xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision db10cb9b)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include <drm/ttm/ttm_tt.h>
37 #include <drm/drm_exec.h>
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_amdkfd.h"
41 #include "amdgpu_gmc.h"
42 #include "amdgpu_xgmi.h"
43 #include "amdgpu_dma_buf.h"
44 #include "amdgpu_res_cursor.h"
45 #include "kfd_svm.h"
46 
47 /**
48  * DOC: GPUVM
49  *
50  * GPUVM is the MMU functionality provided on the GPU.
51  * GPUVM is similar to the legacy GART on older asics, however
52  * rather than there being a single global GART table
53  * for the entire GPU, there can be multiple GPUVM page tables active
54  * at any given time.  The GPUVM page tables can contain a mix
55  * VRAM pages and system pages (both memory and MMIO) and system pages
56  * can be mapped as snooped (cached system pages) or unsnooped
57  * (uncached system pages).
58  *
59  * Each active GPUVM has an ID associated with it and there is a page table
60  * linked with each VMID.  When executing a command buffer,
61  * the kernel tells the engine what VMID to use for that command
62  * buffer.  VMIDs are allocated dynamically as commands are submitted.
63  * The userspace drivers maintain their own address space and the kernel
64  * sets up their pages tables accordingly when they submit their
65  * command buffers and a VMID is assigned.
66  * The hardware supports up to 16 active GPUVMs at any given time.
67  *
68  * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
69  * on the ASIC family.  GPUVM supports RWX attributes on each page as well
70  * as other features such as encryption and caching attributes.
71  *
72  * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
73  * addition to an aperture managed by a page table, VMID 0 also has
74  * several other apertures.  There is an aperture for direct access to VRAM
75  * and there is a legacy AGP aperture which just forwards accesses directly
76  * to the matching system physical addresses (or IOVAs when an IOMMU is
77  * present).  These apertures provide direct access to these memories without
78  * incurring the overhead of a page table.  VMID 0 is used by the kernel
79  * driver for tasks like memory management.
80  *
81  * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
82  * For user applications, each application can have their own unique GPUVM
83  * address space.  The application manages the address space and the kernel
84  * driver manages the GPUVM page tables for each process.  If an GPU client
85  * accesses an invalid page, it will generate a GPU page fault, similar to
86  * accessing an invalid page on a CPU.
87  */
88 
89 #define START(node) ((node)->start)
90 #define LAST(node) ((node)->last)
91 
92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
93 		     START, LAST, static, amdgpu_vm_it)
94 
95 #undef START
96 #undef LAST
97 
98 /**
99  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
100  */
101 struct amdgpu_prt_cb {
102 
103 	/**
104 	 * @adev: amdgpu device
105 	 */
106 	struct amdgpu_device *adev;
107 
108 	/**
109 	 * @cb: callback
110 	 */
111 	struct dma_fence_cb cb;
112 };
113 
114 /**
115  * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
116  */
117 struct amdgpu_vm_tlb_seq_struct {
118 	/**
119 	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
120 	 */
121 	struct amdgpu_vm *vm;
122 
123 	/**
124 	 * @cb: callback
125 	 */
126 	struct dma_fence_cb cb;
127 };
128 
129 /**
130  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
131  *
132  * @adev: amdgpu_device pointer
133  * @vm: amdgpu_vm pointer
134  * @pasid: the pasid the VM is using on this GPU
135  *
136  * Set the pasid this VM is using on this GPU, can also be used to remove the
137  * pasid by passing in zero.
138  *
139  */
140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
141 			u32 pasid)
142 {
143 	int r;
144 
145 	if (vm->pasid == pasid)
146 		return 0;
147 
148 	if (vm->pasid) {
149 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
150 		if (r < 0)
151 			return r;
152 
153 		vm->pasid = 0;
154 	}
155 
156 	if (pasid) {
157 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
158 					GFP_KERNEL));
159 		if (r < 0)
160 			return r;
161 
162 		vm->pasid = pasid;
163 	}
164 
165 
166 	return 0;
167 }
168 
169 /**
170  * amdgpu_vm_bo_evicted - vm_bo is evicted
171  *
172  * @vm_bo: vm_bo which is evicted
173  *
174  * State for PDs/PTs and per VM BOs which are not at the location they should
175  * be.
176  */
177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
178 {
179 	struct amdgpu_vm *vm = vm_bo->vm;
180 	struct amdgpu_bo *bo = vm_bo->bo;
181 
182 	vm_bo->moved = true;
183 	spin_lock(&vm_bo->vm->status_lock);
184 	if (bo->tbo.type == ttm_bo_type_kernel)
185 		list_move(&vm_bo->vm_status, &vm->evicted);
186 	else
187 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
188 	spin_unlock(&vm_bo->vm->status_lock);
189 }
190 /**
191  * amdgpu_vm_bo_moved - vm_bo is moved
192  *
193  * @vm_bo: vm_bo which is moved
194  *
195  * State for per VM BOs which are moved, but that change is not yet reflected
196  * in the page tables.
197  */
198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
199 {
200 	spin_lock(&vm_bo->vm->status_lock);
201 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
202 	spin_unlock(&vm_bo->vm->status_lock);
203 }
204 
205 /**
206  * amdgpu_vm_bo_idle - vm_bo is idle
207  *
208  * @vm_bo: vm_bo which is now idle
209  *
210  * State for PDs/PTs and per VM BOs which have gone through the state machine
211  * and are now idle.
212  */
213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
214 {
215 	spin_lock(&vm_bo->vm->status_lock);
216 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
217 	spin_unlock(&vm_bo->vm->status_lock);
218 	vm_bo->moved = false;
219 }
220 
221 /**
222  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
223  *
224  * @vm_bo: vm_bo which is now invalidated
225  *
226  * State for normal BOs which are invalidated and that change not yet reflected
227  * in the PTs.
228  */
229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
230 {
231 	spin_lock(&vm_bo->vm->status_lock);
232 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
233 	spin_unlock(&vm_bo->vm->status_lock);
234 }
235 
236 /**
237  * amdgpu_vm_bo_relocated - vm_bo is reloacted
238  *
239  * @vm_bo: vm_bo which is relocated
240  *
241  * State for PDs/PTs which needs to update their parent PD.
242  * For the root PD, just move to idle state.
243  */
244 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
245 {
246 	if (vm_bo->bo->parent) {
247 		spin_lock(&vm_bo->vm->status_lock);
248 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
249 		spin_unlock(&vm_bo->vm->status_lock);
250 	} else {
251 		amdgpu_vm_bo_idle(vm_bo);
252 	}
253 }
254 
255 /**
256  * amdgpu_vm_bo_done - vm_bo is done
257  *
258  * @vm_bo: vm_bo which is now done
259  *
260  * State for normal BOs which are invalidated and that change has been updated
261  * in the PTs.
262  */
263 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
264 {
265 	spin_lock(&vm_bo->vm->status_lock);
266 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
267 	spin_unlock(&vm_bo->vm->status_lock);
268 }
269 
270 /**
271  * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
272  * @vm: the VM which state machine to reset
273  *
274  * Move all vm_bo object in the VM into a state where they will be updated
275  * again during validation.
276  */
277 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
278 {
279 	struct amdgpu_vm_bo_base *vm_bo, *tmp;
280 
281 	spin_lock(&vm->status_lock);
282 	list_splice_init(&vm->done, &vm->invalidated);
283 	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
284 		vm_bo->moved = true;
285 	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
286 		struct amdgpu_bo *bo = vm_bo->bo;
287 
288 		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
289 			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
290 		else if (bo->parent)
291 			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
292 	}
293 	spin_unlock(&vm->status_lock);
294 }
295 
296 /**
297  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
298  *
299  * @base: base structure for tracking BO usage in a VM
300  * @vm: vm to which bo is to be added
301  * @bo: amdgpu buffer object
302  *
303  * Initialize a bo_va_base structure and add it to the appropriate lists
304  *
305  */
306 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
307 			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
308 {
309 	base->vm = vm;
310 	base->bo = bo;
311 	base->next = NULL;
312 	INIT_LIST_HEAD(&base->vm_status);
313 
314 	if (!bo)
315 		return;
316 	base->next = bo->vm_bo;
317 	bo->vm_bo = base;
318 
319 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
320 		return;
321 
322 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
323 
324 	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
325 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
326 		amdgpu_vm_bo_relocated(base);
327 	else
328 		amdgpu_vm_bo_idle(base);
329 
330 	if (bo->preferred_domains &
331 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
332 		return;
333 
334 	/*
335 	 * we checked all the prerequisites, but it looks like this per vm bo
336 	 * is currently evicted. add the bo to the evicted list to make sure it
337 	 * is validated on next vm use to avoid fault.
338 	 * */
339 	amdgpu_vm_bo_evicted(base);
340 }
341 
342 /**
343  * amdgpu_vm_lock_pd - lock PD in drm_exec
344  *
345  * @vm: vm providing the BOs
346  * @exec: drm execution context
347  * @num_fences: number of extra fences to reserve
348  *
349  * Lock the VM root PD in the DRM execution context.
350  */
351 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
352 		      unsigned int num_fences)
353 {
354 	/* We need at least two fences for the VM PD/PT updates */
355 	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
356 				    2 + num_fences);
357 }
358 
359 /**
360  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
361  *
362  * @adev: amdgpu device pointer
363  * @vm: vm providing the BOs
364  *
365  * Move all BOs to the end of LRU and remember their positions to put them
366  * together.
367  */
368 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
369 				struct amdgpu_vm *vm)
370 {
371 	spin_lock(&adev->mman.bdev.lru_lock);
372 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
373 	spin_unlock(&adev->mman.bdev.lru_lock);
374 }
375 
376 /* Create scheduler entities for page table updates */
377 static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
378 				   struct amdgpu_vm *vm)
379 {
380 	int r;
381 
382 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
383 				  adev->vm_manager.vm_pte_scheds,
384 				  adev->vm_manager.vm_pte_num_scheds, NULL);
385 	if (r)
386 		goto error;
387 
388 	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
389 				     adev->vm_manager.vm_pte_scheds,
390 				     adev->vm_manager.vm_pte_num_scheds, NULL);
391 
392 error:
393 	drm_sched_entity_destroy(&vm->immediate);
394 	return r;
395 }
396 
397 /* Destroy the entities for page table updates again */
398 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
399 {
400 	drm_sched_entity_destroy(&vm->immediate);
401 	drm_sched_entity_destroy(&vm->delayed);
402 }
403 
404 /**
405  * amdgpu_vm_generation - return the page table re-generation counter
406  * @adev: the amdgpu_device
407  * @vm: optional VM to check, might be NULL
408  *
409  * Returns a page table re-generation token to allow checking if submissions
410  * are still valid to use this VM. The VM parameter might be NULL in which case
411  * just the VRAM lost counter will be used.
412  */
413 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
414 {
415 	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
416 
417 	if (!vm)
418 		return result;
419 
420 	result += vm->generation;
421 	/* Add one if the page tables will be re-generated on next CS */
422 	if (drm_sched_entity_error(&vm->delayed))
423 		++result;
424 
425 	return result;
426 }
427 
428 /**
429  * amdgpu_vm_validate_pt_bos - validate the page table BOs
430  *
431  * @adev: amdgpu device pointer
432  * @vm: vm providing the BOs
433  * @validate: callback to do the validation
434  * @param: parameter for the validation callback
435  *
436  * Validate the page table BOs on command submission if neccessary.
437  *
438  * Returns:
439  * Validation result.
440  */
441 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
442 			      int (*validate)(void *p, struct amdgpu_bo *bo),
443 			      void *param)
444 {
445 	struct amdgpu_vm_bo_base *bo_base;
446 	struct amdgpu_bo *shadow;
447 	struct amdgpu_bo *bo;
448 	int r;
449 
450 	if (drm_sched_entity_error(&vm->delayed)) {
451 		++vm->generation;
452 		amdgpu_vm_bo_reset_state_machine(vm);
453 		amdgpu_vm_fini_entities(vm);
454 		r = amdgpu_vm_init_entities(adev, vm);
455 		if (r)
456 			return r;
457 	}
458 
459 	spin_lock(&vm->status_lock);
460 	while (!list_empty(&vm->evicted)) {
461 		bo_base = list_first_entry(&vm->evicted,
462 					   struct amdgpu_vm_bo_base,
463 					   vm_status);
464 		spin_unlock(&vm->status_lock);
465 
466 		bo = bo_base->bo;
467 		shadow = amdgpu_bo_shadowed(bo);
468 
469 		r = validate(param, bo);
470 		if (r)
471 			return r;
472 		if (shadow) {
473 			r = validate(param, shadow);
474 			if (r)
475 				return r;
476 		}
477 
478 		if (bo->tbo.type != ttm_bo_type_kernel) {
479 			amdgpu_vm_bo_moved(bo_base);
480 		} else {
481 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
482 			amdgpu_vm_bo_relocated(bo_base);
483 		}
484 		spin_lock(&vm->status_lock);
485 	}
486 	spin_unlock(&vm->status_lock);
487 
488 	amdgpu_vm_eviction_lock(vm);
489 	vm->evicting = false;
490 	amdgpu_vm_eviction_unlock(vm);
491 
492 	return 0;
493 }
494 
495 /**
496  * amdgpu_vm_ready - check VM is ready for updates
497  *
498  * @vm: VM to check
499  *
500  * Check if all VM PDs/PTs are ready for updates
501  *
502  * Returns:
503  * True if VM is not evicting.
504  */
505 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
506 {
507 	bool empty;
508 	bool ret;
509 
510 	amdgpu_vm_eviction_lock(vm);
511 	ret = !vm->evicting;
512 	amdgpu_vm_eviction_unlock(vm);
513 
514 	spin_lock(&vm->status_lock);
515 	empty = list_empty(&vm->evicted);
516 	spin_unlock(&vm->status_lock);
517 
518 	return ret && empty;
519 }
520 
521 /**
522  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
523  *
524  * @adev: amdgpu_device pointer
525  */
526 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
527 {
528 	const struct amdgpu_ip_block *ip_block;
529 	bool has_compute_vm_bug;
530 	struct amdgpu_ring *ring;
531 	int i;
532 
533 	has_compute_vm_bug = false;
534 
535 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
536 	if (ip_block) {
537 		/* Compute has a VM bug for GFX version < 7.
538 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
539 		if (ip_block->version->major <= 7)
540 			has_compute_vm_bug = true;
541 		else if (ip_block->version->major == 8)
542 			if (adev->gfx.mec_fw_version < 673)
543 				has_compute_vm_bug = true;
544 	}
545 
546 	for (i = 0; i < adev->num_rings; i++) {
547 		ring = adev->rings[i];
548 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
549 			/* only compute rings */
550 			ring->has_compute_vm_bug = has_compute_vm_bug;
551 		else
552 			ring->has_compute_vm_bug = false;
553 	}
554 }
555 
556 /**
557  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
558  *
559  * @ring: ring on which the job will be submitted
560  * @job: job to submit
561  *
562  * Returns:
563  * True if sync is needed.
564  */
565 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
566 				  struct amdgpu_job *job)
567 {
568 	struct amdgpu_device *adev = ring->adev;
569 	unsigned vmhub = ring->vm_hub;
570 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
571 
572 	if (job->vmid == 0)
573 		return false;
574 
575 	if (job->vm_needs_flush || ring->has_compute_vm_bug)
576 		return true;
577 
578 	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
579 		return true;
580 
581 	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
582 		return true;
583 
584 	return false;
585 }
586 
587 /**
588  * amdgpu_vm_flush - hardware flush the vm
589  *
590  * @ring: ring to use for flush
591  * @job:  related job
592  * @need_pipe_sync: is pipe sync needed
593  *
594  * Emit a VM flush when it is necessary.
595  *
596  * Returns:
597  * 0 on success, errno otherwise.
598  */
599 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
600 		    bool need_pipe_sync)
601 {
602 	struct amdgpu_device *adev = ring->adev;
603 	unsigned vmhub = ring->vm_hub;
604 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
605 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
606 	bool spm_update_needed = job->spm_update_needed;
607 	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
608 		job->gds_switch_needed;
609 	bool vm_flush_needed = job->vm_needs_flush;
610 	struct dma_fence *fence = NULL;
611 	bool pasid_mapping_needed = false;
612 	unsigned patch_offset = 0;
613 	int r;
614 
615 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
616 		gds_switch_needed = true;
617 		vm_flush_needed = true;
618 		pasid_mapping_needed = true;
619 		spm_update_needed = true;
620 	}
621 
622 	mutex_lock(&id_mgr->lock);
623 	if (id->pasid != job->pasid || !id->pasid_mapping ||
624 	    !dma_fence_is_signaled(id->pasid_mapping))
625 		pasid_mapping_needed = true;
626 	mutex_unlock(&id_mgr->lock);
627 
628 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
629 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
630 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
631 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
632 		ring->funcs->emit_wreg;
633 
634 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
635 		return 0;
636 
637 	amdgpu_ring_ib_begin(ring);
638 	if (ring->funcs->init_cond_exec)
639 		patch_offset = amdgpu_ring_init_cond_exec(ring);
640 
641 	if (need_pipe_sync)
642 		amdgpu_ring_emit_pipeline_sync(ring);
643 
644 	if (vm_flush_needed) {
645 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
646 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
647 	}
648 
649 	if (pasid_mapping_needed)
650 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
651 
652 	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
653 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
654 
655 	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
656 	    gds_switch_needed) {
657 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
658 					    job->gds_size, job->gws_base,
659 					    job->gws_size, job->oa_base,
660 					    job->oa_size);
661 	}
662 
663 	if (vm_flush_needed || pasid_mapping_needed) {
664 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
665 		if (r)
666 			return r;
667 	}
668 
669 	if (vm_flush_needed) {
670 		mutex_lock(&id_mgr->lock);
671 		dma_fence_put(id->last_flush);
672 		id->last_flush = dma_fence_get(fence);
673 		id->current_gpu_reset_count =
674 			atomic_read(&adev->gpu_reset_counter);
675 		mutex_unlock(&id_mgr->lock);
676 	}
677 
678 	if (pasid_mapping_needed) {
679 		mutex_lock(&id_mgr->lock);
680 		id->pasid = job->pasid;
681 		dma_fence_put(id->pasid_mapping);
682 		id->pasid_mapping = dma_fence_get(fence);
683 		mutex_unlock(&id_mgr->lock);
684 	}
685 	dma_fence_put(fence);
686 
687 	if (ring->funcs->patch_cond_exec)
688 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
689 
690 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
691 	if (ring->funcs->emit_switch_buffer) {
692 		amdgpu_ring_emit_switch_buffer(ring);
693 		amdgpu_ring_emit_switch_buffer(ring);
694 	}
695 	amdgpu_ring_ib_end(ring);
696 	return 0;
697 }
698 
699 /**
700  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
701  *
702  * @vm: requested vm
703  * @bo: requested buffer object
704  *
705  * Find @bo inside the requested vm.
706  * Search inside the @bos vm list for the requested vm
707  * Returns the found bo_va or NULL if none is found
708  *
709  * Object has to be reserved!
710  *
711  * Returns:
712  * Found bo_va or NULL.
713  */
714 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
715 				       struct amdgpu_bo *bo)
716 {
717 	struct amdgpu_vm_bo_base *base;
718 
719 	for (base = bo->vm_bo; base; base = base->next) {
720 		if (base->vm != vm)
721 			continue;
722 
723 		return container_of(base, struct amdgpu_bo_va, base);
724 	}
725 	return NULL;
726 }
727 
728 /**
729  * amdgpu_vm_map_gart - Resolve gart mapping of addr
730  *
731  * @pages_addr: optional DMA address to use for lookup
732  * @addr: the unmapped addr
733  *
734  * Look up the physical address of the page that the pte resolves
735  * to.
736  *
737  * Returns:
738  * The pointer for the page table entry.
739  */
740 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
741 {
742 	uint64_t result;
743 
744 	/* page table offset */
745 	result = pages_addr[addr >> PAGE_SHIFT];
746 
747 	/* in case cpu page size != gpu page size*/
748 	result |= addr & (~PAGE_MASK);
749 
750 	result &= 0xFFFFFFFFFFFFF000ULL;
751 
752 	return result;
753 }
754 
755 /**
756  * amdgpu_vm_update_pdes - make sure that all directories are valid
757  *
758  * @adev: amdgpu_device pointer
759  * @vm: requested vm
760  * @immediate: submit immediately to the paging queue
761  *
762  * Makes sure all directories are up to date.
763  *
764  * Returns:
765  * 0 for success, error for failure.
766  */
767 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
768 			  struct amdgpu_vm *vm, bool immediate)
769 {
770 	struct amdgpu_vm_update_params params;
771 	struct amdgpu_vm_bo_base *entry;
772 	bool flush_tlb_needed = false;
773 	LIST_HEAD(relocated);
774 	int r, idx;
775 
776 	spin_lock(&vm->status_lock);
777 	list_splice_init(&vm->relocated, &relocated);
778 	spin_unlock(&vm->status_lock);
779 
780 	if (list_empty(&relocated))
781 		return 0;
782 
783 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
784 		return -ENODEV;
785 
786 	memset(&params, 0, sizeof(params));
787 	params.adev = adev;
788 	params.vm = vm;
789 	params.immediate = immediate;
790 
791 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
792 	if (r)
793 		goto error;
794 
795 	list_for_each_entry(entry, &relocated, vm_status) {
796 		/* vm_flush_needed after updating moved PDEs */
797 		flush_tlb_needed |= entry->moved;
798 
799 		r = amdgpu_vm_pde_update(&params, entry);
800 		if (r)
801 			goto error;
802 	}
803 
804 	r = vm->update_funcs->commit(&params, &vm->last_update);
805 	if (r)
806 		goto error;
807 
808 	if (flush_tlb_needed)
809 		atomic64_inc(&vm->tlb_seq);
810 
811 	while (!list_empty(&relocated)) {
812 		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
813 					 vm_status);
814 		amdgpu_vm_bo_idle(entry);
815 	}
816 
817 error:
818 	drm_dev_exit(idx);
819 	return r;
820 }
821 
822 /**
823  * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
824  * @fence: unused
825  * @cb: the callback structure
826  *
827  * Increments the tlb sequence to make sure that future CS execute a VM flush.
828  */
829 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
830 				 struct dma_fence_cb *cb)
831 {
832 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
833 
834 	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
835 	atomic64_inc(&tlb_cb->vm->tlb_seq);
836 	kfree(tlb_cb);
837 }
838 
839 /**
840  * amdgpu_vm_update_range - update a range in the vm page table
841  *
842  * @adev: amdgpu_device pointer to use for commands
843  * @vm: the VM to update the range
844  * @immediate: immediate submission in a page fault
845  * @unlocked: unlocked invalidation during MM callback
846  * @flush_tlb: trigger tlb invalidation after update completed
847  * @resv: fences we need to sync to
848  * @start: start of mapped range
849  * @last: last mapped entry
850  * @flags: flags for the entries
851  * @offset: offset into nodes and pages_addr
852  * @vram_base: base for vram mappings
853  * @res: ttm_resource to map
854  * @pages_addr: DMA addresses to use for mapping
855  * @fence: optional resulting fence
856  *
857  * Fill in the page table entries between @start and @last.
858  *
859  * Returns:
860  * 0 for success, negative erro code for failure.
861  */
862 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
863 			   bool immediate, bool unlocked, bool flush_tlb,
864 			   struct dma_resv *resv, uint64_t start, uint64_t last,
865 			   uint64_t flags, uint64_t offset, uint64_t vram_base,
866 			   struct ttm_resource *res, dma_addr_t *pages_addr,
867 			   struct dma_fence **fence)
868 {
869 	struct amdgpu_vm_update_params params;
870 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
871 	struct amdgpu_res_cursor cursor;
872 	enum amdgpu_sync_mode sync_mode;
873 	int r, idx;
874 
875 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
876 		return -ENODEV;
877 
878 	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
879 	if (!tlb_cb) {
880 		r = -ENOMEM;
881 		goto error_unlock;
882 	}
883 
884 	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
885 	 * heavy-weight flush TLB unconditionally.
886 	 */
887 	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
888 		     adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 0);
889 
890 	/*
891 	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
892 	 */
893 	flush_tlb |= adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 0);
894 
895 	memset(&params, 0, sizeof(params));
896 	params.adev = adev;
897 	params.vm = vm;
898 	params.immediate = immediate;
899 	params.pages_addr = pages_addr;
900 	params.unlocked = unlocked;
901 
902 	/* Implicitly sync to command submissions in the same VM before
903 	 * unmapping. Sync to moving fences before mapping.
904 	 */
905 	if (!(flags & AMDGPU_PTE_VALID))
906 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
907 	else
908 		sync_mode = AMDGPU_SYNC_EXPLICIT;
909 
910 	amdgpu_vm_eviction_lock(vm);
911 	if (vm->evicting) {
912 		r = -EBUSY;
913 		goto error_free;
914 	}
915 
916 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
917 		struct dma_fence *tmp = dma_fence_get_stub();
918 
919 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
920 		swap(vm->last_unlocked, tmp);
921 		dma_fence_put(tmp);
922 	}
923 
924 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
925 	if (r)
926 		goto error_free;
927 
928 	amdgpu_res_first(pages_addr ? NULL : res, offset,
929 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
930 	while (cursor.remaining) {
931 		uint64_t tmp, num_entries, addr;
932 
933 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
934 		if (pages_addr) {
935 			bool contiguous = true;
936 
937 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
938 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
939 				uint64_t count;
940 
941 				contiguous = pages_addr[pfn + 1] ==
942 					pages_addr[pfn] + PAGE_SIZE;
943 
944 				tmp = num_entries /
945 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
946 				for (count = 2; count < tmp; ++count) {
947 					uint64_t idx = pfn + count;
948 
949 					if (contiguous != (pages_addr[idx] ==
950 					    pages_addr[idx - 1] + PAGE_SIZE))
951 						break;
952 				}
953 				if (!contiguous)
954 					count--;
955 				num_entries = count *
956 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
957 			}
958 
959 			if (!contiguous) {
960 				addr = cursor.start;
961 				params.pages_addr = pages_addr;
962 			} else {
963 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
964 				params.pages_addr = NULL;
965 			}
966 
967 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
968 			addr = vram_base + cursor.start;
969 		} else {
970 			addr = 0;
971 		}
972 
973 		tmp = start + num_entries;
974 		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
975 		if (r)
976 			goto error_free;
977 
978 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
979 		start = tmp;
980 	}
981 
982 	r = vm->update_funcs->commit(&params, fence);
983 
984 	if (flush_tlb || params.table_freed) {
985 		tlb_cb->vm = vm;
986 		if (fence && *fence &&
987 		    !dma_fence_add_callback(*fence, &tlb_cb->cb,
988 					   amdgpu_vm_tlb_seq_cb)) {
989 			dma_fence_put(vm->last_tlb_flush);
990 			vm->last_tlb_flush = dma_fence_get(*fence);
991 		} else {
992 			amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
993 		}
994 		tlb_cb = NULL;
995 	}
996 
997 error_free:
998 	kfree(tlb_cb);
999 
1000 error_unlock:
1001 	amdgpu_vm_eviction_unlock(vm);
1002 	drm_dev_exit(idx);
1003 	return r;
1004 }
1005 
1006 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1007 				    struct amdgpu_mem_stats *stats)
1008 {
1009 	struct amdgpu_vm *vm = bo_va->base.vm;
1010 	struct amdgpu_bo *bo = bo_va->base.bo;
1011 
1012 	if (!bo)
1013 		return;
1014 
1015 	/*
1016 	 * For now ignore BOs which are currently locked and potentially
1017 	 * changing their location.
1018 	 */
1019 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv &&
1020 	    !dma_resv_trylock(bo->tbo.base.resv))
1021 		return;
1022 
1023 	amdgpu_bo_get_memory(bo, stats);
1024 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
1025 	    dma_resv_unlock(bo->tbo.base.resv);
1026 }
1027 
1028 void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1029 			  struct amdgpu_mem_stats *stats)
1030 {
1031 	struct amdgpu_bo_va *bo_va, *tmp;
1032 
1033 	spin_lock(&vm->status_lock);
1034 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1035 		amdgpu_vm_bo_get_memory(bo_va, stats);
1036 
1037 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1038 		amdgpu_vm_bo_get_memory(bo_va, stats);
1039 
1040 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1041 		amdgpu_vm_bo_get_memory(bo_va, stats);
1042 
1043 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1044 		amdgpu_vm_bo_get_memory(bo_va, stats);
1045 
1046 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1047 		amdgpu_vm_bo_get_memory(bo_va, stats);
1048 
1049 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1050 		amdgpu_vm_bo_get_memory(bo_va, stats);
1051 	spin_unlock(&vm->status_lock);
1052 }
1053 
1054 /**
1055  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1056  *
1057  * @adev: amdgpu_device pointer
1058  * @bo_va: requested BO and VM object
1059  * @clear: if true clear the entries
1060  *
1061  * Fill in the page table entries for @bo_va.
1062  *
1063  * Returns:
1064  * 0 for success, -EINVAL for failure.
1065  */
1066 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1067 			bool clear)
1068 {
1069 	struct amdgpu_bo *bo = bo_va->base.bo;
1070 	struct amdgpu_vm *vm = bo_va->base.vm;
1071 	struct amdgpu_bo_va_mapping *mapping;
1072 	dma_addr_t *pages_addr = NULL;
1073 	struct ttm_resource *mem;
1074 	struct dma_fence **last_update;
1075 	bool flush_tlb = clear;
1076 	struct dma_resv *resv;
1077 	uint64_t vram_base;
1078 	uint64_t flags;
1079 	int r;
1080 
1081 	if (clear || !bo) {
1082 		mem = NULL;
1083 		resv = vm->root.bo->tbo.base.resv;
1084 	} else {
1085 		struct drm_gem_object *obj = &bo->tbo.base;
1086 
1087 		resv = bo->tbo.base.resv;
1088 		if (obj->import_attach && bo_va->is_xgmi) {
1089 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1090 			struct drm_gem_object *gobj = dma_buf->priv;
1091 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1092 
1093 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1094 				bo = gem_to_amdgpu_bo(gobj);
1095 		}
1096 		mem = bo->tbo.resource;
1097 		if (mem->mem_type == TTM_PL_TT ||
1098 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1099 			pages_addr = bo->tbo.ttm->dma_address;
1100 	}
1101 
1102 	if (bo) {
1103 		struct amdgpu_device *bo_adev;
1104 
1105 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1106 
1107 		if (amdgpu_bo_encrypted(bo))
1108 			flags |= AMDGPU_PTE_TMZ;
1109 
1110 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1111 		vram_base = bo_adev->vm_manager.vram_base_offset;
1112 	} else {
1113 		flags = 0x0;
1114 		vram_base = 0;
1115 	}
1116 
1117 	if (clear || (bo && bo->tbo.base.resv ==
1118 		      vm->root.bo->tbo.base.resv))
1119 		last_update = &vm->last_update;
1120 	else
1121 		last_update = &bo_va->last_pt_update;
1122 
1123 	if (!clear && bo_va->base.moved) {
1124 		flush_tlb = true;
1125 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1126 
1127 	} else if (bo_va->cleared != clear) {
1128 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1129 	}
1130 
1131 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1132 		uint64_t update_flags = flags;
1133 
1134 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1135 		 * but in case of something, we filter the flags in first place
1136 		 */
1137 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1138 			update_flags &= ~AMDGPU_PTE_READABLE;
1139 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1140 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1141 
1142 		/* Apply ASIC specific mapping flags */
1143 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1144 
1145 		trace_amdgpu_vm_bo_update(mapping);
1146 
1147 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1148 					   resv, mapping->start, mapping->last,
1149 					   update_flags, mapping->offset,
1150 					   vram_base, mem, pages_addr,
1151 					   last_update);
1152 		if (r)
1153 			return r;
1154 	}
1155 
1156 	/* If the BO is not in its preferred location add it back to
1157 	 * the evicted list so that it gets validated again on the
1158 	 * next command submission.
1159 	 */
1160 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1161 		uint32_t mem_type = bo->tbo.resource->mem_type;
1162 
1163 		if (!(bo->preferred_domains &
1164 		      amdgpu_mem_type_to_domain(mem_type)))
1165 			amdgpu_vm_bo_evicted(&bo_va->base);
1166 		else
1167 			amdgpu_vm_bo_idle(&bo_va->base);
1168 	} else {
1169 		amdgpu_vm_bo_done(&bo_va->base);
1170 	}
1171 
1172 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1173 	bo_va->cleared = clear;
1174 	bo_va->base.moved = false;
1175 
1176 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1177 		list_for_each_entry(mapping, &bo_va->valids, list)
1178 			trace_amdgpu_vm_bo_mapping(mapping);
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * amdgpu_vm_update_prt_state - update the global PRT state
1186  *
1187  * @adev: amdgpu_device pointer
1188  */
1189 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1190 {
1191 	unsigned long flags;
1192 	bool enable;
1193 
1194 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1195 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1196 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1197 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1198 }
1199 
1200 /**
1201  * amdgpu_vm_prt_get - add a PRT user
1202  *
1203  * @adev: amdgpu_device pointer
1204  */
1205 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1206 {
1207 	if (!adev->gmc.gmc_funcs->set_prt)
1208 		return;
1209 
1210 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1211 		amdgpu_vm_update_prt_state(adev);
1212 }
1213 
1214 /**
1215  * amdgpu_vm_prt_put - drop a PRT user
1216  *
1217  * @adev: amdgpu_device pointer
1218  */
1219 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1220 {
1221 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1222 		amdgpu_vm_update_prt_state(adev);
1223 }
1224 
1225 /**
1226  * amdgpu_vm_prt_cb - callback for updating the PRT status
1227  *
1228  * @fence: fence for the callback
1229  * @_cb: the callback function
1230  */
1231 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1232 {
1233 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1234 
1235 	amdgpu_vm_prt_put(cb->adev);
1236 	kfree(cb);
1237 }
1238 
1239 /**
1240  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1241  *
1242  * @adev: amdgpu_device pointer
1243  * @fence: fence for the callback
1244  */
1245 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1246 				 struct dma_fence *fence)
1247 {
1248 	struct amdgpu_prt_cb *cb;
1249 
1250 	if (!adev->gmc.gmc_funcs->set_prt)
1251 		return;
1252 
1253 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1254 	if (!cb) {
1255 		/* Last resort when we are OOM */
1256 		if (fence)
1257 			dma_fence_wait(fence, false);
1258 
1259 		amdgpu_vm_prt_put(adev);
1260 	} else {
1261 		cb->adev = adev;
1262 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1263 						     amdgpu_vm_prt_cb))
1264 			amdgpu_vm_prt_cb(fence, &cb->cb);
1265 	}
1266 }
1267 
1268 /**
1269  * amdgpu_vm_free_mapping - free a mapping
1270  *
1271  * @adev: amdgpu_device pointer
1272  * @vm: requested vm
1273  * @mapping: mapping to be freed
1274  * @fence: fence of the unmap operation
1275  *
1276  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1277  */
1278 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1279 				   struct amdgpu_vm *vm,
1280 				   struct amdgpu_bo_va_mapping *mapping,
1281 				   struct dma_fence *fence)
1282 {
1283 	if (mapping->flags & AMDGPU_PTE_PRT)
1284 		amdgpu_vm_add_prt_cb(adev, fence);
1285 	kfree(mapping);
1286 }
1287 
1288 /**
1289  * amdgpu_vm_prt_fini - finish all prt mappings
1290  *
1291  * @adev: amdgpu_device pointer
1292  * @vm: requested vm
1293  *
1294  * Register a cleanup callback to disable PRT support after VM dies.
1295  */
1296 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1297 {
1298 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1299 	struct dma_resv_iter cursor;
1300 	struct dma_fence *fence;
1301 
1302 	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1303 		/* Add a callback for each fence in the reservation object */
1304 		amdgpu_vm_prt_get(adev);
1305 		amdgpu_vm_add_prt_cb(adev, fence);
1306 	}
1307 }
1308 
1309 /**
1310  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1311  *
1312  * @adev: amdgpu_device pointer
1313  * @vm: requested vm
1314  * @fence: optional resulting fence (unchanged if no work needed to be done
1315  * or if an error occurred)
1316  *
1317  * Make sure all freed BOs are cleared in the PT.
1318  * PTs have to be reserved and mutex must be locked!
1319  *
1320  * Returns:
1321  * 0 for success.
1322  *
1323  */
1324 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1325 			  struct amdgpu_vm *vm,
1326 			  struct dma_fence **fence)
1327 {
1328 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1329 	struct amdgpu_bo_va_mapping *mapping;
1330 	uint64_t init_pte_value = 0;
1331 	struct dma_fence *f = NULL;
1332 	int r;
1333 
1334 	while (!list_empty(&vm->freed)) {
1335 		mapping = list_first_entry(&vm->freed,
1336 			struct amdgpu_bo_va_mapping, list);
1337 		list_del(&mapping->list);
1338 
1339 		if (vm->pte_support_ats &&
1340 		    mapping->start < AMDGPU_GMC_HOLE_START)
1341 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1342 
1343 		r = amdgpu_vm_update_range(adev, vm, false, false, true, resv,
1344 					   mapping->start, mapping->last,
1345 					   init_pte_value, 0, 0, NULL, NULL,
1346 					   &f);
1347 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1348 		if (r) {
1349 			dma_fence_put(f);
1350 			return r;
1351 		}
1352 	}
1353 
1354 	if (fence && f) {
1355 		dma_fence_put(*fence);
1356 		*fence = f;
1357 	} else {
1358 		dma_fence_put(f);
1359 	}
1360 
1361 	return 0;
1362 
1363 }
1364 
1365 /**
1366  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1367  *
1368  * @adev: amdgpu_device pointer
1369  * @vm: requested vm
1370  *
1371  * Make sure all BOs which are moved are updated in the PTs.
1372  *
1373  * Returns:
1374  * 0 for success.
1375  *
1376  * PTs have to be reserved!
1377  */
1378 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1379 			   struct amdgpu_vm *vm)
1380 {
1381 	struct amdgpu_bo_va *bo_va;
1382 	struct dma_resv *resv;
1383 	bool clear;
1384 	int r;
1385 
1386 	spin_lock(&vm->status_lock);
1387 	while (!list_empty(&vm->moved)) {
1388 		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1389 					 base.vm_status);
1390 		spin_unlock(&vm->status_lock);
1391 
1392 		/* Per VM BOs never need to bo cleared in the page tables */
1393 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1394 		if (r)
1395 			return r;
1396 		spin_lock(&vm->status_lock);
1397 	}
1398 
1399 	while (!list_empty(&vm->invalidated)) {
1400 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1401 					 base.vm_status);
1402 		resv = bo_va->base.bo->tbo.base.resv;
1403 		spin_unlock(&vm->status_lock);
1404 
1405 		/* Try to reserve the BO to avoid clearing its ptes */
1406 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
1407 			clear = false;
1408 		/* Somebody else is using the BO right now */
1409 		else
1410 			clear = true;
1411 
1412 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1413 		if (r)
1414 			return r;
1415 
1416 		if (!clear)
1417 			dma_resv_unlock(resv);
1418 		spin_lock(&vm->status_lock);
1419 	}
1420 	spin_unlock(&vm->status_lock);
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * amdgpu_vm_bo_add - add a bo to a specific vm
1427  *
1428  * @adev: amdgpu_device pointer
1429  * @vm: requested vm
1430  * @bo: amdgpu buffer object
1431  *
1432  * Add @bo into the requested vm.
1433  * Add @bo to the list of bos associated with the vm
1434  *
1435  * Returns:
1436  * Newly added bo_va or NULL for failure
1437  *
1438  * Object has to be reserved!
1439  */
1440 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1441 				      struct amdgpu_vm *vm,
1442 				      struct amdgpu_bo *bo)
1443 {
1444 	struct amdgpu_bo_va *bo_va;
1445 
1446 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1447 	if (bo_va == NULL) {
1448 		return NULL;
1449 	}
1450 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1451 
1452 	bo_va->ref_count = 1;
1453 	bo_va->last_pt_update = dma_fence_get_stub();
1454 	INIT_LIST_HEAD(&bo_va->valids);
1455 	INIT_LIST_HEAD(&bo_va->invalids);
1456 
1457 	if (!bo)
1458 		return bo_va;
1459 
1460 	dma_resv_assert_held(bo->tbo.base.resv);
1461 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1462 		bo_va->is_xgmi = true;
1463 		/* Power up XGMI if it can be potentially used */
1464 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1465 	}
1466 
1467 	return bo_va;
1468 }
1469 
1470 
1471 /**
1472  * amdgpu_vm_bo_insert_map - insert a new mapping
1473  *
1474  * @adev: amdgpu_device pointer
1475  * @bo_va: bo_va to store the address
1476  * @mapping: the mapping to insert
1477  *
1478  * Insert a new mapping into all structures.
1479  */
1480 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1481 				    struct amdgpu_bo_va *bo_va,
1482 				    struct amdgpu_bo_va_mapping *mapping)
1483 {
1484 	struct amdgpu_vm *vm = bo_va->base.vm;
1485 	struct amdgpu_bo *bo = bo_va->base.bo;
1486 
1487 	mapping->bo_va = bo_va;
1488 	list_add(&mapping->list, &bo_va->invalids);
1489 	amdgpu_vm_it_insert(mapping, &vm->va);
1490 
1491 	if (mapping->flags & AMDGPU_PTE_PRT)
1492 		amdgpu_vm_prt_get(adev);
1493 
1494 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1495 	    !bo_va->base.moved) {
1496 		amdgpu_vm_bo_moved(&bo_va->base);
1497 	}
1498 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1499 }
1500 
1501 /**
1502  * amdgpu_vm_bo_map - map bo inside a vm
1503  *
1504  * @adev: amdgpu_device pointer
1505  * @bo_va: bo_va to store the address
1506  * @saddr: where to map the BO
1507  * @offset: requested offset in the BO
1508  * @size: BO size in bytes
1509  * @flags: attributes of pages (read/write/valid/etc.)
1510  *
1511  * Add a mapping of the BO at the specefied addr into the VM.
1512  *
1513  * Returns:
1514  * 0 for success, error for failure.
1515  *
1516  * Object has to be reserved and unreserved outside!
1517  */
1518 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1519 		     struct amdgpu_bo_va *bo_va,
1520 		     uint64_t saddr, uint64_t offset,
1521 		     uint64_t size, uint64_t flags)
1522 {
1523 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1524 	struct amdgpu_bo *bo = bo_va->base.bo;
1525 	struct amdgpu_vm *vm = bo_va->base.vm;
1526 	uint64_t eaddr;
1527 
1528 	/* validate the parameters */
1529 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
1530 		return -EINVAL;
1531 	if (saddr + size <= saddr || offset + size <= offset)
1532 		return -EINVAL;
1533 
1534 	/* make sure object fit at this offset */
1535 	eaddr = saddr + size - 1;
1536 	if ((bo && offset + size > amdgpu_bo_size(bo)) ||
1537 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
1538 		return -EINVAL;
1539 
1540 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1541 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1542 
1543 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1544 	if (tmp) {
1545 		/* bo and tmp overlap, invalid addr */
1546 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1547 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1548 			tmp->start, tmp->last + 1);
1549 		return -EINVAL;
1550 	}
1551 
1552 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1553 	if (!mapping)
1554 		return -ENOMEM;
1555 
1556 	mapping->start = saddr;
1557 	mapping->last = eaddr;
1558 	mapping->offset = offset;
1559 	mapping->flags = flags;
1560 
1561 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1568  *
1569  * @adev: amdgpu_device pointer
1570  * @bo_va: bo_va to store the address
1571  * @saddr: where to map the BO
1572  * @offset: requested offset in the BO
1573  * @size: BO size in bytes
1574  * @flags: attributes of pages (read/write/valid/etc.)
1575  *
1576  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1577  * mappings as we do so.
1578  *
1579  * Returns:
1580  * 0 for success, error for failure.
1581  *
1582  * Object has to be reserved and unreserved outside!
1583  */
1584 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1585 			     struct amdgpu_bo_va *bo_va,
1586 			     uint64_t saddr, uint64_t offset,
1587 			     uint64_t size, uint64_t flags)
1588 {
1589 	struct amdgpu_bo_va_mapping *mapping;
1590 	struct amdgpu_bo *bo = bo_va->base.bo;
1591 	uint64_t eaddr;
1592 	int r;
1593 
1594 	/* validate the parameters */
1595 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
1596 		return -EINVAL;
1597 	if (saddr + size <= saddr || offset + size <= offset)
1598 		return -EINVAL;
1599 
1600 	/* make sure object fit at this offset */
1601 	eaddr = saddr + size - 1;
1602 	if ((bo && offset + size > amdgpu_bo_size(bo)) ||
1603 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
1604 		return -EINVAL;
1605 
1606 	/* Allocate all the needed memory */
1607 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1608 	if (!mapping)
1609 		return -ENOMEM;
1610 
1611 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1612 	if (r) {
1613 		kfree(mapping);
1614 		return r;
1615 	}
1616 
1617 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1618 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1619 
1620 	mapping->start = saddr;
1621 	mapping->last = eaddr;
1622 	mapping->offset = offset;
1623 	mapping->flags = flags;
1624 
1625 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1626 
1627 	return 0;
1628 }
1629 
1630 /**
1631  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1632  *
1633  * @adev: amdgpu_device pointer
1634  * @bo_va: bo_va to remove the address from
1635  * @saddr: where to the BO is mapped
1636  *
1637  * Remove a mapping of the BO at the specefied addr from the VM.
1638  *
1639  * Returns:
1640  * 0 for success, error for failure.
1641  *
1642  * Object has to be reserved and unreserved outside!
1643  */
1644 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1645 		       struct amdgpu_bo_va *bo_va,
1646 		       uint64_t saddr)
1647 {
1648 	struct amdgpu_bo_va_mapping *mapping;
1649 	struct amdgpu_vm *vm = bo_va->base.vm;
1650 	bool valid = true;
1651 
1652 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1653 
1654 	list_for_each_entry(mapping, &bo_va->valids, list) {
1655 		if (mapping->start == saddr)
1656 			break;
1657 	}
1658 
1659 	if (&mapping->list == &bo_va->valids) {
1660 		valid = false;
1661 
1662 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1663 			if (mapping->start == saddr)
1664 				break;
1665 		}
1666 
1667 		if (&mapping->list == &bo_va->invalids)
1668 			return -ENOENT;
1669 	}
1670 
1671 	list_del(&mapping->list);
1672 	amdgpu_vm_it_remove(mapping, &vm->va);
1673 	mapping->bo_va = NULL;
1674 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1675 
1676 	if (valid)
1677 		list_add(&mapping->list, &vm->freed);
1678 	else
1679 		amdgpu_vm_free_mapping(adev, vm, mapping,
1680 				       bo_va->last_pt_update);
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1687  *
1688  * @adev: amdgpu_device pointer
1689  * @vm: VM structure to use
1690  * @saddr: start of the range
1691  * @size: size of the range
1692  *
1693  * Remove all mappings in a range, split them as appropriate.
1694  *
1695  * Returns:
1696  * 0 for success, error for failure.
1697  */
1698 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1699 				struct amdgpu_vm *vm,
1700 				uint64_t saddr, uint64_t size)
1701 {
1702 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1703 	LIST_HEAD(removed);
1704 	uint64_t eaddr;
1705 
1706 	eaddr = saddr + size - 1;
1707 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1708 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1709 
1710 	/* Allocate all the needed memory */
1711 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1712 	if (!before)
1713 		return -ENOMEM;
1714 	INIT_LIST_HEAD(&before->list);
1715 
1716 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1717 	if (!after) {
1718 		kfree(before);
1719 		return -ENOMEM;
1720 	}
1721 	INIT_LIST_HEAD(&after->list);
1722 
1723 	/* Now gather all removed mappings */
1724 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1725 	while (tmp) {
1726 		/* Remember mapping split at the start */
1727 		if (tmp->start < saddr) {
1728 			before->start = tmp->start;
1729 			before->last = saddr - 1;
1730 			before->offset = tmp->offset;
1731 			before->flags = tmp->flags;
1732 			before->bo_va = tmp->bo_va;
1733 			list_add(&before->list, &tmp->bo_va->invalids);
1734 		}
1735 
1736 		/* Remember mapping split at the end */
1737 		if (tmp->last > eaddr) {
1738 			after->start = eaddr + 1;
1739 			after->last = tmp->last;
1740 			after->offset = tmp->offset;
1741 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1742 			after->flags = tmp->flags;
1743 			after->bo_va = tmp->bo_va;
1744 			list_add(&after->list, &tmp->bo_va->invalids);
1745 		}
1746 
1747 		list_del(&tmp->list);
1748 		list_add(&tmp->list, &removed);
1749 
1750 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1751 	}
1752 
1753 	/* And free them up */
1754 	list_for_each_entry_safe(tmp, next, &removed, list) {
1755 		amdgpu_vm_it_remove(tmp, &vm->va);
1756 		list_del(&tmp->list);
1757 
1758 		if (tmp->start < saddr)
1759 		    tmp->start = saddr;
1760 		if (tmp->last > eaddr)
1761 		    tmp->last = eaddr;
1762 
1763 		tmp->bo_va = NULL;
1764 		list_add(&tmp->list, &vm->freed);
1765 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1766 	}
1767 
1768 	/* Insert partial mapping before the range */
1769 	if (!list_empty(&before->list)) {
1770 		struct amdgpu_bo *bo = before->bo_va->base.bo;
1771 
1772 		amdgpu_vm_it_insert(before, &vm->va);
1773 		if (before->flags & AMDGPU_PTE_PRT)
1774 			amdgpu_vm_prt_get(adev);
1775 
1776 		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1777 		    !before->bo_va->base.moved)
1778 			amdgpu_vm_bo_moved(&before->bo_va->base);
1779 	} else {
1780 		kfree(before);
1781 	}
1782 
1783 	/* Insert partial mapping after the range */
1784 	if (!list_empty(&after->list)) {
1785 		struct amdgpu_bo *bo = after->bo_va->base.bo;
1786 
1787 		amdgpu_vm_it_insert(after, &vm->va);
1788 		if (after->flags & AMDGPU_PTE_PRT)
1789 			amdgpu_vm_prt_get(adev);
1790 
1791 		if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1792 		    !after->bo_va->base.moved)
1793 			amdgpu_vm_bo_moved(&after->bo_va->base);
1794 	} else {
1795 		kfree(after);
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * amdgpu_vm_bo_lookup_mapping - find mapping by address
1803  *
1804  * @vm: the requested VM
1805  * @addr: the address
1806  *
1807  * Find a mapping by it's address.
1808  *
1809  * Returns:
1810  * The amdgpu_bo_va_mapping matching for addr or NULL
1811  *
1812  */
1813 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1814 							 uint64_t addr)
1815 {
1816 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1817 }
1818 
1819 /**
1820  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1821  *
1822  * @vm: the requested vm
1823  * @ticket: CS ticket
1824  *
1825  * Trace all mappings of BOs reserved during a command submission.
1826  */
1827 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
1828 {
1829 	struct amdgpu_bo_va_mapping *mapping;
1830 
1831 	if (!trace_amdgpu_vm_bo_cs_enabled())
1832 		return;
1833 
1834 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
1835 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
1836 		if (mapping->bo_va && mapping->bo_va->base.bo) {
1837 			struct amdgpu_bo *bo;
1838 
1839 			bo = mapping->bo_va->base.bo;
1840 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
1841 			    ticket)
1842 				continue;
1843 		}
1844 
1845 		trace_amdgpu_vm_bo_cs(mapping);
1846 	}
1847 }
1848 
1849 /**
1850  * amdgpu_vm_bo_del - remove a bo from a specific vm
1851  *
1852  * @adev: amdgpu_device pointer
1853  * @bo_va: requested bo_va
1854  *
1855  * Remove @bo_va->bo from the requested vm.
1856  *
1857  * Object have to be reserved!
1858  */
1859 void amdgpu_vm_bo_del(struct amdgpu_device *adev,
1860 		      struct amdgpu_bo_va *bo_va)
1861 {
1862 	struct amdgpu_bo_va_mapping *mapping, *next;
1863 	struct amdgpu_bo *bo = bo_va->base.bo;
1864 	struct amdgpu_vm *vm = bo_va->base.vm;
1865 	struct amdgpu_vm_bo_base **base;
1866 
1867 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
1868 
1869 	if (bo) {
1870 		dma_resv_assert_held(bo->tbo.base.resv);
1871 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
1872 			ttm_bo_set_bulk_move(&bo->tbo, NULL);
1873 
1874 		for (base = &bo_va->base.bo->vm_bo; *base;
1875 		     base = &(*base)->next) {
1876 			if (*base != &bo_va->base)
1877 				continue;
1878 
1879 			*base = bo_va->base.next;
1880 			break;
1881 		}
1882 	}
1883 
1884 	spin_lock(&vm->status_lock);
1885 	list_del(&bo_va->base.vm_status);
1886 	spin_unlock(&vm->status_lock);
1887 
1888 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1889 		list_del(&mapping->list);
1890 		amdgpu_vm_it_remove(mapping, &vm->va);
1891 		mapping->bo_va = NULL;
1892 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1893 		list_add(&mapping->list, &vm->freed);
1894 	}
1895 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1896 		list_del(&mapping->list);
1897 		amdgpu_vm_it_remove(mapping, &vm->va);
1898 		amdgpu_vm_free_mapping(adev, vm, mapping,
1899 				       bo_va->last_pt_update);
1900 	}
1901 
1902 	dma_fence_put(bo_va->last_pt_update);
1903 
1904 	if (bo && bo_va->is_xgmi)
1905 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
1906 
1907 	kfree(bo_va);
1908 }
1909 
1910 /**
1911  * amdgpu_vm_evictable - check if we can evict a VM
1912  *
1913  * @bo: A page table of the VM.
1914  *
1915  * Check if it is possible to evict a VM.
1916  */
1917 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
1918 {
1919 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
1920 
1921 	/* Page tables of a destroyed VM can go away immediately */
1922 	if (!bo_base || !bo_base->vm)
1923 		return true;
1924 
1925 	/* Don't evict VM page tables while they are busy */
1926 	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
1927 		return false;
1928 
1929 	/* Try to block ongoing updates */
1930 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
1931 		return false;
1932 
1933 	/* Don't evict VM page tables while they are updated */
1934 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
1935 		amdgpu_vm_eviction_unlock(bo_base->vm);
1936 		return false;
1937 	}
1938 
1939 	bo_base->vm->evicting = true;
1940 	amdgpu_vm_eviction_unlock(bo_base->vm);
1941 	return true;
1942 }
1943 
1944 /**
1945  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1946  *
1947  * @adev: amdgpu_device pointer
1948  * @bo: amdgpu buffer object
1949  * @evicted: is the BO evicted
1950  *
1951  * Mark @bo as invalid.
1952  */
1953 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1954 			     struct amdgpu_bo *bo, bool evicted)
1955 {
1956 	struct amdgpu_vm_bo_base *bo_base;
1957 
1958 	/* shadow bo doesn't have bo base, its validation needs its parent */
1959 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
1960 		bo = bo->parent;
1961 
1962 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
1963 		struct amdgpu_vm *vm = bo_base->vm;
1964 
1965 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1966 			amdgpu_vm_bo_evicted(bo_base);
1967 			continue;
1968 		}
1969 
1970 		if (bo_base->moved)
1971 			continue;
1972 		bo_base->moved = true;
1973 
1974 		if (bo->tbo.type == ttm_bo_type_kernel)
1975 			amdgpu_vm_bo_relocated(bo_base);
1976 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
1977 			amdgpu_vm_bo_moved(bo_base);
1978 		else
1979 			amdgpu_vm_bo_invalidated(bo_base);
1980 	}
1981 }
1982 
1983 /**
1984  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
1985  *
1986  * @vm_size: VM size
1987  *
1988  * Returns:
1989  * VM page table as power of two
1990  */
1991 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
1992 {
1993 	/* Total bits covered by PD + PTs */
1994 	unsigned bits = ilog2(vm_size) + 18;
1995 
1996 	/* Make sure the PD is 4K in size up to 8GB address space.
1997 	   Above that split equal between PD and PTs */
1998 	if (vm_size <= 8)
1999 		return (bits - 9);
2000 	else
2001 		return ((bits + 3) / 2);
2002 }
2003 
2004 /**
2005  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2006  *
2007  * @adev: amdgpu_device pointer
2008  * @min_vm_size: the minimum vm size in GB if it's set auto
2009  * @fragment_size_default: Default PTE fragment size
2010  * @max_level: max VMPT level
2011  * @max_bits: max address space size in bits
2012  *
2013  */
2014 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2015 			   uint32_t fragment_size_default, unsigned max_level,
2016 			   unsigned max_bits)
2017 {
2018 	unsigned int max_size = 1 << (max_bits - 30);
2019 	unsigned int vm_size;
2020 	uint64_t tmp;
2021 
2022 	/* adjust vm size first */
2023 	if (amdgpu_vm_size != -1) {
2024 		vm_size = amdgpu_vm_size;
2025 		if (vm_size > max_size) {
2026 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2027 				 amdgpu_vm_size, max_size);
2028 			vm_size = max_size;
2029 		}
2030 	} else {
2031 		struct sysinfo si;
2032 		unsigned int phys_ram_gb;
2033 
2034 		/* Optimal VM size depends on the amount of physical
2035 		 * RAM available. Underlying requirements and
2036 		 * assumptions:
2037 		 *
2038 		 *  - Need to map system memory and VRAM from all GPUs
2039 		 *     - VRAM from other GPUs not known here
2040 		 *     - Assume VRAM <= system memory
2041 		 *  - On GFX8 and older, VM space can be segmented for
2042 		 *    different MTYPEs
2043 		 *  - Need to allow room for fragmentation, guard pages etc.
2044 		 *
2045 		 * This adds up to a rough guess of system memory x3.
2046 		 * Round up to power of two to maximize the available
2047 		 * VM size with the given page table size.
2048 		 */
2049 		si_meminfo(&si);
2050 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2051 			       (1 << 30) - 1) >> 30;
2052 		vm_size = roundup_pow_of_two(
2053 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2054 	}
2055 
2056 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2057 
2058 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2059 	if (amdgpu_vm_block_size != -1)
2060 		tmp >>= amdgpu_vm_block_size - 9;
2061 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2062 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2063 	switch (adev->vm_manager.num_level) {
2064 	case 3:
2065 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2066 		break;
2067 	case 2:
2068 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2069 		break;
2070 	case 1:
2071 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2072 		break;
2073 	default:
2074 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2075 	}
2076 	/* block size depends on vm size and hw setup*/
2077 	if (amdgpu_vm_block_size != -1)
2078 		adev->vm_manager.block_size =
2079 			min((unsigned)amdgpu_vm_block_size, max_bits
2080 			    - AMDGPU_GPU_PAGE_SHIFT
2081 			    - 9 * adev->vm_manager.num_level);
2082 	else if (adev->vm_manager.num_level > 1)
2083 		adev->vm_manager.block_size = 9;
2084 	else
2085 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2086 
2087 	if (amdgpu_vm_fragment_size == -1)
2088 		adev->vm_manager.fragment_size = fragment_size_default;
2089 	else
2090 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2091 
2092 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2093 		 vm_size, adev->vm_manager.num_level + 1,
2094 		 adev->vm_manager.block_size,
2095 		 adev->vm_manager.fragment_size);
2096 }
2097 
2098 /**
2099  * amdgpu_vm_wait_idle - wait for the VM to become idle
2100  *
2101  * @vm: VM object to wait for
2102  * @timeout: timeout to wait for VM to become idle
2103  */
2104 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2105 {
2106 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2107 					DMA_RESV_USAGE_BOOKKEEP,
2108 					true, timeout);
2109 	if (timeout <= 0)
2110 		return timeout;
2111 
2112 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2113 }
2114 
2115 /**
2116  * amdgpu_vm_init - initialize a vm instance
2117  *
2118  * @adev: amdgpu_device pointer
2119  * @vm: requested vm
2120  * @xcp_id: GPU partition selection id
2121  *
2122  * Init @vm fields.
2123  *
2124  * Returns:
2125  * 0 for success, error for failure.
2126  */
2127 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, int32_t xcp_id)
2128 {
2129 	struct amdgpu_bo *root_bo;
2130 	struct amdgpu_bo_vm *root;
2131 	int r, i;
2132 
2133 	vm->va = RB_ROOT_CACHED;
2134 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2135 		vm->reserved_vmid[i] = NULL;
2136 	INIT_LIST_HEAD(&vm->evicted);
2137 	INIT_LIST_HEAD(&vm->relocated);
2138 	INIT_LIST_HEAD(&vm->moved);
2139 	INIT_LIST_HEAD(&vm->idle);
2140 	INIT_LIST_HEAD(&vm->invalidated);
2141 	spin_lock_init(&vm->status_lock);
2142 	INIT_LIST_HEAD(&vm->freed);
2143 	INIT_LIST_HEAD(&vm->done);
2144 	INIT_LIST_HEAD(&vm->pt_freed);
2145 	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2146 
2147 	r = amdgpu_vm_init_entities(adev, vm);
2148 	if (r)
2149 		return r;
2150 
2151 	vm->pte_support_ats = false;
2152 	vm->is_compute_context = false;
2153 
2154 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2155 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2156 
2157 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2158 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2159 	WARN_ONCE((vm->use_cpu_for_update &&
2160 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2161 		  "CPU update of VM recommended only for large BAR system\n");
2162 
2163 	if (vm->use_cpu_for_update)
2164 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2165 	else
2166 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2167 
2168 	vm->last_update = dma_fence_get_stub();
2169 	vm->last_unlocked = dma_fence_get_stub();
2170 	vm->last_tlb_flush = dma_fence_get_stub();
2171 	vm->generation = 0;
2172 
2173 	mutex_init(&vm->eviction_lock);
2174 	vm->evicting = false;
2175 
2176 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2177 				false, &root, xcp_id);
2178 	if (r)
2179 		goto error_free_delayed;
2180 	root_bo = &root->bo;
2181 	r = amdgpu_bo_reserve(root_bo, true);
2182 	if (r)
2183 		goto error_free_root;
2184 
2185 	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2186 	if (r)
2187 		goto error_unreserve;
2188 
2189 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2190 
2191 	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2192 	if (r)
2193 		goto error_unreserve;
2194 
2195 	amdgpu_bo_unreserve(vm->root.bo);
2196 
2197 	INIT_KFIFO(vm->faults);
2198 
2199 	return 0;
2200 
2201 error_unreserve:
2202 	amdgpu_bo_unreserve(vm->root.bo);
2203 
2204 error_free_root:
2205 	amdgpu_bo_unref(&root->shadow);
2206 	amdgpu_bo_unref(&root_bo);
2207 	vm->root.bo = NULL;
2208 
2209 error_free_delayed:
2210 	dma_fence_put(vm->last_tlb_flush);
2211 	dma_fence_put(vm->last_unlocked);
2212 	amdgpu_vm_fini_entities(vm);
2213 
2214 	return r;
2215 }
2216 
2217 /**
2218  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2219  *
2220  * @adev: amdgpu_device pointer
2221  * @vm: requested vm
2222  *
2223  * This only works on GFX VMs that don't have any BOs added and no
2224  * page tables allocated yet.
2225  *
2226  * Changes the following VM parameters:
2227  * - use_cpu_for_update
2228  * - pte_supports_ats
2229  *
2230  * Reinitializes the page directory to reflect the changed ATS
2231  * setting.
2232  *
2233  * Returns:
2234  * 0 for success, -errno for errors.
2235  */
2236 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2237 {
2238 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2239 	int r;
2240 
2241 	r = amdgpu_bo_reserve(vm->root.bo, true);
2242 	if (r)
2243 		return r;
2244 
2245 	/* Check if PD needs to be reinitialized and do it before
2246 	 * changing any other state, in case it fails.
2247 	 */
2248 	if (pte_support_ats != vm->pte_support_ats) {
2249 		/* Sanity checks */
2250 		if (!amdgpu_vm_pt_is_root_clean(adev, vm)) {
2251 			r = -EINVAL;
2252 			goto unreserve_bo;
2253 		}
2254 
2255 		vm->pte_support_ats = pte_support_ats;
2256 		r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo),
2257 				       false);
2258 		if (r)
2259 			goto unreserve_bo;
2260 	}
2261 
2262 	/* Update VM state */
2263 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2264 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2265 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2266 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2267 	WARN_ONCE((vm->use_cpu_for_update &&
2268 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2269 		  "CPU update of VM recommended only for large BAR system\n");
2270 
2271 	if (vm->use_cpu_for_update) {
2272 		/* Sync with last SDMA update/clear before switching to CPU */
2273 		r = amdgpu_bo_sync_wait(vm->root.bo,
2274 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2275 		if (r)
2276 			goto unreserve_bo;
2277 
2278 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2279 		r = amdgpu_vm_pt_map_tables(adev, vm);
2280 		if (r)
2281 			goto unreserve_bo;
2282 
2283 	} else {
2284 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2285 	}
2286 
2287 	dma_fence_put(vm->last_update);
2288 	vm->last_update = dma_fence_get_stub();
2289 	vm->is_compute_context = true;
2290 
2291 	/* Free the shadow bo for compute VM */
2292 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
2293 
2294 	goto unreserve_bo;
2295 
2296 unreserve_bo:
2297 	amdgpu_bo_unreserve(vm->root.bo);
2298 	return r;
2299 }
2300 
2301 /**
2302  * amdgpu_vm_release_compute - release a compute vm
2303  * @adev: amdgpu_device pointer
2304  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2305  *
2306  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2307  * pasid from vm. Compute should stop use of vm after this call.
2308  */
2309 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2310 {
2311 	amdgpu_vm_set_pasid(adev, vm, 0);
2312 	vm->is_compute_context = false;
2313 }
2314 
2315 /**
2316  * amdgpu_vm_fini - tear down a vm instance
2317  *
2318  * @adev: amdgpu_device pointer
2319  * @vm: requested vm
2320  *
2321  * Tear down @vm.
2322  * Unbind the VM and remove all bos from the vm bo list
2323  */
2324 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2325 {
2326 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2327 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2328 	struct amdgpu_bo *root;
2329 	unsigned long flags;
2330 	int i;
2331 
2332 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2333 
2334 	flush_work(&vm->pt_free_work);
2335 
2336 	root = amdgpu_bo_ref(vm->root.bo);
2337 	amdgpu_bo_reserve(root, true);
2338 	amdgpu_vm_set_pasid(adev, vm, 0);
2339 	dma_fence_wait(vm->last_unlocked, false);
2340 	dma_fence_put(vm->last_unlocked);
2341 	dma_fence_wait(vm->last_tlb_flush, false);
2342 	/* Make sure that all fence callbacks have completed */
2343 	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2344 	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2345 	dma_fence_put(vm->last_tlb_flush);
2346 
2347 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2348 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2349 			amdgpu_vm_prt_fini(adev, vm);
2350 			prt_fini_needed = false;
2351 		}
2352 
2353 		list_del(&mapping->list);
2354 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2355 	}
2356 
2357 	amdgpu_vm_pt_free_root(adev, vm);
2358 	amdgpu_bo_unreserve(root);
2359 	amdgpu_bo_unref(&root);
2360 	WARN_ON(vm->root.bo);
2361 
2362 	amdgpu_vm_fini_entities(vm);
2363 
2364 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2365 		dev_err(adev->dev, "still active bo inside vm\n");
2366 	}
2367 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2368 					     &vm->va.rb_root, rb) {
2369 		/* Don't remove the mapping here, we don't want to trigger a
2370 		 * rebalance and the tree is about to be destroyed anyway.
2371 		 */
2372 		list_del(&mapping->list);
2373 		kfree(mapping);
2374 	}
2375 
2376 	dma_fence_put(vm->last_update);
2377 
2378 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2379 		if (vm->reserved_vmid[i]) {
2380 			amdgpu_vmid_free_reserved(adev, i);
2381 			vm->reserved_vmid[i] = false;
2382 		}
2383 	}
2384 
2385 }
2386 
2387 /**
2388  * amdgpu_vm_manager_init - init the VM manager
2389  *
2390  * @adev: amdgpu_device pointer
2391  *
2392  * Initialize the VM manager structures
2393  */
2394 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2395 {
2396 	unsigned i;
2397 
2398 	/* Concurrent flushes are only possible starting with Vega10 and
2399 	 * are broken on Navi10 and Navi14.
2400 	 */
2401 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2402 					      adev->asic_type == CHIP_NAVI10 ||
2403 					      adev->asic_type == CHIP_NAVI14);
2404 	amdgpu_vmid_mgr_init(adev);
2405 
2406 	adev->vm_manager.fence_context =
2407 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2408 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2409 		adev->vm_manager.seqno[i] = 0;
2410 
2411 	spin_lock_init(&adev->vm_manager.prt_lock);
2412 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2413 
2414 	/* If not overridden by the user, by default, only in large BAR systems
2415 	 * Compute VM tables will be updated by CPU
2416 	 */
2417 #ifdef CONFIG_X86_64
2418 	if (amdgpu_vm_update_mode == -1) {
2419 		/* For asic with VF MMIO access protection
2420 		 * avoid using CPU for VM table updates
2421 		 */
2422 		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2423 		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2424 			adev->vm_manager.vm_update_mode =
2425 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2426 		else
2427 			adev->vm_manager.vm_update_mode = 0;
2428 	} else
2429 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2430 #else
2431 	adev->vm_manager.vm_update_mode = 0;
2432 #endif
2433 
2434 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
2435 }
2436 
2437 /**
2438  * amdgpu_vm_manager_fini - cleanup VM manager
2439  *
2440  * @adev: amdgpu_device pointer
2441  *
2442  * Cleanup the VM manager and free resources.
2443  */
2444 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2445 {
2446 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2447 	xa_destroy(&adev->vm_manager.pasids);
2448 
2449 	amdgpu_vmid_mgr_fini(adev);
2450 }
2451 
2452 /**
2453  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2454  *
2455  * @dev: drm device pointer
2456  * @data: drm_amdgpu_vm
2457  * @filp: drm file pointer
2458  *
2459  * Returns:
2460  * 0 for success, -errno for errors.
2461  */
2462 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2463 {
2464 	union drm_amdgpu_vm *args = data;
2465 	struct amdgpu_device *adev = drm_to_adev(dev);
2466 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2467 
2468 	/* No valid flags defined yet */
2469 	if (args->in.flags)
2470 		return -EINVAL;
2471 
2472 	switch (args->in.op) {
2473 	case AMDGPU_VM_OP_RESERVE_VMID:
2474 		/* We only have requirement to reserve vmid from gfxhub */
2475 		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2476 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2477 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2478 		}
2479 
2480 		break;
2481 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2482 		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2483 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2484 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2485 		}
2486 		break;
2487 	default:
2488 		return -EINVAL;
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 /**
2495  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
2496  *
2497  * @adev: drm device pointer
2498  * @pasid: PASID identifier for VM
2499  * @task_info: task_info to fill.
2500  */
2501 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
2502 			 struct amdgpu_task_info *task_info)
2503 {
2504 	struct amdgpu_vm *vm;
2505 	unsigned long flags;
2506 
2507 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2508 
2509 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2510 	if (vm)
2511 		*task_info = vm->task_info;
2512 
2513 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2514 }
2515 
2516 /**
2517  * amdgpu_vm_set_task_info - Sets VMs task info.
2518  *
2519  * @vm: vm for which to set the info
2520  */
2521 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2522 {
2523 	if (vm->task_info.pid)
2524 		return;
2525 
2526 	vm->task_info.pid = current->pid;
2527 	get_task_comm(vm->task_info.task_name, current);
2528 
2529 	if (current->group_leader->mm != current->mm)
2530 		return;
2531 
2532 	vm->task_info.tgid = current->group_leader->pid;
2533 	get_task_comm(vm->task_info.process_name, current->group_leader);
2534 }
2535 
2536 /**
2537  * amdgpu_vm_handle_fault - graceful handling of VM faults.
2538  * @adev: amdgpu device pointer
2539  * @pasid: PASID of the VM
2540  * @vmid: VMID, only used for GFX 9.4.3.
2541  * @node_id: Node_id received in IH cookie. Only applicable for
2542  *           GFX 9.4.3.
2543  * @addr: Address of the fault
2544  * @write_fault: true is write fault, false is read fault
2545  *
2546  * Try to gracefully handle a VM fault. Return true if the fault was handled and
2547  * shouldn't be reported any more.
2548  */
2549 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2550 			    u32 vmid, u32 node_id, uint64_t addr,
2551 			    bool write_fault)
2552 {
2553 	bool is_compute_context = false;
2554 	struct amdgpu_bo *root;
2555 	unsigned long irqflags;
2556 	uint64_t value, flags;
2557 	struct amdgpu_vm *vm;
2558 	int r;
2559 
2560 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2561 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2562 	if (vm) {
2563 		root = amdgpu_bo_ref(vm->root.bo);
2564 		is_compute_context = vm->is_compute_context;
2565 	} else {
2566 		root = NULL;
2567 	}
2568 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2569 
2570 	if (!root)
2571 		return false;
2572 
2573 	addr /= AMDGPU_GPU_PAGE_SIZE;
2574 
2575 	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2576 	    node_id, addr, write_fault)) {
2577 		amdgpu_bo_unref(&root);
2578 		return true;
2579 	}
2580 
2581 	r = amdgpu_bo_reserve(root, true);
2582 	if (r)
2583 		goto error_unref;
2584 
2585 	/* Double check that the VM still exists */
2586 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2587 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2588 	if (vm && vm->root.bo != root)
2589 		vm = NULL;
2590 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2591 	if (!vm)
2592 		goto error_unlock;
2593 
2594 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2595 		AMDGPU_PTE_SYSTEM;
2596 
2597 	if (is_compute_context) {
2598 		/* Intentionally setting invalid PTE flag
2599 		 * combination to force a no-retry-fault
2600 		 */
2601 		flags = AMDGPU_VM_NORETRY_FLAGS;
2602 		value = 0;
2603 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2604 		/* Redirect the access to the dummy page */
2605 		value = adev->dummy_page_addr;
2606 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2607 			AMDGPU_PTE_WRITEABLE;
2608 
2609 	} else {
2610 		/* Let the hw retry silently on the PTE */
2611 		value = 0;
2612 	}
2613 
2614 	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2615 	if (r) {
2616 		pr_debug("failed %d to reserve fence slot\n", r);
2617 		goto error_unlock;
2618 	}
2619 
2620 	r = amdgpu_vm_update_range(adev, vm, true, false, false, NULL, addr,
2621 				   addr, flags, value, 0, NULL, NULL, NULL);
2622 	if (r)
2623 		goto error_unlock;
2624 
2625 	r = amdgpu_vm_update_pdes(adev, vm, true);
2626 
2627 error_unlock:
2628 	amdgpu_bo_unreserve(root);
2629 	if (r < 0)
2630 		DRM_ERROR("Can't handle page fault (%d)\n", r);
2631 
2632 error_unref:
2633 	amdgpu_bo_unref(&root);
2634 
2635 	return false;
2636 }
2637 
2638 #if defined(CONFIG_DEBUG_FS)
2639 /**
2640  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2641  *
2642  * @vm: Requested VM for printing BO info
2643  * @m: debugfs file
2644  *
2645  * Print BO information in debugfs file for the VM
2646  */
2647 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2648 {
2649 	struct amdgpu_bo_va *bo_va, *tmp;
2650 	u64 total_idle = 0;
2651 	u64 total_evicted = 0;
2652 	u64 total_relocated = 0;
2653 	u64 total_moved = 0;
2654 	u64 total_invalidated = 0;
2655 	u64 total_done = 0;
2656 	unsigned int total_idle_objs = 0;
2657 	unsigned int total_evicted_objs = 0;
2658 	unsigned int total_relocated_objs = 0;
2659 	unsigned int total_moved_objs = 0;
2660 	unsigned int total_invalidated_objs = 0;
2661 	unsigned int total_done_objs = 0;
2662 	unsigned int id = 0;
2663 
2664 	spin_lock(&vm->status_lock);
2665 	seq_puts(m, "\tIdle BOs:\n");
2666 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2667 		if (!bo_va->base.bo)
2668 			continue;
2669 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2670 	}
2671 	total_idle_objs = id;
2672 	id = 0;
2673 
2674 	seq_puts(m, "\tEvicted BOs:\n");
2675 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2676 		if (!bo_va->base.bo)
2677 			continue;
2678 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2679 	}
2680 	total_evicted_objs = id;
2681 	id = 0;
2682 
2683 	seq_puts(m, "\tRelocated BOs:\n");
2684 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2685 		if (!bo_va->base.bo)
2686 			continue;
2687 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2688 	}
2689 	total_relocated_objs = id;
2690 	id = 0;
2691 
2692 	seq_puts(m, "\tMoved BOs:\n");
2693 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2694 		if (!bo_va->base.bo)
2695 			continue;
2696 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2697 	}
2698 	total_moved_objs = id;
2699 	id = 0;
2700 
2701 	seq_puts(m, "\tInvalidated BOs:\n");
2702 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2703 		if (!bo_va->base.bo)
2704 			continue;
2705 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2706 	}
2707 	total_invalidated_objs = id;
2708 	id = 0;
2709 
2710 	seq_puts(m, "\tDone BOs:\n");
2711 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2712 		if (!bo_va->base.bo)
2713 			continue;
2714 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2715 	}
2716 	spin_unlock(&vm->status_lock);
2717 	total_done_objs = id;
2718 
2719 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2720 		   total_idle_objs);
2721 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2722 		   total_evicted_objs);
2723 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2724 		   total_relocated_objs);
2725 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2726 		   total_moved_objs);
2727 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2728 		   total_invalidated_objs);
2729 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2730 		   total_done_objs);
2731 }
2732 #endif
2733