1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "rn_clk_mgr.h"
28 
29 #include "dcn20/dcn20_clk_mgr.h"
30 #include "dml/dcn20/dcn20_fpu.h"
31 
32 #include "dce100/dce_clk_mgr.h"
33 #include "rn_clk_mgr_vbios_smu.h"
34 #include "reg_helper.h"
35 #include "core_types.h"
36 #include "dm_helpers.h"
37 
38 #include "atomfirmware.h"
39 #include "clk/clk_10_0_2_offset.h"
40 #include "clk/clk_10_0_2_sh_mask.h"
41 #include "renoir_ip_offset.h"
42 
43 
44 /* Constants */
45 
46 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
47 
48 /* Macros */
49 
50 #define REG(reg_name) \
51 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
52 
53 
54 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
55 static int rn_get_active_display_cnt_wa(struct dc *dc, struct dc_state *context)
56 {
57 	int i, display_count;
58 	bool tmds_present = false;
59 
60 	display_count = 0;
61 	for (i = 0; i < context->stream_count; i++) {
62 		const struct dc_stream_state *stream = context->streams[i];
63 
64 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
65 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
66 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
67 			tmds_present = true;
68 	}
69 
70 	for (i = 0; i < dc->link_count; i++) {
71 		const struct dc_link *link = dc->links[i];
72 
73 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
74 		if (link->link_enc->funcs->is_dig_enabled &&
75 		    link->link_enc->funcs->is_dig_enabled(link->link_enc))
76 			display_count++;
77 	}
78 
79 	/* WA for hang on HDMI after display off back back on*/
80 	if (display_count == 0 && tmds_present)
81 		display_count = 1;
82 
83 	return display_count;
84 }
85 
86 static void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
87 {
88 	int display_count;
89 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
90 	struct dc *dc = clk_mgr_base->ctx->dc;
91 	struct dc_state *context = dc->current_state;
92 
93 	if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
94 
95 		display_count = rn_get_active_display_cnt_wa(dc, context);
96 
97 		/* if we can go lower, go lower */
98 		if (display_count == 0) {
99 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
100 			/* update power state */
101 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
102 		}
103 	}
104 }
105 
106 static void rn_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr,
107 		struct dc_state *context, int ref_dpp_clk, bool safe_to_lower)
108 {
109 	int i;
110 
111 	clk_mgr->dccg->ref_dppclk = ref_dpp_clk;
112 
113 	for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) {
114 		int dpp_inst, dppclk_khz, prev_dppclk_khz;
115 
116 		/* Loop index may not match dpp->inst if some pipes disabled,
117 		 * so select correct inst from res_pool
118 		 */
119 		dpp_inst = clk_mgr->base.ctx->dc->res_pool->dpps[i]->inst;
120 		dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz;
121 
122 		prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[dpp_inst];
123 
124 		if (safe_to_lower || prev_dppclk_khz < dppclk_khz)
125 			clk_mgr->dccg->funcs->update_dpp_dto(
126 							clk_mgr->dccg, dpp_inst, dppclk_khz);
127 	}
128 }
129 
130 
131 static void rn_update_clocks(struct clk_mgr *clk_mgr_base,
132 			struct dc_state *context,
133 			bool safe_to_lower)
134 {
135 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
136 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
137 	struct dc *dc = clk_mgr_base->ctx->dc;
138 	int display_count;
139 	bool update_dppclk = false;
140 	bool update_dispclk = false;
141 	bool dpp_clock_lowered = false;
142 
143 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
144 
145 	if (dc->work_arounds.skip_clock_update)
146 		return;
147 
148 	/*
149 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
150 	 * also if safe to lower is false, we just go in the higher state
151 	 */
152 	if (safe_to_lower && !dc->debug.disable_48mhz_pwrdwn) {
153 		/* check that we're not already in lower */
154 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
155 
156 			display_count = rn_get_active_display_cnt_wa(dc, context);
157 
158 			/* if we can go lower, go lower */
159 			if (display_count == 0) {
160 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
161 				/* update power state */
162 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
163 			}
164 		}
165 	} else {
166 		/* check that we're not already in D0 */
167 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
168 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
169 			/* update power state */
170 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
171 		}
172 	}
173 
174 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
175 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
176 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
177 	}
178 
179 	if (should_set_clock(safe_to_lower,
180 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
181 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
182 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
183 	}
184 
185 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
186 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
187 	if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
188 		new_clocks->dppclk_khz = 100000;
189 
190 	/*
191 	 * Temporally ignore thew 0 cases for disp and dpp clks.
192 	 * We may have a new feature that requires 0 clks in the future.
193 	 */
194 	if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
195 		new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
196 		new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
197 	}
198 
199 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
200 		if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
201 			dpp_clock_lowered = true;
202 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
203 		update_dppclk = true;
204 	}
205 
206 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
207 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
208 		clk_mgr_base->clks.actual_dispclk_khz = rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
209 
210 		update_dispclk = true;
211 	}
212 
213 	if (dpp_clock_lowered) {
214 		// increase per DPP DTO before lowering global dppclk with requested dppclk
215 		rn_update_clocks_update_dpp_dto(
216 				clk_mgr,
217 				context,
218 				clk_mgr_base->clks.dppclk_khz,
219 				safe_to_lower);
220 
221 		clk_mgr_base->clks.actual_dppclk_khz =
222 				rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
223 
224 		//update dpp dto with actual dpp clk.
225 		rn_update_clocks_update_dpp_dto(
226 				clk_mgr,
227 				context,
228 				clk_mgr_base->clks.actual_dppclk_khz,
229 				safe_to_lower);
230 
231 	} else {
232 		// increase global DPPCLK before lowering per DPP DTO
233 		if (update_dppclk || update_dispclk)
234 			clk_mgr_base->clks.actual_dppclk_khz =
235 					rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
236 
237 		// always update dtos unless clock is lowered and not safe to lower
238 		rn_update_clocks_update_dpp_dto(
239 				clk_mgr,
240 				context,
241 				clk_mgr_base->clks.actual_dppclk_khz,
242 				safe_to_lower);
243 	}
244 
245 	if (update_dispclk &&
246 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
247 		/*update dmcu for wait_loop count*/
248 		dmcu->funcs->set_psr_wait_loop(dmcu,
249 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
250 	}
251 }
252 
253 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
254 {
255 	/* get FbMult value */
256 	struct fixed31_32 pll_req;
257 	unsigned int fbmult_frac_val = 0;
258 	unsigned int fbmult_int_val = 0;
259 
260 
261 	/*
262 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
263 	 * to leverage the fix point operations available in driver
264 	 */
265 
266 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
267 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
268 
269 	pll_req = dc_fixpt_from_int(fbmult_int_val);
270 
271 	/*
272 	 * since fractional part is only 16 bit in register definition but is 32 bit
273 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
274 	 */
275 	pll_req.value |= fbmult_frac_val << 16;
276 
277 	/* multiply by REFCLK period */
278 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
279 
280 	/* integer part is now VCO frequency in kHz */
281 	return dc_fixpt_floor(pll_req);
282 }
283 
284 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
285 {
286 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
287 
288 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
289 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
290 
291 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
292 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
293 
294 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
295 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
296 
297 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
298 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
299 
300 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
301 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
302 }
303 
304 /* This function collect raw clk register values */
305 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
306 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
307 {
308 	struct rn_clk_internal internal = {0};
309 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
310 	unsigned int chars_printed = 0;
311 	unsigned int remaining_buffer = log_info->bufSize;
312 
313 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
314 
315 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
316 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
317 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
318 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
319 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
320 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
321 
322 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
323 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
324 		regs_and_bypass->dppclk_bypass = 0;
325 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
326 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
327 		regs_and_bypass->dcfclk_bypass = 0;
328 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
329 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
330 		regs_and_bypass->dispclk_bypass = 0;
331 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
332 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
333 		regs_and_bypass->dprefclk_bypass = 0;
334 
335 	if (log_info->enabled) {
336 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
337 		remaining_buffer -= chars_printed;
338 		*log_info->sum_chars_printed += chars_printed;
339 		log_info->pBuf += chars_printed;
340 
341 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
342 			regs_and_bypass->dcfclk,
343 			regs_and_bypass->dcf_deep_sleep_divider,
344 			regs_and_bypass->dcf_deep_sleep_allow,
345 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
346 		remaining_buffer -= chars_printed;
347 		*log_info->sum_chars_printed += chars_printed;
348 		log_info->pBuf += chars_printed;
349 
350 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
351 			regs_and_bypass->dprefclk,
352 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
353 		remaining_buffer -= chars_printed;
354 		*log_info->sum_chars_printed += chars_printed;
355 		log_info->pBuf += chars_printed;
356 
357 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
358 			regs_and_bypass->dispclk,
359 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
360 		remaining_buffer -= chars_printed;
361 		*log_info->sum_chars_printed += chars_printed;
362 		log_info->pBuf += chars_printed;
363 
364 		//split
365 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
366 		remaining_buffer -= chars_printed;
367 		*log_info->sum_chars_printed += chars_printed;
368 		log_info->pBuf += chars_printed;
369 
370 		// REGISTER VALUES
371 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
372 		remaining_buffer -= chars_printed;
373 		*log_info->sum_chars_printed += chars_printed;
374 		log_info->pBuf += chars_printed;
375 
376 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
377 				internal.CLK1_CLK3_CURRENT_CNT);
378 		remaining_buffer -= chars_printed;
379 		*log_info->sum_chars_printed += chars_printed;
380 		log_info->pBuf += chars_printed;
381 
382 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
383 					internal.CLK1_CLK3_DS_CNTL);
384 		remaining_buffer -= chars_printed;
385 		*log_info->sum_chars_printed += chars_printed;
386 		log_info->pBuf += chars_printed;
387 
388 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
389 					internal.CLK1_CLK3_ALLOW_DS);
390 		remaining_buffer -= chars_printed;
391 		*log_info->sum_chars_printed += chars_printed;
392 		log_info->pBuf += chars_printed;
393 
394 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
395 					internal.CLK1_CLK2_CURRENT_CNT);
396 		remaining_buffer -= chars_printed;
397 		*log_info->sum_chars_printed += chars_printed;
398 		log_info->pBuf += chars_printed;
399 
400 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
401 					internal.CLK1_CLK0_CURRENT_CNT);
402 		remaining_buffer -= chars_printed;
403 		*log_info->sum_chars_printed += chars_printed;
404 		log_info->pBuf += chars_printed;
405 
406 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
407 					internal.CLK1_CLK1_CURRENT_CNT);
408 		remaining_buffer -= chars_printed;
409 		*log_info->sum_chars_printed += chars_printed;
410 		log_info->pBuf += chars_printed;
411 
412 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
413 					internal.CLK1_CLK3_BYPASS_CNTL);
414 		remaining_buffer -= chars_printed;
415 		*log_info->sum_chars_printed += chars_printed;
416 		log_info->pBuf += chars_printed;
417 
418 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
419 					internal.CLK1_CLK2_BYPASS_CNTL);
420 		remaining_buffer -= chars_printed;
421 		*log_info->sum_chars_printed += chars_printed;
422 		log_info->pBuf += chars_printed;
423 
424 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
425 					internal.CLK1_CLK0_BYPASS_CNTL);
426 		remaining_buffer -= chars_printed;
427 		*log_info->sum_chars_printed += chars_printed;
428 		log_info->pBuf += chars_printed;
429 
430 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
431 					internal.CLK1_CLK1_BYPASS_CNTL);
432 		remaining_buffer -= chars_printed;
433 		*log_info->sum_chars_printed += chars_printed;
434 		log_info->pBuf += chars_printed;
435 	}
436 }
437 
438 static void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
439 {
440 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
441 
442 	rn_vbios_smu_enable_pme_wa(clk_mgr);
443 }
444 
445 static void rn_init_clocks(struct clk_mgr *clk_mgr)
446 {
447 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
448 	// Assumption is that boot state always supports pstate
449 	clk_mgr->clks.p_state_change_support = true;
450 	clk_mgr->clks.prev_p_state_change_support = true;
451 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
452 }
453 
454 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
455 {
456 	int i, num_valid_sets;
457 
458 	num_valid_sets = 0;
459 
460 	for (i = 0; i < WM_SET_COUNT; i++) {
461 		/* skip empty entries, the smu array has no holes*/
462 		if (!bw_params->wm_table.entries[i].valid)
463 			continue;
464 
465 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
466 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
467 		/* We will not select WM based on fclk, so leave it as unconstrained */
468 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
469 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
470 		/* dcfclk wil be used to select WM*/
471 
472 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
473 			if (i == 0)
474 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
475 			else {
476 				/* add 1 to make it non-overlapping with next lvl */
477 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
478 			}
479 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
480 
481 		} else {
482 			/* unconstrained for memory retraining */
483 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
484 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
485 
486 			/* Modify previous watermark range to cover up to max */
487 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
488 		}
489 		num_valid_sets++;
490 	}
491 
492 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
493 	ranges->num_reader_wm_sets = num_valid_sets;
494 
495 	/* modify the min and max to make sure we cover the whole range*/
496 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
497 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
498 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
499 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
500 
501 	/* This is for writeback only, does not matter currently as no writeback support*/
502 	ranges->num_writer_wm_sets = 1;
503 	ranges->writer_wm_sets[0].wm_inst = WM_A;
504 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
505 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
506 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
507 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
508 
509 }
510 
511 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
512 {
513 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
514 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
515 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
516 
517 	if (!debug->disable_pplib_wm_range) {
518 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
519 
520 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
521 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
522 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
523 	}
524 
525 }
526 
527 static bool rn_are_clock_states_equal(struct dc_clocks *a,
528 		struct dc_clocks *b)
529 {
530 	if (a->dispclk_khz != b->dispclk_khz)
531 		return false;
532 	else if (a->dppclk_khz != b->dppclk_khz)
533 		return false;
534 	else if (a->dcfclk_khz != b->dcfclk_khz)
535 		return false;
536 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
537 		return false;
538 
539 	return true;
540 }
541 
542 
543 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
544 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
545 {
546 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
547 	unsigned int i, max_phyclk_req = 0;
548 
549 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
550 
551 	for (i = 0; i < MAX_PIPES * 2; i++) {
552 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
553 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
554 	}
555 
556 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
557 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
558 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
559 	}
560 }
561 
562 static struct clk_mgr_funcs dcn21_funcs = {
563 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
564 	.update_clocks = rn_update_clocks,
565 	.init_clocks = rn_init_clocks,
566 	.enable_pme_wa = rn_enable_pme_wa,
567 	.are_clock_states_equal = rn_are_clock_states_equal,
568 	.set_low_power_state = rn_set_low_power_state,
569 	.notify_wm_ranges = rn_notify_wm_ranges,
570 	.notify_link_rate_change = rn_notify_link_rate_change,
571 };
572 
573 static struct clk_bw_params rn_bw_params = {
574 	.vram_type = Ddr4MemType,
575 	.num_channels = 1,
576 	.clk_table = {
577 		.entries = {
578 			{
579 				.voltage = 0,
580 				.dcfclk_mhz = 400,
581 				.fclk_mhz = 400,
582 				.memclk_mhz = 800,
583 				.socclk_mhz = 0,
584 			},
585 			{
586 				.voltage = 0,
587 				.dcfclk_mhz = 483,
588 				.fclk_mhz = 800,
589 				.memclk_mhz = 1600,
590 				.socclk_mhz = 0,
591 			},
592 			{
593 				.voltage = 0,
594 				.dcfclk_mhz = 602,
595 				.fclk_mhz = 1067,
596 				.memclk_mhz = 1067,
597 				.socclk_mhz = 0,
598 			},
599 			{
600 				.voltage = 0,
601 				.dcfclk_mhz = 738,
602 				.fclk_mhz = 1333,
603 				.memclk_mhz = 1600,
604 				.socclk_mhz = 0,
605 			},
606 		},
607 
608 		.num_entries = 4,
609 	},
610 
611 };
612 
613 static unsigned int find_socclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
614 {
615 	int i;
616 
617 	for (i = 0; i < PP_SMU_NUM_SOCCLK_DPM_LEVELS; i++) {
618 		if (clock_table->SocClocks[i].Vol == voltage)
619 			return clock_table->SocClocks[i].Freq;
620 	}
621 
622 	ASSERT(0);
623 	return 0;
624 }
625 
626 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
627 {
628 	int i;
629 
630 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
631 		if (clock_table->DcfClocks[i].Vol == voltage)
632 			return clock_table->DcfClocks[i].Freq;
633 	}
634 
635 	ASSERT(0);
636 	return 0;
637 }
638 
639 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
640 {
641 	int i, j = 0;
642 
643 	j = -1;
644 
645 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
646 
647 	/* Find lowest DPM, FCLK is filled in reverse order*/
648 
649 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
650 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
651 			j = i;
652 			break;
653 		}
654 	}
655 
656 	if (j == -1) {
657 		/* clock table is all 0s, just use our own hardcode */
658 		ASSERT(0);
659 		return;
660 	}
661 
662 	bw_params->clk_table.num_entries = j + 1;
663 
664 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
665 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
666 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
667 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
668 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
669 		bw_params->clk_table.entries[i].socclk_mhz = find_socclk_for_voltage(clock_table,
670 									bw_params->clk_table.entries[i].voltage);
671 	}
672 
673 	bw_params->vram_type = bios_info->memory_type;
674 	bw_params->num_channels = bios_info->ma_channel_number;
675 
676 	for (i = 0; i < WM_SET_COUNT; i++) {
677 		bw_params->wm_table.entries[i].wm_inst = i;
678 
679 		if (i >= bw_params->clk_table.num_entries) {
680 			bw_params->wm_table.entries[i].valid = false;
681 			continue;
682 		}
683 
684 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
685 		bw_params->wm_table.entries[i].valid = true;
686 	}
687 
688 	if (bw_params->vram_type == LpDdr4MemType) {
689 		/*
690 		 * WM set D will be re-purposed for memory retraining
691 		 */
692 		DC_FP_START();
693 		dcn21_clk_mgr_set_bw_params_wm_table(bw_params);
694 		DC_FP_END();
695 	}
696 }
697 
698 void rn_clk_mgr_construct(
699 		struct dc_context *ctx,
700 		struct clk_mgr_internal *clk_mgr,
701 		struct pp_smu_funcs *pp_smu,
702 		struct dccg *dccg)
703 {
704 	struct dc_debug_options *debug = &ctx->dc->debug;
705 	struct dpm_clocks clock_table = { 0 };
706 	enum pp_smu_status status = 0;
707 	int is_green_sardine = 0;
708 	struct clk_log_info log_info = {0};
709 
710 #if defined(CONFIG_DRM_AMD_DC_FP)
711 	is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
712 #endif
713 
714 	clk_mgr->base.ctx = ctx;
715 	clk_mgr->base.funcs = &dcn21_funcs;
716 
717 	clk_mgr->pp_smu = pp_smu;
718 
719 	clk_mgr->dccg = dccg;
720 	clk_mgr->dfs_bypass_disp_clk = 0;
721 
722 	clk_mgr->dprefclk_ss_percentage = 0;
723 	clk_mgr->dprefclk_ss_divider = 1000;
724 	clk_mgr->ss_on_dprefclk = false;
725 	clk_mgr->dfs_ref_freq_khz = 48000;
726 
727 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
728 
729 	clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
730 
731 	/* SMU Version 55.51.0 and up no longer have an issue
732 	 * that needs to limit minimum dispclk */
733 	if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
734 		debug->min_disp_clk_khz = 0;
735 
736 	/* TODO: Check we get what we expect during bringup */
737 	clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
738 
739 	/* in case we don't get a value from the register, use default */
740 	if (clk_mgr->base.dentist_vco_freq_khz == 0)
741 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
742 
743 	if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
744 		if (clk_mgr->periodic_retraining_disabled) {
745 			rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
746 		} else {
747 			if (is_green_sardine)
748 				rn_bw_params.wm_table = lpddr4_wm_table_gs;
749 			else
750 				rn_bw_params.wm_table = lpddr4_wm_table_rn;
751 		}
752 	} else {
753 		if (is_green_sardine)
754 			rn_bw_params.wm_table = ddr4_wm_table_gs;
755 		else {
756 			if (ctx->dc->config.is_single_rank_dimm)
757 				rn_bw_params.wm_table = ddr4_1R_wm_table_rn;
758 			else
759 				rn_bw_params.wm_table = ddr4_wm_table_rn;
760 		}
761 	}
762 	/* Saved clocks configured at boot for debug purposes */
763 	rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
764 
765 	clk_mgr->base.dprefclk_khz = 600000;
766 	dce_clock_read_ss_info(clk_mgr);
767 
768 
769 	clk_mgr->base.bw_params = &rn_bw_params;
770 
771 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
772 		status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
773 
774 		if (status == PP_SMU_RESULT_OK &&
775 		    ctx->dc_bios && ctx->dc_bios->integrated_info) {
776 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
777 			/* treat memory config as single channel if memory is asymmetrics. */
778 			if (ctx->dc->config.is_asymmetric_memory)
779 				clk_mgr->base.bw_params->num_channels = 1;
780 		}
781 	}
782 
783 	/* enable powerfeatures when displaycount goes to 0 */
784 	if (clk_mgr->smu_ver >= 0x00371500)
785 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
786 }
787 
788