1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/mm_types.h>
27 
28 #include "kfd_priv.h"
29 #include "kfd_mqd_manager.h"
30 #include "cik_regs.h"
31 #include "cik_structs.h"
32 #include "oss/oss_2_4_sh_mask.h"
33 
34 static inline struct cik_mqd *get_mqd(void *mqd)
35 {
36 	return (struct cik_mqd *)mqd;
37 }
38 
39 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
40 {
41 	return (struct cik_sdma_rlc_registers *)mqd;
42 }
43 
44 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
45 			struct queue_properties *q)
46 {
47 	struct cik_mqd *m;
48 	uint32_t se_mask[4] = {0}; /* 4 is the max # of SEs */
49 
50 	if (q->cu_mask_count == 0)
51 		return;
52 
53 	mqd_symmetrically_map_cu_mask(mm,
54 		q->cu_mask, q->cu_mask_count, se_mask);
55 
56 	m = get_mqd(mqd);
57 	m->compute_static_thread_mgmt_se0 = se_mask[0];
58 	m->compute_static_thread_mgmt_se1 = se_mask[1];
59 	m->compute_static_thread_mgmt_se2 = se_mask[2];
60 	m->compute_static_thread_mgmt_se3 = se_mask[3];
61 
62 	pr_debug("Update cu mask to %#x %#x %#x %#x\n",
63 		m->compute_static_thread_mgmt_se0,
64 		m->compute_static_thread_mgmt_se1,
65 		m->compute_static_thread_mgmt_se2,
66 		m->compute_static_thread_mgmt_se3);
67 }
68 
69 static int init_mqd(struct mqd_manager *mm, void **mqd,
70 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
71 		struct queue_properties *q)
72 {
73 	uint64_t addr;
74 	struct cik_mqd *m;
75 	int retval;
76 
77 	retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
78 					mqd_mem_obj);
79 
80 	if (retval != 0)
81 		return -ENOMEM;
82 
83 	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
84 	addr = (*mqd_mem_obj)->gpu_addr;
85 
86 	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
87 
88 	m->header = 0xC0310800;
89 	m->compute_pipelinestat_enable = 1;
90 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
91 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
92 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
93 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
94 
95 	/*
96 	 * Make sure to use the last queue state saved on mqd when the cp
97 	 * reassigns the queue, so when queue is switched on/off (e.g over
98 	 * subscription or quantum timeout) the context will be consistent
99 	 */
100 	m->cp_hqd_persistent_state =
101 				DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
102 
103 	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
104 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
105 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
106 
107 	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
108 				QUANTUM_DURATION(10);
109 
110 	/*
111 	 * Pipe Priority
112 	 * Identifies the pipe relative priority when this queue is connected
113 	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
114 	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
115 	 * 0 = CS_LOW (typically below GFX)
116 	 * 1 = CS_MEDIUM (typically between HP3D and GFX
117 	 * 2 = CS_HIGH (typically above HP3D)
118 	 */
119 	m->cp_hqd_pipe_priority = 1;
120 	m->cp_hqd_queue_priority = 15;
121 
122 	if (q->format == KFD_QUEUE_FORMAT_AQL)
123 		m->cp_hqd_iq_rptr = AQL_ENABLE;
124 
125 	*mqd = m;
126 	if (gart_addr)
127 		*gart_addr = addr;
128 	retval = mm->update_mqd(mm, m, q);
129 
130 	return retval;
131 }
132 
133 static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
134 			struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
135 			struct queue_properties *q)
136 {
137 	int retval;
138 	struct cik_sdma_rlc_registers *m;
139 
140 	retval = kfd_gtt_sa_allocate(mm->dev,
141 					sizeof(struct cik_sdma_rlc_registers),
142 					mqd_mem_obj);
143 
144 	if (retval != 0)
145 		return -ENOMEM;
146 
147 	m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
148 
149 	memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
150 
151 	*mqd = m;
152 	if (gart_addr)
153 		*gart_addr = (*mqd_mem_obj)->gpu_addr;
154 
155 	retval = mm->update_mqd(mm, m, q);
156 
157 	return retval;
158 }
159 
160 static void uninit_mqd(struct mqd_manager *mm, void *mqd,
161 			struct kfd_mem_obj *mqd_mem_obj)
162 {
163 	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
164 }
165 
166 static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
167 				struct kfd_mem_obj *mqd_mem_obj)
168 {
169 	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
170 }
171 
172 static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
173 		    uint32_t queue_id, struct queue_properties *p,
174 		    struct mm_struct *mms)
175 {
176 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
177 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
178 	uint32_t wptr_mask = (uint32_t)((p->queue_size / 4) - 1);
179 
180 	return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
181 					  (uint32_t __user *)p->write_ptr,
182 					  wptr_shift, wptr_mask, mms);
183 }
184 
185 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
186 			 uint32_t pipe_id, uint32_t queue_id,
187 			 struct queue_properties *p, struct mm_struct *mms)
188 {
189 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
190 					       (uint32_t __user *)p->write_ptr,
191 					       mms);
192 }
193 
194 static int __update_mqd(struct mqd_manager *mm, void *mqd,
195 			struct queue_properties *q, unsigned int atc_bit)
196 {
197 	struct cik_mqd *m;
198 
199 	m = get_mqd(mqd);
200 	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
201 				DEFAULT_MIN_AVAIL_SIZE;
202 	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
203 	if (atc_bit) {
204 		m->cp_hqd_pq_control |= PQ_ATC_EN;
205 		m->cp_hqd_ib_control |= IB_ATC_EN;
206 	}
207 
208 	/*
209 	 * Calculating queue size which is log base 2 of actual queue size -1
210 	 * dwords and another -1 for ffs
211 	 */
212 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
213 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
214 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
215 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
216 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
217 	m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off);
218 
219 	m->cp_hqd_vmid = q->vmid;
220 
221 	if (q->format == KFD_QUEUE_FORMAT_AQL)
222 		m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
223 
224 	update_cu_mask(mm, mqd, q);
225 
226 	q->is_active = (q->queue_size > 0 &&
227 			q->queue_address != 0 &&
228 			q->queue_percent > 0 &&
229 			!q->is_evicted);
230 
231 	return 0;
232 }
233 
234 static int update_mqd(struct mqd_manager *mm, void *mqd,
235 			struct queue_properties *q)
236 {
237 	return __update_mqd(mm, mqd, q, 1);
238 }
239 
240 static int update_mqd_hawaii(struct mqd_manager *mm, void *mqd,
241 			struct queue_properties *q)
242 {
243 	return __update_mqd(mm, mqd, q, 0);
244 }
245 
246 static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
247 				struct queue_properties *q)
248 {
249 	struct cik_sdma_rlc_registers *m;
250 
251 	m = get_sdma_mqd(mqd);
252 	m->sdma_rlc_rb_cntl = order_base_2(q->queue_size / 4)
253 			<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
254 			q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
255 			1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
256 			6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
257 
258 	m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
259 	m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
260 	m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
261 	m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
262 	m->sdma_rlc_doorbell =
263 		q->doorbell_off << SDMA0_RLC0_DOORBELL__OFFSET__SHIFT;
264 
265 	m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
266 
267 	m->sdma_engine_id = q->sdma_engine_id;
268 	m->sdma_queue_id = q->sdma_queue_id;
269 
270 	q->is_active = (q->queue_size > 0 &&
271 			q->queue_address != 0 &&
272 			q->queue_percent > 0 &&
273 			!q->is_evicted);
274 
275 	return 0;
276 }
277 
278 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
279 			enum kfd_preempt_type type,
280 			unsigned int timeout, uint32_t pipe_id,
281 			uint32_t queue_id)
282 {
283 	return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, mqd, type, timeout,
284 					pipe_id, queue_id);
285 }
286 
287 /*
288  * preempt type here is ignored because there is only one way
289  * to preempt sdma queue
290  */
291 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
292 				enum kfd_preempt_type type,
293 				unsigned int timeout, uint32_t pipe_id,
294 				uint32_t queue_id)
295 {
296 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
297 }
298 
299 static bool is_occupied(struct mqd_manager *mm, void *mqd,
300 			uint64_t queue_address,	uint32_t pipe_id,
301 			uint32_t queue_id)
302 {
303 
304 	return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
305 					pipe_id, queue_id);
306 
307 }
308 
309 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
310 			uint64_t queue_address,	uint32_t pipe_id,
311 			uint32_t queue_id)
312 {
313 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
314 }
315 
316 /*
317  * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
318  * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
319  * queues but with different initial values.
320  */
321 
322 static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
323 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
324 		struct queue_properties *q)
325 {
326 	return init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
327 }
328 
329 static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
330 				struct queue_properties *q)
331 {
332 	struct cik_mqd *m;
333 
334 	m = get_mqd(mqd);
335 	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
336 				DEFAULT_MIN_AVAIL_SIZE |
337 				PRIV_STATE |
338 				KMD_QUEUE;
339 
340 	/*
341 	 * Calculating queue size which is log base 2 of actual queue
342 	 * size -1 dwords
343 	 */
344 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
345 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
346 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
347 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
348 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
349 	m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off);
350 
351 	m->cp_hqd_vmid = q->vmid;
352 
353 	q->is_active = (q->queue_size > 0 &&
354 			q->queue_address != 0 &&
355 			q->queue_percent > 0 &&
356 			!q->is_evicted);
357 
358 	return 0;
359 }
360 
361 #if defined(CONFIG_DEBUG_FS)
362 
363 static int debugfs_show_mqd(struct seq_file *m, void *data)
364 {
365 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
366 		     data, sizeof(struct cik_mqd), false);
367 	return 0;
368 }
369 
370 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
371 {
372 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
373 		     data, sizeof(struct cik_sdma_rlc_registers), false);
374 	return 0;
375 }
376 
377 #endif
378 
379 
380 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
381 		struct kfd_dev *dev)
382 {
383 	struct mqd_manager *mqd;
384 
385 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
386 		return NULL;
387 
388 	mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
389 	if (!mqd)
390 		return NULL;
391 
392 	mqd->dev = dev;
393 
394 	switch (type) {
395 	case KFD_MQD_TYPE_CP:
396 	case KFD_MQD_TYPE_COMPUTE:
397 		mqd->init_mqd = init_mqd;
398 		mqd->uninit_mqd = uninit_mqd;
399 		mqd->load_mqd = load_mqd;
400 		mqd->update_mqd = update_mqd;
401 		mqd->destroy_mqd = destroy_mqd;
402 		mqd->is_occupied = is_occupied;
403 #if defined(CONFIG_DEBUG_FS)
404 		mqd->debugfs_show_mqd = debugfs_show_mqd;
405 #endif
406 		break;
407 	case KFD_MQD_TYPE_HIQ:
408 		mqd->init_mqd = init_mqd_hiq;
409 		mqd->uninit_mqd = uninit_mqd;
410 		mqd->load_mqd = load_mqd;
411 		mqd->update_mqd = update_mqd_hiq;
412 		mqd->destroy_mqd = destroy_mqd;
413 		mqd->is_occupied = is_occupied;
414 #if defined(CONFIG_DEBUG_FS)
415 		mqd->debugfs_show_mqd = debugfs_show_mqd;
416 #endif
417 		break;
418 	case KFD_MQD_TYPE_SDMA:
419 		mqd->init_mqd = init_mqd_sdma;
420 		mqd->uninit_mqd = uninit_mqd_sdma;
421 		mqd->load_mqd = load_mqd_sdma;
422 		mqd->update_mqd = update_mqd_sdma;
423 		mqd->destroy_mqd = destroy_mqd_sdma;
424 		mqd->is_occupied = is_occupied_sdma;
425 #if defined(CONFIG_DEBUG_FS)
426 		mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
427 #endif
428 		break;
429 	default:
430 		kfree(mqd);
431 		return NULL;
432 	}
433 
434 	return mqd;
435 }
436 
437 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
438 			struct kfd_dev *dev)
439 {
440 	struct mqd_manager *mqd;
441 
442 	mqd = mqd_manager_init_cik(type, dev);
443 	if (!mqd)
444 		return NULL;
445 	if ((type == KFD_MQD_TYPE_CP) || (type == KFD_MQD_TYPE_COMPUTE))
446 		mqd->update_mqd = update_mqd_hawaii;
447 	return mqd;
448 }
449