdgpu_vm_pt_first_dfs - start a deep first search
482  *
483  * @adev: amdgpu_device structure
484  * @vm: amdgpu_vm structure
485  * @cursor: state to initialize
486  *
487  * Starts a deep first traversal of the PD/PT tree.
488  */
489 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
490 				   struct amdgpu_vm *vm,
491 				   struct amdgpu_vm_pt_cursor *start,
492 				   struct amdgpu_vm_pt_cursor *cursor)
493 {
494 	if (start)
495 		*cursor = *start;
496 	else
497 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
498 	while (amdgpu_vm_pt_descendant(adev, cursor));
499 }
500 
501 /**
502  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
503  *
504  * @start: starting point for the search
505  * @entry: current entry
506  *
507  * Returns:
508  * True when the search should continue, false otherwise.
509  */
510 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
511 				      struct amdgpu_vm_pt *entry)
512 {
513 	return entry && (!start || entry != start->entry);
514 }
515 
516 /**
517  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
518  *
519  * @adev: amdgpu_device structure
520  * @cursor: current state
521  *
522  * Move the cursor to the next node in a deep first search.
523  */
524 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
525 				  struct amdgpu_vm_pt_cursor *cursor)
526 {
527 	if (!cursor->entry)
528 		return;
529 
530 	if (!cursor->parent)
531 		cursor->entry = NULL;
532 	else if (amdgpu_vm_pt_sibling(adev, cursor))
533 		while (amdgpu_vm_pt_descendant(adev, cursor));
534 	else
535 		amdgpu_vm_pt_ancestor(cursor);
536 }
537 
538 /**
539  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
540  */
541 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
542 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
543 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
544 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
545 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
546 
547 /**
548  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
549  *
550  * @vm: vm providing the BOs
551  * @validated: head of validation list
552  * @entry: entry to add
553  *
554  * Add the page directory to the list of BOs to
555  * validate for command submission.
556  */
557 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
558 			 struct list_head *validated,
559 			 struct amdgpu_bo_list_entry *entry)
560 {
561 	entry->priority = 0;
562 	entry->tv.bo = &vm->root.base.bo->tbo;
563 	/* One for the VM updates, one for TTM and one for the CS job */
564 	entry->tv.num_shared = 3;
565 	entry->user_pages = NULL;
566 	list_add(&entry->tv.head, validated);
567 }
568 
569 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
570 {
571 	struct amdgpu_bo *abo;
572 	struct amdgpu_vm_bo_base *bo_base;
573 
574 	if (!amdgpu_bo_is_amdgpu_bo(bo))
575 		return;
576 
577 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
578 		return;
579 
580 	abo = ttm_to_amdgpu_bo(bo);
581 	if (!abo->parent)
582 		return;
583 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
584 		struct amdgpu_vm *vm = bo_base->vm;
585 
586 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
587 			vm->bulk_moveable = false;
588 	}
589 
590 }
591 /**
592  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
593  *
594  * @adev: amdgpu device pointer
595  * @vm: vm providing the BOs
596  *
597  * Move all BOs to the end of LRU and remember their positions to put them
598  * together.
599  */
600 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
601 				struct amdgpu_vm *vm)
602 {
603 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
604 	struct amdgpu_vm_bo_base *bo_base;
605 
606 	if (vm->bulk_moveable) {
607 		spin_lock(&glob->lru_lock);
608 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
609 		spin_unlock(&glob->lru_lock);
610 		return;
611 	}
612 
613 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
614 
615 	spin_lock(&glob->lru_lock);
616 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
617 		struct amdgpu_bo *bo = bo_base->bo;
618 
619 		if (!bo->parent)
620 			continue;
621 
622 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
623 		if (bo->shadow)
624 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
625 						&vm->lru_bulk_move);
626 	}
627 	spin_unlock(&glob->lru_lock);
628 
629 	vm->bulk_moveable = true;
630 }
631 
632 /**
633  * amdgpu_vm_validate_pt_bos - validate the page table BOs
634  *
635  * @adev: amdgpu device pointer
636  * @vm: vm providing the BOs
637  * @validate: callback to do the validation
638  * @param: parameter for the validation callback
639  *
640  * Validate the page table BOs on command submission if neccessary.
641  *
642  * Returns:
643  * Validation result.
644  */
645 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
646 			      int (*validate)(void *p, struct amdgpu_bo *bo),
647 			      void *param)
648 {
649 	struct amdgpu_vm_bo_base *bo_base, *tmp;
650 	int r = 0;
651 
652 	vm->bulk_moveable &= list_empty(&vm->evicted);
653 
654 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
655 		struct amdgpu_bo *bo = bo_base->bo;
656 
657 		r = validate(param, bo);
658 		if (r)
659 			break;
660 
661 		if (bo->tbo.type != ttm_bo_type_kernel) {
662 			amdgpu_vm_bo_moved(bo_base);
663 		} else {
664 			vm->update_funcs->map_table(bo);
665 			if (bo->parent)
666 				amdgpu_vm_bo_relocated(bo_base);
667 			else
668 				amdgpu_vm_bo_idle(bo_base);
669 		}
670 	}
671 
672 	return r;
673 }
674 
675 /**
676  * amdgpu_vm_ready - check VM is ready for updates
677  *
678  * @vm: VM to check
679  *
680  * Check if all VM PDs/PTs are ready for updates
681  *
682  * Returns:
683  * True if eviction list is empty.
684  */
685 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
686 {
687 	return list_empty(&vm->evicted);
688 }
689 
690 /**
691  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
692  *
693  * @adev: amdgpu_device pointer
694  * @vm: VM to clear BO from
695  * @bo: BO to clear
696  *
697  * Root PD needs to be reserved when calling this.
698  *
699  * Returns:
700  * 0 on success, errno otherwise.
701  */
702 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
703 			      struct amdgpu_vm *vm,
704 			      struct amdgpu_bo *bo)
705 {
706 	struct ttm_operation_ctx ctx = { true, false };
707 	unsigned level = adev->vm_manager.root_level;
708 	struct amdgpu_vm_update_params params;
709 	struct amdgpu_bo *ancestor = bo;
710 	unsigned entries, ats_entries;
711 	uint64_t addr;
712 	int r;
713 
714 	/* Figure out our place in the hierarchy */
715 	if (ancestor->parent) {
716 		++level;
717 		while (ancestor->parent->parent) {
718 			++level;
719 			ancestor = ancestor->parent;
720 		}
721 	}
722 
723 	entries = amdgpu_bo_size(bo) / 8;
724 	if (!vm->pte_support_ats) {
725 		ats_entries = 0;
726 
727 	} else if (!bo->parent) {
728 		ats_entries = amdgpu_vm_num_ats_entries(adev);
729 		ats_entries = min(ats_entries, entries);
730 		entries -= ats_entries;
731 
732 	} else {
733 		struct amdgpu_vm_pt *pt;
734 
735 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
736 		ats_entries = amdgpu_vm_num_ats_entries(adev);
737 		if ((pt - vm->root.entries) >= ats_entries) {
738 			ats_entries = 0;
739 		} else {
740 			ats_entries = entries;
741 			entries = 0;
742 		}
743 	}
744 
745 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
746 	if (r)
747 		return r;
748 
749 	if (bo->shadow) {
750 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
751 				    &ctx);
752 		if (r)
753 			return r;
754 	}
755 
756 	r = vm->update_funcs->map_table(bo);
757 	if (r)
758 		return r;
759 
760 	memset(&params, 0, sizeof(params));
761 	params.adev = adev;
762 	params.vm = vm;
763 
764 	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
765 	if (r)
766 		return r;
767 
768 	addr = 0;
769 	if (ats_entries) {
770 		uint64_t value = 0, flags;
771 
772 		flags = AMDGPU_PTE_DEFAULT_ATC;
773 		if (level != AMDGPU_VM_PTB) {
774 			/* Handle leaf PDEs as PTEs */
775 			flags |= AMDGPU_PDE_PTE;
776 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
777 		}
778 
779 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
780 					     value, flags);
781 		if (r)
782 			return r;
783 
784 		addr += ats_entries * 8;
785 	}
786 
787 	if (entries) {
788 		uint64_t value = 0, flags = 0;
789 
790 		if (adev->asic_type >= CHIP_VEGA10) {
791 			if (level != AMDGPU_VM_PTB) {
792 				/* Handle leaf PDEs as PTEs */
793 				flags |= AMDGPU_PDE_PTE;
794 				amdgpu_gmc_get_vm_pde(adev, level,
795 						      &value, &flags);
796 			} else {
797 				/* Workaround for fault priority problem on GMC9 */
798 				flags = AMDGPU_PTE_EXECUTABLE;
799 			}
800 		}
801 
802 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
803 					     value, flags);
804 		if (r)
805 			return r;
806 	}
807 
808 	return vm->update_funcs->commit(&params, NULL);
809 }
810 
811 /**
812  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
813  *
814  * @adev: amdgpu_device pointer
815  * @vm: requesting vm
816  * @bp: resulting BO allocation parameters
817  */
818 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
819 			       int level, struct amdgpu_bo_param *bp)
820 {
821 	memset(bp, 0, sizeof(*bp));
822 
823 	bp->size = amdgpu_vm_bo_size(adev, level);
824 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
825 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
826 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
827 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
828 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
829 	if (vm->use_cpu_for_update)
830 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
831 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
832 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
833 	bp->type = ttm_bo_type_kernel;
834 	if (vm->root.base.bo)
835 		bp->resv = vm->root.base.bo->tbo.base.resv;
836 }
837 
838 /**
839  * amdgpu_vm_alloc_pts - Allocate a specific page table
840  *
841  * @adev: amdgpu_device pointer
842  * @vm: VM to allocate page tables for
843  * @cursor: Which page table to allocate
844  *
845  * Make sure a specific page table or directory is allocated.
846  *
847  * Returns:
848  * 1 if page table needed to be allocated, 0 if page table was already
849  * allocated, negative errno if an error occurred.
850  */
851 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
852 			       struct amdgpu_vm *vm,
853 			       struct amdgpu_vm_pt_cursor *cursor)
854 {
855 	struct amdgpu_vm_pt *entry = cursor->entry;
856 	struct amdgpu_bo_param bp;
857 	struct amdgpu_bo *pt;
858 	int r;
859 
860 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
861 		unsigned num_entries;
862 
863 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
864 		entry->entries = kvmalloc_array(num_entries,
865 						sizeof(*entry->entries),
866 						GFP_KERNEL | __GFP_ZERO);
867 		if (!entry->entries)
868 			return -ENOMEM;
869 	}
870 
871 	if (entry->base.bo)
872 		return 0;
873 
874 	amdgpu_vm_bo_param(adev, vm, cursor->level, &bp);
875 
876 	r = amdgpu_bo_create(adev, &bp, &pt);
877 	if (r)
878 		return r;
879 
880 	/* Keep a reference to the root directory to avoid
881 	 * freeing them up in the wrong order.
882 	 */
883 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
884 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
885 
886 	r = amdgpu_vm_clear_bo(adev, vm, pt);
887 	if (r)
888 		goto error_free_pt;
889 
890 	return 0;
891 
892 error_free_pt:
893 	amdgpu_bo_unref(&pt->shadow);
894 	amdgpu_bo_unref(&pt);
895 	return r;
896 }
897 
898 /**
899  * amdgpu_vm_free_table - fre one PD/PT
900  *
901  * @entry: PDE to free
902  */
903 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
904 {
905 	if (entry->base.bo) {
906 		entry->base.bo->vm_bo = NULL;
907 		list_del(&entry->base.vm_status);
908 		amdgpu_bo_unref(&entry->base.bo->shadow);
909 		amdgpu_bo_unref(&entry->base.bo);
910 	}
911 	kvfree(entry->entries);
912 	entry->entries = NULL;
913 }
914 
915 /**
916  * amdgpu_vm_free_pts - free PD/PT levels
917  *
918  * @adev: amdgpu device structure
919  * @vm: amdgpu vm structure
920  * @start: optional cursor where to start freeing PDs/PTs
921  *
922  * Free the page directory or page table level and all sub levels.
923  */
924 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
925 			       struct amdgpu_vm *vm,
926 			       struct amdgpu_vm_pt_cursor *start)
927 {
928 	struct amdgpu_vm_pt_cursor cursor;
929 	struct amdgpu_vm_pt *entry;
930 
931 	vm->bulk_moveable = false;
932 
933 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
934 		amdgpu_vm_free_table(entry);
935 
936 	if (start)
937 		amdgpu_vm_free_table(start->entry);
938 }
939 
940 /**
941  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
942  *
943  * @adev: amdgpu_device pointer
944  */
945 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
946 {
947 	const struct amdgpu_ip_block *ip_block;
948 	bool has_compute_vm_bug;
949 	struct amdgpu_ring *ring;
950 	int i;
951 
952 	has_compute_vm_bug = false;
953 
954 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
955 	if (ip_block) {
956 		/* Compute has a VM bug for GFX version < 7.
957 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
958 		if (ip_block->version->major <= 7)
959 			has_compute_vm_bug = true;
960 		else if (ip_block->version->major == 8)
961 			if (adev->gfx.mec_fw_version < 673)
962 				has_compute_vm_bug = true;
963 	}
964 
965 	for (i = 0; i < adev->num_rings; i++) {
966 		ring = adev->rings[i];
967 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
968 			/* only compute rings */
969 			ring->has_compute_vm_bug = has_compute_vm_bug;
970 		else
971 			ring->has_compute_vm_bug = false;
972 	}
973 }
974 
975 /**
976  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
977  *
978  * @ring: ring on which the job will be submitted
979  * @job: job to submit
980  *
981  * Returns:
982  * True if sync is needed.
983  */
984 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
985 				  struct amdgpu_job *job)
986 {
987 	struct amdgpu_device *adev = ring->adev;
988 	unsigned vmhub = ring->funcs->vmhub;
989 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
990 	struct amdgpu_vmid *id;
991 	bool gds_switch_needed;
992 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
993 
994 	if (job->vmid == 0)
995 		return false;
996 	id = &id_mgr->ids[job->vmid];
997 	gds_switch_needed = ring->funcs->emit_gds_switch && (
998 		id->gds_base != job->gds_base ||
999 		id->gds_size != job->gds_size ||
1000 		id->gws_base != job->gws_base ||
1001 		id->gws_size != job->gws_size ||
1002 		id->oa_base != job->oa_base ||
1003 		id->oa_size != job->oa_size);
1004 
1005 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1006 		return true;
1007 
1008 	return vm_flush_needed || gds_switch_needed;
1009 }
1010 
1011 /**
1012  * amdgpu_vm_flush - hardware flush the vm
1013  *
1014  * @ring: ring to use for flush
1015  * @job:  related job
1016  * @need_pipe_sync: is pipe sync needed
1017  *
1018  * Emit a VM flush when it is necessary.
1019  *
1020  * Returns:
1021  * 0 on success, errno otherwise.
1022  */
1023 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1024 {
1025 	struct amdgpu_device *adev = ring->adev;
1026 	unsigned vmhub = ring->funcs->vmhub;
1027 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1028 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1029 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1030 		id->gds_base != job->gds_base ||
1031 		id->gds_size != job->gds_size ||
1032 		id->gws_base != job->gws_base ||
1033 		id->gws_size != job->gws_size ||
1034 		id->oa_base != job->oa_base ||
1035 		id->oa_size != job->oa_size);
1036 	bool vm_flush_needed = job->vm_needs_flush;
1037 	bool pasid_mapping_needed = id->pasid != job->pasid ||
1038 		!id->pasid_mapping ||
1039 		!dma_fence_is_signaled(id->pasid_mapping);
1040 	struct dma_fence *fence = NULL;
1041 	unsigned patch_offset = 0;
1042 	int r;
1043 
1044 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1045 		gds_switch_needed = true;
1046 		vm_flush_needed = true;
1047 		pasid_mapping_needed = true;
1048 	}
1049 
1050 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1051 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1052 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1053 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1054 		ring->funcs->emit_wreg;
1055 
1056 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1057 		return 0;
1058 
1059 	if (ring->funcs->init_cond_exec)
1060 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1061 
1062 	if (need_pipe_sync)
1063 		amdgpu_ring_emit_pipeline_sync(ring);
1064 
1065 	if (vm_flush_needed) {
1066 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1067 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1068 	}
1069 
1070 	if (pasid_mapping_needed)
1071 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1072 
1073 	if (vm_flush_needed || pasid_mapping_needed) {
1074 		r = amdgpu_fence_emit(ring, &fence, 0);
1075 		if (r)
1076 			return r;
1077 	}
1078 
1079 	if (vm_flush_needed) {
1080 		mutex_lock(&id_mgr->lock);
1081 		dma_fence_put(id->last_flush);
1082 		id->last_flush = dma_fence_get(fence);
1083 		id->current_gpu_reset_count =
1084 			atomic_read(&adev->gpu_reset_counter);
1085 		mutex_unlock(&id_mgr->lock);
1086 	}
1087 
1088 	if (pasid_mapping_needed) {
1089 		id->pasid = job->pasid;
1090 		dma_fence_put(id->pasid_mapping);
1091 		id->pasid_mapping = dma_fence_get(fence);
1092 	}
1093 	dma_fence_put(fence);
1094 
1095 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1096 		id->gds_base = job->gds_base;
1097 		id->gds_size = job->gds_size;
1098 		id->gws_base = job->gws_base;
1099 		id->gws_size = job->gws_size;
1100 		id->oa_base = job->oa_base;
1101 		id->oa_size = job->oa_size;
1102 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1103 					    job->gds_size, job->gws_base,
1104 					    job->gws_size, job->oa_base,
1105 					    job->oa_size);
1106 	}
1107 
1108 	if (ring->funcs->patch_cond_exec)
1109 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1110 
1111 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1112 	if (ring->funcs->emit_switch_buffer) {
1113 		amdgpu_ring_emit_switch_buffer(ring);
1114 		amdgpu_ring_emit_switch_buffer(ring);
1115 	}
1116 	return 0;
1117 }
1118 
1119 /**
1120  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1121  *
1122  * @vm: requested vm
1123  * @bo: requested buffer object
1124  *
1125  * Find @bo inside the requested vm.
1126  * Search inside the @bos vm list for the requested vm
1127  * Returns the found bo_va or NULL if none is found
1128  *
1129  * Object has to be reserved!
1130  *
1131  * Returns:
1132  * Found bo_va or NULL.
1133  */
1134 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1135 				       struct amdgpu_bo *bo)
1136 {
1137 	struct amdgpu_vm_bo_base *base;
1138 
1139 	for (base = bo->vm_bo; base; base = base->next) {
1140 		if (base->vm != vm)
1141 			continue;
1142 
1143 		return container_of(base, struct amdgpu_bo_va, base);
1144 	}
1145 	return NULL;
1146 }
1147 
1148 /**
1149  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1150  *
1151  * @pages_addr: optional DMA address to use for lookup
1152  * @addr: the unmapped addr
1153  *
1154  * Look up the physical address of the page that the pte resolves
1155  * to.
1156  *
1157  * Returns:
1158  * The pointer for the page table entry.
1159  */
1160 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1161 {
1162 	uint64_t result;
1163 
1164 	/* page table offset */
1165 	result = pages_addr[addr >> PAGE_SHIFT];
1166 
1167 	/* in case cpu page size != gpu page size*/
1168 	result |= addr & (~PAGE_MASK);
1169 
1170 	result &= 0xFFFFFFFFFFFFF000ULL;
1171 
1172 	return result;
1173 }
1174 
1175 /*
1176  * amdgpu_vm_update_pde - update a single level in the hierarchy
1177  *
1178  * @param: parameters for the update
1179  * @vm: requested vm
1180  * @entry: entry to update
1181  *
1182  * Makes sure the requested entry in parent is up to date.
1183  */
1184 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1185 				struct amdgpu_vm *vm,
1186 				struct amdgpu_vm_pt *entry)
1187 {
1188 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1189 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1190 	uint64_t pde, pt, flags;
1191 	unsigned level;
1192 
1193 	for (level = 0, pbo = bo->parent; pbo; ++level)
1194 		pbo = pbo->parent;
1195 
1196 	level += params->adev->vm_manager.root_level;
1197 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1198 	pde = (entry - parent->entries) * 8;
1199 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1200 }
1201 
1202 /*
1203  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1204  *
1205  * @adev: amdgpu_device pointer
1206  * @vm: related vm
1207  *
1208  * Mark all PD level as invalid after an error.
1209  */
1210 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1211 				     struct amdgpu_vm *vm)
1212 {
1213 	struct amdgpu_vm_pt_cursor cursor;
1214 	struct amdgpu_vm_pt *entry;
1215 
1216 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1217 		if (entry->base.bo && !entry->base.moved)
1218 			amdgpu_vm_bo_relocated(&entry->base);
1219 }
1220 
1221 /*
1222  * amdgpu_vm_update_directories - make sure that all directories are valid
1223  *
1224  * @adev: amdgpu_device pointer
1225  * @vm: requested vm
1226  *
1227  * Makes sure all directories are up to date.
1228  *
1229  * Returns:
1230  * 0 for success, error for failure.
1231  */
1232 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1233 				 struct amdgpu_vm *vm)
1234 {
1235 	struct amdgpu_vm_update_params params;
1236 	int r;
1237 
1238 	if (list_empty(&vm->relocated))
1239 		return 0;
1240 
1241 	memset(&params, 0, sizeof(params));
1242 	params.adev = adev;
1243 	params.vm = vm;
1244 
1245 	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1246 	if (r)
1247 		return r;
1248 
1249 	while (!list_empty(&vm->relocated)) {
1250 		struct amdgpu_vm_pt *entry;
1251 
1252 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1253 					 base.vm_status);
1254 		amdgpu_vm_bo_idle(&entry->base);
1255 
1256 		r = amdgpu_vm_update_pde(&params, vm, entry);
1257 		if (r)
1258 			goto error;
1259 	}
1260 
1261 	r = vm->update_funcs->commit(&params, &vm->last_update);
1262 	if (r)
1263 		goto error;
1264 	return 0;
1265 
1266 error:
1267 	amdgpu_vm_invalidate_pds(adev, vm);
1268 	return r;
1269 }
1270 
1271 /**
1272  * amdgpu_vm_update_flags - figure out flags for PTE updates
1273  *
1274  * Make sure to set the right flags for the PTEs at the desired level.
1275  */
1276 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1277 				   struct amdgpu_bo *bo, unsigned level,
1278 				   uint64_t pe, uint64_t addr,
1279 				   unsigned count, uint32_t incr,
1280 				   uint64_t flags)
1281 
1282 {
1283 	if (level != AMDGPU_VM_PTB) {
1284 		flags |= AMDGPU_PDE_PTE;
1285 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1286 
1287 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1288 		   !(flags & AMDGPU_PTE_VALID) &&
1289 		   !(flags & AMDGPU_PTE_PRT)) {
1290 
1291 		/* Workaround for fault priority problem on GMC9 */
1292 		flags |= AMDGPU_PTE_EXECUTABLE;
1293 	}
1294 
1295 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1296 					 flags);
1297 }
1298 
1299 /**
1300  * amdgpu_vm_fragment - get fragment for PTEs
1301  *
1302  * @params: see amdgpu_vm_update_params definition
1303  * @start: first PTE to handle
1304  * @end: last PTE to handle
1305  * @flags: hw mapping flags
1306  * @frag: resulting fragment size
1307  * @frag_end: end of this fragment
1308  *
1309  * Returns the first possible fragment for the start and end address.
1310  */
1311 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1312 			       uint64_t start, uint64_t end, uint64_t flags,
1313 			       unsigned int *frag, uint64_t *frag_end)
1314 {
1315 	/**
1316 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1317 	 * field in the PTE. When this field is set to a non-zero value, page
1318 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1319 	 * flags are considered valid for all PTEs within the fragment range
1320 	 * and corresponding mappings are assumed to be physically contiguous.
1321 	 *
1322 	 * The L1 TLB can store a single PTE for the whole fragment,
1323 	 * significantly increasing the space available for translation
1324 	 * caching. This leads to large improvements in throughput when the
1325 	 * TLB is under pressure.
1326 	 *
1327 	 * The L2 TLB distributes small and large fragments into two
1328 	 * asymmetric partitions. The large fragment cache is significantly
1329 	 * larger. Thus, we try to use large fragments wherever possible.
1330 	 * Userspace can support this by aligning virtual base address and
1331 	 * allocation size to the fragment size.
1332 	 *
1333 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1334 	 * is now directly feed with small/huge/giant pages from the walker.
1335 	 */
1336 	unsigned max_frag;
1337 
1338 	if (params->adev->asic_type < CHIP_VEGA10)
1339 		max_frag = params->adev->vm_manager.fragment_size;
1340 	else
1341 		max_frag = 31;
1342 
1343 	/* system pages are non continuously */
1344 	if (params->pages_addr) {
1345 		*frag = 0;
1346 		*frag_end = end;
1347 		return;
1348 	}
1349 
1350 	/* This intentionally wraps around if no bit is set */
1351 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1352 	if (*frag >= max_frag) {
1353 		*frag = max_frag;
1354 		*frag_end = end & ~((1ULL << max_frag) - 1);
1355 	} else {
1356 		*frag_end = start + (1 << *frag);
1357 	}
1358 }
1359 
1360 /**
1361  * amdgpu_vm_update_ptes - make sure that page tables are valid
1362  *
1363  * @params: see amdgpu_vm_update_params definition
1364  * @start: start of GPU address range
1365  * @end: end of GPU address range
1366  * @dst: destination address to map to, the next dst inside the function
1367  * @flags: mapping flags
1368  *
1369  * Update the page tables in the range @start - @end.
1370  *
1371  * Returns:
1372  * 0 for success, -EINVAL for failure.
1373  */
1374 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1375 				 uint64_t start, uint64_t end,
1376 				 uint64_t dst, uint64_t flags)
1377 {
1378 	struct amdgpu_device *adev = params->adev;
1379 	struct amdgpu_vm_pt_cursor cursor;
1380 	uint64_t frag_start = start, frag_end;
1381 	unsigned int frag;
1382 	int r;
1383 
1384 	/* figure out the initial fragment */
1385 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1386 
1387 	/* walk over the address space and update the PTs */
1388 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1389 	while (cursor.pfn < end) {
1390 		unsigned shift, parent_shift, mask;
1391 		uint64_t incr, entry_end, pe_start;
1392 		struct amdgpu_bo *pt;
1393 
1394 		r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor);
1395 		if (r)
1396 			return r;
1397 
1398 		pt = cursor.entry->base.bo;
1399 
1400 		/* The root level can't be a huge page */
1401 		if (cursor.level == adev->vm_manager.root_level) {
1402 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1403 				return -ENOENT;
1404 			continue;
1405 		}
1406 
1407 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1408 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1409 		if (adev->asic_type < CHIP_VEGA10 &&
1410 		    (flags & AMDGPU_PTE_VALID)) {
1411 			/* No huge page support before GMC v9 */
1412 			if (cursor.level != AMDGPU_VM_PTB) {
1413 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1414 					return -ENOENT;
1415 				continue;
1416 			}
1417 		} else if (frag < shift) {
1418 			/* We can't use this level when the fragment size is
1419 			 * smaller than the address shift. Go to the next
1420 			 * child entry and try again.
1421 			 */
1422 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1423 				return -ENOENT;
1424 			continue;
1425 		} else if (frag >= parent_shift &&
1426 			   cursor.level - 1 != adev->vm_manager.root_level) {
1427 			/* If the fragment size is even larger than the parent
1428 			 * shift we should go up one level and check it again
1429 			 * unless one level up is the root level.
1430 			 */
1431 			if (!amdgpu_vm_pt_ancestor(&cursor))
1432 				return -ENOENT;
1433 			continue;
1434 		}
1435 
1436 		/* Looks good so far, calculate parameters for the update */
1437 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1438 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1439 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1440 		entry_end = (uint64_t)(mask + 1) << shift;
1441 		entry_end += cursor.pfn & ~(entry_end - 1);
1442 		entry_end = min(entry_end, end);
1443 
1444 		do {
1445 			uint64_t upd_end = min(entry_end, frag_end);
1446 			unsigned nptes = (upd_end - frag_start) >> shift;
1447 
1448 			amdgpu_vm_update_flags(params, pt, cursor.level,
1449 					       pe_start, dst, nptes, incr,
1450 					       flags | AMDGPU_PTE_FRAG(frag));
1451 
1452 			pe_start += nptes * 8;
1453 			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1454 
1455 			frag_start = upd_end;
1456 			if (frag_start >= frag_end) {
1457 				/* figure out the next fragment */
1458 				amdgpu_vm_fragment(params, frag_start, end,
1459 						   flags, &frag, &frag_end);
1460 				if (frag < shift)
1461 					break;
1462 			}
1463 		} while (frag_start < entry_end);
1464 
1465 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1466 			/* Free all child entries */
1467 			while (cursor.pfn < frag_start) {
1468 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1469 				amdgpu_vm_pt_next(adev, &cursor);
1470 			}
1471 
1472 		} else if (frag >= shift) {
1473 			/* or just move on to the next on the same level. */
1474 			amdgpu_vm_pt_next(adev, &cursor);
1475 		}
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1483  *
1484  * @adev: amdgpu_device pointer
1485  * @exclusive: fence we need to sync to
1486  * @pages_addr: DMA addresses to use for mapping
1487  * @vm: requested vm
1488  * @start: start of mapped range
1489  * @last: last mapped entry
1490  * @flags: flags for the entries
1491  * @addr: addr to set the area to
1492  * @fence: optional resulting fence
1493  *
1494  * Fill in the page table entries between @start and @last.
1495  *
1496  * Returns:
1497  * 0 for success, -EINVAL for failure.
1498  */
1499 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1500 				       struct dma_fence *exclusive,
1501 				       dma_addr_t *pages_addr,
1502 				       struct amdgpu_vm *vm,
1503 				       uint64_t start, uint64_t last,
1504 				       uint64_t flags, uint64_t addr,
1505 				       struct dma_fence **fence)
1506 {
1507 	struct amdgpu_vm_update_params params;
1508 	void *owner = AMDGPU_FENCE_OWNER_VM;
1509 	int r;
1510 
1511 	memset(&params, 0, sizeof(params));
1512 	params.adev = adev;
1513 	params.vm = vm;
1514 	params.pages_addr = pages_addr;
1515 
1516 	/* sync to everything except eviction fences on unmapping */
1517 	if (!(flags & AMDGPU_PTE_VALID))
1518 		owner = AMDGPU_FENCE_OWNER_KFD;
1519 
1520 	r = vm->update_funcs->prepare(&params, owner, exclusive);
1521 	if (r)
1522 		return r;
1523 
1524 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1525 	if (r)
1526 		return r;
1527 
1528 	return vm->update_funcs->commit(&params, fence);
1529 }
1530 
1531 /**
1532  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1533  *
1534  * @adev: amdgpu_device pointer
1535  * @exclusive: fence we need to sync to
1536  * @pages_addr: DMA addresses to use for mapping
1537  * @vm: requested vm
1538  * @mapping: mapped range and flags to use for the update
1539  * @flags: HW flags for the mapping
1540  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1541  * @nodes: array of drm_mm_nodes with the MC addresses
1542  * @fence: optional resulting fence
1543  *
1544  * Split the mapping into smaller chunks so that each update fits
1545  * into a SDMA IB.
1546  *
1547  * Returns:
1548  * 0 for success, -EINVAL for failure.
1549  */
1550 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1551 				      struct dma_fence *exclusive,
1552 				      dma_addr_t *pages_addr,
1553 				      struct amdgpu_vm *vm,
1554 				      struct amdgpu_bo_va_mapping *mapping,
1555 				      uint64_t flags,
1556 				      struct amdgpu_device *bo_adev,
1557 				      struct drm_mm_node *nodes,
1558 				      struct dma_fence **fence)
1559 {
1560 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1561 	uint64_t pfn, start = mapping->start;
1562 	int r;
1563 
1564 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1565 	 * but in case of something, we filter the flags in first place
1566 	 */
1567 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1568 		flags &= ~AMDGPU_PTE_READABLE;
1569 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1570 		flags &= ~AMDGPU_PTE_WRITEABLE;
1571 
1572 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1573 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1574 
1575 	if (adev->asic_type >= CHIP_NAVI10) {
1576 		flags &= ~AMDGPU_PTE_MTYPE_NV10_MASK;
1577 		flags |= (mapping->flags & AMDGPU_PTE_MTYPE_NV10_MASK);
1578 	} else {
1579 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1580 		flags |= (mapping->flags & AMDGPU_PTE_MTYPE_VG10_MASK);
1581 	}
1582 
1583 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1584 	    (adev->asic_type >= CHIP_VEGA10)) {
1585 		flags |= AMDGPU_PTE_PRT;
1586 		if (adev->asic_type >= CHIP_NAVI10) {
1587 			flags |= AMDGPU_PTE_SNOOPED;
1588 			flags |= AMDGPU_PTE_LOG;
1589 			flags |= AMDGPU_PTE_SYSTEM;
1590 		}
1591 		flags &= ~AMDGPU_PTE_VALID;
1592 	}
1593 
1594 	trace_amdgpu_vm_bo_update(mapping);
1595 
1596 	pfn = mapping->offset >> PAGE_SHIFT;
1597 	if (nodes) {
1598 		while (pfn >= nodes->size) {
1599 			pfn -= nodes->size;
1600 			++nodes;
1601 		}
1602 	}
1603 
1604 	do {
1605 		dma_addr_t *dma_addr = NULL;
1606 		uint64_t max_entries;
1607 		uint64_t addr, last;
1608 
1609 		if (nodes) {
1610 			addr = nodes->start << PAGE_SHIFT;
1611 			max_entries = (nodes->size - pfn) *
1612 				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1613 		} else {
1614 			addr = 0;
1615 			max_entries = S64_MAX;
1616 		}
1617 
1618 		if (pages_addr) {
1619 			uint64_t count;
1620 
1621 			for (count = 1;
1622 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1623 			     ++count) {
1624 				uint64_t idx = pfn + count;
1625 
1626 				if (pages_addr[idx] !=
1627 				    (pages_addr[idx - 1] + PAGE_SIZE))
1628 					break;
1629 			}
1630 
1631 			if (count < min_linear_pages) {
1632 				addr = pfn << PAGE_SHIFT;
1633 				dma_addr = pages_addr;
1634 			} else {
1635 				addr = pages_addr[pfn];
1636 				max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1637 			}
1638 
1639 		} else if (flags & AMDGPU_PTE_VALID) {
1640 			addr += bo_adev->vm_manager.vram_base_offset;
1641 			addr += pfn << PAGE_SHIFT;
1642 		}
1643 
1644 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1645 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1646 						start, last, flags, addr,
1647 						fence);
1648 		if (r)
1649 			return r;
1650 
1651 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1652 		if (nodes && nodes->size == pfn) {
1653 			pfn = 0;
1654 			++nodes;
1655 		}
1656 		start = last + 1;
1657 
1658 	} while (unlikely(start != mapping->last + 1));
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1665  *
1666  * @adev: amdgpu_device pointer
1667  * @bo_va: requested BO and VM object
1668  * @clear: if true clear the entries
1669  *
1670  * Fill in the page table entries for @bo_va.
1671  *
1672  * Returns:
1673  * 0 for success, -EINVAL for failure.
1674  */
1675 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1676 			struct amdgpu_bo_va *bo_va,
1677 			bool clear)
1678 {
1679 	struct amdgpu_bo *bo = bo_va->base.bo;
1680 	struct amdgpu_vm *vm = bo_va->base.vm;
1681 	struct amdgpu_bo_va_mapping *mapping;
1682 	dma_addr_t *pages_addr = NULL;
1683 	struct ttm_mem_reg *mem;
1684 	struct drm_mm_node *nodes;
1685 	struct dma_fence *exclusive, **last_update;
1686 	uint64_t flags;
1687 	struct amdgpu_device *bo_adev = adev;
1688 	int r;
1689 
1690 	if (clear || !bo) {
1691 		mem = NULL;
1692 		nodes = NULL;
1693 		exclusive = NULL;
1694 	} else {
1695 		struct ttm_dma_tt *ttm;
1696 
1697 		mem = &bo->tbo.mem;
1698 		nodes = mem->mm_node;
1699 		if (mem->mem_type == TTM_PL_TT) {
1700 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1701 			pages_addr = ttm->dma_address;
1702 		}
1703 		exclusive = dma_resv_get_excl(bo->tbo.base.resv);
1704 	}
1705 
1706 	if (bo) {
1707 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1708 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1709 	} else {
1710 		flags = 0x0;
1711 	}
1712 
1713 	if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv))
1714 		last_update = &vm->last_update;
1715 	else
1716 		last_update = &bo_va->last_pt_update;
1717 
1718 	if (!clear && bo_va->base.moved) {
1719 		bo_va->base.moved = false;
1720 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1721 
1722 	} else if (bo_va->cleared != clear) {
1723 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1724 	}
1725 
1726 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1727 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1728 					       mapping, flags, bo_adev, nodes,
1729 					       last_update);
1730 		if (r)
1731 			return r;
1732 	}
1733 
1734 	if (vm->use_cpu_for_update) {
1735 		/* Flush HDP */
1736 		mb();
1737 		amdgpu_asic_flush_hdp(adev, NULL);
1738 	}
1739 
1740 	/* If the BO is not in its preferred location add it back to
1741 	 * the evicted list so that it gets validated again on the
1742 	 * next command submission.
1743 	 */
1744 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1745 		uint32_t mem_type = bo->tbo.mem.mem_type;
1746 
1747 		if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
1748 			amdgpu_vm_bo_evicted(&bo_va->base);
1749 		else
1750 			amdgpu_vm_bo_idle(&bo_va->base);
1751 	} else {
1752 		amdgpu_vm_bo_done(&bo_va->base);
1753 	}
1754 
1755 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1756 	bo_va->cleared = clear;
1757 
1758 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1759 		list_for_each_entry(mapping, &bo_va->valids, list)
1760 			trace_amdgpu_vm_bo_mapping(mapping);
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 /**
1767  * amdgpu_vm_update_prt_state - update the global PRT state
1768  *
1769  * @adev: amdgpu_device pointer
1770  */
1771 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1772 {
1773 	unsigned long flags;
1774 	bool enable;
1775 
1776 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1777 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1778 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1779 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1780 }
1781 
1782 /**
1783  * amdgpu_vm_prt_get - add a PRT user
1784  *
1785  * @adev: amdgpu_device pointer
1786  */
1787 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1788 {
1789 	if (!adev->gmc.gmc_funcs->set_prt)
1790 		return;
1791 
1792 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1793 		amdgpu_vm_update_prt_state(adev);
1794 }
1795 
1796 /**
1797  * amdgpu_vm_prt_put - drop a PRT user
1798  *
1799  * @adev: amdgpu_device pointer
1800  */
1801 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1802 {
1803 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1804 		amdgpu_vm_update_prt_state(adev);
1805 }
1806 
1807 /**
1808  * amdgpu_vm_prt_cb - callback for updating the PRT status
1809  *
1810  * @fence: fence for the callback
1811  * @_cb: the callback function
1812  */
1813 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1814 {
1815 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1816 
1817 	amdgpu_vm_prt_put(cb->adev);
1818 	kfree(cb);
1819 }
1820 
1821 /**
1822  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1823  *
1824  * @adev: amdgpu_device pointer
1825  * @fence: fence for the callback
1826  */
1827 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1828 				 struct dma_fence *fence)
1829 {
1830 	struct amdgpu_prt_cb *cb;
1831 
1832 	if (!adev->gmc.gmc_funcs->set_prt)
1833 		return;
1834 
1835 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1836 	if (!cb) {
1837 		/* Last resort when we are OOM */
1838 		if (fence)
1839 			dma_fence_wait(fence, false);
1840 
1841 		amdgpu_vm_prt_put(adev);
1842 	} else {
1843 		cb->adev = adev;
1844 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1845 						     amdgpu_vm_prt_cb))
1846 			amdgpu_vm_prt_cb(fence, &cb->cb);
1847 	}
1848 }
1849 
1850 /**
1851  * amdgpu_vm_free_mapping - free a mapping
1852  *
1853  * @adev: amdgpu_device pointer
1854  * @vm: requested vm
1855  * @mapping: mapping to be freed
1856  * @fence: fence of the unmap operation
1857  *
1858  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1859  */
1860 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1861 				   struct amdgpu_vm *vm,
1862 				   struct amdgpu_bo_va_mapping *mapping,
1863 				   struct dma_fence *fence)
1864 {
1865 	if (mapping->flags & AMDGPU_PTE_PRT)
1866 		amdgpu_vm_add_prt_cb(adev, fence);
1867 	kfree(mapping);
1868 }
1869 
1870 /**
1871  * amdgpu_vm_prt_fini - finish all prt mappings
1872  *
1873  * @adev: amdgpu_device pointer
1874  * @vm: requested vm
1875  *
1876  * Register a cleanup callback to disable PRT support after VM dies.
1877  */
1878 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1879 {
1880 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1881 	struct dma_fence *excl, **shared;
1882 	unsigned i, shared_count;
1883 	int r;
1884 
1885 	r = dma_resv_get_fences_rcu(resv, &excl,
1886 					      &shared_count, &shared);
1887 	if (r) {
1888 		/* Not enough memory to grab the fence list, as last resort
1889 		 * block for all the fences to complete.
1890 		 */
1891 		dma_resv_wait_timeout_rcu(resv, true, false,
1892 						    MAX_SCHEDULE_TIMEOUT);
1893 		return;
1894 	}
1895 
1896 	/* Add a callback for each fence in the reservation object */
1897 	amdgpu_vm_prt_get(adev);
1898 	amdgpu_vm_add_prt_cb(adev, excl);
1899 
1900 	for (i = 0; i < shared_count; ++i) {
1901 		amdgpu_vm_prt_get(adev);
1902 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1903 	}
1904 
1905 	kfree(shared);
1906 }
1907 
1908 /**
1909  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1910  *
1911  * @adev: amdgpu_device pointer
1912  * @vm: requested vm
1913  * @fence: optional resulting fence (unchanged if no work needed to be done
1914  * or if an error occurred)
1915  *
1916  * Make sure all freed BOs are cleared in the PT.
1917  * PTs have to be reserved and mutex must be locked!
1918  *
1919  * Returns:
1920  * 0 for success.
1921  *
1922  */
1923 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1924 			  struct amdgpu_vm *vm,
1925 			  struct dma_fence **fence)
1926 {
1927 	struct amdgpu_bo_va_mapping *mapping;
1928 	uint64_t init_pte_value = 0;
1929 	struct dma_fence *f = NULL;
1930 	int r;
1931 
1932 	while (!list_empty(&vm->freed)) {
1933 		mapping = list_first_entry(&vm->freed,
1934 			struct amdgpu_bo_va_mapping, list);
1935 		list_del(&mapping->list);
1936 
1937 		if (vm->pte_support_ats &&
1938 		    mapping->start < AMDGPU_GMC_HOLE_START)
1939 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1940 
1941 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1942 						mapping->start, mapping->last,
1943 						init_pte_value, 0, &f);
1944 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1945 		if (r) {
1946 			dma_fence_put(f);
1947 			return r;
1948 		}
1949 	}
1950 
1951 	if (fence && f) {
1952 		dma_fence_put(*fence);
1953 		*fence = f;
1954 	} else {
1955 		dma_fence_put(f);
1956 	}
1957 
1958 	return 0;
1959 
1960 }
1961 
1962 /**
1963  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1964  *
1965  * @adev: amdgpu_device pointer
1966  * @vm: requested vm
1967  *
1968  * Make sure all BOs which are moved are updated in the PTs.
1969  *
1970  * Returns:
1971  * 0 for success.
1972  *
1973  * PTs have to be reserved!
1974  */
1975 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1976 			   struct amdgpu_vm *vm)
1977 {
1978 	struct amdgpu_bo_va *bo_va, *tmp;
1979 	struct dma_resv *resv;
1980 	bool clear;
1981 	int r;
1982 
1983 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1984 		/* Per VM BOs never need to bo cleared in the page tables */
1985 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1986 		if (r)
1987 			return r;
1988 	}
1989 
1990 	spin_lock(&vm->invalidated_lock);
1991 	while (!list_empty(&vm->invalidated)) {
1992 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1993 					 base.vm_status);
1994 		resv = bo_va->base.bo->tbo.base.resv;
1995 		spin_unlock(&vm->invalidated_lock);
1996 
1997 		/* Try to reserve the BO to avoid clearing its ptes */
1998 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
1999 			clear = false;
2000 		/* Somebody else is using the BO right now */
2001 		else
2002 			clear = true;
2003 
2004 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2005 		if (r)
2006 			return r;
2007 
2008 		if (!clear)
2009 			dma_resv_unlock(resv);
2010 		spin_lock(&vm->invalidated_lock);
2011 	}
2012 	spin_unlock(&vm->invalidated_lock);
2013 
2014 	return 0;
2015 }
2016 
2017 /**
2018  * amdgpu_vm_bo_add - add a bo to a specific vm
2019  *
2020  * @adev: amdgpu_device pointer
2021  * @vm: requested vm
2022  * @bo: amdgpu buffer object
2023  *
2024  * Add @bo into the requested vm.
2025  * Add @bo to the list of bos associated with the vm
2026  *
2027  * Returns:
2028  * Newly added bo_va or NULL for failure
2029  *
2030  * Object has to be reserved!
2031  */
2032 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2033 				      struct amdgpu_vm *vm,
2034 				      struct amdgpu_bo *bo)
2035 {
2036 	struct amdgpu_bo_va *bo_va;
2037 
2038 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2039 	if (bo_va == NULL) {
2040 		return NULL;
2041 	}
2042 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2043 
2044 	bo_va->ref_count = 1;
2045 	INIT_LIST_HEAD(&bo_va->valids);
2046 	INIT_LIST_HEAD(&bo_va->invalids);
2047 
2048 	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2049 	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2050 		bo_va->is_xgmi = true;
2051 		mutex_lock(&adev->vm_manager.lock_pstate);
2052 		/* Power up XGMI if it can be potentially used */
2053 		if (++adev->vm_manager.xgmi_map_counter == 1)
2054 			amdgpu_xgmi_set_pstate(adev, 1);
2055 		mutex_unlock(&adev->vm_manager.lock_pstate);
2056 	}
2057 
2058 	return bo_va;
2059 }
2060 
2061 
2062 /**
2063  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2064  *
2065  * @adev: amdgpu_device pointer
2066  * @bo_va: bo_va to store the address
2067  * @mapping: the mapping to insert
2068  *
2069  * Insert a new mapping into all structures.
2070  */
2071 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2072 				    struct amdgpu_bo_va *bo_va,
2073 				    struct amdgpu_bo_va_mapping *mapping)
2074 {
2075 	struct amdgpu_vm *vm = bo_va->base.vm;
2076 	struct amdgpu_bo *bo = bo_va->base.bo;
2077 
2078 	mapping->bo_va = bo_va;
2079 	list_add(&mapping->list, &bo_va->invalids);
2080 	amdgpu_vm_it_insert(mapping, &vm->va);
2081 
2082 	if (mapping->flags & AMDGPU_PTE_PRT)
2083 		amdgpu_vm_prt_get(adev);
2084 
2085 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2086 	    !bo_va->base.moved) {
2087 		list_move(&bo_va->base.vm_status, &vm->moved);
2088 	}
2089 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2090 }
2091 
2092 /**
2093  * amdgpu_vm_bo_map - map bo inside a vm
2094  *
2095  * @adev: amdgpu_device pointer
2096  * @bo_va: bo_va to store the address
2097  * @saddr: where to map the BO
2098  * @offset: requested offset in the BO
2099  * @size: BO size in bytes
2100  * @flags: attributes of pages (read/write/valid/etc.)
2101  *
2102  * Add a mapping of the BO at the specefied addr into the VM.
2103  *
2104  * Returns:
2105  * 0 for success, error for failure.
2106  *
2107  * Object has to be reserved and unreserved outside!
2108  */
2109 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2110 		     struct amdgpu_bo_va *bo_va,
2111 		     uint64_t saddr, uint64_t offset,
2112 		     uint64_t size, uint64_t flags)
2113 {
2114 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2115 	struct amdgpu_bo *bo = bo_va->base.bo;
2116 	struct amdgpu_vm *vm = bo_va->base.vm;
2117 	uint64_t eaddr;
2118 
2119 	/* validate the parameters */
2120 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2121 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2122 		return -EINVAL;
2123 
2124 	/* make sure object fit at this offset */
2125 	eaddr = saddr + size - 1;
2126 	if (saddr >= eaddr ||
2127 	    (bo && offset + size > amdgpu_bo_size(bo)))
2128 		return -EINVAL;
2129 
2130 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2131 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2132 
2133 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2134 	if (tmp) {
2135 		/* bo and tmp overlap, invalid addr */
2136 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2137 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2138 			tmp->start, tmp->last + 1);
2139 		return -EINVAL;
2140 	}
2141 
2142 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2143 	if (!mapping)
2144 		return -ENOMEM;
2145 
2146 	mapping->start = saddr;
2147 	mapping->last = eaddr;
2148 	mapping->offset = offset;
2149 	mapping->flags = flags;
2150 
2151 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2152 
2153 	return 0;
2154 }
2155 
2156 /**
2157  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2158  *
2159  * @adev: amdgpu_device pointer
2160  * @bo_va: bo_va to store the address
2161  * @saddr: where to map the BO
2162  * @offset: requested offset in the BO
2163  * @size: BO size in bytes
2164  * @flags: attributes of pages (read/write/valid/etc.)
2165  *
2166  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2167  * mappings as we do so.
2168  *
2169  * Returns:
2170  * 0 for success, error for failure.
2171  *
2172  * Object has to be reserved and unreserved outside!
2173  */
2174 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2175 			     struct amdgpu_bo_va *bo_va,
2176 			     uint64_t saddr, uint64_t offset,
2177 			     uint64_t size, uint64_t flags)
2178 {
2179 	struct amdgpu_bo_va_mapping *mapping;
2180 	struct amdgpu_bo *bo = bo_va->base.bo;
2181 	uint64_t eaddr;
2182 	int r;
2183 
2184 	/* validate the parameters */
2185 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2186 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2187 		return -EINVAL;
2188 
2189 	/* make sure object fit at this offset */
2190 	eaddr = saddr + size - 1;
2191 	if (saddr >= eaddr ||
2192 	    (bo && offset + size > amdgpu_bo_size(bo)))
2193 		return -EINVAL;
2194 
2195 	/* Allocate all the needed memory */
2196 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2197 	if (!mapping)
2198 		return -ENOMEM;
2199 
2200 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2201 	if (r) {
2202 		kfree(mapping);
2203 		return r;
2204 	}
2205 
2206 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2207 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2208 
2209 	mapping->start = saddr;
2210 	mapping->last = eaddr;
2211 	mapping->offset = offset;
2212 	mapping->flags = flags;
2213 
2214 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2215 
2216 	return 0;
2217 }
2218 
2219 /**
2220  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2221  *
2222  * @adev: amdgpu_device pointer
2223  * @bo_va: bo_va to remove the address from
2224  * @saddr: where to the BO is mapped
2225  *
2226  * Remove a mapping of the BO at the specefied addr from the VM.
2227  *
2228  * Returns:
2229  * 0 for success, error for failure.
2230  *
2231  * Object has to be reserved and unreserved outside!
2232  */
2233 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2234 		       struct amdgpu_bo_va *bo_va,
2235 		       uint64_t saddr)
2236 {
2237 	struct amdgpu_bo_va_mapping *mapping;
2238 	struct amdgpu_vm *vm = bo_va->base.vm;
2239 	bool valid = true;
2240 
2241 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2242 
2243 	list_for_each_entry(mapping, &bo_va->valids, list) {
2244 		if (mapping->start == saddr)
2245 			break;
2246 	}
2247 
2248 	if (&mapping->list == &bo_va->valids) {
2249 		valid = false;
2250 
2251 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2252 			if (mapping->start == saddr)
2253 				break;
2254 		}
2255 
2256 		if (&mapping->list == &bo_va->invalids)
2257 			return -ENOENT;
2258 	}
2259 
2260 	list_del(&mapping->list);
2261 	amdgpu_vm_it_remove(mapping, &vm->va);
2262 	mapping->bo_va = NULL;
2263 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2264 
2265 	if (valid)
2266 		list_add(&mapping->list, &vm->freed);
2267 	else
2268 		amdgpu_vm_free_mapping(adev, vm, mapping,
2269 				       bo_va->last_pt_update);
2270 
2271 	return 0;
2272 }
2273 
2274 /**
2275  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2276  *
2277  * @adev: amdgpu_device pointer
2278  * @vm: VM structure to use
2279  * @saddr: start of the range
2280  * @size: size of the range
2281  *
2282  * Remove all mappings in a range, split them as appropriate.
2283  *
2284  * Returns:
2285  * 0 for success, error for failure.
2286  */
2287 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2288 				struct amdgpu_vm *vm,
2289 				uint64_t saddr, uint64_t size)
2290 {
2291 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2292 	LIST_HEAD(removed);
2293 	uint64_t eaddr;
2294 
2295 	eaddr = saddr + size - 1;
2296 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2297 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2298 
2299 	/* Allocate all the needed memory */
2300 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2301 	if (!before)
2302 		return -ENOMEM;
2303 	INIT_LIST_HEAD(&before->list);
2304 
2305 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2306 	if (!after) {
2307 		kfree(before);
2308 		return -ENOMEM;
2309 	}
2310 	INIT_LIST_HEAD(&after->list);
2311 
2312 	/* Now gather all removed mappings */
2313 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2314 	while (tmp) {
2315 		/* Remember mapping split at the start */
2316 		if (tmp->start < saddr) {
2317 			before->start = tmp->start;
2318 			before->last = saddr - 1;
2319 			before->offset = tmp->offset;
2320 			before->flags = tmp->flags;
2321 			before->bo_va = tmp->bo_va;
2322 			list_add(&before->list, &tmp->bo_va->invalids);
2323 		}
2324 
2325 		/* Remember mapping split at the end */
2326 		if (tmp->last > eaddr) {
2327 			after->start = eaddr + 1;
2328 			after->last = tmp->last;
2329 			after->offset = tmp->offset;
2330 			after->offset += after->start - tmp->start;
2331 			after->flags = tmp->flags;
2332 			after->bo_va = tmp->bo_va;
2333 			list_add(&after->list, &tmp->bo_va->invalids);
2334 		}
2335 
2336 		list_del(&tmp->list);
2337 		list_add(&tmp->list, &removed);
2338 
2339 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2340 	}
2341 
2342 	/* And free them up */
2343 	list_for_each_entry_safe(tmp, next, &removed, list) {
2344 		amdgpu_vm_it_remove(tmp, &vm->va);
2345 		list_del(&tmp->list);
2346 
2347 		if (tmp->start < saddr)
2348 		    tmp->start = saddr;
2349 		if (tmp->last > eaddr)
2350 		    tmp->last = eaddr;
2351 
2352 		tmp->bo_va = NULL;
2353 		list_add(&tmp->list, &vm->freed);
2354 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2355 	}
2356 
2357 	/* Insert partial mapping before the range */
2358 	if (!list_empty(&before->list)) {
2359 		amdgpu_vm_it_insert(before, &vm->va);
2360 		if (before->flags & AMDGPU_PTE_PRT)
2361 			amdgpu_vm_prt_get(adev);
2362 	} else {
2363 		kfree(before);
2364 	}
2365 
2366 	/* Insert partial mapping after the range */
2367 	if (!list_empty(&after->list)) {
2368 		amdgpu_vm_it_insert(after, &vm->va);
2369 		if (after->flags & AMDGPU_PTE_PRT)
2370 			amdgpu_vm_prt_get(adev);
2371 	} else {
2372 		kfree(after);
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2380  *
2381  * @vm: the requested VM
2382  * @addr: the address
2383  *
2384  * Find a mapping by it's address.
2385  *
2386  * Returns:
2387  * The amdgpu_bo_va_mapping matching for addr or NULL
2388  *
2389  */
2390 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2391 							 uint64_t addr)
2392 {
2393 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2394 }
2395 
2396 /**
2397  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2398  *
2399  * @vm: the requested vm
2400  * @ticket: CS ticket
2401  *
2402  * Trace all mappings of BOs reserved during a command submission.
2403  */
2404 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2405 {
2406 	struct amdgpu_bo_va_mapping *mapping;
2407 
2408 	if (!trace_amdgpu_vm_bo_cs_enabled())
2409 		return;
2410 
2411 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2412 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2413 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2414 			struct amdgpu_bo *bo;
2415 
2416 			bo = mapping->bo_va->base.bo;
2417 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2418 			    ticket)
2419 				continue;
2420 		}
2421 
2422 		trace_amdgpu_vm_bo_cs(mapping);
2423 	}
2424 }
2425 
2426 /**
2427  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2428  *
2429  * @adev: amdgpu_device pointer
2430  * @bo_va: requested bo_va
2431  *
2432  * Remove @bo_va->bo from the requested vm.
2433  *
2434  * Object have to be reserved!
2435  */
2436 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2437 		      struct amdgpu_bo_va *bo_va)
2438 {
2439 	struct amdgpu_bo_va_mapping *mapping, *next;
2440 	struct amdgpu_bo *bo = bo_va->base.bo;
2441 	struct amdgpu_vm *vm = bo_va->base.vm;
2442 	struct amdgpu_vm_bo_base **base;
2443 
2444 	if (bo) {
2445 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2446 			vm->bulk_moveable = false;
2447 
2448 		for (base = &bo_va->base.bo->vm_bo; *base;
2449 		     base = &(*base)->next) {
2450 			if (*base != &bo_va->base)
2451 				continue;
2452 
2453 			*base = bo_va->base.next;
2454 			break;
2455 		}
2456 	}
2457 
2458 	spin_lock(&vm->invalidated_lock);
2459 	list_del(&bo_va->base.vm_status);
2460 	spin_unlock(&vm->invalidated_lock);
2461 
2462 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2463 		list_del(&mapping->list);
2464 		amdgpu_vm_it_remove(mapping, &vm->va);
2465 		mapping->bo_va = NULL;
2466 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2467 		list_add(&mapping->list, &vm->freed);
2468 	}
2469 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2470 		list_del(&mapping->list);
2471 		amdgpu_vm_it_remove(mapping, &vm->va);
2472 		amdgpu_vm_free_mapping(adev, vm, mapping,
2473 				       bo_va->last_pt_update);
2474 	}
2475 
2476 	dma_fence_put(bo_va->last_pt_update);
2477 
2478 	if (bo && bo_va->is_xgmi) {
2479 		mutex_lock(&adev->vm_manager.lock_pstate);
2480 		if (--adev->vm_manager.xgmi_map_counter == 0)
2481 			amdgpu_xgmi_set_pstate(adev, 0);
2482 		mutex_unlock(&adev->vm_manager.lock_pstate);
2483 	}
2484 
2485 	kfree(bo_va);
2486 }
2487 
2488 /**
2489  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2490  *
2491  * @adev: amdgpu_device pointer
2492  * @bo: amdgpu buffer object
2493  * @evicted: is the BO evicted
2494  *
2495  * Mark @bo as invalid.
2496  */
2497 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2498 			     struct amdgpu_bo *bo, bool evicted)
2499 {
2500 	struct amdgpu_vm_bo_base *bo_base;
2501 
2502 	/* shadow bo doesn't have bo base, its validation needs its parent */
2503 	if (bo->parent && bo->parent->shadow == bo)
2504 		bo = bo->parent;
2505 
2506 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2507 		struct amdgpu_vm *vm = bo_base->vm;
2508 
2509 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2510 			amdgpu_vm_bo_evicted(bo_base);
2511 			continue;
2512 		}
2513 
2514 		if (bo_base->moved)
2515 			continue;
2516 		bo_base->moved = true;
2517 
2518 		if (bo->tbo.type == ttm_bo_type_kernel)
2519 			amdgpu_vm_bo_relocated(bo_base);
2520 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2521 			amdgpu_vm_bo_moved(bo_base);
2522 		else
2523 			amdgpu_vm_bo_invalidated(bo_base);
2524 	}
2525 }
2526 
2527 /**
2528  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2529  *
2530  * @vm_size: VM size
2531  *
2532  * Returns:
2533  * VM page table as power of two
2534  */
2535 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2536 {
2537 	/* Total bits covered by PD + PTs */
2538 	unsigned bits = ilog2(vm_size) + 18;
2539 
2540 	/* Make sure the PD is 4K in size up to 8GB address space.
2541 	   Above that split equal between PD and PTs */
2542 	if (vm_size <= 8)
2543 		return (bits - 9);
2544 	else
2545 		return ((bits + 3) / 2);
2546 }
2547 
2548 /**
2549  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2550  *
2551  * @adev: amdgpu_device pointer
2552  * @min_vm_size: the minimum vm size in GB if it's set auto
2553  * @fragment_size_default: Default PTE fragment size
2554  * @max_level: max VMPT level
2555  * @max_bits: max address space size in bits
2556  *
2557  */
2558 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2559 			   uint32_t fragment_size_default, unsigned max_level,
2560 			   unsigned max_bits)
2561 {
2562 	unsigned int max_size = 1 << (max_bits - 30);
2563 	unsigned int vm_size;
2564 	uint64_t tmp;
2565 
2566 	/* adjust vm size first */
2567 	if (amdgpu_vm_size != -1) {
2568 		vm_size = amdgpu_vm_size;
2569 		if (vm_size > max_size) {
2570 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2571 				 amdgpu_vm_size, max_size);
2572 			vm_size = max_size;
2573 		}
2574 	} else {
2575 		struct sysinfo si;
2576 		unsigned int phys_ram_gb;
2577 
2578 		/* Optimal VM size depends on the amount of physical
2579 		 * RAM available. Underlying requirements and
2580 		 * assumptions:
2581 		 *
2582 		 *  - Need to map system memory and VRAM from all GPUs
2583 		 *     - VRAM from other GPUs not known here
2584 		 *     - Assume VRAM <= system memory
2585 		 *  - On GFX8 and older, VM space can be segmented for
2586 		 *    different MTYPEs
2587 		 *  - Need to allow room for fragmentation, guard pages etc.
2588 		 *
2589 		 * This adds up to a rough guess of system memory x3.
2590 		 * Round up to power of two to maximize the available
2591 		 * VM size with the given page table size.
2592 		 */
2593 		si_meminfo(&si);
2594 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2595 			       (1 << 30) - 1) >> 30;
2596 		vm_size = roundup_pow_of_two(
2597 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2598 	}
2599 
2600 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2601 
2602 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2603 	if (amdgpu_vm_block_size != -1)
2604 		tmp >>= amdgpu_vm_block_size - 9;
2605 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2606 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2607 	switch (adev->vm_manager.num_level) {
2608 	case 3:
2609 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2610 		break;
2611 	case 2:
2612 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2613 		break;
2614 	case 1:
2615 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2616 		break;
2617 	default:
2618 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2619 	}
2620 	/* block size depends on vm size and hw setup*/
2621 	if (amdgpu_vm_block_size != -1)
2622 		adev->vm_manager.block_size =
2623 			min((unsigned)amdgpu_vm_block_size, max_bits
2624 			    - AMDGPU_GPU_PAGE_SHIFT
2625 			    - 9 * adev->vm_manager.num_level);
2626 	else if (adev->vm_manager.num_level > 1)
2627 		adev->vm_manager.block_size = 9;
2628 	else
2629 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2630 
2631 	if (amdgpu_vm_fragment_size == -1)
2632 		adev->vm_manager.fragment_size = fragment_size_default;
2633 	else
2634 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2635 
2636 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2637 		 vm_size, adev->vm_manager.num_level + 1,
2638 		 adev->vm_manager.block_size,
2639 		 adev->vm_manager.fragment_size);
2640 }
2641 
2642 /**
2643  * amdgpu_vm_wait_idle - wait for the VM to become idle
2644  *
2645  * @vm: VM object to wait for
2646  * @timeout: timeout to wait for VM to become idle
2647  */
2648 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2649 {
2650 	return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2651 						   true, true, timeout);
2652 }
2653 
2654 /**
2655  * amdgpu_vm_init - initialize a vm instance
2656  *
2657  * @adev: amdgpu_device pointer
2658  * @vm: requested vm
2659  * @vm_context: Indicates if it GFX or Compute context
2660  * @pasid: Process address space identifier
2661  *
2662  * Init @vm fields.
2663  *
2664  * Returns:
2665  * 0 for success, error for failure.
2666  */
2667 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2668 		   int vm_context, unsigned int pasid)
2669 {
2670 	struct amdgpu_bo_param bp;
2671 	struct amdgpu_bo *root;
2672 	int r, i;
2673 
2674 	vm->va = RB_ROOT_CACHED;
2675 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2676 		vm->reserved_vmid[i] = NULL;
2677 	INIT_LIST_HEAD(&vm->evicted);
2678 	INIT_LIST_HEAD(&vm->relocated);
2679 	INIT_LIST_HEAD(&vm->moved);
2680 	INIT_LIST_HEAD(&vm->idle);
2681 	INIT_LIST_HEAD(&vm->invalidated);
2682 	spin_lock_init(&vm->invalidated_lock);
2683 	INIT_LIST_HEAD(&vm->freed);
2684 
2685 	/* create scheduler entity for page table updates */
2686 	r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2687 				  adev->vm_manager.vm_pte_num_rqs, NULL);
2688 	if (r)
2689 		return r;
2690 
2691 	vm->pte_support_ats = false;
2692 
2693 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2694 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2695 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2696 
2697 		if (adev->asic_type == CHIP_RAVEN)
2698 			vm->pte_support_ats = true;
2699 	} else {
2700 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2701 						AMDGPU_VM_USE_CPU_FOR_GFX);
2702 	}
2703 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2704 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2705 	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2706 		  "CPU update of VM recommended only for large BAR system\n");
2707 
2708 	if (vm->use_cpu_for_update)
2709 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2710 	else
2711 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2712 	vm->last_update = NULL;
2713 
2714 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
2715 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2716 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2717 	r = amdgpu_bo_create(adev, &bp, &root);
2718 	if (r)
2719 		goto error_free_sched_entity;
2720 
2721 	r = amdgpu_bo_reserve(root, true);
2722 	if (r)
2723 		goto error_free_root;
2724 
2725 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2726 	if (r)
2727 		goto error_unreserve;
2728 
2729 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2730 
2731 	r = amdgpu_vm_clear_bo(adev, vm, root);
2732 	if (r)
2733 		goto error_unreserve;
2734 
2735 	amdgpu_bo_unreserve(vm->root.base.bo);
2736 
2737 	if (pasid) {
2738 		unsigned long flags;
2739 
2740 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2741 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2742 			      GFP_ATOMIC);
2743 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2744 		if (r < 0)
2745 			goto error_free_root;
2746 
2747 		vm->pasid = pasid;
2748 	}
2749 
2750 	INIT_KFIFO(vm->faults);
2751 
2752 	return 0;
2753 
2754 error_unreserve:
2755 	amdgpu_bo_unreserve(vm->root.base.bo);
2756 
2757 error_free_root:
2758 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2759 	amdgpu_bo_unref(&vm->root.base.bo);
2760 	vm->root.base.bo = NULL;
2761 
2762 error_free_sched_entity:
2763 	drm_sched_entity_destroy(&vm->entity);
2764 
2765 	return r;
2766 }
2767 
2768 /**
2769  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2770  *
2771  * @adev: amdgpu_device pointer
2772  * @vm: the VM to check
2773  *
2774  * check all entries of the root PD, if any subsequent PDs are allocated,
2775  * it means there are page table creating and filling, and is no a clean
2776  * VM
2777  *
2778  * Returns:
2779  *	0 if this VM is clean
2780  */
2781 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2782 	struct amdgpu_vm *vm)
2783 {
2784 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2785 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2786 	unsigned int i = 0;
2787 
2788 	if (!(vm->root.entries))
2789 		return 0;
2790 
2791 	for (i = 0; i < entries; i++) {
2792 		if (vm->root.entries[i].base.bo)
2793 			return -EINVAL;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 /**
2800  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2801  *
2802  * @adev: amdgpu_device pointer
2803  * @vm: requested vm
2804  *
2805  * This only works on GFX VMs that don't have any BOs added and no
2806  * page tables allocated yet.
2807  *
2808  * Changes the following VM parameters:
2809  * - use_cpu_for_update
2810  * - pte_supports_ats
2811  * - pasid (old PASID is released, because compute manages its own PASIDs)
2812  *
2813  * Reinitializes the page directory to reflect the changed ATS
2814  * setting.
2815  *
2816  * Returns:
2817  * 0 for success, -errno for errors.
2818  */
2819 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
2820 {
2821 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2822 	int r;
2823 
2824 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2825 	if (r)
2826 		return r;
2827 
2828 	/* Sanity checks */
2829 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2830 	if (r)
2831 		goto unreserve_bo;
2832 
2833 	if (pasid) {
2834 		unsigned long flags;
2835 
2836 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2837 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2838 			      GFP_ATOMIC);
2839 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2840 
2841 		if (r == -ENOSPC)
2842 			goto unreserve_bo;
2843 		r = 0;
2844 	}
2845 
2846 	/* Check if PD needs to be reinitialized and do it before
2847 	 * changing any other state, in case it fails.
2848 	 */
2849 	if (pte_support_ats != vm->pte_support_ats) {
2850 		vm->pte_support_ats = pte_support_ats;
2851 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo);
2852 		if (r)
2853 			goto free_idr;
2854 	}
2855 
2856 	/* Update VM state */
2857 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2858 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2859 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2860 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2861 	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2862 		  "CPU update of VM recommended only for large BAR system\n");
2863 
2864 	if (vm->use_cpu_for_update)
2865 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2866 	else
2867 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2868 	dma_fence_put(vm->last_update);
2869 	vm->last_update = NULL;
2870 
2871 	if (vm->pasid) {
2872 		unsigned long flags;
2873 
2874 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2875 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2876 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2877 
2878 		/* Free the original amdgpu allocated pasid
2879 		 * Will be replaced with kfd allocated pasid
2880 		 */
2881 		amdgpu_pasid_free(vm->pasid);
2882 		vm->pasid = 0;
2883 	}
2884 
2885 	/* Free the shadow bo for compute VM */
2886 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2887 
2888 	if (pasid)
2889 		vm->pasid = pasid;
2890 
2891 	goto unreserve_bo;
2892 
2893 free_idr:
2894 	if (pasid) {
2895 		unsigned long flags;
2896 
2897 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2898 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
2899 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2900 	}
2901 unreserve_bo:
2902 	amdgpu_bo_unreserve(vm->root.base.bo);
2903 	return r;
2904 }
2905 
2906 /**
2907  * amdgpu_vm_release_compute - release a compute vm
2908  * @adev: amdgpu_device pointer
2909  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2910  *
2911  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2912  * pasid from vm. Compute should stop use of vm after this call.
2913  */
2914 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2915 {
2916 	if (vm->pasid) {
2917 		unsigned long flags;
2918 
2919 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2920 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2921 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2922 	}
2923 	vm->pasid = 0;
2924 }
2925 
2926 /**
2927  * amdgpu_vm_fini - tear down a vm instance
2928  *
2929  * @adev: amdgpu_device pointer
2930  * @vm: requested vm
2931  *
2932  * Tear down @vm.
2933  * Unbind the VM and remove all bos from the vm bo list
2934  */
2935 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2936 {
2937 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2938 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2939 	struct amdgpu_bo *root;
2940 	int i, r;
2941 
2942 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2943 
2944 	if (vm->pasid) {
2945 		unsigned long flags;
2946 
2947 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2948 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2949 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2950 	}
2951 
2952 	drm_sched_entity_destroy(&vm->entity);
2953 
2954 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2955 		dev_err(adev->dev, "still active bo inside vm\n");
2956 	}
2957 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2958 					     &vm->va.rb_root, rb) {
2959 		/* Don't remove the mapping here, we don't want to trigger a
2960 		 * rebalance and the tree is about to be destroyed anyway.
2961 		 */
2962 		list_del(&mapping->list);
2963 		kfree(mapping);
2964 	}
2965 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2966 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2967 			amdgpu_vm_prt_fini(adev, vm);
2968 			prt_fini_needed = false;
2969 		}
2970 
2971 		list_del(&mapping->list);
2972 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2973 	}
2974 
2975 	root = amdgpu_bo_ref(vm->root.base.bo);
2976 	r = amdgpu_bo_reserve(root, true);
2977 	if (r) {
2978 		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2979 	} else {
2980 		amdgpu_vm_free_pts(adev, vm, NULL);
2981 		amdgpu_bo_unreserve(root);
2982 	}
2983 	amdgpu_bo_unref(&root);
2984 	WARN_ON(vm->root.base.bo);
2985 	dma_fence_put(vm->last_update);
2986 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2987 		amdgpu_vmid_free_reserved(adev, vm, i);
2988 }
2989 
2990 /**
2991  * amdgpu_vm_manager_init - init the VM manager
2992  *
2993  * @adev: amdgpu_device pointer
2994  *
2995  * Initialize the VM manager structures
2996  */
2997 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2998 {
2999 	unsigned i;
3000 
3001 	amdgpu_vmid_mgr_init(adev);
3002 
3003 	adev->vm_manager.fence_context =
3004 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3005 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3006 		adev->vm_manager.seqno[i] = 0;
3007 
3008 	spin_lock_init(&adev->vm_manager.prt_lock);
3009 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3010 
3011 	/* If not overridden by the user, by default, only in large BAR systems
3012 	 * Compute VM tables will be updated by CPU
3013 	 */
3014 #ifdef CONFIG_X86_64
3015 	if (amdgpu_vm_update_mode == -1) {
3016 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3017 			adev->vm_manager.vm_update_mode =
3018 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3019 		else
3020 			adev->vm_manager.vm_update_mode = 0;
3021 	} else
3022 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3023 #else
3024 	adev->vm_manager.vm_update_mode = 0;
3025 #endif
3026 
3027 	idr_init(&adev->vm_manager.pasid_idr);
3028 	spin_lock_init(&adev->vm_manager.pasid_lock);
3029 
3030 	adev->vm_manager.xgmi_map_counter = 0;
3031 	mutex_init(&adev->vm_manager.lock_pstate);
3032 }
3033 
3034 /**
3035  * amdgpu_vm_manager_fini - cleanup VM manager
3036  *
3037  * @adev: amdgpu_device pointer
3038  *
3039  * Cleanup the VM manager and free resources.
3040  */
3041 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3042 {
3043 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3044 	idr_destroy(&adev->vm_manager.pasid_idr);
3045 
3046 	amdgpu_vmid_mgr_fini(adev);
3047 }
3048 
3049 /**
3050  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3051  *
3052  * @dev: drm device pointer
3053  * @data: drm_amdgpu_vm
3054  * @filp: drm file pointer
3055  *
3056  * Returns:
3057  * 0 for success, -errno for errors.
3058  */
3059 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3060 {
3061 	union drm_amdgpu_vm *args = data;
3062 	struct amdgpu_device *adev = dev->dev_private;
3063 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3064 	int r;
3065 
3066 	switch (args->in.op) {
3067 	case AMDGPU_VM_OP_RESERVE_VMID:
3068 		/* current, we only have requirement to reserve vmid from gfxhub */
3069 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3070 		if (r)
3071 			return r;
3072 		break;
3073 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3074 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3075 		break;
3076 	default:
3077 		return -EINVAL;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 /**
3084  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3085  *
3086  * @adev: drm device pointer
3087  * @pasid: PASID identifier for VM
3088  * @task_info: task_info to fill.
3089  */
3090 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3091 			 struct amdgpu_task_info *task_info)
3092 {
3093 	struct amdgpu_vm *vm;
3094 	unsigned long flags;
3095 
3096 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3097 
3098 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3099 	if (vm)
3100 		*task_info = vm->task_info;
3101 
3102 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3103 }
3104 
3105 /**
3106  * amdgpu_vm_set_task_info - Sets VMs task info.
3107  *
3108  * @vm: vm for which to set the info
3109  */
3110 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3111 {
3112 	if (!vm->task_info.pid) {
3113 		vm->task_info.pid = current->pid;
3114 		get_task_comm(vm->task_info.task_name, current);
3115 
3116 		if (current->group_leader->mm == current->mm) {
3117 			vm->task_info.tgid = current->group_leader->pid;
3118 			get_task_comm(vm->task_info.process_name, current->group_leader);
3119 		}
3120 	}
3121 }
3122