1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50 
51 /* Macros */
52 
53 #define REG(reg_name) \
54 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55 
56 
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
58 static int rn_get_active_display_cnt_wa(struct dc *dc, struct dc_state *context)
59 {
60 	int i, display_count;
61 	bool tmds_present = false;
62 
63 	display_count = 0;
64 	for (i = 0; i < context->stream_count; i++) {
65 		const struct dc_stream_state *stream = context->streams[i];
66 
67 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
68 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
69 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
70 			tmds_present = true;
71 	}
72 
73 	for (i = 0; i < dc->link_count; i++) {
74 		const struct dc_link *link = dc->links[i];
75 
76 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
77 		if (link->link_enc->funcs->is_dig_enabled &&
78 		    link->link_enc->funcs->is_dig_enabled(link->link_enc))
79 			display_count++;
80 	}
81 
82 	/* WA for hang on HDMI after display off back back on*/
83 	if (display_count == 0 && tmds_present)
84 		display_count = 1;
85 
86 	return display_count;
87 }
88 
89 static void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
90 {
91 	int display_count;
92 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
93 	struct dc *dc = clk_mgr_base->ctx->dc;
94 	struct dc_state *context = dc->current_state;
95 
96 	if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
97 
98 		display_count = rn_get_active_display_cnt_wa(dc, context);
99 
100 		/* if we can go lower, go lower */
101 		if (display_count == 0) {
102 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
103 			/* update power state */
104 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
105 		}
106 	}
107 }
108 
109 static void rn_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
110 		struct dc_state *context, int ref_dpp_clk, bool safe_to_lower)
111 {
112 	int i;
113 
114 	clk_mgr->dccg->ref_dppclk = ref_dpp_clk;
115 
116 	for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
117 		int dpp_inst, dppclk_khz, prev_dppclk_khz;
118 
119 		/* Loop index may not match dpp->inst if some pipes disabled,
120 		 * so select correct inst from res_pool
121 		 */
122 		dpp_inst = clk_mgr->base.ctx->dc->res_pool->dpps[i]->inst;
123 		dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
124 
125 		prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[dpp_inst];
126 
127 		if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
128 			clk_mgr->dccg->funcs->update_dpp_dto(
129 							clk_mgr->dccg, dpp_inst, dppclk_khz);
130 	}
131 }
132 
133 
134 static void rn_update_clocks(struct clk_mgr *clk_mgr_base,
135 			struct dc_state *context,
136 			bool safe_to_lower)
137 {
138 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
139 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
140 	struct dc *dc = clk_mgr_base->ctx->dc;
141 	int display_count;
142 	bool update_dppclk = false;
143 	bool update_dispclk = false;
144 	bool dpp_clock_lowered = false;
145 
146 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
147 
148 	if (dc->work_arounds.skip_clock_update)
149 		return;
150 
151 	/*
152 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
153 	 * also if safe to lower is false, we just go in the higher state
154 	 */
155 	if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
156 		/* check that we're not already in lower */
157 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
158 
159 			display_count = rn_get_active_display_cnt_wa(dc, context);
160 
161 			/* if we can go lower, go lower */
162 			if (display_count == 0) {
163 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
164 				/* update power state */
165 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
166 			}
167 		}
168 	} else {
169 		/* check that we're not already in D0 */
170 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
171 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
172 			/* update power state */
173 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
174 		}
175 	}
176 
177 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
178 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
179 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
180 	}
181 
182 	if (should_set_clock(safe_to_lower,
183 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
184 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
185 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
186 	}
187 
188 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
189 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
190 	if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
191 		new_clocks->dppclk_khz = 100000;
192 
193 	/*
194 	 * Temporally ignore thew 0 cases for disp and dpp clks.
195 	 * We may have a new feature that requires 0 clks in the future.
196 	 */
197 	if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
198 		new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
199 		new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
200 	}
201 
202 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
203 		if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
204 			dpp_clock_lowered = true;
205 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
206 		update_dppclk = true;
207 	}
208 
209 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
210 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
211 		clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
212 
213 		update_dispclk = true;
214 	}
215 
216 	if (dpp_clock_lowered) {
217 		// increase per DPP DTO before lowering global dppclk with requested dppclk
218 		rn_update_clocks_update_dpp_dto(
219 				clk_mgr,
220 				context,
221 				clk_mgr_base->clks.dppclk_khz,
222 				safe_to_lower);
223 
224 		clk_mgr_base->clks.actual_dppclk_khz =
225 				rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
226 
227 		//update dpp dto with actual dpp clk.
228 		rn_update_clocks_update_dpp_dto(
229 				clk_mgr,
230 				context,
231 				clk_mgr_base->clks.actual_dppclk_khz,
232 				safe_to_lower);
233 
234 	} else {
235 		// increase global DPPCLK before lowering per DPP DTO
236 		if (update_dppclk || update_dispclk)
237 			clk_mgr_base->clks.actual_dppclk_khz =
238 					rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
239 
240 		// always update dtos unless clock is lowered and not safe to lower
241 		rn_update_clocks_update_dpp_dto(
242 				clk_mgr,
243 				context,
244 				clk_mgr_base->clks.actual_dppclk_khz,
245 				safe_to_lower);
246 	}
247 
248 	if (update_dispclk &&
249 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
250 		/*update dmcu for wait_loop count*/
251 		dmcu->funcs->set_psr_wait_loop(dmcu,
252 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
253 	}
254 }
255 
256 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
257 {
258 	/* get FbMult value */
259 	struct fixed31_32 pll_req;
260 	unsigned int fbmult_frac_val = 0;
261 	unsigned int fbmult_int_val = 0;
262 
263 
264 	/*
265 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
266 	 * to leverage the fix point operations available in driver
267 	 */
268 
269 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
270 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
271 
272 	pll_req = dc_fixpt_from_int(fbmult_int_val);
273 
274 	/*
275 	 * since fractional part is only 16 bit in register definition but is 32 bit
276 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
277 	 */
278 	pll_req.value |= fbmult_frac_val << 16;
279 
280 	/* multiply by REFCLK period */
281 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
282 
283 	/* integer part is now VCO frequency in kHz */
284 	return dc_fixpt_floor(pll_req);
285 }
286 
287 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
288 {
289 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
290 
291 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
292 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
293 
294 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
295 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
296 
297 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
298 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
299 
300 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
301 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
302 
303 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
304 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
305 }
306 
307 /* This function collect raw clk register values */
308 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
309 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
310 {
311 	struct rn_clk_internal internal = {0};
312 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
313 	unsigned int chars_printed = 0;
314 	unsigned int remaining_buffer = log_info->bufSize;
315 
316 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
317 
318 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
319 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
320 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
321 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
322 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
323 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
324 
325 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
326 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
327 		regs_and_bypass->dppclk_bypass = 0;
328 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
329 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
330 		regs_and_bypass->dcfclk_bypass = 0;
331 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
332 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
333 		regs_and_bypass->dispclk_bypass = 0;
334 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
335 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
336 		regs_and_bypass->dprefclk_bypass = 0;
337 
338 	if (log_info->enabled) {
339 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
340 		remaining_buffer -= chars_printed;
341 		*log_info->sum_chars_printed += chars_printed;
342 		log_info->pBuf += chars_printed;
343 
344 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
345 			regs_and_bypass->dcfclk,
346 			regs_and_bypass->dcf_deep_sleep_divider,
347 			regs_and_bypass->dcf_deep_sleep_allow,
348 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
349 		remaining_buffer -= chars_printed;
350 		*log_info->sum_chars_printed += chars_printed;
351 		log_info->pBuf += chars_printed;
352 
353 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
354 			regs_and_bypass->dprefclk,
355 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
356 		remaining_buffer -= chars_printed;
357 		*log_info->sum_chars_printed += chars_printed;
358 		log_info->pBuf += chars_printed;
359 
360 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
361 			regs_and_bypass->dispclk,
362 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
363 		remaining_buffer -= chars_printed;
364 		*log_info->sum_chars_printed += chars_printed;
365 		log_info->pBuf += chars_printed;
366 
367 		//split
368 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
369 		remaining_buffer -= chars_printed;
370 		*log_info->sum_chars_printed += chars_printed;
371 		log_info->pBuf += chars_printed;
372 
373 		// REGISTER VALUES
374 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
375 		remaining_buffer -= chars_printed;
376 		*log_info->sum_chars_printed += chars_printed;
377 		log_info->pBuf += chars_printed;
378 
379 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
380 				internal.CLK1_CLK3_CURRENT_CNT);
381 		remaining_buffer -= chars_printed;
382 		*log_info->sum_chars_printed += chars_printed;
383 		log_info->pBuf += chars_printed;
384 
385 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
386 					internal.CLK1_CLK3_DS_CNTL);
387 		remaining_buffer -= chars_printed;
388 		*log_info->sum_chars_printed += chars_printed;
389 		log_info->pBuf += chars_printed;
390 
391 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
392 					internal.CLK1_CLK3_ALLOW_DS);
393 		remaining_buffer -= chars_printed;
394 		*log_info->sum_chars_printed += chars_printed;
395 		log_info->pBuf += chars_printed;
396 
397 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
398 					internal.CLK1_CLK2_CURRENT_CNT);
399 		remaining_buffer -= chars_printed;
400 		*log_info->sum_chars_printed += chars_printed;
401 		log_info->pBuf += chars_printed;
402 
403 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
404 					internal.CLK1_CLK0_CURRENT_CNT);
405 		remaining_buffer -= chars_printed;
406 		*log_info->sum_chars_printed += chars_printed;
407 		log_info->pBuf += chars_printed;
408 
409 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
410 					internal.CLK1_CLK1_CURRENT_CNT);
411 		remaining_buffer -= chars_printed;
412 		*log_info->sum_chars_printed += chars_printed;
413 		log_info->pBuf += chars_printed;
414 
415 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
416 					internal.CLK1_CLK3_BYPASS_CNTL);
417 		remaining_buffer -= chars_printed;
418 		*log_info->sum_chars_printed += chars_printed;
419 		log_info->pBuf += chars_printed;
420 
421 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
422 					internal.CLK1_CLK2_BYPASS_CNTL);
423 		remaining_buffer -= chars_printed;
424 		*log_info->sum_chars_printed += chars_printed;
425 		log_info->pBuf += chars_printed;
426 
427 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
428 					internal.CLK1_CLK0_BYPASS_CNTL);
429 		remaining_buffer -= chars_printed;
430 		*log_info->sum_chars_printed += chars_printed;
431 		log_info->pBuf += chars_printed;
432 
433 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
434 					internal.CLK1_CLK1_BYPASS_CNTL);
435 		remaining_buffer -= chars_printed;
436 		*log_info->sum_chars_printed += chars_printed;
437 		log_info->pBuf += chars_printed;
438 	}
439 }
440 
441 static void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
442 {
443 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
444 
445 	rn_vbios_smu_enable_pme_wa(clk_mgr);
446 }
447 
448 static void rn_init_clocks(struct clk_mgr *clk_mgr)
449 {
450 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
451 	// Assumption is that boot state always supports pstate
452 	clk_mgr->clks.p_state_change_support = true;
453 	clk_mgr->clks.prev_p_state_change_support = true;
454 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
455 }
456 
457 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
458 {
459 	int i, num_valid_sets;
460 
461 	num_valid_sets = 0;
462 
463 	for (i = 0; i < WM_SET_COUNT; i++) {
464 		/* skip empty entries, the smu array has no holes*/
465 		if (!bw_params->wm_table.entries[i].valid)
466 			continue;
467 
468 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
469 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
470 		/* We will not select WM based on fclk, so leave it as unconstrained */
471 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
472 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
473 		/* dcfclk wil be used to select WM*/
474 
475 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
476 			if (i == 0)
477 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
478 			else {
479 				/* add 1 to make it non-overlapping with next lvl */
480 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
481 			}
482 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
483 
484 		} else {
485 			/* unconstrained for memory retraining */
486 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
487 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
488 
489 			/* Modify previous watermark range to cover up to max */
490 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
491 		}
492 		num_valid_sets++;
493 	}
494 
495 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
496 	ranges->num_reader_wm_sets = num_valid_sets;
497 
498 	/* modify the min and max to make sure we cover the whole range*/
499 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
500 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
501 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
502 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
503 
504 	/* This is for writeback only, does not matter currently as no writeback support*/
505 	ranges->num_writer_wm_sets = 1;
506 	ranges->writer_wm_sets[0].wm_inst = WM_A;
507 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
508 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
509 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
510 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
511 
512 }
513 
514 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
515 {
516 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
517 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
518 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
519 
520 	if (!debug->disable_pplib_wm_range) {
521 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
522 
523 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
524 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
525 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
526 	}
527 
528 }
529 
530 static bool rn_are_clock_states_equal(struct dc_clocks *a,
531 		struct dc_clocks *b)
532 {
533 	if (a->dispclk_khz != b->dispclk_khz)
534 		return false;
535 	else if (a->dppclk_khz != b->dppclk_khz)
536 		return false;
537 	else if (a->dcfclk_khz != b->dcfclk_khz)
538 		return false;
539 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
540 		return false;
541 
542 	return true;
543 }
544 
545 
546 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
547 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
548 {
549 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
550 	unsigned int i, max_phyclk_req = 0;
551 
552 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
553 
554 	for (i = 0; i < MAX_PIPES * 2; i++) {
555 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
556 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
557 	}
558 
559 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
560 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
561 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
562 	}
563 }
564 
565 static struct clk_mgr_funcs dcn21_funcs = {
566 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
567 	.update_clocks = rn_update_clocks,
568 	.init_clocks = rn_init_clocks,
569 	.enable_pme_wa = rn_enable_pme_wa,
570 	.are_clock_states_equal = rn_are_clock_states_equal,
571 	.set_low_power_state = rn_set_low_power_state,
572 	.notify_wm_ranges = rn_notify_wm_ranges,
573 	.notify_link_rate_change = rn_notify_link_rate_change,
574 };
575 
576 static struct clk_bw_params rn_bw_params = {
577 	.vram_type = Ddr4MemType,
578 	.num_channels = 1,
579 	.clk_table = {
580 		.entries = {
581 			{
582 				.voltage = 0,
583 				.dcfclk_mhz = 400,
584 				.fclk_mhz = 400,
585 				.memclk_mhz = 800,
586 				.socclk_mhz = 0,
587 			},
588 			{
589 				.voltage = 0,
590 				.dcfclk_mhz = 483,
591 				.fclk_mhz = 800,
592 				.memclk_mhz = 1600,
593 				.socclk_mhz = 0,
594 			},
595 			{
596 				.voltage = 0,
597 				.dcfclk_mhz = 602,
598 				.fclk_mhz = 1067,
599 				.memclk_mhz = 1067,
600 				.socclk_mhz = 0,
601 			},
602 			{
603 				.voltage = 0,
604 				.dcfclk_mhz = 738,
605 				.fclk_mhz = 1333,
606 				.memclk_mhz = 1600,
607 				.socclk_mhz = 0,
608 			},
609 		},
610 
611 		.num_entries = 4,
612 	},
613 
614 };
615 
616 static struct wm_table ddr4_wm_table_gs = {
617 	.entries = {
618 		{
619 			.wm_inst = WM_A,
620 			.wm_type = WM_TYPE_PSTATE_CHG,
621 			.pstate_latency_us = 11.72,
622 			.sr_exit_time_us = 7.09,
623 			.sr_enter_plus_exit_time_us = 8.14,
624 			.valid = true,
625 		},
626 		{
627 			.wm_inst = WM_B,
628 			.wm_type = WM_TYPE_PSTATE_CHG,
629 			.pstate_latency_us = 11.72,
630 			.sr_exit_time_us = 10.12,
631 			.sr_enter_plus_exit_time_us = 11.48,
632 			.valid = true,
633 		},
634 		{
635 			.wm_inst = WM_C,
636 			.wm_type = WM_TYPE_PSTATE_CHG,
637 			.pstate_latency_us = 11.72,
638 			.sr_exit_time_us = 10.12,
639 			.sr_enter_plus_exit_time_us = 11.48,
640 			.valid = true,
641 		},
642 		{
643 			.wm_inst = WM_D,
644 			.wm_type = WM_TYPE_PSTATE_CHG,
645 			.pstate_latency_us = 11.72,
646 			.sr_exit_time_us = 10.12,
647 			.sr_enter_plus_exit_time_us = 11.48,
648 			.valid = true,
649 		},
650 	}
651 };
652 
653 static struct wm_table lpddr4_wm_table_gs = {
654 	.entries = {
655 		{
656 			.wm_inst = WM_A,
657 			.wm_type = WM_TYPE_PSTATE_CHG,
658 			.pstate_latency_us = 11.65333,
659 			.sr_exit_time_us = 5.32,
660 			.sr_enter_plus_exit_time_us = 6.38,
661 			.valid = true,
662 		},
663 		{
664 			.wm_inst = WM_B,
665 			.wm_type = WM_TYPE_PSTATE_CHG,
666 			.pstate_latency_us = 11.65333,
667 			.sr_exit_time_us = 9.82,
668 			.sr_enter_plus_exit_time_us = 11.196,
669 			.valid = true,
670 		},
671 		{
672 			.wm_inst = WM_C,
673 			.wm_type = WM_TYPE_PSTATE_CHG,
674 			.pstate_latency_us = 11.65333,
675 			.sr_exit_time_us = 9.89,
676 			.sr_enter_plus_exit_time_us = 11.24,
677 			.valid = true,
678 		},
679 		{
680 			.wm_inst = WM_D,
681 			.wm_type = WM_TYPE_PSTATE_CHG,
682 			.pstate_latency_us = 11.65333,
683 			.sr_exit_time_us = 9.748,
684 			.sr_enter_plus_exit_time_us = 11.102,
685 			.valid = true,
686 		},
687 	}
688 };
689 
690 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
691 	.entries = {
692 		{
693 			.wm_inst = WM_A,
694 			.wm_type = WM_TYPE_PSTATE_CHG,
695 			.pstate_latency_us = 11.65333,
696 			.sr_exit_time_us = 8.32,
697 			.sr_enter_plus_exit_time_us = 9.38,
698 			.valid = true,
699 		},
700 		{
701 			.wm_inst = WM_B,
702 			.wm_type = WM_TYPE_PSTATE_CHG,
703 			.pstate_latency_us = 11.65333,
704 			.sr_exit_time_us = 9.82,
705 			.sr_enter_plus_exit_time_us = 11.196,
706 			.valid = true,
707 		},
708 		{
709 			.wm_inst = WM_C,
710 			.wm_type = WM_TYPE_PSTATE_CHG,
711 			.pstate_latency_us = 11.65333,
712 			.sr_exit_time_us = 9.89,
713 			.sr_enter_plus_exit_time_us = 11.24,
714 			.valid = true,
715 		},
716 		{
717 			.wm_inst = WM_D,
718 			.wm_type = WM_TYPE_PSTATE_CHG,
719 			.pstate_latency_us = 11.65333,
720 			.sr_exit_time_us = 9.748,
721 			.sr_enter_plus_exit_time_us = 11.102,
722 			.valid = true,
723 		},
724 	}
725 };
726 
727 static struct wm_table ddr4_wm_table_rn = {
728 	.entries = {
729 		{
730 			.wm_inst = WM_A,
731 			.wm_type = WM_TYPE_PSTATE_CHG,
732 			.pstate_latency_us = 11.72,
733 			.sr_exit_time_us = 11.90,
734 			.sr_enter_plus_exit_time_us = 12.80,
735 			.valid = true,
736 		},
737 		{
738 			.wm_inst = WM_B,
739 			.wm_type = WM_TYPE_PSTATE_CHG,
740 			.pstate_latency_us = 11.72,
741 			.sr_exit_time_us = 13.18,
742 			.sr_enter_plus_exit_time_us = 14.30,
743 			.valid = true,
744 		},
745 		{
746 			.wm_inst = WM_C,
747 			.wm_type = WM_TYPE_PSTATE_CHG,
748 			.pstate_latency_us = 11.72,
749 			.sr_exit_time_us = 13.18,
750 			.sr_enter_plus_exit_time_us = 14.30,
751 			.valid = true,
752 		},
753 		{
754 			.wm_inst = WM_D,
755 			.wm_type = WM_TYPE_PSTATE_CHG,
756 			.pstate_latency_us = 11.72,
757 			.sr_exit_time_us = 13.18,
758 			.sr_enter_plus_exit_time_us = 14.30,
759 			.valid = true,
760 		},
761 	}
762 };
763 
764 static struct wm_table ddr4_1R_wm_table_rn = {
765 	.entries = {
766 		{
767 			.wm_inst = WM_A,
768 			.wm_type = WM_TYPE_PSTATE_CHG,
769 			.pstate_latency_us = 11.72,
770 			.sr_exit_time_us = 13.90,
771 			.sr_enter_plus_exit_time_us = 14.80,
772 			.valid = true,
773 		},
774 		{
775 			.wm_inst = WM_B,
776 			.wm_type = WM_TYPE_PSTATE_CHG,
777 			.pstate_latency_us = 11.72,
778 			.sr_exit_time_us = 13.90,
779 			.sr_enter_plus_exit_time_us = 14.80,
780 			.valid = true,
781 		},
782 		{
783 			.wm_inst = WM_C,
784 			.wm_type = WM_TYPE_PSTATE_CHG,
785 			.pstate_latency_us = 11.72,
786 			.sr_exit_time_us = 13.90,
787 			.sr_enter_plus_exit_time_us = 14.80,
788 			.valid = true,
789 		},
790 		{
791 			.wm_inst = WM_D,
792 			.wm_type = WM_TYPE_PSTATE_CHG,
793 			.pstate_latency_us = 11.72,
794 			.sr_exit_time_us = 13.90,
795 			.sr_enter_plus_exit_time_us = 14.80,
796 			.valid = true,
797 		},
798 	}
799 };
800 
801 static struct wm_table lpddr4_wm_table_rn = {
802 	.entries = {
803 		{
804 			.wm_inst = WM_A,
805 			.wm_type = WM_TYPE_PSTATE_CHG,
806 			.pstate_latency_us = 11.65333,
807 			.sr_exit_time_us = 7.32,
808 			.sr_enter_plus_exit_time_us = 8.38,
809 			.valid = true,
810 		},
811 		{
812 			.wm_inst = WM_B,
813 			.wm_type = WM_TYPE_PSTATE_CHG,
814 			.pstate_latency_us = 11.65333,
815 			.sr_exit_time_us = 9.82,
816 			.sr_enter_plus_exit_time_us = 11.196,
817 			.valid = true,
818 		},
819 		{
820 			.wm_inst = WM_C,
821 			.wm_type = WM_TYPE_PSTATE_CHG,
822 			.pstate_latency_us = 11.65333,
823 			.sr_exit_time_us = 9.89,
824 			.sr_enter_plus_exit_time_us = 11.24,
825 			.valid = true,
826 		},
827 		{
828 			.wm_inst = WM_D,
829 			.wm_type = WM_TYPE_PSTATE_CHG,
830 			.pstate_latency_us = 11.65333,
831 			.sr_exit_time_us = 9.748,
832 			.sr_enter_plus_exit_time_us = 11.102,
833 			.valid = true,
834 		},
835 	}
836 };
837 
838 static unsigned int find_socclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
839 {
840 	int i;
841 
842 	for (i = 0; i < PP_SMU_NUM_SOCCLK_DPM_LEVELS; i++) {
843 		if (clock_table->SocClocks[i].Vol == voltage)
844 			return clock_table->SocClocks[i].Freq;
845 	}
846 
847 	ASSERT(0);
848 	return 0;
849 }
850 
851 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
852 {
853 	int i;
854 
855 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
856 		if (clock_table->DcfClocks[i].Vol == voltage)
857 			return clock_table->DcfClocks[i].Freq;
858 	}
859 
860 	ASSERT(0);
861 	return 0;
862 }
863 
864 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
865 {
866 	int i, j = 0;
867 
868 	j = -1;
869 
870 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
871 
872 	/* Find lowest DPM, FCLK is filled in reverse order*/
873 
874 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
875 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
876 			j = i;
877 			break;
878 		}
879 	}
880 
881 	if (j == -1) {
882 		/* clock table is all 0s, just use our own hardcode */
883 		ASSERT(0);
884 		return;
885 	}
886 
887 	bw_params->clk_table.num_entries = j + 1;
888 
889 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
890 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
891 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
892 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
893 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
894 		bw_params->clk_table.entries[i].socclk_mhz = find_socclk_for_voltage(clock_table,
895 									bw_params->clk_table.entries[i].voltage);
896 	}
897 
898 	bw_params->vram_type = bios_info->memory_type;
899 	bw_params->num_channels = bios_info->ma_channel_number;
900 
901 	for (i = 0; i < WM_SET_COUNT; i++) {
902 		bw_params->wm_table.entries[i].wm_inst = i;
903 
904 		if (i >= bw_params->clk_table.num_entries) {
905 			bw_params->wm_table.entries[i].valid = false;
906 			continue;
907 		}
908 
909 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
910 		bw_params->wm_table.entries[i].valid = true;
911 	}
912 
913 	if (bw_params->vram_type == LpDdr4MemType) {
914 		/*
915 		 * WM set D will be re-purposed for memory retraining
916 		 */
917 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
918 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
919 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
920 		bw_params->wm_table.entries[WM_D].valid = true;
921 	}
922 
923 }
924 
925 void rn_clk_mgr_construct(
926 		struct dc_context *ctx,
927 		struct clk_mgr_internal *clk_mgr,
928 		struct pp_smu_funcs *pp_smu,
929 		struct dccg *dccg)
930 {
931 	struct dc_debug_options *debug = &ctx->dc->debug;
932 	struct dpm_clocks clock_table = { 0 };
933 	enum pp_smu_status status = 0;
934 	int is_green_sardine = 0;
935 
936 #if defined(CONFIG_DRM_AMD_DC_DCN)
937 	is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
938 #endif
939 
940 	clk_mgr->base.ctx = ctx;
941 	clk_mgr->base.funcs = &dcn21_funcs;
942 
943 	clk_mgr->pp_smu = pp_smu;
944 
945 	clk_mgr->dccg = dccg;
946 	clk_mgr->dfs_bypass_disp_clk = 0;
947 
948 	clk_mgr->dprefclk_ss_percentage = 0;
949 	clk_mgr->dprefclk_ss_divider = 1000;
950 	clk_mgr->ss_on_dprefclk = false;
951 	clk_mgr->dfs_ref_freq_khz = 48000;
952 
953 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
954 
955 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
956 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
957 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
958 	} else {
959 		struct clk_log_info log_info = {0};
960 
961 		clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
962 
963 		/* SMU Version 55.51.0 and up no longer have an issue
964 		 * that needs to limit minimum dispclk */
965 		if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
966 			debug->min_disp_clk_khz = 0;
967 
968 		/* TODO: Check we get what we expect during bringup */
969 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
970 
971 		/* in case we don't get a value from the register, use default */
972 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
973 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
974 
975 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
976 			if (clk_mgr->periodic_retraining_disabled) {
977 				rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
978 			} else {
979 				if (is_green_sardine)
980 					rn_bw_params.wm_table = lpddr4_wm_table_gs;
981 				else
982 					rn_bw_params.wm_table = lpddr4_wm_table_rn;
983 			}
984 		} else {
985 			if (is_green_sardine)
986 				rn_bw_params.wm_table = ddr4_wm_table_gs;
987 			else {
988 				if (ctx->dc->config.is_single_rank_dimm)
989 					rn_bw_params.wm_table = ddr4_1R_wm_table_rn;
990 				else
991 					rn_bw_params.wm_table = ddr4_wm_table_rn;
992 			}
993 		}
994 		/* Saved clocks configured at boot for debug purposes */
995 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
996 	}
997 
998 	clk_mgr->base.dprefclk_khz = 600000;
999 	dce_clock_read_ss_info(clk_mgr);
1000 
1001 
1002 	clk_mgr->base.bw_params = &rn_bw_params;
1003 
1004 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
1005 		status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
1006 
1007 		if (status == PP_SMU_RESULT_OK &&
1008 		    ctx->dc_bios && ctx->dc_bios->integrated_info) {
1009 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
1010 			/* treat memory config as single channel if memory is asymmetrics. */
1011 			if (ctx->dc->config.is_asymmetric_memory)
1012 				clk_mgr->base.bw_params->num_channels = 1;
1013 		}
1014 	}
1015 
1016 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
1017 		/* enable powerfeatures when displaycount goes to 0 */
1018 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
1019 	}
1020 }
1021 
1022