1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50 
51 /* Macros */
52 
53 #define REG(reg_name) \
54 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55 
56 
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
58 static int rn_get_active_display_cnt_wa(struct dc *dc, struct dc_state *context)
59 {
60 	int i, display_count;
61 	bool tmds_present = false;
62 
63 	display_count = 0;
64 	for (i = 0; i < context->stream_count; i++) {
65 		const struct dc_stream_state *stream = context->streams[i];
66 
67 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
68 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
69 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
70 			tmds_present = true;
71 	}
72 
73 	for (i = 0; i < dc->link_count; i++) {
74 		const struct dc_link *link = dc->links[i];
75 
76 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
77 		if (link->link_enc->funcs->is_dig_enabled &&
78 		    link->link_enc->funcs->is_dig_enabled(link->link_enc))
79 			display_count++;
80 	}
81 
82 	/* WA for hang on HDMI after display off back back on*/
83 	if (display_count == 0 && tmds_present)
84 		display_count = 1;
85 
86 	return display_count;
87 }
88 
89 static void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
90 {
91 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
92 
93 	rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
94 	/* update power state */
95 	clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
96 }
97 
98 static void rn_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
99 		struct dc_state *context, int ref_dpp_clk, bool safe_to_lower)
100 {
101 	int i;
102 
103 	clk_mgr->dccg->ref_dppclk = ref_dpp_clk;
104 
105 	for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
106 		int dpp_inst, dppclk_khz, prev_dppclk_khz;
107 
108 		/* Loop index may not match dpp->inst if some pipes disabled,
109 		 * so select correct inst from res_pool
110 		 */
111 		dpp_inst = clk_mgr->base.ctx->dc->res_pool->dpps[i]->inst;
112 		dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
113 
114 		prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i];
115 
116 		if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
117 			clk_mgr->dccg->funcs->update_dpp_dto(
118 							clk_mgr->dccg, dpp_inst, dppclk_khz);
119 	}
120 }
121 
122 
123 static void rn_update_clocks(struct clk_mgr *clk_mgr_base,
124 			struct dc_state *context,
125 			bool safe_to_lower)
126 {
127 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
128 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
129 	struct dc *dc = clk_mgr_base->ctx->dc;
130 	int display_count;
131 	bool update_dppclk = false;
132 	bool update_dispclk = false;
133 	bool dpp_clock_lowered = false;
134 
135 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
136 
137 	if (dc->work_arounds.skip_clock_update)
138 		return;
139 
140 	/*
141 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
142 	 * also if safe to lower is false, we just go in the higher state
143 	 */
144 	if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
145 		/* check that we're not already in lower */
146 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
147 
148 			display_count = rn_get_active_display_cnt_wa(dc, context);
149 
150 			/* if we can go lower, go lower */
151 			if (display_count == 0) {
152 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
153 				/* update power state */
154 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
155 			}
156 		}
157 	} else {
158 		/* check that we're not already in D0 */
159 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
160 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
161 			/* update power state */
162 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
163 		}
164 	}
165 
166 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
167 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
168 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
169 	}
170 
171 	if (should_set_clock(safe_to_lower,
172 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
173 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
174 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
175 	}
176 
177 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
178 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
179 	if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
180 		new_clocks->dppclk_khz = 100000;
181 
182 	/*
183 	 * Temporally ignore thew 0 cases for disp and dpp clks.
184 	 * We may have a new feature that requires 0 clks in the future.
185 	 */
186 	if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
187 		new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
188 		new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
189 	}
190 
191 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
192 		if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
193 			dpp_clock_lowered = true;
194 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
195 		update_dppclk = true;
196 	}
197 
198 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
199 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
200 		clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
201 
202 		update_dispclk = true;
203 	}
204 
205 	if (dpp_clock_lowered) {
206 		// increase per DPP DTO before lowering global dppclk with requested dppclk
207 		rn_update_clocks_update_dpp_dto(
208 				clk_mgr,
209 				context,
210 				clk_mgr_base->clks.dppclk_khz,
211 				safe_to_lower);
212 
213 		clk_mgr_base->clks.actual_dppclk_khz =
214 				rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
215 
216 		//update dpp dto with actual dpp clk.
217 		rn_update_clocks_update_dpp_dto(
218 				clk_mgr,
219 				context,
220 				clk_mgr_base->clks.actual_dppclk_khz,
221 				safe_to_lower);
222 
223 	} else {
224 		// increase global DPPCLK before lowering per DPP DTO
225 		if (update_dppclk || update_dispclk)
226 			clk_mgr_base->clks.actual_dppclk_khz =
227 					rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
228 
229 		// always update dtos unless clock is lowered and not safe to lower
230 		rn_update_clocks_update_dpp_dto(
231 				clk_mgr,
232 				context,
233 				clk_mgr_base->clks.actual_dppclk_khz,
234 				safe_to_lower);
235 	}
236 
237 	if (update_dispclk &&
238 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
239 		/*update dmcu for wait_loop count*/
240 		dmcu->funcs->set_psr_wait_loop(dmcu,
241 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
242 	}
243 }
244 
245 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
246 {
247 	/* get FbMult value */
248 	struct fixed31_32 pll_req;
249 	unsigned int fbmult_frac_val = 0;
250 	unsigned int fbmult_int_val = 0;
251 
252 
253 	/*
254 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
255 	 * to leverage the fix point operations available in driver
256 	 */
257 
258 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
259 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
260 
261 	pll_req = dc_fixpt_from_int(fbmult_int_val);
262 
263 	/*
264 	 * since fractional part is only 16 bit in register definition but is 32 bit
265 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
266 	 */
267 	pll_req.value |= fbmult_frac_val << 16;
268 
269 	/* multiply by REFCLK period */
270 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
271 
272 	/* integer part is now VCO frequency in kHz */
273 	return dc_fixpt_floor(pll_req);
274 }
275 
276 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
277 {
278 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
279 
280 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
281 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
282 
283 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
284 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
285 
286 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
287 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
288 
289 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
290 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
291 
292 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
293 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
294 }
295 
296 /* This function collect raw clk register values */
297 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
298 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
299 {
300 	struct rn_clk_internal internal = {0};
301 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
302 	unsigned int chars_printed = 0;
303 	unsigned int remaining_buffer = log_info->bufSize;
304 
305 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
306 
307 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
308 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
309 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
310 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
311 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
312 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
313 
314 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
315 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
316 		regs_and_bypass->dppclk_bypass = 0;
317 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
318 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
319 		regs_and_bypass->dcfclk_bypass = 0;
320 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
321 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
322 		regs_and_bypass->dispclk_bypass = 0;
323 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
324 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
325 		regs_and_bypass->dprefclk_bypass = 0;
326 
327 	if (log_info->enabled) {
328 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
329 		remaining_buffer -= chars_printed;
330 		*log_info->sum_chars_printed += chars_printed;
331 		log_info->pBuf += chars_printed;
332 
333 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
334 			regs_and_bypass->dcfclk,
335 			regs_and_bypass->dcf_deep_sleep_divider,
336 			regs_and_bypass->dcf_deep_sleep_allow,
337 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
338 		remaining_buffer -= chars_printed;
339 		*log_info->sum_chars_printed += chars_printed;
340 		log_info->pBuf += chars_printed;
341 
342 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
343 			regs_and_bypass->dprefclk,
344 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
345 		remaining_buffer -= chars_printed;
346 		*log_info->sum_chars_printed += chars_printed;
347 		log_info->pBuf += chars_printed;
348 
349 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
350 			regs_and_bypass->dispclk,
351 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
352 		remaining_buffer -= chars_printed;
353 		*log_info->sum_chars_printed += chars_printed;
354 		log_info->pBuf += chars_printed;
355 
356 		//split
357 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
358 		remaining_buffer -= chars_printed;
359 		*log_info->sum_chars_printed += chars_printed;
360 		log_info->pBuf += chars_printed;
361 
362 		// REGISTER VALUES
363 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
364 		remaining_buffer -= chars_printed;
365 		*log_info->sum_chars_printed += chars_printed;
366 		log_info->pBuf += chars_printed;
367 
368 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
369 				internal.CLK1_CLK3_CURRENT_CNT);
370 		remaining_buffer -= chars_printed;
371 		*log_info->sum_chars_printed += chars_printed;
372 		log_info->pBuf += chars_printed;
373 
374 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
375 					internal.CLK1_CLK3_DS_CNTL);
376 		remaining_buffer -= chars_printed;
377 		*log_info->sum_chars_printed += chars_printed;
378 		log_info->pBuf += chars_printed;
379 
380 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
381 					internal.CLK1_CLK3_ALLOW_DS);
382 		remaining_buffer -= chars_printed;
383 		*log_info->sum_chars_printed += chars_printed;
384 		log_info->pBuf += chars_printed;
385 
386 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
387 					internal.CLK1_CLK2_CURRENT_CNT);
388 		remaining_buffer -= chars_printed;
389 		*log_info->sum_chars_printed += chars_printed;
390 		log_info->pBuf += chars_printed;
391 
392 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
393 					internal.CLK1_CLK0_CURRENT_CNT);
394 		remaining_buffer -= chars_printed;
395 		*log_info->sum_chars_printed += chars_printed;
396 		log_info->pBuf += chars_printed;
397 
398 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
399 					internal.CLK1_CLK1_CURRENT_CNT);
400 		remaining_buffer -= chars_printed;
401 		*log_info->sum_chars_printed += chars_printed;
402 		log_info->pBuf += chars_printed;
403 
404 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
405 					internal.CLK1_CLK3_BYPASS_CNTL);
406 		remaining_buffer -= chars_printed;
407 		*log_info->sum_chars_printed += chars_printed;
408 		log_info->pBuf += chars_printed;
409 
410 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
411 					internal.CLK1_CLK2_BYPASS_CNTL);
412 		remaining_buffer -= chars_printed;
413 		*log_info->sum_chars_printed += chars_printed;
414 		log_info->pBuf += chars_printed;
415 
416 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
417 					internal.CLK1_CLK0_BYPASS_CNTL);
418 		remaining_buffer -= chars_printed;
419 		*log_info->sum_chars_printed += chars_printed;
420 		log_info->pBuf += chars_printed;
421 
422 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
423 					internal.CLK1_CLK1_BYPASS_CNTL);
424 		remaining_buffer -= chars_printed;
425 		*log_info->sum_chars_printed += chars_printed;
426 		log_info->pBuf += chars_printed;
427 	}
428 }
429 
430 static void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
431 {
432 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
433 
434 	rn_vbios_smu_enable_pme_wa(clk_mgr);
435 }
436 
437 static void rn_init_clocks(struct clk_mgr *clk_mgr)
438 {
439 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
440 	// Assumption is that boot state always supports pstate
441 	clk_mgr->clks.p_state_change_support = true;
442 	clk_mgr->clks.prev_p_state_change_support = true;
443 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
444 }
445 
446 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
447 {
448 	int i, num_valid_sets;
449 
450 	num_valid_sets = 0;
451 
452 	for (i = 0; i < WM_SET_COUNT; i++) {
453 		/* skip empty entries, the smu array has no holes*/
454 		if (!bw_params->wm_table.entries[i].valid)
455 			continue;
456 
457 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
458 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
459 		/* We will not select WM based on fclk, so leave it as unconstrained */
460 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
461 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
462 		/* dcfclk wil be used to select WM*/
463 
464 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
465 			if (i == 0)
466 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
467 			else {
468 				/* add 1 to make it non-overlapping with next lvl */
469 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
470 			}
471 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
472 
473 		} else {
474 			/* unconstrained for memory retraining */
475 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
476 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
477 
478 			/* Modify previous watermark range to cover up to max */
479 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
480 		}
481 		num_valid_sets++;
482 	}
483 
484 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
485 	ranges->num_reader_wm_sets = num_valid_sets;
486 
487 	/* modify the min and max to make sure we cover the whole range*/
488 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
489 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
490 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
491 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
492 
493 	/* This is for writeback only, does not matter currently as no writeback support*/
494 	ranges->num_writer_wm_sets = 1;
495 	ranges->writer_wm_sets[0].wm_inst = WM_A;
496 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
497 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
498 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
499 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
500 
501 }
502 
503 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
504 {
505 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
506 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
507 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
508 
509 	if (!debug->disable_pplib_wm_range) {
510 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
511 
512 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
513 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
514 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
515 	}
516 
517 }
518 
519 static bool rn_are_clock_states_equal(struct dc_clocks *a,
520 		struct dc_clocks *b)
521 {
522 	if (a->dispclk_khz != b->dispclk_khz)
523 		return false;
524 	else if (a->dppclk_khz != b->dppclk_khz)
525 		return false;
526 	else if (a->dcfclk_khz != b->dcfclk_khz)
527 		return false;
528 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
529 		return false;
530 
531 	return true;
532 }
533 
534 
535 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
536 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
537 {
538 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
539 	unsigned int i, max_phyclk_req = 0;
540 
541 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
542 
543 	for (i = 0; i < MAX_PIPES * 2; i++) {
544 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
545 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
546 	}
547 
548 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
549 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
550 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
551 	}
552 }
553 
554 static struct clk_mgr_funcs dcn21_funcs = {
555 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
556 	.update_clocks = rn_update_clocks,
557 	.init_clocks = rn_init_clocks,
558 	.enable_pme_wa = rn_enable_pme_wa,
559 	.are_clock_states_equal = rn_are_clock_states_equal,
560 	.set_low_power_state = rn_set_low_power_state,
561 	.notify_wm_ranges = rn_notify_wm_ranges,
562 	.notify_link_rate_change = rn_notify_link_rate_change,
563 };
564 
565 static struct clk_bw_params rn_bw_params = {
566 	.vram_type = Ddr4MemType,
567 	.num_channels = 1,
568 	.clk_table = {
569 		.entries = {
570 			{
571 				.voltage = 0,
572 				.dcfclk_mhz = 400,
573 				.fclk_mhz = 400,
574 				.memclk_mhz = 800,
575 				.socclk_mhz = 0,
576 			},
577 			{
578 				.voltage = 0,
579 				.dcfclk_mhz = 483,
580 				.fclk_mhz = 800,
581 				.memclk_mhz = 1600,
582 				.socclk_mhz = 0,
583 			},
584 			{
585 				.voltage = 0,
586 				.dcfclk_mhz = 602,
587 				.fclk_mhz = 1067,
588 				.memclk_mhz = 1067,
589 				.socclk_mhz = 0,
590 			},
591 			{
592 				.voltage = 0,
593 				.dcfclk_mhz = 738,
594 				.fclk_mhz = 1333,
595 				.memclk_mhz = 1600,
596 				.socclk_mhz = 0,
597 			},
598 		},
599 
600 		.num_entries = 4,
601 	},
602 
603 };
604 
605 static struct wm_table ddr4_wm_table_gs = {
606 	.entries = {
607 		{
608 			.wm_inst = WM_A,
609 			.wm_type = WM_TYPE_PSTATE_CHG,
610 			.pstate_latency_us = 11.72,
611 			.sr_exit_time_us = 7.09,
612 			.sr_enter_plus_exit_time_us = 8.14,
613 			.valid = true,
614 		},
615 		{
616 			.wm_inst = WM_B,
617 			.wm_type = WM_TYPE_PSTATE_CHG,
618 			.pstate_latency_us = 11.72,
619 			.sr_exit_time_us = 10.12,
620 			.sr_enter_plus_exit_time_us = 11.48,
621 			.valid = true,
622 		},
623 		{
624 			.wm_inst = WM_C,
625 			.wm_type = WM_TYPE_PSTATE_CHG,
626 			.pstate_latency_us = 11.72,
627 			.sr_exit_time_us = 10.12,
628 			.sr_enter_plus_exit_time_us = 11.48,
629 			.valid = true,
630 		},
631 		{
632 			.wm_inst = WM_D,
633 			.wm_type = WM_TYPE_PSTATE_CHG,
634 			.pstate_latency_us = 11.72,
635 			.sr_exit_time_us = 10.12,
636 			.sr_enter_plus_exit_time_us = 11.48,
637 			.valid = true,
638 		},
639 	}
640 };
641 
642 static struct wm_table lpddr4_wm_table_gs = {
643 	.entries = {
644 		{
645 			.wm_inst = WM_A,
646 			.wm_type = WM_TYPE_PSTATE_CHG,
647 			.pstate_latency_us = 11.65333,
648 			.sr_exit_time_us = 5.32,
649 			.sr_enter_plus_exit_time_us = 6.38,
650 			.valid = true,
651 		},
652 		{
653 			.wm_inst = WM_B,
654 			.wm_type = WM_TYPE_PSTATE_CHG,
655 			.pstate_latency_us = 11.65333,
656 			.sr_exit_time_us = 9.82,
657 			.sr_enter_plus_exit_time_us = 11.196,
658 			.valid = true,
659 		},
660 		{
661 			.wm_inst = WM_C,
662 			.wm_type = WM_TYPE_PSTATE_CHG,
663 			.pstate_latency_us = 11.65333,
664 			.sr_exit_time_us = 9.89,
665 			.sr_enter_plus_exit_time_us = 11.24,
666 			.valid = true,
667 		},
668 		{
669 			.wm_inst = WM_D,
670 			.wm_type = WM_TYPE_PSTATE_CHG,
671 			.pstate_latency_us = 11.65333,
672 			.sr_exit_time_us = 9.748,
673 			.sr_enter_plus_exit_time_us = 11.102,
674 			.valid = true,
675 		},
676 	}
677 };
678 
679 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
680 	.entries = {
681 		{
682 			.wm_inst = WM_A,
683 			.wm_type = WM_TYPE_PSTATE_CHG,
684 			.pstate_latency_us = 11.65333,
685 			.sr_exit_time_us = 8.32,
686 			.sr_enter_plus_exit_time_us = 9.38,
687 			.valid = true,
688 		},
689 		{
690 			.wm_inst = WM_B,
691 			.wm_type = WM_TYPE_PSTATE_CHG,
692 			.pstate_latency_us = 11.65333,
693 			.sr_exit_time_us = 9.82,
694 			.sr_enter_plus_exit_time_us = 11.196,
695 			.valid = true,
696 		},
697 		{
698 			.wm_inst = WM_C,
699 			.wm_type = WM_TYPE_PSTATE_CHG,
700 			.pstate_latency_us = 11.65333,
701 			.sr_exit_time_us = 9.89,
702 			.sr_enter_plus_exit_time_us = 11.24,
703 			.valid = true,
704 		},
705 		{
706 			.wm_inst = WM_D,
707 			.wm_type = WM_TYPE_PSTATE_CHG,
708 			.pstate_latency_us = 11.65333,
709 			.sr_exit_time_us = 9.748,
710 			.sr_enter_plus_exit_time_us = 11.102,
711 			.valid = true,
712 		},
713 	}
714 };
715 
716 static struct wm_table ddr4_wm_table_rn = {
717 	.entries = {
718 		{
719 			.wm_inst = WM_A,
720 			.wm_type = WM_TYPE_PSTATE_CHG,
721 			.pstate_latency_us = 11.72,
722 			.sr_exit_time_us = 11.90,
723 			.sr_enter_plus_exit_time_us = 12.80,
724 			.valid = true,
725 		},
726 		{
727 			.wm_inst = WM_B,
728 			.wm_type = WM_TYPE_PSTATE_CHG,
729 			.pstate_latency_us = 11.72,
730 			.sr_exit_time_us = 13.18,
731 			.sr_enter_plus_exit_time_us = 14.30,
732 			.valid = true,
733 		},
734 		{
735 			.wm_inst = WM_C,
736 			.wm_type = WM_TYPE_PSTATE_CHG,
737 			.pstate_latency_us = 11.72,
738 			.sr_exit_time_us = 13.18,
739 			.sr_enter_plus_exit_time_us = 14.30,
740 			.valid = true,
741 		},
742 		{
743 			.wm_inst = WM_D,
744 			.wm_type = WM_TYPE_PSTATE_CHG,
745 			.pstate_latency_us = 11.72,
746 			.sr_exit_time_us = 13.18,
747 			.sr_enter_plus_exit_time_us = 14.30,
748 			.valid = true,
749 		},
750 	}
751 };
752 
753 static struct wm_table ddr4_1R_wm_table_rn = {
754 	.entries = {
755 		{
756 			.wm_inst = WM_A,
757 			.wm_type = WM_TYPE_PSTATE_CHG,
758 			.pstate_latency_us = 11.72,
759 			.sr_exit_time_us = 13.90,
760 			.sr_enter_plus_exit_time_us = 14.80,
761 			.valid = true,
762 		},
763 		{
764 			.wm_inst = WM_B,
765 			.wm_type = WM_TYPE_PSTATE_CHG,
766 			.pstate_latency_us = 11.72,
767 			.sr_exit_time_us = 13.90,
768 			.sr_enter_plus_exit_time_us = 14.80,
769 			.valid = true,
770 		},
771 		{
772 			.wm_inst = WM_C,
773 			.wm_type = WM_TYPE_PSTATE_CHG,
774 			.pstate_latency_us = 11.72,
775 			.sr_exit_time_us = 13.90,
776 			.sr_enter_plus_exit_time_us = 14.80,
777 			.valid = true,
778 		},
779 		{
780 			.wm_inst = WM_D,
781 			.wm_type = WM_TYPE_PSTATE_CHG,
782 			.pstate_latency_us = 11.72,
783 			.sr_exit_time_us = 13.90,
784 			.sr_enter_plus_exit_time_us = 14.80,
785 			.valid = true,
786 		},
787 	}
788 };
789 
790 static struct wm_table lpddr4_wm_table_rn = {
791 	.entries = {
792 		{
793 			.wm_inst = WM_A,
794 			.wm_type = WM_TYPE_PSTATE_CHG,
795 			.pstate_latency_us = 11.65333,
796 			.sr_exit_time_us = 7.32,
797 			.sr_enter_plus_exit_time_us = 8.38,
798 			.valid = true,
799 		},
800 		{
801 			.wm_inst = WM_B,
802 			.wm_type = WM_TYPE_PSTATE_CHG,
803 			.pstate_latency_us = 11.65333,
804 			.sr_exit_time_us = 9.82,
805 			.sr_enter_plus_exit_time_us = 11.196,
806 			.valid = true,
807 		},
808 		{
809 			.wm_inst = WM_C,
810 			.wm_type = WM_TYPE_PSTATE_CHG,
811 			.pstate_latency_us = 11.65333,
812 			.sr_exit_time_us = 9.89,
813 			.sr_enter_plus_exit_time_us = 11.24,
814 			.valid = true,
815 		},
816 		{
817 			.wm_inst = WM_D,
818 			.wm_type = WM_TYPE_PSTATE_CHG,
819 			.pstate_latency_us = 11.65333,
820 			.sr_exit_time_us = 9.748,
821 			.sr_enter_plus_exit_time_us = 11.102,
822 			.valid = true,
823 		},
824 	}
825 };
826 
827 static unsigned int find_socclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
828 {
829 	int i;
830 
831 	for (i = 0; i < PP_SMU_NUM_SOCCLK_DPM_LEVELS; i++) {
832 		if (clock_table->SocClocks[i].Vol == voltage)
833 			return clock_table->SocClocks[i].Freq;
834 	}
835 
836 	ASSERT(0);
837 	return 0;
838 }
839 
840 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
841 {
842 	int i;
843 
844 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
845 		if (clock_table->DcfClocks[i].Vol == voltage)
846 			return clock_table->DcfClocks[i].Freq;
847 	}
848 
849 	ASSERT(0);
850 	return 0;
851 }
852 
853 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
854 {
855 	int i, j = 0;
856 
857 	j = -1;
858 
859 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
860 
861 	/* Find lowest DPM, FCLK is filled in reverse order*/
862 
863 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
864 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
865 			j = i;
866 			break;
867 		}
868 	}
869 
870 	if (j == -1) {
871 		/* clock table is all 0s, just use our own hardcode */
872 		ASSERT(0);
873 		return;
874 	}
875 
876 	bw_params->clk_table.num_entries = j + 1;
877 
878 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
879 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
880 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
881 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
882 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
883 		bw_params->clk_table.entries[i].socclk_mhz = find_socclk_for_voltage(clock_table,
884 									bw_params->clk_table.entries[i].voltage);
885 	}
886 
887 	bw_params->vram_type = bios_info->memory_type;
888 	bw_params->num_channels = bios_info->ma_channel_number;
889 
890 	for (i = 0; i < WM_SET_COUNT; i++) {
891 		bw_params->wm_table.entries[i].wm_inst = i;
892 
893 		if (i >= bw_params->clk_table.num_entries) {
894 			bw_params->wm_table.entries[i].valid = false;
895 			continue;
896 		}
897 
898 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
899 		bw_params->wm_table.entries[i].valid = true;
900 	}
901 
902 	if (bw_params->vram_type == LpDdr4MemType) {
903 		/*
904 		 * WM set D will be re-purposed for memory retraining
905 		 */
906 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
907 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
908 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
909 		bw_params->wm_table.entries[WM_D].valid = true;
910 	}
911 
912 }
913 
914 void rn_clk_mgr_construct(
915 		struct dc_context *ctx,
916 		struct clk_mgr_internal *clk_mgr,
917 		struct pp_smu_funcs *pp_smu,
918 		struct dccg *dccg)
919 {
920 	struct dc_debug_options *debug = &ctx->dc->debug;
921 	struct dpm_clocks clock_table = { 0 };
922 	enum pp_smu_status status = 0;
923 	int is_green_sardine = 0;
924 
925 #if defined(CONFIG_DRM_AMD_DC_DCN)
926 	is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
927 #endif
928 
929 	clk_mgr->base.ctx = ctx;
930 	clk_mgr->base.funcs = &dcn21_funcs;
931 
932 	clk_mgr->pp_smu = pp_smu;
933 
934 	clk_mgr->dccg = dccg;
935 	clk_mgr->dfs_bypass_disp_clk = 0;
936 
937 	clk_mgr->dprefclk_ss_percentage = 0;
938 	clk_mgr->dprefclk_ss_divider = 1000;
939 	clk_mgr->ss_on_dprefclk = false;
940 	clk_mgr->dfs_ref_freq_khz = 48000;
941 
942 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
943 
944 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
945 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
946 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
947 	} else {
948 		struct clk_log_info log_info = {0};
949 
950 		clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
951 
952 		/* SMU Version 55.51.0 and up no longer have an issue
953 		 * that needs to limit minimum dispclk */
954 		if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
955 			debug->min_disp_clk_khz = 0;
956 
957 		/* TODO: Check we get what we expect during bringup */
958 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
959 
960 		/* in case we don't get a value from the register, use default */
961 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
962 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
963 
964 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
965 			if (clk_mgr->periodic_retraining_disabled) {
966 				rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
967 			} else {
968 				if (is_green_sardine)
969 					rn_bw_params.wm_table = lpddr4_wm_table_gs;
970 				else
971 					rn_bw_params.wm_table = lpddr4_wm_table_rn;
972 			}
973 		} else {
974 			if (is_green_sardine)
975 				rn_bw_params.wm_table = ddr4_wm_table_gs;
976 			else {
977 				if (ctx->dc->config.is_single_rank_dimm)
978 					rn_bw_params.wm_table = ddr4_1R_wm_table_rn;
979 				else
980 					rn_bw_params.wm_table = ddr4_wm_table_rn;
981 			}
982 		}
983 		/* Saved clocks configured at boot for debug purposes */
984 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
985 	}
986 
987 	clk_mgr->base.dprefclk_khz = 600000;
988 	dce_clock_read_ss_info(clk_mgr);
989 
990 
991 	clk_mgr->base.bw_params = &rn_bw_params;
992 
993 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
994 		status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
995 
996 		if (status == PP_SMU_RESULT_OK &&
997 		    ctx->dc_bios && ctx->dc_bios->integrated_info) {
998 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
999 			/* treat memory config as single channel if memory is asymmetrics. */
1000 			if (ctx->dc->config.is_asymmetric_memory)
1001 				clk_mgr->base.bw_params->num_channels = 1;
1002 		}
1003 	}
1004 
1005 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
1006 		/* enable powerfeatures when displaycount goes to 0 */
1007 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
1008 	}
1009 }
1010 
1011