1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 
50 /* Macros */
51 
52 #define REG(reg_name) \
53 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
54 
55 
56 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
57 int rn_get_active_display_cnt_wa(
58 		struct dc *dc,
59 		struct dc_state *context)
60 {
61 	int i, display_count;
62 	bool hdmi_present = false;
63 
64 	display_count = 0;
65 	for (i = 0; i < context->stream_count; i++) {
66 		const struct dc_stream_state *stream = context->streams[i];
67 
68 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A)
69 			hdmi_present = true;
70 	}
71 
72 	for (i = 0; i < dc->link_count; i++) {
73 		const struct dc_link *link = dc->links[i];
74 
75 		/*
76 		 * Only notify active stream or virtual stream.
77 		 * Need to notify virtual stream to work around
78 		 * headless case. HPD does not fire when system is in
79 		 * S0i2.
80 		 */
81 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
82 		if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
83 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
84 			display_count++;
85 	}
86 
87 	/* WA for hang on HDMI after display off back back on*/
88 	if (display_count == 0 && hdmi_present)
89 		display_count = 1;
90 
91 	return display_count;
92 }
93 
94 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
95 			struct dc_state *context,
96 			bool safe_to_lower)
97 {
98 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
99 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
100 	struct dc *dc = clk_mgr_base->ctx->dc;
101 	int display_count;
102 	bool update_dppclk = false;
103 	bool update_dispclk = false;
104 	bool dpp_clock_lowered = false;
105 
106 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
107 
108 	if (dc->work_arounds.skip_clock_update)
109 		return;
110 
111 	/*
112 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
113 	 * also if safe to lower is false, we just go in the higher state
114 	 */
115 	if (safe_to_lower) {
116 		/* check that we're not already in lower */
117 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
118 
119 			display_count = rn_get_active_display_cnt_wa(dc, context);
120 			/* if we can go lower, go lower */
121 			if (display_count == 0) {
122 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
123 				/* update power state */
124 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
125 			}
126 		}
127 	} else {
128 		/* check that we're not already in D0 */
129 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
130 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
131 			/* update power state */
132 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
133 		}
134 	}
135 
136 	if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) {
137 		clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz;
138 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
139 	}
140 
141 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
142 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
143 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
144 	}
145 
146 	if (should_set_clock(safe_to_lower,
147 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
148 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
149 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
150 	}
151 
152 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
153 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
154 			dpp_clock_lowered = true;
155 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
156 		update_dppclk = true;
157 	}
158 
159 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
160 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
161 		rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
162 
163 		update_dispclk = true;
164 	}
165 
166 	if (dpp_clock_lowered) {
167 		// if clock is being lowered, increase DTO before lowering refclk
168 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context);
169 		rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
170 	} else {
171 		// if clock is being raised, increase refclk before lowering DTO
172 		if (update_dppclk || update_dispclk)
173 			rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
174 		// always update dtos unless clock is lowered and not safe to lower
175 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
176 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context);
177 	}
178 
179 	if (update_dispclk &&
180 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
181 		/*update dmcu for wait_loop count*/
182 		dmcu->funcs->set_psr_wait_loop(dmcu,
183 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
184 	}
185 }
186 
187 
188 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
189 {
190 	/* get FbMult value */
191 	struct fixed31_32 pll_req;
192 	unsigned int fbmult_frac_val = 0;
193 	unsigned int fbmult_int_val = 0;
194 
195 
196 	/*
197 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
198 	 * to leverage the fix point operations available in driver
199 	 */
200 
201 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
202 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
203 
204 	pll_req = dc_fixpt_from_int(fbmult_int_val);
205 
206 	/*
207 	 * since fractional part is only 16 bit in register definition but is 32 bit
208 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
209 	 */
210 	pll_req.value |= fbmult_frac_val << 16;
211 
212 	/* multiply by REFCLK period */
213 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
214 
215 	/* integer part is now VCO frequency in kHz */
216 	return dc_fixpt_floor(pll_req);
217 }
218 
219 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
220 {
221 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
222 
223 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
224 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
225 
226 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
227 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
228 
229 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
230 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
231 
232 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
233 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
234 
235 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
236 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
237 }
238 
239 /* This function collect raw clk register values */
240 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
241 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
242 {
243 	struct rn_clk_internal internal = {0};
244 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
245 	unsigned int chars_printed = 0;
246 	unsigned int remaining_buffer = log_info->bufSize;
247 
248 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
249 
250 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
251 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
252 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
253 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
254 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
255 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
256 
257 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
258 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
259 		regs_and_bypass->dppclk_bypass = 0;
260 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
261 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
262 		regs_and_bypass->dcfclk_bypass = 0;
263 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
264 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
265 		regs_and_bypass->dispclk_bypass = 0;
266 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
267 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
268 		regs_and_bypass->dprefclk_bypass = 0;
269 
270 	if (log_info->enabled) {
271 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
272 		remaining_buffer -= chars_printed;
273 		*log_info->sum_chars_printed += chars_printed;
274 		log_info->pBuf += chars_printed;
275 
276 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
277 			regs_and_bypass->dcfclk,
278 			regs_and_bypass->dcf_deep_sleep_divider,
279 			regs_and_bypass->dcf_deep_sleep_allow,
280 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
281 		remaining_buffer -= chars_printed;
282 		*log_info->sum_chars_printed += chars_printed;
283 		log_info->pBuf += chars_printed;
284 
285 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
286 			regs_and_bypass->dprefclk,
287 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
288 		remaining_buffer -= chars_printed;
289 		*log_info->sum_chars_printed += chars_printed;
290 		log_info->pBuf += chars_printed;
291 
292 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
293 			regs_and_bypass->dispclk,
294 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
295 		remaining_buffer -= chars_printed;
296 		*log_info->sum_chars_printed += chars_printed;
297 		log_info->pBuf += chars_printed;
298 
299 		//split
300 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
301 		remaining_buffer -= chars_printed;
302 		*log_info->sum_chars_printed += chars_printed;
303 		log_info->pBuf += chars_printed;
304 
305 		// REGISTER VALUES
306 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
307 		remaining_buffer -= chars_printed;
308 		*log_info->sum_chars_printed += chars_printed;
309 		log_info->pBuf += chars_printed;
310 
311 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
312 				internal.CLK1_CLK3_CURRENT_CNT);
313 		remaining_buffer -= chars_printed;
314 		*log_info->sum_chars_printed += chars_printed;
315 		log_info->pBuf += chars_printed;
316 
317 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
318 					internal.CLK1_CLK3_DS_CNTL);
319 		remaining_buffer -= chars_printed;
320 		*log_info->sum_chars_printed += chars_printed;
321 		log_info->pBuf += chars_printed;
322 
323 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
324 					internal.CLK1_CLK3_ALLOW_DS);
325 		remaining_buffer -= chars_printed;
326 		*log_info->sum_chars_printed += chars_printed;
327 		log_info->pBuf += chars_printed;
328 
329 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
330 					internal.CLK1_CLK2_CURRENT_CNT);
331 		remaining_buffer -= chars_printed;
332 		*log_info->sum_chars_printed += chars_printed;
333 		log_info->pBuf += chars_printed;
334 
335 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
336 					internal.CLK1_CLK0_CURRENT_CNT);
337 		remaining_buffer -= chars_printed;
338 		*log_info->sum_chars_printed += chars_printed;
339 		log_info->pBuf += chars_printed;
340 
341 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
342 					internal.CLK1_CLK1_CURRENT_CNT);
343 		remaining_buffer -= chars_printed;
344 		*log_info->sum_chars_printed += chars_printed;
345 		log_info->pBuf += chars_printed;
346 
347 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
348 					internal.CLK1_CLK3_BYPASS_CNTL);
349 		remaining_buffer -= chars_printed;
350 		*log_info->sum_chars_printed += chars_printed;
351 		log_info->pBuf += chars_printed;
352 
353 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
354 					internal.CLK1_CLK2_BYPASS_CNTL);
355 		remaining_buffer -= chars_printed;
356 		*log_info->sum_chars_printed += chars_printed;
357 		log_info->pBuf += chars_printed;
358 
359 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
360 					internal.CLK1_CLK0_BYPASS_CNTL);
361 		remaining_buffer -= chars_printed;
362 		*log_info->sum_chars_printed += chars_printed;
363 		log_info->pBuf += chars_printed;
364 
365 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
366 					internal.CLK1_CLK1_BYPASS_CNTL);
367 		remaining_buffer -= chars_printed;
368 		*log_info->sum_chars_printed += chars_printed;
369 		log_info->pBuf += chars_printed;
370 	}
371 }
372 
373 /* This function produce translated logical clk state values*/
374 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
375 {
376 	struct clk_state_registers_and_bypass sb = { 0 };
377 	struct clk_log_info log_info = { 0 };
378 
379 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
380 
381 	s->dprefclk_khz = sb.dprefclk * 1000;
382 }
383 
384 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
385 {
386 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
387 
388 	rn_vbios_smu_enable_pme_wa(clk_mgr);
389 }
390 
391 void rn_init_clocks(struct clk_mgr *clk_mgr)
392 {
393 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
394 	// Assumption is that boot state always supports pstate
395 	clk_mgr->clks.p_state_change_support = true;
396 	clk_mgr->clks.prev_p_state_change_support = true;
397 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
398 }
399 
400 void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
401 {
402 	int i, num_valid_sets;
403 
404 	num_valid_sets = 0;
405 
406 	for (i = 0; i < WM_SET_COUNT; i++) {
407 		/* skip empty entries, the smu array has no holes*/
408 		if (!bw_params->wm_table.entries[i].valid)
409 			continue;
410 
411 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
412 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;;
413 		/* We will not select WM based on dcfclk, so leave it as unconstrained */
414 		ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
415 		ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
416 		/* fclk wil be used to select WM*/
417 
418 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
419 			if (i == 0)
420 				ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = 0;
421 			else {
422 				/* add 1 to make it non-overlapping with next lvl */
423 				ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = bw_params->clk_table.entries[i - 1].fclk_mhz + 1;
424 			}
425 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
426 
427 		} else {
428 			/* unconstrained for memory retraining */
429 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
430 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
431 
432 			/* Modify previous watermark range to cover up to max */
433 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
434 		}
435 		num_valid_sets++;
436 	}
437 
438 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
439 	ranges->num_reader_wm_sets = num_valid_sets;
440 
441 	/* modify the min and max to make sure we cover the whole range*/
442 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
443 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
444 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
445 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
446 
447 	/* This is for writeback only, does not matter currently as no writeback support*/
448 	ranges->num_writer_wm_sets = 1;
449 	ranges->writer_wm_sets[0].wm_inst = WM_A;
450 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
451 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
452 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
453 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
454 
455 }
456 
457 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
458 {
459 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
460 	struct pp_smu_wm_range_sets ranges = {0};
461 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
462 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
463 
464 	if (!debug->disable_pplib_wm_range) {
465 		build_watermark_ranges(clk_mgr_base->bw_params, &ranges);
466 
467 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
468 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
469 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &ranges);
470 	}
471 
472 }
473 
474 static bool rn_are_clock_states_equal(struct dc_clocks *a,
475 		struct dc_clocks *b)
476 {
477 	if (a->dispclk_khz != b->dispclk_khz)
478 		return false;
479 	else if (a->dppclk_khz != b->dppclk_khz)
480 		return false;
481 	else if (a->dcfclk_khz != b->dcfclk_khz)
482 		return false;
483 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
484 		return false;
485 
486 	return true;
487 }
488 
489 
490 static struct clk_mgr_funcs dcn21_funcs = {
491 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
492 	.update_clocks = rn_update_clocks,
493 	.init_clocks = rn_init_clocks,
494 	.enable_pme_wa = rn_enable_pme_wa,
495 	.are_clock_states_equal = rn_are_clock_states_equal,
496 	.notify_wm_ranges = rn_notify_wm_ranges
497 };
498 
499 struct clk_bw_params rn_bw_params = {
500 	.vram_type = Ddr4MemType,
501 	.num_channels = 1,
502 	.clk_table = {
503 		.entries = {
504 			{
505 				.voltage = 0,
506 				.dcfclk_mhz = 400,
507 				.fclk_mhz = 400,
508 				.memclk_mhz = 800,
509 				.socclk_mhz = 0,
510 			},
511 			{
512 				.voltage = 0,
513 				.dcfclk_mhz = 483,
514 				.fclk_mhz = 800,
515 				.memclk_mhz = 1600,
516 				.socclk_mhz = 0,
517 			},
518 			{
519 				.voltage = 0,
520 				.dcfclk_mhz = 602,
521 				.fclk_mhz = 1067,
522 				.memclk_mhz = 1067,
523 				.socclk_mhz = 0,
524 			},
525 			{
526 				.voltage = 0,
527 				.dcfclk_mhz = 738,
528 				.fclk_mhz = 1333,
529 				.memclk_mhz = 1600,
530 				.socclk_mhz = 0,
531 			},
532 		},
533 
534 		.num_entries = 4,
535 	},
536 
537 };
538 
539 struct wm_table ddr4_wm_table = {
540 	.entries = {
541 		{
542 			.wm_inst = WM_A,
543 			.wm_type = WM_TYPE_PSTATE_CHG,
544 			.pstate_latency_us = 11.72,
545 			.sr_exit_time_us = 6.09,
546 			.sr_enter_plus_exit_time_us = 7.14,
547 			.valid = true,
548 		},
549 		{
550 			.wm_inst = WM_B,
551 			.wm_type = WM_TYPE_PSTATE_CHG,
552 			.pstate_latency_us = 11.72,
553 			.sr_exit_time_us = 10.12,
554 			.sr_enter_plus_exit_time_us = 11.48,
555 			.valid = true,
556 		},
557 		{
558 			.wm_inst = WM_C,
559 			.wm_type = WM_TYPE_PSTATE_CHG,
560 			.pstate_latency_us = 11.72,
561 			.sr_exit_time_us = 10.12,
562 			.sr_enter_plus_exit_time_us = 11.48,
563 			.valid = true,
564 		},
565 		{
566 			.wm_inst = WM_D,
567 			.wm_type = WM_TYPE_PSTATE_CHG,
568 			.pstate_latency_us = 11.72,
569 			.sr_exit_time_us = 10.12,
570 			.sr_enter_plus_exit_time_us = 11.48,
571 			.valid = true,
572 		},
573 	}
574 };
575 
576 struct wm_table lpddr4_wm_table = {
577 	.entries = {
578 		{
579 			.wm_inst = WM_A,
580 			.wm_type = WM_TYPE_PSTATE_CHG,
581 			.pstate_latency_us = 23.84,
582 			.sr_exit_time_us = 12.5,
583 			.sr_enter_plus_exit_time_us = 17.0,
584 			.valid = true,
585 		},
586 		{
587 			.wm_inst = WM_B,
588 			.wm_type = WM_TYPE_PSTATE_CHG,
589 			.pstate_latency_us = 23.84,
590 			.sr_exit_time_us = 12.5,
591 			.sr_enter_plus_exit_time_us = 17.0,
592 			.valid = true,
593 		},
594 		{
595 			.wm_inst = WM_C,
596 			.wm_type = WM_TYPE_PSTATE_CHG,
597 			.pstate_latency_us = 23.84,
598 			.sr_exit_time_us = 12.5,
599 			.sr_enter_plus_exit_time_us = 17.0,
600 			.valid = true,
601 		},
602 		{
603 			.wm_inst = WM_D,
604 			.wm_type = WM_TYPE_PSTATE_CHG,
605 			.pstate_latency_us = 23.84,
606 			.sr_exit_time_us = 12.5,
607 			.sr_enter_plus_exit_time_us = 17.0,
608 			.valid = true,
609 		},
610 	}
611 };
612 
613 
614 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
615 {
616 	int i;
617 
618 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
619 		if (clock_table->DcfClocks[i].Vol == voltage)
620 			return clock_table->DcfClocks[i].Freq;
621 	}
622 
623 	ASSERT(0);
624 	return 0;
625 }
626 
627 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
628 {
629 	int i, j = 0;
630 
631 	j = -1;
632 
633 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
634 
635 	/* Find lowest DPM, FCLK is filled in reverse order*/
636 
637 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
638 		if (clock_table->FClocks[i].Freq != 0) {
639 			j = i;
640 			break;
641 		}
642 	}
643 
644 	if (j == -1) {
645 		/* clock table is all 0s, just use our own hardcode */
646 		ASSERT(0);
647 		return;
648 	}
649 
650 	bw_params->clk_table.num_entries = j + 1;
651 
652 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
653 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
654 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
655 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
656 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
657 	}
658 
659 	bw_params->vram_type = bios_info->memory_type;
660 	bw_params->num_channels = bios_info->ma_channel_number;
661 
662 	for (i = 0; i < WM_SET_COUNT; i++) {
663 		bw_params->wm_table.entries[i].wm_inst = i;
664 
665 		if (i >= bw_params->clk_table.num_entries) {
666 			bw_params->wm_table.entries[i].valid = false;
667 			continue;
668 		}
669 
670 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
671 		bw_params->wm_table.entries[i].valid = true;
672 	}
673 
674 	if (bw_params->vram_type == LpDdr4MemType) {
675 		/*
676 		 * WM set D will be re-purposed for memory retraining
677 		 */
678 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
679 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
680 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
681 		bw_params->wm_table.entries[WM_D].valid = true;
682 	}
683 
684 }
685 
686 void rn_clk_mgr_construct(
687 		struct dc_context *ctx,
688 		struct clk_mgr_internal *clk_mgr,
689 		struct pp_smu_funcs *pp_smu,
690 		struct dccg *dccg)
691 {
692 	struct dc_debug_options *debug = &ctx->dc->debug;
693 	struct dpm_clocks clock_table = { 0 };
694 	struct clk_state_registers_and_bypass s = { 0 };
695 
696 	clk_mgr->base.ctx = ctx;
697 	clk_mgr->base.funcs = &dcn21_funcs;
698 
699 	clk_mgr->pp_smu = pp_smu;
700 
701 	clk_mgr->dccg = dccg;
702 	clk_mgr->dfs_bypass_disp_clk = 0;
703 
704 	clk_mgr->dprefclk_ss_percentage = 0;
705 	clk_mgr->dprefclk_ss_divider = 1000;
706 	clk_mgr->ss_on_dprefclk = false;
707 	clk_mgr->dfs_ref_freq_khz = 48000;
708 
709 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
710 
711 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
712 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
713 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
714 		clk_mgr->base.dprefclk_khz = 600000;
715 	} else {
716 		struct clk_log_info log_info = {0};
717 
718 		/* TODO: Check we get what we expect during bringup */
719 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
720 
721 		/* in case we don't get a value from the register, use default */
722 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
723 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
724 
725 		rn_dump_clk_registers(&s, &clk_mgr->base, &log_info);
726 		/* Convert dprefclk units from MHz to KHz */
727 		/* Value already divided by 10, some resolution lost */
728 		clk_mgr->base.dprefclk_khz = s.dprefclk * 1000;
729 
730 		/* in case we don't get a value from the register, use default */
731 		if (clk_mgr->base.dprefclk_khz == 0) {
732 			ASSERT(clk_mgr->base.dprefclk_khz == 600000);
733 			clk_mgr->base.dprefclk_khz = 600000;
734 		}
735 
736 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
737 			rn_bw_params.wm_table = lpddr4_wm_table;
738 		} else {
739 			rn_bw_params.wm_table = ddr4_wm_table;
740 		}
741 	}
742 
743 	dce_clock_read_ss_info(clk_mgr);
744 
745 
746 	clk_mgr->base.bw_params = &rn_bw_params;
747 
748 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
749 		pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
750 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
751 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
752 		}
753 	}
754 
755 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
756 		/* enable powerfeatures when displaycount goes to 0 */
757 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
758 	}
759 }
760 
761