xref: /linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision db10cb9b)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "dc.h"
28 
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33 
34 #include "resource.h"
35 
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40 
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55 
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59 
60 #include "dc_dmub_srv.h"
61 
62 #include "dsc.h"
63 
64 #include "vm_helper.h"
65 
66 #include "dce/dce_i2c.h"
67 
68 #include "dmub/dmub_srv.h"
69 
70 #include "dce/dmub_psr.h"
71 
72 #include "dce/dmub_hw_lock_mgr.h"
73 
74 #include "dc_trace.h"
75 
76 #include "hw_sequencer_private.h"
77 
78 #include "dce/dmub_outbox.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /* Private functions */
138 
139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 	if (new > *original)
142 		*original = new;
143 }
144 
145 static void destroy_links(struct dc *dc)
146 {
147 	uint32_t i;
148 
149 	for (i = 0; i < dc->link_count; i++) {
150 		if (NULL != dc->links[i])
151 			dc->link_srv->destroy_link(&dc->links[i]);
152 	}
153 }
154 
155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 	int i;
158 	uint32_t count = 0;
159 
160 	for (i = 0; i < num_links; i++) {
161 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 				links[i]->is_internal_display)
163 			count++;
164 	}
165 
166 	return count;
167 }
168 
169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 	uint8_t i;
172 	uint8_t seamless_boot_stream_count = 0;
173 
174 	for (i = 0; i < ctx->stream_count; i++)
175 		if (ctx->streams[i]->apply_seamless_boot_optimization)
176 			seamless_boot_stream_count++;
177 
178 	return seamless_boot_stream_count;
179 }
180 
181 static bool create_links(
182 		struct dc *dc,
183 		uint32_t num_virtual_links)
184 {
185 	int i;
186 	int connectors_num;
187 	struct dc_bios *bios = dc->ctx->dc_bios;
188 
189 	dc->link_count = 0;
190 
191 	connectors_num = bios->funcs->get_connectors_number(bios);
192 
193 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194 
195 	if (connectors_num > ENUM_ID_COUNT) {
196 		dm_error(
197 			"DC: Number of connectors %d exceeds maximum of %d!\n",
198 			connectors_num,
199 			ENUM_ID_COUNT);
200 		return false;
201 	}
202 
203 	dm_output_to_console(
204 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 		__func__,
206 		connectors_num,
207 		num_virtual_links);
208 
209 	for (i = 0; i < connectors_num; i++) {
210 		struct link_init_data link_init_params = {0};
211 		struct dc_link *link;
212 
213 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214 
215 		link_init_params.ctx = dc->ctx;
216 		/* next BIOS object table connector */
217 		link_init_params.connector_index = i;
218 		link_init_params.link_index = dc->link_count;
219 		link_init_params.dc = dc;
220 		link = dc->link_srv->create_link(&link_init_params);
221 
222 		if (link) {
223 			dc->links[dc->link_count] = link;
224 			link->dc = dc;
225 			++dc->link_count;
226 		}
227 	}
228 
229 	DC_LOG_DC("BIOS object table - end");
230 
231 	/* Create a link for each usb4 dpia port */
232 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 		struct link_init_data link_init_params = {0};
234 		struct dc_link *link;
235 
236 		link_init_params.ctx = dc->ctx;
237 		link_init_params.connector_index = i;
238 		link_init_params.link_index = dc->link_count;
239 		link_init_params.dc = dc;
240 		link_init_params.is_dpia_link = true;
241 
242 		link = dc->link_srv->create_link(&link_init_params);
243 		if (link) {
244 			dc->links[dc->link_count] = link;
245 			link->dc = dc;
246 			++dc->link_count;
247 		}
248 	}
249 
250 	for (i = 0; i < num_virtual_links; i++) {
251 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 		struct encoder_init_data enc_init = {0};
253 
254 		if (link == NULL) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_index = dc->link_count;
260 		dc->links[dc->link_count] = link;
261 		dc->link_count++;
262 
263 		link->ctx = dc->ctx;
264 		link->dc = dc;
265 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 		link->link_id.enum_id = ENUM_ID_1;
269 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270 
271 		if (!link->link_enc) {
272 			BREAK_TO_DEBUGGER();
273 			goto failed_alloc;
274 		}
275 
276 		link->link_status.dpcd_caps = &link->dpcd_caps;
277 
278 		enc_init.ctx = dc->ctx;
279 		enc_init.channel = CHANNEL_ID_UNKNOWN;
280 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 		enc_init.connector = link->link_id;
283 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 		enc_init.encoder.enum_id = ENUM_ID_1;
286 		virtual_link_encoder_construct(link->link_enc, &enc_init);
287 	}
288 
289 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290 
291 	return true;
292 
293 failed_alloc:
294 	return false;
295 }
296 
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
301 static bool create_link_encoders(struct dc *dc)
302 {
303 	bool res = true;
304 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 	int i;
307 
308 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 	 * link encoders and physical display endpoints and does not require
310 	 * additional link encoder objects.
311 	 */
312 	if (num_usb4_dpia == 0)
313 		return res;
314 
315 	/* Create as many link encoder objects as the platform supports. DPIA
316 	 * endpoints can be programmably mapped to any DIG.
317 	 */
318 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 		for (i = 0; i < num_dig_link_enc; i++) {
320 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321 
322 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 						(enum engine_id)(ENGINE_ID_DIGA + i));
325 				if (link_enc) {
326 					dc->res_pool->link_encoders[i] = link_enc;
327 					dc->res_pool->dig_link_enc_count++;
328 				} else {
329 					res = false;
330 				}
331 			}
332 		}
333 	}
334 
335 	return res;
336 }
337 
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
342 static void destroy_link_encoders(struct dc *dc)
343 {
344 	unsigned int num_usb4_dpia;
345 	unsigned int num_dig_link_enc;
346 	int i;
347 
348 	if (!dc->res_pool)
349 		return;
350 
351 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353 
354 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 	 * link encoders and physical display endpoints and does not require
356 	 * additional link encoder objects.
357 	 */
358 	if (num_usb4_dpia == 0)
359 		return;
360 
361 	for (i = 0; i < num_dig_link_enc; i++) {
362 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363 
364 		if (link_enc) {
365 			link_enc->funcs->destroy(&link_enc);
366 			dc->res_pool->link_encoders[i] = NULL;
367 			dc->res_pool->dig_link_enc_count--;
368 		}
369 	}
370 }
371 
372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376 
377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 	kfree(*perf_trace);
380 	*perf_trace = NULL;
381 }
382 
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 		struct dc_stream_state *stream,
399 		struct dc_crtc_timing_adjust *adjust)
400 {
401 	int i;
402 
403 	/*
404 	 * Don't adjust DRR while there's bandwidth optimizations pending to
405 	 * avoid conflicting with firmware updates.
406 	 */
407 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 		if (dc->optimized_required || dc->wm_optimized_required)
409 			return false;
410 
411 	stream->adjust.v_total_max = adjust->v_total_max;
412 	stream->adjust.v_total_mid = adjust->v_total_mid;
413 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 	stream->adjust.v_total_min = adjust->v_total_min;
415 
416 	for (i = 0; i < MAX_PIPES; i++) {
417 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418 
419 		if (pipe->stream == stream && pipe->stream_res.tg) {
420 			dc->hwss.set_drr(&pipe,
421 					1,
422 					*adjust);
423 
424 			return true;
425 		}
426 	}
427 	return false;
428 }
429 
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 		struct dc_stream_state *stream,
445 		uint32_t *refresh_rate)
446 {
447 	bool status = false;
448 
449 	int i = 0;
450 
451 	for (i = 0; i < MAX_PIPES; i++) {
452 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453 
454 		if (pipe->stream == stream && pipe->stream_res.tg) {
455 			/* Only execute if a function pointer has been defined for
456 			 * the DC version in question
457 			 */
458 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460 
461 				status = true;
462 
463 				break;
464 			}
465 		}
466 	}
467 
468 	return status;
469 }
470 
471 bool dc_stream_get_crtc_position(struct dc *dc,
472 		struct dc_stream_state **streams, int num_streams,
473 		unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 	/* TODO: Support multiple streams */
476 	const struct dc_stream_state *stream = streams[0];
477 	int i;
478 	bool ret = false;
479 	struct crtc_position position;
480 
481 	for (i = 0; i < MAX_PIPES; i++) {
482 		struct pipe_ctx *pipe =
483 				&dc->current_state->res_ctx.pipe_ctx[i];
484 
485 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 			dc->hwss.get_position(&pipe, 1, &position);
487 
488 			*v_pos = position.vertical_count;
489 			*nom_v_pos = position.nominal_vcount;
490 			ret = true;
491 		}
492 	}
493 	return ret;
494 }
495 
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 	union dmub_rb_cmd cmd = {0};
502 
503 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505 
506 	if (is_stop) {
507 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 	} else {
510 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 		cmd.secure_display.roi_info.x_start = rect->x;
513 		cmd.secure_display.roi_info.y_start = rect->y;
514 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 	}
517 
518 	dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520 
521 static inline void
522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 	if (is_stop)
526 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 	else
528 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530 
531 bool
532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 		struct rect *rect, bool is_stop)
534 {
535 	struct dmcu *dmcu;
536 	struct dc_dmub_srv *dmub_srv;
537 	struct otg_phy_mux mux_mapping;
538 	struct pipe_ctx *pipe;
539 	int i;
540 	struct dc *dc = stream->ctx->dc;
541 
542 	for (i = 0; i < MAX_PIPES; i++) {
543 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 			break;
546 	}
547 
548 	/* Stream not found */
549 	if (i == MAX_PIPES)
550 		return false;
551 
552 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554 
555 	dmcu = dc->res_pool->dmcu;
556 	dmub_srv = dc->ctx->dmub_srv;
557 
558 	/* forward to dmub */
559 	if (dmub_srv)
560 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 	/* forward to dmcu */
562 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 	else
565 		return false;
566 
567 	return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570 
571 /**
572  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573  * @dc: DC Object
574  * @stream: The stream to configure CRC on.
575  * @enable: Enable CRC if true, disable otherwise.
576  * @crc_window: CRC window (x/y start/end) information
577  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578  *              once.
579  *
580  * By default, only CRC0 is configured, and the entire frame is used to
581  * calculate the CRC.
582  *
583  * Return: %false if the stream is not found or CRC capture is not supported;
584  *         %true if the stream has been configured.
585  */
586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 			     struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 	struct pipe_ctx *pipe;
590 	struct crc_params param;
591 	struct timing_generator *tg;
592 
593 	pipe = resource_get_otg_master_for_stream(
594 			&dc->current_state->res_ctx, stream);
595 
596 	/* Stream not found */
597 	if (pipe == NULL)
598 		return false;
599 
600 	/* By default, capture the full frame */
601 	param.windowa_x_start = 0;
602 	param.windowa_y_start = 0;
603 	param.windowa_x_end = pipe->stream->timing.h_addressable;
604 	param.windowa_y_end = pipe->stream->timing.v_addressable;
605 	param.windowb_x_start = 0;
606 	param.windowb_y_start = 0;
607 	param.windowb_x_end = pipe->stream->timing.h_addressable;
608 	param.windowb_y_end = pipe->stream->timing.v_addressable;
609 
610 	if (crc_window) {
611 		param.windowa_x_start = crc_window->windowa_x_start;
612 		param.windowa_y_start = crc_window->windowa_y_start;
613 		param.windowa_x_end = crc_window->windowa_x_end;
614 		param.windowa_y_end = crc_window->windowa_y_end;
615 		param.windowb_x_start = crc_window->windowb_x_start;
616 		param.windowb_y_start = crc_window->windowb_y_start;
617 		param.windowb_x_end = crc_window->windowb_x_end;
618 		param.windowb_y_end = crc_window->windowb_y_end;
619 	}
620 
621 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
623 
624 	/* Default to the union of both windows */
625 	param.selection = UNION_WINDOW_A_B;
626 	param.continuous_mode = continuous;
627 	param.enable = enable;
628 
629 	tg = pipe->stream_res.tg;
630 
631 	/* Only call if supported */
632 	if (tg->funcs->configure_crc)
633 		return tg->funcs->configure_crc(tg, &param);
634 	DC_LOG_WARNING("CRC capture not supported.");
635 	return false;
636 }
637 
638 /**
639  * dc_stream_get_crc() - Get CRC values for the given stream.
640  *
641  * @dc: DC object.
642  * @stream: The DC stream state of the stream to get CRCs from.
643  * @r_cr: CRC value for the red component.
644  * @g_y:  CRC value for the green component.
645  * @b_cb: CRC value for the blue component.
646  *
647  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648  *
649  * Return:
650  * %false if stream is not found, or if CRCs are not enabled.
651  */
652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 	int i;
656 	struct pipe_ctx *pipe;
657 	struct timing_generator *tg;
658 
659 	for (i = 0; i < MAX_PIPES; i++) {
660 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 		if (pipe->stream == stream)
662 			break;
663 	}
664 	/* Stream not found */
665 	if (i == MAX_PIPES)
666 		return false;
667 
668 	tg = pipe->stream_res.tg;
669 
670 	if (tg->funcs->get_crc)
671 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 	DC_LOG_WARNING("CRC capture not supported.");
673 	return false;
674 }
675 
676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 		enum dc_dynamic_expansion option)
678 {
679 	/* OPP FMT dyn expansion updates*/
680 	int i;
681 	struct pipe_ctx *pipe_ctx;
682 
683 	for (i = 0; i < MAX_PIPES; i++) {
684 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 				== stream) {
686 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 			pipe_ctx->stream_res.opp->dyn_expansion = option;
688 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 					pipe_ctx->stream_res.opp,
690 					COLOR_SPACE_YCBCR601,
691 					stream->timing.display_color_depth,
692 					stream->signal);
693 		}
694 	}
695 }
696 
697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 		enum dc_dither_option option)
699 {
700 	struct bit_depth_reduction_params params;
701 	struct dc_link *link = stream->link;
702 	struct pipe_ctx *pipes = NULL;
703 	int i;
704 
705 	for (i = 0; i < MAX_PIPES; i++) {
706 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 				stream) {
708 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 			break;
710 		}
711 	}
712 
713 	if (!pipes)
714 		return;
715 	if (option > DITHER_OPTION_MAX)
716 		return;
717 
718 	stream->dither_option = option;
719 
720 	memset(&params, 0, sizeof(params));
721 	resource_build_bit_depth_reduction_params(stream, &params);
722 	stream->bit_depth_params = params;
723 
724 	if (pipes->plane_res.xfm &&
725 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 			pipes->plane_res.xfm,
728 			pipes->plane_res.scl_data.lb_params.depth,
729 			&stream->bit_depth_params);
730 	}
731 
732 	pipes->stream_res.opp->funcs->
733 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
734 }
735 
736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 	int i;
739 	bool ret = false;
740 	struct pipe_ctx *pipes;
741 
742 	for (i = 0; i < MAX_PIPES; i++) {
743 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 			dc->hwss.program_gamut_remap(pipes);
746 			ret = true;
747 		}
748 	}
749 
750 	return ret;
751 }
752 
753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 	int i;
756 	bool ret = false;
757 	struct pipe_ctx *pipes;
758 
759 	for (i = 0; i < MAX_PIPES; i++) {
760 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 				== stream) {
762 
763 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 			dc->hwss.program_output_csc(dc,
765 					pipes,
766 					stream->output_color_space,
767 					stream->csc_color_matrix.matrix,
768 					pipes->stream_res.opp->inst);
769 			ret = true;
770 		}
771 	}
772 
773 	return ret;
774 }
775 
776 void dc_stream_set_static_screen_params(struct dc *dc,
777 		struct dc_stream_state **streams,
778 		int num_streams,
779 		const struct dc_static_screen_params *params)
780 {
781 	int i, j;
782 	struct pipe_ctx *pipes_affected[MAX_PIPES];
783 	int num_pipes_affected = 0;
784 
785 	for (i = 0; i < num_streams; i++) {
786 		struct dc_stream_state *stream = streams[i];
787 
788 		for (j = 0; j < MAX_PIPES; j++) {
789 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 					== stream) {
791 				pipes_affected[num_pipes_affected++] =
792 						&dc->current_state->res_ctx.pipe_ctx[j];
793 			}
794 		}
795 	}
796 
797 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799 
800 static void dc_destruct(struct dc *dc)
801 {
802 	// reset link encoder assignment table on destruct
803 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 		link_enc_cfg_init(dc, dc->current_state);
805 
806 	if (dc->current_state) {
807 		dc_release_state(dc->current_state);
808 		dc->current_state = NULL;
809 	}
810 
811 	destroy_links(dc);
812 
813 	destroy_link_encoders(dc);
814 
815 	if (dc->clk_mgr) {
816 		dc_destroy_clk_mgr(dc->clk_mgr);
817 		dc->clk_mgr = NULL;
818 	}
819 
820 	dc_destroy_resource_pool(dc);
821 
822 	if (dc->link_srv)
823 		link_destroy_link_service(&dc->link_srv);
824 
825 	if (dc->ctx->gpio_service)
826 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
827 
828 	if (dc->ctx->created_bios)
829 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
830 
831 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
832 
833 	kfree(dc->ctx);
834 	dc->ctx = NULL;
835 
836 	kfree(dc->bw_vbios);
837 	dc->bw_vbios = NULL;
838 
839 	kfree(dc->bw_dceip);
840 	dc->bw_dceip = NULL;
841 
842 	kfree(dc->dcn_soc);
843 	dc->dcn_soc = NULL;
844 
845 	kfree(dc->dcn_ip);
846 	dc->dcn_ip = NULL;
847 
848 	kfree(dc->vm_helper);
849 	dc->vm_helper = NULL;
850 
851 }
852 
853 static bool dc_construct_ctx(struct dc *dc,
854 		const struct dc_init_data *init_params)
855 {
856 	struct dc_context *dc_ctx;
857 
858 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 	if (!dc_ctx)
860 		return false;
861 
862 	dc_ctx->cgs_device = init_params->cgs_device;
863 	dc_ctx->driver_context = init_params->driver;
864 	dc_ctx->dc = dc;
865 	dc_ctx->asic_id = init_params->asic_id;
866 	dc_ctx->dc_sink_id_count = 0;
867 	dc_ctx->dc_stream_id_count = 0;
868 	dc_ctx->dce_environment = init_params->dce_environment;
869 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871 
872 	/* Create logger */
873 
874 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875 
876 	dc_ctx->perf_trace = dc_perf_trace_create();
877 	if (!dc_ctx->perf_trace) {
878 		kfree(dc_ctx);
879 		ASSERT_CRITICAL(false);
880 		return false;
881 	}
882 
883 	dc->ctx = dc_ctx;
884 
885 	dc->link_srv = link_create_link_service();
886 	if (!dc->link_srv)
887 		return false;
888 
889 	return true;
890 }
891 
892 static bool dc_construct(struct dc *dc,
893 		const struct dc_init_data *init_params)
894 {
895 	struct dc_context *dc_ctx;
896 	struct bw_calcs_dceip *dc_dceip;
897 	struct bw_calcs_vbios *dc_vbios;
898 	struct dcn_soc_bounding_box *dcn_soc;
899 	struct dcn_ip_params *dcn_ip;
900 
901 	dc->config = init_params->flags;
902 
903 	// Allocate memory for the vm_helper
904 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 	if (!dc->vm_helper) {
906 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 		goto fail;
908 	}
909 
910 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911 
912 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 	if (!dc_dceip) {
914 		dm_error("%s: failed to create dceip\n", __func__);
915 		goto fail;
916 	}
917 
918 	dc->bw_dceip = dc_dceip;
919 
920 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 	if (!dc_vbios) {
922 		dm_error("%s: failed to create vbios\n", __func__);
923 		goto fail;
924 	}
925 
926 	dc->bw_vbios = dc_vbios;
927 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 	if (!dcn_soc) {
929 		dm_error("%s: failed to create dcn_soc\n", __func__);
930 		goto fail;
931 	}
932 
933 	dc->dcn_soc = dcn_soc;
934 
935 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 	if (!dcn_ip) {
937 		dm_error("%s: failed to create dcn_ip\n", __func__);
938 		goto fail;
939 	}
940 
941 	dc->dcn_ip = dcn_ip;
942 
943 	if (!dc_construct_ctx(dc, init_params)) {
944 		dm_error("%s: failed to create ctx\n", __func__);
945 		goto fail;
946 	}
947 
948         dc_ctx = dc->ctx;
949 
950 	/* Resource should construct all asic specific resources.
951 	 * This should be the only place where we need to parse the asic id
952 	 */
953 	if (init_params->vbios_override)
954 		dc_ctx->dc_bios = init_params->vbios_override;
955 	else {
956 		/* Create BIOS parser */
957 		struct bp_init_data bp_init_data;
958 
959 		bp_init_data.ctx = dc_ctx;
960 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
961 
962 		dc_ctx->dc_bios = dal_bios_parser_create(
963 				&bp_init_data, dc_ctx->dce_version);
964 
965 		if (!dc_ctx->dc_bios) {
966 			ASSERT_CRITICAL(false);
967 			goto fail;
968 		}
969 
970 		dc_ctx->created_bios = true;
971 	}
972 
973 	dc->vendor_signature = init_params->vendor_signature;
974 
975 	/* Create GPIO service */
976 	dc_ctx->gpio_service = dal_gpio_service_create(
977 			dc_ctx->dce_version,
978 			dc_ctx->dce_environment,
979 			dc_ctx);
980 
981 	if (!dc_ctx->gpio_service) {
982 		ASSERT_CRITICAL(false);
983 		goto fail;
984 	}
985 
986 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 	if (!dc->res_pool)
988 		goto fail;
989 
990 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
991 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 
994 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
995 	if (!dc->clk_mgr)
996 		goto fail;
997 #ifdef CONFIG_DRM_AMD_DC_FP
998 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
999 
1000 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1001 		DC_FP_START();
1002 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1003 		DC_FP_END();
1004 	}
1005 #endif
1006 
1007 	/* Creation of current_state must occur after dc->dml
1008 	 * is initialized in dc_create_resource_pool because
1009 	 * on creation it copies the contents of dc->dml
1010 	 */
1011 
1012 	dc->current_state = dc_create_state(dc);
1013 
1014 	if (!dc->current_state) {
1015 		dm_error("%s: failed to create validate ctx\n", __func__);
1016 		goto fail;
1017 	}
1018 
1019 	if (!create_links(dc, init_params->num_virtual_links))
1020 		goto fail;
1021 
1022 	/* Create additional DIG link encoder objects if fewer than the platform
1023 	 * supports were created during link construction.
1024 	 */
1025 	if (!create_link_encoders(dc))
1026 		goto fail;
1027 
1028 	dc_resource_state_construct(dc, dc->current_state);
1029 
1030 	return true;
1031 
1032 fail:
1033 	return false;
1034 }
1035 
1036 static void disable_all_writeback_pipes_for_stream(
1037 		const struct dc *dc,
1038 		struct dc_stream_state *stream,
1039 		struct dc_state *context)
1040 {
1041 	int i;
1042 
1043 	for (i = 0; i < stream->num_wb_info; i++)
1044 		stream->writeback_info[i].wb_enabled = false;
1045 }
1046 
1047 static void apply_ctx_interdependent_lock(struct dc *dc,
1048 					  struct dc_state *context,
1049 					  struct dc_stream_state *stream,
1050 					  bool lock)
1051 {
1052 	int i;
1053 
1054 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1055 	if (dc->hwss.interdependent_update_lock)
1056 		dc->hwss.interdependent_update_lock(dc, context, lock);
1057 	else {
1058 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1059 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1060 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1061 
1062 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1063 			if (stream == pipe_ctx->stream) {
1064 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1065 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1066 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1067 			}
1068 		}
1069 	}
1070 }
1071 
1072 static void phantom_pipe_blank(
1073 		struct dc *dc,
1074 		struct timing_generator *tg,
1075 		int width,
1076 		int height)
1077 {
1078 	struct dce_hwseq *hws = dc->hwseq;
1079 	enum dc_color_space color_space;
1080 	struct tg_color black_color = {0};
1081 	struct output_pixel_processor *opp = NULL;
1082 	uint32_t num_opps, opp_id_src0, opp_id_src1;
1083 	uint32_t otg_active_width, otg_active_height;
1084 	uint32_t i;
1085 
1086 	/* program opp dpg blank color */
1087 	color_space = COLOR_SPACE_SRGB;
1088 	color_space_to_black_color(dc, color_space, &black_color);
1089 
1090 	otg_active_width = width;
1091 	otg_active_height = height;
1092 
1093 	/* get the OPTC source */
1094 	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1095 	ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
1096 
1097 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1098 		if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) {
1099 			opp = dc->res_pool->opps[i];
1100 			break;
1101 		}
1102 	}
1103 
1104 	if (opp && opp->funcs->opp_set_disp_pattern_generator)
1105 		opp->funcs->opp_set_disp_pattern_generator(
1106 				opp,
1107 				CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
1108 				CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1109 				COLOR_DEPTH_UNDEFINED,
1110 				&black_color,
1111 				otg_active_width,
1112 				otg_active_height,
1113 				0);
1114 
1115 	if (tg->funcs->is_tg_enabled(tg))
1116 		hws->funcs.wait_for_blank_complete(opp);
1117 }
1118 
1119 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1120 {
1121 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1122 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1123 
1124 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1125 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1126 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1127 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1128 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1129 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1130 		else {
1131 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1132 				color_space_to_black_color(
1133 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1134 		}
1135 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1136 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1137 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1138 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1139 				get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1140 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1141 				get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1142 		}
1143 	}
1144 }
1145 
1146 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1147 {
1148 	int i, j;
1149 	struct dc_state *dangling_context = dc_create_state(dc);
1150 	struct dc_state *current_ctx;
1151 	struct pipe_ctx *pipe;
1152 	struct timing_generator *tg;
1153 
1154 	if (dangling_context == NULL)
1155 		return;
1156 
1157 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
1158 
1159 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1160 		struct dc_stream_state *old_stream =
1161 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1162 		bool should_disable = true;
1163 		bool pipe_split_change = false;
1164 
1165 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1166 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1167 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1168 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1169 		else
1170 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1171 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1172 
1173 		for (j = 0; j < context->stream_count; j++) {
1174 			if (old_stream == context->streams[j]) {
1175 				should_disable = false;
1176 				break;
1177 			}
1178 		}
1179 		if (!should_disable && pipe_split_change &&
1180 				dc->current_state->stream_count != context->stream_count)
1181 			should_disable = true;
1182 
1183 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1184 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1185 			struct pipe_ctx *old_pipe, *new_pipe;
1186 
1187 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1188 			new_pipe = &context->res_ctx.pipe_ctx[i];
1189 
1190 			if (old_pipe->plane_state && !new_pipe->plane_state)
1191 				should_disable = true;
1192 		}
1193 
1194 		if (should_disable && old_stream) {
1195 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1196 			tg = pipe->stream_res.tg;
1197 			/* When disabling plane for a phantom pipe, we must turn on the
1198 			 * phantom OTG so the disable programming gets the double buffer
1199 			 * update. Otherwise the pipe will be left in a partially disabled
1200 			 * state that can result in underflow or hang when enabling it
1201 			 * again for different use.
1202 			 */
1203 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1204 				if (tg->funcs->enable_crtc) {
1205 					int main_pipe_width, main_pipe_height;
1206 
1207 					main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1208 					main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1209 					phantom_pipe_blank(dc, tg, main_pipe_width, main_pipe_height);
1210 					tg->funcs->enable_crtc(tg);
1211 				}
1212 			}
1213 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1214 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1215 
1216 			if (pipe->stream && pipe->plane_state)
1217 				dc_update_viusal_confirm_color(dc, context, pipe);
1218 
1219 			if (dc->hwss.apply_ctx_for_surface) {
1220 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1221 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1222 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1223 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1224 			}
1225 			if (dc->hwss.program_front_end_for_ctx) {
1226 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1227 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1228 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1229 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1230 			}
1231 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1232 			 * can get corruption when transition from one SubVP config to a different one.
1233 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1234 			 * will still get it's double buffer update.
1235 			 */
1236 			if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1237 				if (tg->funcs->disable_phantom_crtc)
1238 					tg->funcs->disable_phantom_crtc(tg);
1239 			}
1240 		}
1241 	}
1242 
1243 	current_ctx = dc->current_state;
1244 	dc->current_state = dangling_context;
1245 	dc_release_state(current_ctx);
1246 }
1247 
1248 static void disable_vbios_mode_if_required(
1249 		struct dc *dc,
1250 		struct dc_state *context)
1251 {
1252 	unsigned int i, j;
1253 
1254 	/* check if timing_changed, disable stream*/
1255 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1256 		struct dc_stream_state *stream = NULL;
1257 		struct dc_link *link = NULL;
1258 		struct pipe_ctx *pipe = NULL;
1259 
1260 		pipe = &context->res_ctx.pipe_ctx[i];
1261 		stream = pipe->stream;
1262 		if (stream == NULL)
1263 			continue;
1264 
1265 		// only looking for first odm pipe
1266 		if (pipe->prev_odm_pipe)
1267 			continue;
1268 
1269 		if (stream->link->local_sink &&
1270 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1271 			link = stream->link;
1272 		}
1273 
1274 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1275 			unsigned int enc_inst, tg_inst = 0;
1276 			unsigned int pix_clk_100hz;
1277 
1278 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1279 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1280 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1281 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1282 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1283 							dc->res_pool->stream_enc[j]);
1284 						break;
1285 					}
1286 				}
1287 
1288 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1289 					dc->res_pool->dp_clock_source,
1290 					tg_inst, &pix_clk_100hz);
1291 
1292 				if (link->link_status.link_active) {
1293 					uint32_t requested_pix_clk_100hz =
1294 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1295 
1296 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1297 						dc->link_srv->set_dpms_off(pipe);
1298 						pipe->stream->dpms_off = false;
1299 					}
1300 				}
1301 			}
1302 		}
1303 	}
1304 }
1305 
1306 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1307 {
1308 	int i;
1309 	PERF_TRACE();
1310 	for (i = 0; i < MAX_PIPES; i++) {
1311 		int count = 0;
1312 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1313 
1314 		if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1315 			continue;
1316 
1317 		/* Timeout 100 ms */
1318 		while (count < 100000) {
1319 			/* Must set to false to start with, due to OR in update function */
1320 			pipe->plane_state->status.is_flip_pending = false;
1321 			dc->hwss.update_pending_status(pipe);
1322 			if (!pipe->plane_state->status.is_flip_pending)
1323 				break;
1324 			udelay(1);
1325 			count++;
1326 		}
1327 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1328 	}
1329 	PERF_TRACE();
1330 }
1331 
1332 /* Public functions */
1333 
1334 struct dc *dc_create(const struct dc_init_data *init_params)
1335 {
1336 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1337 	unsigned int full_pipe_count;
1338 
1339 	if (!dc)
1340 		return NULL;
1341 
1342 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1343 		if (!dc_construct_ctx(dc, init_params))
1344 			goto destruct_dc;
1345 	} else {
1346 		if (!dc_construct(dc, init_params))
1347 			goto destruct_dc;
1348 
1349 		full_pipe_count = dc->res_pool->pipe_count;
1350 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1351 			full_pipe_count--;
1352 		dc->caps.max_streams = min(
1353 				full_pipe_count,
1354 				dc->res_pool->stream_enc_count);
1355 
1356 		dc->caps.max_links = dc->link_count;
1357 		dc->caps.max_audios = dc->res_pool->audio_count;
1358 		dc->caps.linear_pitch_alignment = 64;
1359 
1360 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1361 
1362 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1363 
1364 		if (dc->res_pool->dmcu != NULL)
1365 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1366 	}
1367 
1368 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1369 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1370 
1371 	/* Populate versioning information */
1372 	dc->versions.dc_ver = DC_VER;
1373 
1374 	dc->build_id = DC_BUILD_ID;
1375 
1376 	DC_LOG_DC("Display Core initialized\n");
1377 
1378 
1379 
1380 	return dc;
1381 
1382 destruct_dc:
1383 	dc_destruct(dc);
1384 	kfree(dc);
1385 	return NULL;
1386 }
1387 
1388 static void detect_edp_presence(struct dc *dc)
1389 {
1390 	struct dc_link *edp_links[MAX_NUM_EDP];
1391 	struct dc_link *edp_link = NULL;
1392 	enum dc_connection_type type;
1393 	int i;
1394 	int edp_num;
1395 
1396 	dc_get_edp_links(dc, edp_links, &edp_num);
1397 	if (!edp_num)
1398 		return;
1399 
1400 	for (i = 0; i < edp_num; i++) {
1401 		edp_link = edp_links[i];
1402 		if (dc->config.edp_not_connected) {
1403 			edp_link->edp_sink_present = false;
1404 		} else {
1405 			dc_link_detect_connection_type(edp_link, &type);
1406 			edp_link->edp_sink_present = (type != dc_connection_none);
1407 		}
1408 	}
1409 }
1410 
1411 void dc_hardware_init(struct dc *dc)
1412 {
1413 
1414 	detect_edp_presence(dc);
1415 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1416 		dc->hwss.init_hw(dc);
1417 }
1418 
1419 void dc_init_callbacks(struct dc *dc,
1420 		const struct dc_callback_init *init_params)
1421 {
1422 	dc->ctx->cp_psp = init_params->cp_psp;
1423 }
1424 
1425 void dc_deinit_callbacks(struct dc *dc)
1426 {
1427 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1428 }
1429 
1430 void dc_destroy(struct dc **dc)
1431 {
1432 	dc_destruct(*dc);
1433 	kfree(*dc);
1434 	*dc = NULL;
1435 }
1436 
1437 static void enable_timing_multisync(
1438 		struct dc *dc,
1439 		struct dc_state *ctx)
1440 {
1441 	int i, multisync_count = 0;
1442 	int pipe_count = dc->res_pool->pipe_count;
1443 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1444 
1445 	for (i = 0; i < pipe_count; i++) {
1446 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1447 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1448 			continue;
1449 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1450 			continue;
1451 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1452 		multisync_count++;
1453 	}
1454 
1455 	if (multisync_count > 0) {
1456 		dc->hwss.enable_per_frame_crtc_position_reset(
1457 			dc, multisync_count, multisync_pipes);
1458 	}
1459 }
1460 
1461 static void program_timing_sync(
1462 		struct dc *dc,
1463 		struct dc_state *ctx)
1464 {
1465 	int i, j, k;
1466 	int group_index = 0;
1467 	int num_group = 0;
1468 	int pipe_count = dc->res_pool->pipe_count;
1469 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1470 
1471 	for (i = 0; i < pipe_count; i++) {
1472 		if (!ctx->res_ctx.pipe_ctx[i].stream
1473 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1474 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1475 			continue;
1476 
1477 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1478 	}
1479 
1480 	for (i = 0; i < pipe_count; i++) {
1481 		int group_size = 1;
1482 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1483 		struct pipe_ctx *pipe_set[MAX_PIPES];
1484 
1485 		if (!unsynced_pipes[i])
1486 			continue;
1487 
1488 		pipe_set[0] = unsynced_pipes[i];
1489 		unsynced_pipes[i] = NULL;
1490 
1491 		/* Add tg to the set, search rest of the tg's for ones with
1492 		 * same timing, add all tgs with same timing to the group
1493 		 */
1494 		for (j = i + 1; j < pipe_count; j++) {
1495 			if (!unsynced_pipes[j])
1496 				continue;
1497 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1498 				dc->hwss.enable_vblanks_synchronization &&
1499 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1500 				resource_are_vblanks_synchronizable(
1501 					unsynced_pipes[j]->stream,
1502 					pipe_set[0]->stream)) {
1503 				sync_type = VBLANK_SYNCHRONIZABLE;
1504 				pipe_set[group_size] = unsynced_pipes[j];
1505 				unsynced_pipes[j] = NULL;
1506 				group_size++;
1507 			} else
1508 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1509 				resource_are_streams_timing_synchronizable(
1510 					unsynced_pipes[j]->stream,
1511 					pipe_set[0]->stream)) {
1512 				sync_type = TIMING_SYNCHRONIZABLE;
1513 				pipe_set[group_size] = unsynced_pipes[j];
1514 				unsynced_pipes[j] = NULL;
1515 				group_size++;
1516 			}
1517 		}
1518 
1519 		/* set first unblanked pipe as master */
1520 		for (j = 0; j < group_size; j++) {
1521 			bool is_blanked;
1522 
1523 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1524 				is_blanked =
1525 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1526 			else
1527 				is_blanked =
1528 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1529 			if (!is_blanked) {
1530 				if (j == 0)
1531 					break;
1532 
1533 				swap(pipe_set[0], pipe_set[j]);
1534 				break;
1535 			}
1536 		}
1537 
1538 		for (k = 0; k < group_size; k++) {
1539 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1540 
1541 			status->timing_sync_info.group_id = num_group;
1542 			status->timing_sync_info.group_size = group_size;
1543 			if (k == 0)
1544 				status->timing_sync_info.master = true;
1545 			else
1546 				status->timing_sync_info.master = false;
1547 
1548 		}
1549 
1550 		/* remove any other pipes that are already been synced */
1551 		if (dc->config.use_pipe_ctx_sync_logic) {
1552 			/* check pipe's syncd to decide which pipe to be removed */
1553 			for (j = 1; j < group_size; j++) {
1554 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1555 					group_size--;
1556 					pipe_set[j] = pipe_set[group_size];
1557 					j--;
1558 				} else
1559 					/* link slave pipe's syncd with master pipe */
1560 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1561 			}
1562 		} else {
1563 			for (j = j + 1; j < group_size; j++) {
1564 				bool is_blanked;
1565 
1566 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1567 					is_blanked =
1568 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1569 				else
1570 					is_blanked =
1571 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1572 				if (!is_blanked) {
1573 					group_size--;
1574 					pipe_set[j] = pipe_set[group_size];
1575 					j--;
1576 				}
1577 			}
1578 		}
1579 
1580 		if (group_size > 1) {
1581 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1582 				dc->hwss.enable_timing_synchronization(
1583 					dc, group_index, group_size, pipe_set);
1584 			} else
1585 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1586 				dc->hwss.enable_vblanks_synchronization(
1587 					dc, group_index, group_size, pipe_set);
1588 				}
1589 			group_index++;
1590 		}
1591 		num_group++;
1592 	}
1593 }
1594 
1595 static bool streams_changed(struct dc *dc,
1596 			    struct dc_stream_state *streams[],
1597 			    uint8_t stream_count)
1598 {
1599 	uint8_t i;
1600 
1601 	if (stream_count != dc->current_state->stream_count)
1602 		return true;
1603 
1604 	for (i = 0; i < dc->current_state->stream_count; i++) {
1605 		if (dc->current_state->streams[i] != streams[i])
1606 			return true;
1607 		if (!streams[i]->link->link_state_valid)
1608 			return true;
1609 	}
1610 
1611 	return false;
1612 }
1613 
1614 bool dc_validate_boot_timing(const struct dc *dc,
1615 				const struct dc_sink *sink,
1616 				struct dc_crtc_timing *crtc_timing)
1617 {
1618 	struct timing_generator *tg;
1619 	struct stream_encoder *se = NULL;
1620 
1621 	struct dc_crtc_timing hw_crtc_timing = {0};
1622 
1623 	struct dc_link *link = sink->link;
1624 	unsigned int i, enc_inst, tg_inst = 0;
1625 
1626 	/* Support seamless boot on EDP displays only */
1627 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1628 		return false;
1629 	}
1630 
1631 	if (dc->debug.force_odm_combine)
1632 		return false;
1633 
1634 	/* Check for enabled DIG to identify enabled display */
1635 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1636 		return false;
1637 
1638 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1639 
1640 	if (enc_inst == ENGINE_ID_UNKNOWN)
1641 		return false;
1642 
1643 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1644 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1645 
1646 			se = dc->res_pool->stream_enc[i];
1647 
1648 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1649 				dc->res_pool->stream_enc[i]);
1650 			break;
1651 		}
1652 	}
1653 
1654 	// tg_inst not found
1655 	if (i == dc->res_pool->stream_enc_count)
1656 		return false;
1657 
1658 	if (tg_inst >= dc->res_pool->timing_generator_count)
1659 		return false;
1660 
1661 	if (tg_inst != link->link_enc->preferred_engine)
1662 		return false;
1663 
1664 	tg = dc->res_pool->timing_generators[tg_inst];
1665 
1666 	if (!tg->funcs->get_hw_timing)
1667 		return false;
1668 
1669 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1670 		return false;
1671 
1672 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1673 		return false;
1674 
1675 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1676 		return false;
1677 
1678 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1679 		return false;
1680 
1681 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1682 		return false;
1683 
1684 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1685 		return false;
1686 
1687 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1688 		return false;
1689 
1690 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1691 		return false;
1692 
1693 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1694 		return false;
1695 
1696 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1697 		return false;
1698 
1699 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1700 		return false;
1701 
1702 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1703 		return false;
1704 
1705 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1706 		return false;
1707 
1708 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1709 	if (crtc_timing->flags.DSC)
1710 		return false;
1711 
1712 	if (dc_is_dp_signal(link->connector_signal)) {
1713 		unsigned int pix_clk_100hz;
1714 		uint32_t numOdmPipes = 1;
1715 		uint32_t id_src[4] = {0};
1716 
1717 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1718 			dc->res_pool->dp_clock_source,
1719 			tg_inst, &pix_clk_100hz);
1720 
1721 		if (tg->funcs->get_optc_source)
1722 			tg->funcs->get_optc_source(tg,
1723 						&numOdmPipes, &id_src[0], &id_src[1]);
1724 
1725 		if (numOdmPipes == 2)
1726 			pix_clk_100hz *= 2;
1727 		if (numOdmPipes == 4)
1728 			pix_clk_100hz *= 4;
1729 
1730 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1731 		// slightly due to rounding issues in 10 kHz units.
1732 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1733 			return false;
1734 
1735 		if (!se->funcs->dp_get_pixel_format)
1736 			return false;
1737 
1738 		if (!se->funcs->dp_get_pixel_format(
1739 			se,
1740 			&hw_crtc_timing.pixel_encoding,
1741 			&hw_crtc_timing.display_color_depth))
1742 			return false;
1743 
1744 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1745 			return false;
1746 
1747 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1748 			return false;
1749 	}
1750 
1751 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1752 		return false;
1753 	}
1754 
1755 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1756 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1757 		return false;
1758 	}
1759 
1760 	return true;
1761 }
1762 
1763 static inline bool should_update_pipe_for_stream(
1764 		struct dc_state *context,
1765 		struct pipe_ctx *pipe_ctx,
1766 		struct dc_stream_state *stream)
1767 {
1768 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1769 }
1770 
1771 static inline bool should_update_pipe_for_plane(
1772 		struct dc_state *context,
1773 		struct pipe_ctx *pipe_ctx,
1774 		struct dc_plane_state *plane_state)
1775 {
1776 	return (pipe_ctx->plane_state == plane_state);
1777 }
1778 
1779 void dc_enable_stereo(
1780 	struct dc *dc,
1781 	struct dc_state *context,
1782 	struct dc_stream_state *streams[],
1783 	uint8_t stream_count)
1784 {
1785 	int i, j;
1786 	struct pipe_ctx *pipe;
1787 
1788 	for (i = 0; i < MAX_PIPES; i++) {
1789 		if (context != NULL) {
1790 			pipe = &context->res_ctx.pipe_ctx[i];
1791 		} else {
1792 			context = dc->current_state;
1793 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1794 		}
1795 
1796 		for (j = 0; pipe && j < stream_count; j++)  {
1797 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1798 				dc->hwss.setup_stereo)
1799 				dc->hwss.setup_stereo(pipe, dc);
1800 		}
1801 	}
1802 }
1803 
1804 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1805 {
1806 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1807 		enable_timing_multisync(dc, context);
1808 		program_timing_sync(dc, context);
1809 	}
1810 }
1811 
1812 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1813 {
1814 	int i;
1815 	unsigned int stream_mask = 0;
1816 
1817 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1818 		if (context->res_ctx.pipe_ctx[i].stream)
1819 			stream_mask |= 1 << i;
1820 	}
1821 
1822 	return stream_mask;
1823 }
1824 
1825 void dc_z10_restore(const struct dc *dc)
1826 {
1827 	if (dc->hwss.z10_restore)
1828 		dc->hwss.z10_restore(dc);
1829 }
1830 
1831 void dc_z10_save_init(struct dc *dc)
1832 {
1833 	if (dc->hwss.z10_save_init)
1834 		dc->hwss.z10_save_init(dc);
1835 }
1836 
1837 /**
1838  * dc_commit_state_no_check - Apply context to the hardware
1839  *
1840  * @dc: DC object with the current status to be updated
1841  * @context: New state that will become the current status at the end of this function
1842  *
1843  * Applies given context to the hardware and copy it into current context.
1844  * It's up to the user to release the src context afterwards.
1845  *
1846  * Return: an enum dc_status result code for the operation
1847  */
1848 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1849 {
1850 	struct dc_bios *dcb = dc->ctx->dc_bios;
1851 	enum dc_status result = DC_ERROR_UNEXPECTED;
1852 	struct pipe_ctx *pipe;
1853 	int i, k, l;
1854 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1855 	struct dc_state *old_state;
1856 	bool subvp_prev_use = false;
1857 
1858 	dc_z10_restore(dc);
1859 	dc_allow_idle_optimizations(dc, false);
1860 
1861 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1862 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1863 
1864 		/* Check old context for SubVP */
1865 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1866 		if (subvp_prev_use)
1867 			break;
1868 	}
1869 
1870 	for (i = 0; i < context->stream_count; i++)
1871 		dc_streams[i] =  context->streams[i];
1872 
1873 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1874 		disable_vbios_mode_if_required(dc, context);
1875 		dc->hwss.enable_accelerated_mode(dc, context);
1876 	}
1877 
1878 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1879 		context->stream_count == 0)
1880 		dc->hwss.prepare_bandwidth(dc, context);
1881 
1882 	/* When SubVP is active, all HW programming must be done while
1883 	 * SubVP lock is acquired
1884 	 */
1885 	if (dc->hwss.subvp_pipe_control_lock)
1886 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1887 
1888 	if (dc->debug.enable_double_buffered_dsc_pg_support)
1889 		dc->hwss.update_dsc_pg(dc, context, false);
1890 
1891 	disable_dangling_plane(dc, context);
1892 	/* re-program planes for existing stream, in case we need to
1893 	 * free up plane resource for later use
1894 	 */
1895 	if (dc->hwss.apply_ctx_for_surface) {
1896 		for (i = 0; i < context->stream_count; i++) {
1897 			if (context->streams[i]->mode_changed)
1898 				continue;
1899 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1900 			dc->hwss.apply_ctx_for_surface(
1901 				dc, context->streams[i],
1902 				context->stream_status[i].plane_count,
1903 				context); /* use new pipe config in new context */
1904 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1905 			dc->hwss.post_unlock_program_front_end(dc, context);
1906 		}
1907 	}
1908 
1909 	/* Program hardware */
1910 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1911 		pipe = &context->res_ctx.pipe_ctx[i];
1912 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1913 	}
1914 
1915 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1916 
1917 	if (result != DC_OK) {
1918 		/* Application of dc_state to hardware stopped. */
1919 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1920 		return result;
1921 	}
1922 
1923 	dc_trigger_sync(dc, context);
1924 
1925 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1926 	for (i = 0; i < context->stream_count; i++) {
1927 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1928 
1929 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1930 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1931 	}
1932 
1933 	/* Program all planes within new context*/
1934 	if (dc->hwss.program_front_end_for_ctx) {
1935 		dc->hwss.interdependent_update_lock(dc, context, true);
1936 		dc->hwss.program_front_end_for_ctx(dc, context);
1937 		dc->hwss.interdependent_update_lock(dc, context, false);
1938 		dc->hwss.post_unlock_program_front_end(dc, context);
1939 	}
1940 
1941 	if (dc->hwss.commit_subvp_config)
1942 		dc->hwss.commit_subvp_config(dc, context);
1943 	if (dc->hwss.subvp_pipe_control_lock)
1944 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1945 
1946 	for (i = 0; i < context->stream_count; i++) {
1947 		const struct dc_link *link = context->streams[i]->link;
1948 
1949 		if (!context->streams[i]->mode_changed)
1950 			continue;
1951 
1952 		if (dc->hwss.apply_ctx_for_surface) {
1953 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1954 			dc->hwss.apply_ctx_for_surface(
1955 					dc, context->streams[i],
1956 					context->stream_status[i].plane_count,
1957 					context);
1958 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1959 			dc->hwss.post_unlock_program_front_end(dc, context);
1960 		}
1961 
1962 		/*
1963 		 * enable stereo
1964 		 * TODO rework dc_enable_stereo call to work with validation sets?
1965 		 */
1966 		for (k = 0; k < MAX_PIPES; k++) {
1967 			pipe = &context->res_ctx.pipe_ctx[k];
1968 
1969 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1970 				if (context->streams[l] &&
1971 					context->streams[l] == pipe->stream &&
1972 					dc->hwss.setup_stereo)
1973 					dc->hwss.setup_stereo(pipe, dc);
1974 			}
1975 		}
1976 
1977 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1978 				context->streams[i]->timing.h_addressable,
1979 				context->streams[i]->timing.v_addressable,
1980 				context->streams[i]->timing.h_total,
1981 				context->streams[i]->timing.v_total,
1982 				context->streams[i]->timing.pix_clk_100hz / 10);
1983 	}
1984 
1985 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1986 
1987 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1988 		context->stream_count == 0) {
1989 		/* Must wait for no flips to be pending before doing optimize bw */
1990 		wait_for_no_pipes_pending(dc, context);
1991 		/* pplib is notified if disp_num changed */
1992 		dc->hwss.optimize_bandwidth(dc, context);
1993 	}
1994 
1995 	if (dc->debug.enable_double_buffered_dsc_pg_support)
1996 		dc->hwss.update_dsc_pg(dc, context, true);
1997 
1998 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1999 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2000 	else
2001 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2002 
2003 	context->stream_mask = get_stream_mask(dc, context);
2004 
2005 	if (context->stream_mask != dc->current_state->stream_mask)
2006 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2007 
2008 	for (i = 0; i < context->stream_count; i++)
2009 		context->streams[i]->mode_changed = false;
2010 
2011 	/* Clear update flags that were set earlier to avoid redundant programming */
2012 	for (i = 0; i < context->stream_count; i++) {
2013 		context->streams[i]->update_flags.raw = 0x0;
2014 	}
2015 
2016 	old_state = dc->current_state;
2017 	dc->current_state = context;
2018 
2019 	dc_release_state(old_state);
2020 
2021 	dc_retain_state(dc->current_state);
2022 
2023 	return result;
2024 }
2025 
2026 static bool commit_minimal_transition_state(struct dc *dc,
2027 		struct dc_state *transition_base_context);
2028 
2029 /**
2030  * dc_commit_streams - Commit current stream state
2031  *
2032  * @dc: DC object with the commit state to be configured in the hardware
2033  * @streams: Array with a list of stream state
2034  * @stream_count: Total of streams
2035  *
2036  * Function responsible for commit streams change to the hardware.
2037  *
2038  * Return:
2039  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2040  * code.
2041  */
2042 enum dc_status dc_commit_streams(struct dc *dc,
2043 				 struct dc_stream_state *streams[],
2044 				 uint8_t stream_count)
2045 {
2046 	int i, j;
2047 	struct dc_state *context;
2048 	enum dc_status res = DC_OK;
2049 	struct dc_validation_set set[MAX_STREAMS] = {0};
2050 	struct pipe_ctx *pipe;
2051 	bool handle_exit_odm2to1 = false;
2052 
2053 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2054 		return res;
2055 
2056 	if (!streams_changed(dc, streams, stream_count))
2057 		return res;
2058 
2059 	DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2060 
2061 	for (i = 0; i < stream_count; i++) {
2062 		struct dc_stream_state *stream = streams[i];
2063 		struct dc_stream_status *status = dc_stream_get_status(stream);
2064 
2065 		dc_stream_log(dc, stream);
2066 
2067 		set[i].stream = stream;
2068 
2069 		if (status) {
2070 			set[i].plane_count = status->plane_count;
2071 			for (j = 0; j < status->plane_count; j++)
2072 				set[i].plane_states[j] = status->plane_states[j];
2073 		}
2074 	}
2075 
2076 	/* ODM Combine 2:1 power optimization is only applied for single stream
2077 	 * scenario, it uses extra pipes than needed to reduce power consumption
2078 	 * We need to switch off this feature to make room for new streams.
2079 	 */
2080 	if (stream_count > dc->current_state->stream_count &&
2081 			dc->current_state->stream_count == 1) {
2082 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2083 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2084 			if (pipe->next_odm_pipe)
2085 				handle_exit_odm2to1 = true;
2086 		}
2087 	}
2088 
2089 	if (handle_exit_odm2to1)
2090 		res = commit_minimal_transition_state(dc, dc->current_state);
2091 
2092 	context = dc_create_state(dc);
2093 	if (!context)
2094 		goto context_alloc_fail;
2095 
2096 	dc_resource_state_copy_construct_current(dc, context);
2097 
2098 	res = dc_validate_with_context(dc, set, stream_count, context, false);
2099 	if (res != DC_OK) {
2100 		BREAK_TO_DEBUGGER();
2101 		goto fail;
2102 	}
2103 
2104 	res = dc_commit_state_no_check(dc, context);
2105 
2106 	for (i = 0; i < stream_count; i++) {
2107 		for (j = 0; j < context->stream_count; j++) {
2108 			if (streams[i]->stream_id == context->streams[j]->stream_id)
2109 				streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2110 
2111 			if (dc_is_embedded_signal(streams[i]->signal)) {
2112 				struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2113 
2114 				if (dc->hwss.is_abm_supported)
2115 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2116 				else
2117 					status->is_abm_supported = true;
2118 			}
2119 		}
2120 	}
2121 
2122 fail:
2123 	dc_release_state(context);
2124 
2125 context_alloc_fail:
2126 
2127 	DC_LOG_DC("%s Finished.\n", __func__);
2128 
2129 	return res;
2130 }
2131 
2132 bool dc_acquire_release_mpc_3dlut(
2133 		struct dc *dc, bool acquire,
2134 		struct dc_stream_state *stream,
2135 		struct dc_3dlut **lut,
2136 		struct dc_transfer_func **shaper)
2137 {
2138 	int pipe_idx;
2139 	bool ret = false;
2140 	bool found_pipe_idx = false;
2141 	const struct resource_pool *pool = dc->res_pool;
2142 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2143 	int mpcc_id = 0;
2144 
2145 	if (pool && res_ctx) {
2146 		if (acquire) {
2147 			/*find pipe idx for the given stream*/
2148 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2149 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2150 					found_pipe_idx = true;
2151 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2152 					break;
2153 				}
2154 			}
2155 		} else
2156 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2157 
2158 		if (found_pipe_idx) {
2159 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2160 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2161 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2162 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2163 		}
2164 	}
2165 	return ret;
2166 }
2167 
2168 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2169 {
2170 	int i;
2171 	struct pipe_ctx *pipe;
2172 
2173 	for (i = 0; i < MAX_PIPES; i++) {
2174 		pipe = &context->res_ctx.pipe_ctx[i];
2175 
2176 		// Don't check flip pending on phantom pipes
2177 		if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2178 			continue;
2179 
2180 		/* Must set to false to start with, due to OR in update function */
2181 		pipe->plane_state->status.is_flip_pending = false;
2182 		dc->hwss.update_pending_status(pipe);
2183 		if (pipe->plane_state->status.is_flip_pending)
2184 			return true;
2185 	}
2186 	return false;
2187 }
2188 
2189 /* Perform updates here which need to be deferred until next vupdate
2190  *
2191  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2192  * but forcing lut memory to shutdown state is immediate. This causes
2193  * single frame corruption as lut gets disabled mid-frame unless shutdown
2194  * is deferred until after entering bypass.
2195  */
2196 static void process_deferred_updates(struct dc *dc)
2197 {
2198 	int i = 0;
2199 
2200 	if (dc->debug.enable_mem_low_power.bits.cm) {
2201 		ASSERT(dc->dcn_ip->max_num_dpp);
2202 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2203 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2204 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2205 	}
2206 }
2207 
2208 void dc_post_update_surfaces_to_stream(struct dc *dc)
2209 {
2210 	int i;
2211 	struct dc_state *context = dc->current_state;
2212 
2213 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2214 		return;
2215 
2216 	post_surface_trace(dc);
2217 
2218 	/*
2219 	 * Only relevant for DCN behavior where we can guarantee the optimization
2220 	 * is safe to apply - retain the legacy behavior for DCE.
2221 	 */
2222 
2223 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2224 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2225 	else {
2226 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2227 
2228 		if (is_flip_pending_in_pipes(dc, context))
2229 			return;
2230 
2231 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2232 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2233 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2234 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2235 				dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2236 			}
2237 
2238 		process_deferred_updates(dc);
2239 
2240 		dc->hwss.optimize_bandwidth(dc, context);
2241 
2242 		if (dc->debug.enable_double_buffered_dsc_pg_support)
2243 			dc->hwss.update_dsc_pg(dc, context, true);
2244 	}
2245 
2246 	dc->optimized_required = false;
2247 	dc->wm_optimized_required = false;
2248 }
2249 
2250 static void init_state(struct dc *dc, struct dc_state *context)
2251 {
2252 	/* Each context must have their own instance of VBA and in order to
2253 	 * initialize and obtain IP and SOC the base DML instance from DC is
2254 	 * initially copied into every context
2255 	 */
2256 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2257 }
2258 
2259 struct dc_state *dc_create_state(struct dc *dc)
2260 {
2261 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2262 					    GFP_KERNEL);
2263 
2264 	if (!context)
2265 		return NULL;
2266 
2267 	init_state(dc, context);
2268 
2269 	kref_init(&context->refcount);
2270 
2271 	return context;
2272 }
2273 
2274 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2275 {
2276 	int i, j;
2277 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2278 
2279 	if (!new_ctx)
2280 		return NULL;
2281 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2282 
2283 	for (i = 0; i < MAX_PIPES; i++) {
2284 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2285 
2286 			if (cur_pipe->top_pipe)
2287 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2288 
2289 			if (cur_pipe->bottom_pipe)
2290 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2291 
2292 			if (cur_pipe->prev_odm_pipe)
2293 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2294 
2295 			if (cur_pipe->next_odm_pipe)
2296 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2297 
2298 	}
2299 
2300 	for (i = 0; i < new_ctx->stream_count; i++) {
2301 			dc_stream_retain(new_ctx->streams[i]);
2302 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2303 				dc_plane_state_retain(
2304 					new_ctx->stream_status[i].plane_states[j]);
2305 	}
2306 
2307 	kref_init(&new_ctx->refcount);
2308 
2309 	return new_ctx;
2310 }
2311 
2312 void dc_retain_state(struct dc_state *context)
2313 {
2314 	kref_get(&context->refcount);
2315 }
2316 
2317 static void dc_state_free(struct kref *kref)
2318 {
2319 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
2320 	dc_resource_state_destruct(context);
2321 	kvfree(context);
2322 }
2323 
2324 void dc_release_state(struct dc_state *context)
2325 {
2326 	kref_put(&context->refcount, dc_state_free);
2327 }
2328 
2329 bool dc_set_generic_gpio_for_stereo(bool enable,
2330 		struct gpio_service *gpio_service)
2331 {
2332 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2333 	struct gpio_pin_info pin_info;
2334 	struct gpio *generic;
2335 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2336 			   GFP_KERNEL);
2337 
2338 	if (!config)
2339 		return false;
2340 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2341 
2342 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2343 		kfree(config);
2344 		return false;
2345 	} else {
2346 		generic = dal_gpio_service_create_generic_mux(
2347 			gpio_service,
2348 			pin_info.offset,
2349 			pin_info.mask);
2350 	}
2351 
2352 	if (!generic) {
2353 		kfree(config);
2354 		return false;
2355 	}
2356 
2357 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2358 
2359 	config->enable_output_from_mux = enable;
2360 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2361 
2362 	if (gpio_result == GPIO_RESULT_OK)
2363 		gpio_result = dal_mux_setup_config(generic, config);
2364 
2365 	if (gpio_result == GPIO_RESULT_OK) {
2366 		dal_gpio_close(generic);
2367 		dal_gpio_destroy_generic_mux(&generic);
2368 		kfree(config);
2369 		return true;
2370 	} else {
2371 		dal_gpio_close(generic);
2372 		dal_gpio_destroy_generic_mux(&generic);
2373 		kfree(config);
2374 		return false;
2375 	}
2376 }
2377 
2378 static bool is_surface_in_context(
2379 		const struct dc_state *context,
2380 		const struct dc_plane_state *plane_state)
2381 {
2382 	int j;
2383 
2384 	for (j = 0; j < MAX_PIPES; j++) {
2385 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2386 
2387 		if (plane_state == pipe_ctx->plane_state) {
2388 			return true;
2389 		}
2390 	}
2391 
2392 	return false;
2393 }
2394 
2395 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2396 {
2397 	union surface_update_flags *update_flags = &u->surface->update_flags;
2398 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2399 
2400 	if (!u->plane_info)
2401 		return UPDATE_TYPE_FAST;
2402 
2403 	if (u->plane_info->color_space != u->surface->color_space) {
2404 		update_flags->bits.color_space_change = 1;
2405 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2406 	}
2407 
2408 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2409 		update_flags->bits.horizontal_mirror_change = 1;
2410 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2411 	}
2412 
2413 	if (u->plane_info->rotation != u->surface->rotation) {
2414 		update_flags->bits.rotation_change = 1;
2415 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2416 	}
2417 
2418 	if (u->plane_info->format != u->surface->format) {
2419 		update_flags->bits.pixel_format_change = 1;
2420 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2421 	}
2422 
2423 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2424 		update_flags->bits.stereo_format_change = 1;
2425 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2426 	}
2427 
2428 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2429 		update_flags->bits.per_pixel_alpha_change = 1;
2430 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2431 	}
2432 
2433 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2434 		update_flags->bits.global_alpha_change = 1;
2435 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2436 	}
2437 
2438 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2439 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2440 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2441 		/* During DCC on/off, stutter period is calculated before
2442 		 * DCC has fully transitioned. This results in incorrect
2443 		 * stutter period calculation. Triggering a full update will
2444 		 * recalculate stutter period.
2445 		 */
2446 		update_flags->bits.dcc_change = 1;
2447 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2448 	}
2449 
2450 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2451 			resource_pixel_format_to_bpp(u->surface->format)) {
2452 		/* different bytes per element will require full bandwidth
2453 		 * and DML calculation
2454 		 */
2455 		update_flags->bits.bpp_change = 1;
2456 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2457 	}
2458 
2459 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2460 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2461 		update_flags->bits.plane_size_change = 1;
2462 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2463 	}
2464 
2465 
2466 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2467 			sizeof(union dc_tiling_info)) != 0) {
2468 		update_flags->bits.swizzle_change = 1;
2469 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2470 
2471 		/* todo: below are HW dependent, we should add a hook to
2472 		 * DCE/N resource and validated there.
2473 		 */
2474 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2475 			/* swizzled mode requires RQ to be setup properly,
2476 			 * thus need to run DML to calculate RQ settings
2477 			 */
2478 			update_flags->bits.bandwidth_change = 1;
2479 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2480 		}
2481 	}
2482 
2483 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2484 	return update_type;
2485 }
2486 
2487 static enum surface_update_type get_scaling_info_update_type(
2488 		const struct dc_surface_update *u)
2489 {
2490 	union surface_update_flags *update_flags = &u->surface->update_flags;
2491 
2492 	if (!u->scaling_info)
2493 		return UPDATE_TYPE_FAST;
2494 
2495 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2496 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2497 			|| u->scaling_info->scaling_quality.integer_scaling !=
2498 				u->surface->scaling_quality.integer_scaling
2499 			) {
2500 		update_flags->bits.scaling_change = 1;
2501 
2502 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2503 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2504 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2505 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2506 			/* Making dst rect smaller requires a bandwidth change */
2507 			update_flags->bits.bandwidth_change = 1;
2508 	}
2509 
2510 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2511 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2512 
2513 		update_flags->bits.scaling_change = 1;
2514 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2515 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2516 			/* Making src rect bigger requires a bandwidth change */
2517 			update_flags->bits.clock_change = 1;
2518 	}
2519 
2520 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2521 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2522 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2523 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2524 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2525 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2526 		update_flags->bits.position_change = 1;
2527 
2528 	if (update_flags->bits.clock_change
2529 			|| update_flags->bits.bandwidth_change
2530 			|| update_flags->bits.scaling_change)
2531 		return UPDATE_TYPE_FULL;
2532 
2533 	if (update_flags->bits.position_change)
2534 		return UPDATE_TYPE_MED;
2535 
2536 	return UPDATE_TYPE_FAST;
2537 }
2538 
2539 static enum surface_update_type det_surface_update(const struct dc *dc,
2540 		const struct dc_surface_update *u)
2541 {
2542 	const struct dc_state *context = dc->current_state;
2543 	enum surface_update_type type;
2544 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2545 	union surface_update_flags *update_flags = &u->surface->update_flags;
2546 
2547 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2548 		update_flags->raw = 0xFFFFFFFF;
2549 		return UPDATE_TYPE_FULL;
2550 	}
2551 
2552 	update_flags->raw = 0; // Reset all flags
2553 
2554 	type = get_plane_info_update_type(u);
2555 	elevate_update_type(&overall_type, type);
2556 
2557 	type = get_scaling_info_update_type(u);
2558 	elevate_update_type(&overall_type, type);
2559 
2560 	if (u->flip_addr) {
2561 		update_flags->bits.addr_update = 1;
2562 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2563 			update_flags->bits.tmz_changed = 1;
2564 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2565 		}
2566 	}
2567 	if (u->in_transfer_func)
2568 		update_flags->bits.in_transfer_func_change = 1;
2569 
2570 	if (u->input_csc_color_matrix)
2571 		update_flags->bits.input_csc_change = 1;
2572 
2573 	if (u->coeff_reduction_factor)
2574 		update_flags->bits.coeff_reduction_change = 1;
2575 
2576 	if (u->gamut_remap_matrix)
2577 		update_flags->bits.gamut_remap_change = 1;
2578 
2579 	if (u->gamma) {
2580 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2581 
2582 		if (u->plane_info)
2583 			format = u->plane_info->format;
2584 		else if (u->surface)
2585 			format = u->surface->format;
2586 
2587 		if (dce_use_lut(format))
2588 			update_flags->bits.gamma_change = 1;
2589 	}
2590 
2591 	if (u->lut3d_func || u->func_shaper)
2592 		update_flags->bits.lut_3d = 1;
2593 
2594 	if (u->hdr_mult.value)
2595 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2596 			update_flags->bits.hdr_mult = 1;
2597 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2598 		}
2599 
2600 	if (update_flags->bits.in_transfer_func_change) {
2601 		type = UPDATE_TYPE_MED;
2602 		elevate_update_type(&overall_type, type);
2603 	}
2604 
2605 	if (update_flags->bits.lut_3d) {
2606 		type = UPDATE_TYPE_FULL;
2607 		elevate_update_type(&overall_type, type);
2608 	}
2609 
2610 	if (dc->debug.enable_legacy_fast_update &&
2611 			(update_flags->bits.gamma_change ||
2612 			update_flags->bits.gamut_remap_change ||
2613 			update_flags->bits.input_csc_change ||
2614 			update_flags->bits.coeff_reduction_change)) {
2615 		type = UPDATE_TYPE_FULL;
2616 		elevate_update_type(&overall_type, type);
2617 	}
2618 	return overall_type;
2619 }
2620 
2621 static enum surface_update_type check_update_surfaces_for_stream(
2622 		struct dc *dc,
2623 		struct dc_surface_update *updates,
2624 		int surface_count,
2625 		struct dc_stream_update *stream_update,
2626 		const struct dc_stream_status *stream_status)
2627 {
2628 	int i;
2629 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2630 
2631 	if (dc->idle_optimizations_allowed)
2632 		overall_type = UPDATE_TYPE_FULL;
2633 
2634 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2635 		overall_type = UPDATE_TYPE_FULL;
2636 
2637 	if (stream_update && stream_update->pending_test_pattern) {
2638 		overall_type = UPDATE_TYPE_FULL;
2639 	}
2640 
2641 	/* some stream updates require passive update */
2642 	if (stream_update) {
2643 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2644 
2645 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2646 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2647 			stream_update->integer_scaling_update)
2648 			su_flags->bits.scaling = 1;
2649 
2650 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2651 			su_flags->bits.out_tf = 1;
2652 
2653 		if (stream_update->abm_level)
2654 			su_flags->bits.abm_level = 1;
2655 
2656 		if (stream_update->dpms_off)
2657 			su_flags->bits.dpms_off = 1;
2658 
2659 		if (stream_update->gamut_remap)
2660 			su_flags->bits.gamut_remap = 1;
2661 
2662 		if (stream_update->wb_update)
2663 			su_flags->bits.wb_update = 1;
2664 
2665 		if (stream_update->dsc_config)
2666 			su_flags->bits.dsc_changed = 1;
2667 
2668 		if (stream_update->mst_bw_update)
2669 			su_flags->bits.mst_bw = 1;
2670 
2671 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2672 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2673 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2674 			su_flags->bits.fams_changed = 1;
2675 
2676 		if (su_flags->raw != 0)
2677 			overall_type = UPDATE_TYPE_FULL;
2678 
2679 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2680 			su_flags->bits.out_csc = 1;
2681 
2682 		/* Output transfer function changes do not require bandwidth recalculation,
2683 		 * so don't trigger a full update
2684 		 */
2685 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2686 			su_flags->bits.out_tf = 1;
2687 	}
2688 
2689 	for (i = 0 ; i < surface_count; i++) {
2690 		enum surface_update_type type =
2691 				det_surface_update(dc, &updates[i]);
2692 
2693 		elevate_update_type(&overall_type, type);
2694 	}
2695 
2696 	return overall_type;
2697 }
2698 
2699 /*
2700  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2701  *
2702  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2703  */
2704 enum surface_update_type dc_check_update_surfaces_for_stream(
2705 		struct dc *dc,
2706 		struct dc_surface_update *updates,
2707 		int surface_count,
2708 		struct dc_stream_update *stream_update,
2709 		const struct dc_stream_status *stream_status)
2710 {
2711 	int i;
2712 	enum surface_update_type type;
2713 
2714 	if (stream_update)
2715 		stream_update->stream->update_flags.raw = 0;
2716 	for (i = 0; i < surface_count; i++)
2717 		updates[i].surface->update_flags.raw = 0;
2718 
2719 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2720 	if (type == UPDATE_TYPE_FULL) {
2721 		if (stream_update) {
2722 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2723 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2724 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2725 		}
2726 		for (i = 0; i < surface_count; i++)
2727 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2728 	}
2729 
2730 	if (type == UPDATE_TYPE_FAST) {
2731 		// If there's an available clock comparator, we use that.
2732 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2733 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2734 				dc->optimized_required = true;
2735 		// Else we fallback to mem compare.
2736 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2737 			dc->optimized_required = true;
2738 		}
2739 
2740 		dc->optimized_required |= dc->wm_optimized_required;
2741 	}
2742 
2743 	return type;
2744 }
2745 
2746 static struct dc_stream_status *stream_get_status(
2747 	struct dc_state *ctx,
2748 	struct dc_stream_state *stream)
2749 {
2750 	uint8_t i;
2751 
2752 	for (i = 0; i < ctx->stream_count; i++) {
2753 		if (stream == ctx->streams[i]) {
2754 			return &ctx->stream_status[i];
2755 		}
2756 	}
2757 
2758 	return NULL;
2759 }
2760 
2761 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2762 
2763 static void copy_surface_update_to_plane(
2764 		struct dc_plane_state *surface,
2765 		struct dc_surface_update *srf_update)
2766 {
2767 	if (srf_update->flip_addr) {
2768 		surface->address = srf_update->flip_addr->address;
2769 		surface->flip_immediate =
2770 			srf_update->flip_addr->flip_immediate;
2771 		surface->time.time_elapsed_in_us[surface->time.index] =
2772 			srf_update->flip_addr->flip_timestamp_in_us -
2773 				surface->time.prev_update_time_in_us;
2774 		surface->time.prev_update_time_in_us =
2775 			srf_update->flip_addr->flip_timestamp_in_us;
2776 		surface->time.index++;
2777 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2778 			surface->time.index = 0;
2779 
2780 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2781 	}
2782 
2783 	if (srf_update->scaling_info) {
2784 		surface->scaling_quality =
2785 				srf_update->scaling_info->scaling_quality;
2786 		surface->dst_rect =
2787 				srf_update->scaling_info->dst_rect;
2788 		surface->src_rect =
2789 				srf_update->scaling_info->src_rect;
2790 		surface->clip_rect =
2791 				srf_update->scaling_info->clip_rect;
2792 	}
2793 
2794 	if (srf_update->plane_info) {
2795 		surface->color_space =
2796 				srf_update->plane_info->color_space;
2797 		surface->format =
2798 				srf_update->plane_info->format;
2799 		surface->plane_size =
2800 				srf_update->plane_info->plane_size;
2801 		surface->rotation =
2802 				srf_update->plane_info->rotation;
2803 		surface->horizontal_mirror =
2804 				srf_update->plane_info->horizontal_mirror;
2805 		surface->stereo_format =
2806 				srf_update->plane_info->stereo_format;
2807 		surface->tiling_info =
2808 				srf_update->plane_info->tiling_info;
2809 		surface->visible =
2810 				srf_update->plane_info->visible;
2811 		surface->per_pixel_alpha =
2812 				srf_update->plane_info->per_pixel_alpha;
2813 		surface->global_alpha =
2814 				srf_update->plane_info->global_alpha;
2815 		surface->global_alpha_value =
2816 				srf_update->plane_info->global_alpha_value;
2817 		surface->dcc =
2818 				srf_update->plane_info->dcc;
2819 		surface->layer_index =
2820 				srf_update->plane_info->layer_index;
2821 	}
2822 
2823 	if (srf_update->gamma &&
2824 			(surface->gamma_correction !=
2825 					srf_update->gamma)) {
2826 		memcpy(&surface->gamma_correction->entries,
2827 			&srf_update->gamma->entries,
2828 			sizeof(struct dc_gamma_entries));
2829 		surface->gamma_correction->is_identity =
2830 			srf_update->gamma->is_identity;
2831 		surface->gamma_correction->num_entries =
2832 			srf_update->gamma->num_entries;
2833 		surface->gamma_correction->type =
2834 			srf_update->gamma->type;
2835 	}
2836 
2837 	if (srf_update->in_transfer_func &&
2838 			(surface->in_transfer_func !=
2839 				srf_update->in_transfer_func)) {
2840 		surface->in_transfer_func->sdr_ref_white_level =
2841 			srf_update->in_transfer_func->sdr_ref_white_level;
2842 		surface->in_transfer_func->tf =
2843 			srf_update->in_transfer_func->tf;
2844 		surface->in_transfer_func->type =
2845 			srf_update->in_transfer_func->type;
2846 		memcpy(&surface->in_transfer_func->tf_pts,
2847 			&srf_update->in_transfer_func->tf_pts,
2848 			sizeof(struct dc_transfer_func_distributed_points));
2849 	}
2850 
2851 	if (srf_update->func_shaper &&
2852 			(surface->in_shaper_func !=
2853 			srf_update->func_shaper))
2854 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2855 		sizeof(*surface->in_shaper_func));
2856 
2857 	if (srf_update->lut3d_func &&
2858 			(surface->lut3d_func !=
2859 			srf_update->lut3d_func))
2860 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2861 		sizeof(*surface->lut3d_func));
2862 
2863 	if (srf_update->hdr_mult.value)
2864 		surface->hdr_mult =
2865 				srf_update->hdr_mult;
2866 
2867 	if (srf_update->blend_tf &&
2868 			(surface->blend_tf !=
2869 			srf_update->blend_tf))
2870 		memcpy(surface->blend_tf, srf_update->blend_tf,
2871 		sizeof(*surface->blend_tf));
2872 
2873 	if (srf_update->input_csc_color_matrix)
2874 		surface->input_csc_color_matrix =
2875 			*srf_update->input_csc_color_matrix;
2876 
2877 	if (srf_update->coeff_reduction_factor)
2878 		surface->coeff_reduction_factor =
2879 			*srf_update->coeff_reduction_factor;
2880 
2881 	if (srf_update->gamut_remap_matrix)
2882 		surface->gamut_remap_matrix =
2883 			*srf_update->gamut_remap_matrix;
2884 }
2885 
2886 static void copy_stream_update_to_stream(struct dc *dc,
2887 					 struct dc_state *context,
2888 					 struct dc_stream_state *stream,
2889 					 struct dc_stream_update *update)
2890 {
2891 	struct dc_context *dc_ctx = dc->ctx;
2892 
2893 	if (update == NULL || stream == NULL)
2894 		return;
2895 
2896 	if (update->src.height && update->src.width)
2897 		stream->src = update->src;
2898 
2899 	if (update->dst.height && update->dst.width)
2900 		stream->dst = update->dst;
2901 
2902 	if (update->out_transfer_func &&
2903 	    stream->out_transfer_func != update->out_transfer_func) {
2904 		stream->out_transfer_func->sdr_ref_white_level =
2905 			update->out_transfer_func->sdr_ref_white_level;
2906 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2907 		stream->out_transfer_func->type =
2908 			update->out_transfer_func->type;
2909 		memcpy(&stream->out_transfer_func->tf_pts,
2910 		       &update->out_transfer_func->tf_pts,
2911 		       sizeof(struct dc_transfer_func_distributed_points));
2912 	}
2913 
2914 	if (update->hdr_static_metadata)
2915 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2916 
2917 	if (update->abm_level)
2918 		stream->abm_level = *update->abm_level;
2919 
2920 	if (update->periodic_interrupt)
2921 		stream->periodic_interrupt = *update->periodic_interrupt;
2922 
2923 	if (update->gamut_remap)
2924 		stream->gamut_remap_matrix = *update->gamut_remap;
2925 
2926 	/* Note: this being updated after mode set is currently not a use case
2927 	 * however if it arises OCSC would need to be reprogrammed at the
2928 	 * minimum
2929 	 */
2930 	if (update->output_color_space)
2931 		stream->output_color_space = *update->output_color_space;
2932 
2933 	if (update->output_csc_transform)
2934 		stream->csc_color_matrix = *update->output_csc_transform;
2935 
2936 	if (update->vrr_infopacket)
2937 		stream->vrr_infopacket = *update->vrr_infopacket;
2938 
2939 	if (update->allow_freesync)
2940 		stream->allow_freesync = *update->allow_freesync;
2941 
2942 	if (update->vrr_active_variable)
2943 		stream->vrr_active_variable = *update->vrr_active_variable;
2944 
2945 	if (update->vrr_active_fixed)
2946 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2947 
2948 	if (update->crtc_timing_adjust)
2949 		stream->adjust = *update->crtc_timing_adjust;
2950 
2951 	if (update->dpms_off)
2952 		stream->dpms_off = *update->dpms_off;
2953 
2954 	if (update->hfvsif_infopacket)
2955 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2956 
2957 	if (update->vtem_infopacket)
2958 		stream->vtem_infopacket = *update->vtem_infopacket;
2959 
2960 	if (update->vsc_infopacket)
2961 		stream->vsc_infopacket = *update->vsc_infopacket;
2962 
2963 	if (update->vsp_infopacket)
2964 		stream->vsp_infopacket = *update->vsp_infopacket;
2965 
2966 	if (update->adaptive_sync_infopacket)
2967 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2968 
2969 	if (update->dither_option)
2970 		stream->dither_option = *update->dither_option;
2971 
2972 	if (update->pending_test_pattern)
2973 		stream->test_pattern = *update->pending_test_pattern;
2974 	/* update current stream with writeback info */
2975 	if (update->wb_update) {
2976 		int i;
2977 
2978 		stream->num_wb_info = update->wb_update->num_wb_info;
2979 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2980 		for (i = 0; i < stream->num_wb_info; i++)
2981 			stream->writeback_info[i] =
2982 				update->wb_update->writeback_info[i];
2983 	}
2984 	if (update->dsc_config) {
2985 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2986 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2987 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2988 				       update->dsc_config->num_slices_v != 0);
2989 
2990 		/* Use temporarry context for validating new DSC config */
2991 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2992 
2993 		if (dsc_validate_context) {
2994 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2995 
2996 			stream->timing.dsc_cfg = *update->dsc_config;
2997 			stream->timing.flags.DSC = enable_dsc;
2998 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2999 				stream->timing.dsc_cfg = old_dsc_cfg;
3000 				stream->timing.flags.DSC = old_dsc_enabled;
3001 				update->dsc_config = NULL;
3002 			}
3003 
3004 			dc_release_state(dsc_validate_context);
3005 		} else {
3006 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
3007 			update->dsc_config = NULL;
3008 		}
3009 	}
3010 }
3011 
3012 static bool update_planes_and_stream_state(struct dc *dc,
3013 		struct dc_surface_update *srf_updates, int surface_count,
3014 		struct dc_stream_state *stream,
3015 		struct dc_stream_update *stream_update,
3016 		enum surface_update_type *new_update_type,
3017 		struct dc_state **new_context)
3018 {
3019 	struct dc_state *context;
3020 	int i, j;
3021 	enum surface_update_type update_type;
3022 	const struct dc_stream_status *stream_status;
3023 	struct dc_context *dc_ctx = dc->ctx;
3024 
3025 	stream_status = dc_stream_get_status(stream);
3026 
3027 	if (!stream_status) {
3028 		if (surface_count) /* Only an error condition if surf_count non-zero*/
3029 			ASSERT(false);
3030 
3031 		return false; /* Cannot commit surface to stream that is not committed */
3032 	}
3033 
3034 	context = dc->current_state;
3035 
3036 	update_type = dc_check_update_surfaces_for_stream(
3037 			dc, srf_updates, surface_count, stream_update, stream_status);
3038 
3039 	/* update current stream with the new updates */
3040 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3041 
3042 	/* do not perform surface update if surface has invalid dimensions
3043 	 * (all zero) and no scaling_info is provided
3044 	 */
3045 	if (surface_count > 0) {
3046 		for (i = 0; i < surface_count; i++) {
3047 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3048 				 srf_updates[i].surface->src_rect.height == 0 ||
3049 				 srf_updates[i].surface->dst_rect.width == 0 ||
3050 				 srf_updates[i].surface->dst_rect.height == 0) &&
3051 				(!srf_updates[i].scaling_info ||
3052 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3053 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3054 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3055 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3056 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3057 				return false;
3058 			}
3059 		}
3060 	}
3061 
3062 	if (update_type >= update_surface_trace_level)
3063 		update_surface_trace(dc, srf_updates, surface_count);
3064 
3065 	if (update_type >= UPDATE_TYPE_FULL) {
3066 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3067 
3068 		for (i = 0; i < surface_count; i++)
3069 			new_planes[i] = srf_updates[i].surface;
3070 
3071 		/* initialize scratch memory for building context */
3072 		context = dc_create_state(dc);
3073 		if (context == NULL) {
3074 			DC_ERROR("Failed to allocate new validate context!\n");
3075 			return false;
3076 		}
3077 
3078 		dc_resource_state_copy_construct(
3079 				dc->current_state, context);
3080 
3081 		/* For each full update, remove all existing phantom pipes first.
3082 		 * Ensures that we have enough pipes for newly added MPO planes
3083 		 */
3084 		if (dc->res_pool->funcs->remove_phantom_pipes)
3085 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3086 
3087 		/*remove old surfaces from context */
3088 		if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3089 
3090 			BREAK_TO_DEBUGGER();
3091 			goto fail;
3092 		}
3093 
3094 		/* add surface to context */
3095 		if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3096 
3097 			BREAK_TO_DEBUGGER();
3098 			goto fail;
3099 		}
3100 	}
3101 
3102 	/* save update parameters into surface */
3103 	for (i = 0; i < surface_count; i++) {
3104 		struct dc_plane_state *surface = srf_updates[i].surface;
3105 
3106 		copy_surface_update_to_plane(surface, &srf_updates[i]);
3107 
3108 		if (update_type >= UPDATE_TYPE_MED) {
3109 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3110 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3111 
3112 				if (pipe_ctx->plane_state != surface)
3113 					continue;
3114 
3115 				resource_build_scaling_params(pipe_ctx);
3116 			}
3117 		}
3118 	}
3119 
3120 	if (update_type == UPDATE_TYPE_FULL) {
3121 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3122 			/* For phantom pipes we remove and create a new set of phantom pipes
3123 			 * for each full update (because we don't know if we'll need phantom
3124 			 * pipes until after the first round of validation). However, if validation
3125 			 * fails we need to keep the existing phantom pipes (because we don't update
3126 			 * the dc->current_state).
3127 			 *
3128 			 * The phantom stream/plane refcount is decremented for validation because
3129 			 * we assume it'll be removed (the free comes when the dc_state is freed),
3130 			 * but if validation fails we have to increment back the refcount so it's
3131 			 * consistent.
3132 			 */
3133 			if (dc->res_pool->funcs->retain_phantom_pipes)
3134 				dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3135 			BREAK_TO_DEBUGGER();
3136 			goto fail;
3137 		}
3138 	}
3139 
3140 	*new_context = context;
3141 	*new_update_type = update_type;
3142 
3143 	return true;
3144 
3145 fail:
3146 	dc_release_state(context);
3147 
3148 	return false;
3149 
3150 }
3151 
3152 static void commit_planes_do_stream_update(struct dc *dc,
3153 		struct dc_stream_state *stream,
3154 		struct dc_stream_update *stream_update,
3155 		enum surface_update_type update_type,
3156 		struct dc_state *context)
3157 {
3158 	int j;
3159 
3160 	// Stream updates
3161 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3162 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3163 
3164 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3165 
3166 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3167 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3168 
3169 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3170 					stream_update->vrr_infopacket ||
3171 					stream_update->vsc_infopacket ||
3172 					stream_update->vsp_infopacket ||
3173 					stream_update->hfvsif_infopacket ||
3174 					stream_update->adaptive_sync_infopacket ||
3175 					stream_update->vtem_infopacket) {
3176 				resource_build_info_frame(pipe_ctx);
3177 				dc->hwss.update_info_frame(pipe_ctx);
3178 
3179 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3180 					dc->link_srv->dp_trace_source_sequence(
3181 							pipe_ctx->stream->link,
3182 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3183 			}
3184 
3185 			if (stream_update->hdr_static_metadata &&
3186 					stream->use_dynamic_meta &&
3187 					dc->hwss.set_dmdata_attributes &&
3188 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3189 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3190 
3191 			if (stream_update->gamut_remap)
3192 				dc_stream_set_gamut_remap(dc, stream);
3193 
3194 			if (stream_update->output_csc_transform)
3195 				dc_stream_program_csc_matrix(dc, stream);
3196 
3197 			if (stream_update->dither_option) {
3198 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3199 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3200 									&pipe_ctx->stream->bit_depth_params);
3201 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3202 						&stream->bit_depth_params,
3203 						&stream->clamping);
3204 				while (odm_pipe) {
3205 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3206 							&stream->bit_depth_params,
3207 							&stream->clamping);
3208 					odm_pipe = odm_pipe->next_odm_pipe;
3209 				}
3210 			}
3211 
3212 
3213 			/* Full fe update*/
3214 			if (update_type == UPDATE_TYPE_FAST)
3215 				continue;
3216 
3217 			if (stream_update->dsc_config)
3218 				dc->link_srv->update_dsc_config(pipe_ctx);
3219 
3220 			if (stream_update->mst_bw_update) {
3221 				if (stream_update->mst_bw_update->is_increase)
3222 					dc->link_srv->increase_mst_payload(pipe_ctx,
3223 							stream_update->mst_bw_update->mst_stream_bw);
3224  				else
3225 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3226 							stream_update->mst_bw_update->mst_stream_bw);
3227  			}
3228 
3229 			if (stream_update->pending_test_pattern) {
3230 				dc_link_dp_set_test_pattern(stream->link,
3231 					stream->test_pattern.type,
3232 					stream->test_pattern.color_space,
3233 					stream->test_pattern.p_link_settings,
3234 					stream->test_pattern.p_custom_pattern,
3235 					stream->test_pattern.cust_pattern_size);
3236 			}
3237 
3238 			if (stream_update->dpms_off) {
3239 				if (*stream_update->dpms_off) {
3240 					dc->link_srv->set_dpms_off(pipe_ctx);
3241 					/* for dpms, keep acquired resources*/
3242 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3243 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3244 
3245 					dc->optimized_required = true;
3246 
3247 				} else {
3248 					if (get_seamless_boot_stream_count(context) == 0)
3249 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3250 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3251 				}
3252 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3253 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3254 				/*
3255 				 * Workaround for firmware issue in some receivers where they don't pick up
3256 				 * correct output color space unless DP link is disabled/re-enabled
3257 				 */
3258 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3259 			}
3260 
3261 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3262 				bool should_program_abm = true;
3263 
3264 				// if otg funcs defined check if blanked before programming
3265 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3266 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3267 						should_program_abm = false;
3268 
3269 				if (should_program_abm) {
3270 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3271 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3272 					} else {
3273 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3274 							pipe_ctx->stream_res.abm, stream->abm_level);
3275 					}
3276 				}
3277 			}
3278 		}
3279 	}
3280 }
3281 
3282 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3283 {
3284 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3285 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3286 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3287 		return true;
3288 
3289 	if (stream->link->replay_settings.config.replay_supported)
3290 		return true;
3291 
3292 	return false;
3293 }
3294 
3295 void dc_dmub_update_dirty_rect(struct dc *dc,
3296 			       int surface_count,
3297 			       struct dc_stream_state *stream,
3298 			       struct dc_surface_update *srf_updates,
3299 			       struct dc_state *context)
3300 {
3301 	union dmub_rb_cmd cmd;
3302 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3303 	unsigned int i, j;
3304 	unsigned int panel_inst = 0;
3305 
3306 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3307 		return;
3308 
3309 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3310 		return;
3311 
3312 	memset(&cmd, 0x0, sizeof(cmd));
3313 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3314 	cmd.update_dirty_rect.header.sub_type = 0;
3315 	cmd.update_dirty_rect.header.payload_bytes =
3316 		sizeof(cmd.update_dirty_rect) -
3317 		sizeof(cmd.update_dirty_rect.header);
3318 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3319 	for (i = 0; i < surface_count; i++) {
3320 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3321 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3322 
3323 		if (!srf_updates[i].surface || !flip_addr)
3324 			continue;
3325 		/* Do not send in immediate flip mode */
3326 		if (srf_updates[i].surface->flip_immediate)
3327 			continue;
3328 
3329 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3330 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3331 				sizeof(flip_addr->dirty_rects));
3332 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3333 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3334 
3335 			if (pipe_ctx->stream != stream)
3336 				continue;
3337 			if (pipe_ctx->plane_state != plane_state)
3338 				continue;
3339 
3340 			update_dirty_rect->panel_inst = panel_inst;
3341 			update_dirty_rect->pipe_idx = j;
3342 			dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3343 		}
3344 	}
3345 }
3346 
3347 static void build_dmub_update_dirty_rect(
3348 		struct dc *dc,
3349 		int surface_count,
3350 		struct dc_stream_state *stream,
3351 		struct dc_surface_update *srf_updates,
3352 		struct dc_state *context,
3353 		struct dc_dmub_cmd dc_dmub_cmd[],
3354 		unsigned int *dmub_cmd_count)
3355 {
3356 	union dmub_rb_cmd cmd;
3357 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3358 	unsigned int i, j;
3359 	unsigned int panel_inst = 0;
3360 
3361 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3362 		return;
3363 
3364 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3365 		return;
3366 
3367 	memset(&cmd, 0x0, sizeof(cmd));
3368 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3369 	cmd.update_dirty_rect.header.sub_type = 0;
3370 	cmd.update_dirty_rect.header.payload_bytes =
3371 		sizeof(cmd.update_dirty_rect) -
3372 		sizeof(cmd.update_dirty_rect.header);
3373 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3374 	for (i = 0; i < surface_count; i++) {
3375 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3376 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3377 
3378 		if (!srf_updates[i].surface || !flip_addr)
3379 			continue;
3380 		/* Do not send in immediate flip mode */
3381 		if (srf_updates[i].surface->flip_immediate)
3382 			continue;
3383 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3384 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3385 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3386 				sizeof(flip_addr->dirty_rects));
3387 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3388 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3389 
3390 			if (pipe_ctx->stream != stream)
3391 				continue;
3392 			if (pipe_ctx->plane_state != plane_state)
3393 				continue;
3394 			update_dirty_rect->panel_inst = panel_inst;
3395 			update_dirty_rect->pipe_idx = j;
3396 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3397 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3398 			(*dmub_cmd_count)++;
3399 		}
3400 	}
3401 }
3402 
3403 
3404 /**
3405  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3406  *
3407  * @dc: Current DC state
3408  * @srf_updates: Array of surface updates
3409  * @surface_count: Number of surfaces that have an updated
3410  * @stream: Corresponding stream to be updated in the current flip
3411  * @context: New DC state to be programmed
3412  *
3413  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3414  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3415  *
3416  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3417  * to build an array of commands and have them sent while the OTG lock is acquired.
3418  *
3419  * Return: void
3420  */
3421 static void build_dmub_cmd_list(struct dc *dc,
3422 		struct dc_surface_update *srf_updates,
3423 		int surface_count,
3424 		struct dc_stream_state *stream,
3425 		struct dc_state *context,
3426 		struct dc_dmub_cmd dc_dmub_cmd[],
3427 		unsigned int *dmub_cmd_count)
3428 {
3429 	// Initialize cmd count to 0
3430 	*dmub_cmd_count = 0;
3431 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3432 }
3433 
3434 static void commit_planes_for_stream_fast(struct dc *dc,
3435 		struct dc_surface_update *srf_updates,
3436 		int surface_count,
3437 		struct dc_stream_state *stream,
3438 		struct dc_stream_update *stream_update,
3439 		enum surface_update_type update_type,
3440 		struct dc_state *context)
3441 {
3442 	int i, j;
3443 	struct pipe_ctx *top_pipe_to_program = NULL;
3444 	dc_z10_restore(dc);
3445 
3446 	top_pipe_to_program = resource_get_otg_master_for_stream(
3447 			&context->res_ctx,
3448 			stream);
3449 
3450 	if (dc->debug.visual_confirm) {
3451 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3452 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3453 
3454 			if (pipe->stream && pipe->plane_state)
3455 				dc_update_viusal_confirm_color(dc, context, pipe);
3456 		}
3457 	}
3458 
3459 	for (i = 0; i < surface_count; i++) {
3460 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3461 		/*set logical flag for lock/unlock use*/
3462 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3463 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3464 
3465 			if (!pipe_ctx->plane_state)
3466 				continue;
3467 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3468 				continue;
3469 			pipe_ctx->plane_state->triplebuffer_flips = false;
3470 			if (update_type == UPDATE_TYPE_FAST &&
3471 			    dc->hwss.program_triplebuffer &&
3472 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3473 				/*triple buffer for VUpdate  only*/
3474 				pipe_ctx->plane_state->triplebuffer_flips = true;
3475 			}
3476 		}
3477 	}
3478 
3479 	build_dmub_cmd_list(dc,
3480 			srf_updates,
3481 			surface_count,
3482 			stream,
3483 			context,
3484 			context->dc_dmub_cmd,
3485 			&(context->dmub_cmd_count));
3486 	hwss_build_fast_sequence(dc,
3487 			context->dc_dmub_cmd,
3488 			context->dmub_cmd_count,
3489 			context->block_sequence,
3490 			&(context->block_sequence_steps),
3491 			top_pipe_to_program);
3492 	hwss_execute_sequence(dc,
3493 			context->block_sequence,
3494 			context->block_sequence_steps);
3495 	/* Clear update flags so next flip doesn't have redundant programming
3496 	 * (if there's no stream update, the update flags are not cleared).
3497 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3498 	 * so no need to clear here.
3499 	 */
3500 	if (top_pipe_to_program->stream)
3501 		top_pipe_to_program->stream->update_flags.raw = 0;
3502 }
3503 
3504 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3505 {
3506 /*
3507  * This function calls HWSS to wait for any potentially double buffered
3508  * operations to complete. It should be invoked as a pre-amble prior
3509  * to full update programming before asserting any HW locks.
3510  */
3511 	int pipe_idx;
3512 	int opp_inst;
3513 	int opp_count = dc->res_pool->pipe_count;
3514 	struct hubp *hubp;
3515 	int mpcc_inst;
3516 	const struct pipe_ctx *pipe_ctx;
3517 
3518 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3519 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3520 
3521 		if (!pipe_ctx->stream)
3522 			continue;
3523 
3524 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3525 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3526 
3527 		hubp = pipe_ctx->plane_res.hubp;
3528 		if (!hubp)
3529 			continue;
3530 
3531 		mpcc_inst = hubp->inst;
3532 		// MPCC inst is equal to pipe index in practice
3533 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3534 			if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3535 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3536 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3537 				break;
3538 			}
3539 		}
3540 	}
3541 }
3542 
3543 static void commit_planes_for_stream(struct dc *dc,
3544 		struct dc_surface_update *srf_updates,
3545 		int surface_count,
3546 		struct dc_stream_state *stream,
3547 		struct dc_stream_update *stream_update,
3548 		enum surface_update_type update_type,
3549 		struct dc_state *context)
3550 {
3551 	int i, j;
3552 	struct pipe_ctx *top_pipe_to_program = NULL;
3553 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3554 	bool subvp_prev_use = false;
3555 	bool subvp_curr_use = false;
3556 
3557 	// Once we apply the new subvp context to hardware it won't be in the
3558 	// dc->current_state anymore, so we have to cache it before we apply
3559 	// the new SubVP context
3560 	subvp_prev_use = false;
3561 	dc_z10_restore(dc);
3562 	if (update_type == UPDATE_TYPE_FULL)
3563 		wait_for_outstanding_hw_updates(dc, context);
3564 
3565 	if (update_type == UPDATE_TYPE_FULL) {
3566 		dc_allow_idle_optimizations(dc, false);
3567 
3568 		if (get_seamless_boot_stream_count(context) == 0)
3569 			dc->hwss.prepare_bandwidth(dc, context);
3570 
3571 		if (dc->debug.enable_double_buffered_dsc_pg_support)
3572 			dc->hwss.update_dsc_pg(dc, context, false);
3573 
3574 		context_clock_trace(dc, context);
3575 	}
3576 
3577 	top_pipe_to_program = resource_get_otg_master_for_stream(
3578 				&context->res_ctx,
3579 				stream);
3580 
3581 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3582 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3583 
3584 		// Check old context for SubVP
3585 		subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3586 		if (subvp_prev_use)
3587 			break;
3588 	}
3589 
3590 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3591 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3592 
3593 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3594 			subvp_curr_use = true;
3595 			break;
3596 		}
3597 	}
3598 
3599 	if (dc->debug.visual_confirm)
3600 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
3601 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3602 
3603 			if (pipe->stream && pipe->plane_state)
3604 				dc_update_viusal_confirm_color(dc, context, pipe);
3605 		}
3606 
3607 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3608 		struct pipe_ctx *mpcc_pipe;
3609 		struct pipe_ctx *odm_pipe;
3610 
3611 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3612 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3613 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3614 	}
3615 
3616 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3617 		if (top_pipe_to_program &&
3618 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3619 			if (should_use_dmub_lock(stream->link)) {
3620 				union dmub_hw_lock_flags hw_locks = { 0 };
3621 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3622 
3623 				hw_locks.bits.lock_dig = 1;
3624 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3625 
3626 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3627 							true,
3628 							&hw_locks,
3629 							&inst_flags);
3630 			} else
3631 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3632 						top_pipe_to_program->stream_res.tg);
3633 		}
3634 
3635 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3636 		if (dc->hwss.subvp_pipe_control_lock)
3637 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3638 		dc->hwss.interdependent_update_lock(dc, context, true);
3639 
3640 	} else {
3641 		if (dc->hwss.subvp_pipe_control_lock)
3642 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3643 		/* Lock the top pipe while updating plane addrs, since freesync requires
3644 		 *  plane addr update event triggers to be synchronized.
3645 		 *  top_pipe_to_program is expected to never be NULL
3646 		 */
3647 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3648 	}
3649 
3650 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3651 
3652 	// Stream updates
3653 	if (stream_update)
3654 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3655 
3656 	if (surface_count == 0) {
3657 		/*
3658 		 * In case of turning off screen, no need to program front end a second time.
3659 		 * just return after program blank.
3660 		 */
3661 		if (dc->hwss.apply_ctx_for_surface)
3662 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3663 		if (dc->hwss.program_front_end_for_ctx)
3664 			dc->hwss.program_front_end_for_ctx(dc, context);
3665 
3666 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3667 			dc->hwss.interdependent_update_lock(dc, context, false);
3668 		} else {
3669 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3670 		}
3671 		dc->hwss.post_unlock_program_front_end(dc, context);
3672 
3673 		if (update_type != UPDATE_TYPE_FAST)
3674 			if (dc->hwss.commit_subvp_config)
3675 				dc->hwss.commit_subvp_config(dc, context);
3676 
3677 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3678 		 * move the SubVP lock to after the phantom pipes have been setup
3679 		 */
3680 		if (dc->hwss.subvp_pipe_control_lock)
3681 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3682 							 NULL, subvp_prev_use);
3683 		return;
3684 	}
3685 
3686 	if (update_type != UPDATE_TYPE_FAST) {
3687 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3688 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3689 
3690 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3691 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3692 				pipe_ctx->stream && pipe_ctx->plane_state) {
3693 				/* Only update visual confirm for SUBVP and Mclk switching here.
3694 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3695 				 * so the information doesn't get stale.
3696 				 */
3697 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3698 						pipe_ctx->plane_res.hubp->inst);
3699 			}
3700 		}
3701 	}
3702 
3703 	for (i = 0; i < surface_count; i++) {
3704 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3705 		/*set logical flag for lock/unlock use*/
3706 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3707 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3708 			if (!pipe_ctx->plane_state)
3709 				continue;
3710 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3711 				continue;
3712 			pipe_ctx->plane_state->triplebuffer_flips = false;
3713 			if (update_type == UPDATE_TYPE_FAST &&
3714 				dc->hwss.program_triplebuffer != NULL &&
3715 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3716 					/*triple buffer for VUpdate  only*/
3717 					pipe_ctx->plane_state->triplebuffer_flips = true;
3718 			}
3719 		}
3720 		if (update_type == UPDATE_TYPE_FULL) {
3721 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3722 			plane_state->flip_immediate = false;
3723 		}
3724 	}
3725 
3726 	// Update Type FULL, Surface updates
3727 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3728 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3729 
3730 		if (!pipe_ctx->top_pipe &&
3731 			!pipe_ctx->prev_odm_pipe &&
3732 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3733 			struct dc_stream_status *stream_status = NULL;
3734 
3735 			if (!pipe_ctx->plane_state)
3736 				continue;
3737 
3738 			/* Full fe update*/
3739 			if (update_type == UPDATE_TYPE_FAST)
3740 				continue;
3741 
3742 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3743 
3744 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3745 				/*turn off triple buffer for full update*/
3746 				dc->hwss.program_triplebuffer(
3747 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3748 			}
3749 			stream_status =
3750 				stream_get_status(context, pipe_ctx->stream);
3751 
3752 			if (dc->hwss.apply_ctx_for_surface)
3753 				dc->hwss.apply_ctx_for_surface(
3754 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3755 		}
3756 	}
3757 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3758 		dc->hwss.program_front_end_for_ctx(dc, context);
3759 		if (dc->debug.validate_dml_output) {
3760 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3761 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3762 				if (cur_pipe->stream == NULL)
3763 					continue;
3764 
3765 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3766 						cur_pipe->plane_res.hubp, dc->ctx,
3767 						&context->res_ctx.pipe_ctx[i].rq_regs,
3768 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3769 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3770 			}
3771 		}
3772 	}
3773 
3774 	// Update Type FAST, Surface updates
3775 	if (update_type == UPDATE_TYPE_FAST) {
3776 		if (dc->hwss.set_flip_control_gsl)
3777 			for (i = 0; i < surface_count; i++) {
3778 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3779 
3780 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3781 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3782 
3783 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3784 						continue;
3785 
3786 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3787 						continue;
3788 
3789 					// GSL has to be used for flip immediate
3790 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3791 							pipe_ctx->plane_state->flip_immediate);
3792 				}
3793 			}
3794 
3795 		/* Perform requested Updates */
3796 		for (i = 0; i < surface_count; i++) {
3797 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3798 
3799 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3800 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3801 
3802 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3803 					continue;
3804 
3805 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3806 					continue;
3807 
3808 				/*program triple buffer after lock based on flip type*/
3809 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3810 					/*only enable triplebuffer for  fast_update*/
3811 					dc->hwss.program_triplebuffer(
3812 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3813 				}
3814 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3815 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3816 			}
3817 		}
3818 	}
3819 
3820 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3821 		dc->hwss.interdependent_update_lock(dc, context, false);
3822 	} else {
3823 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3824 	}
3825 
3826 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3827 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3828 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3829 				top_pipe_to_program->stream_res.tg,
3830 				CRTC_STATE_VACTIVE);
3831 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3832 				top_pipe_to_program->stream_res.tg,
3833 				CRTC_STATE_VBLANK);
3834 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3835 				top_pipe_to_program->stream_res.tg,
3836 				CRTC_STATE_VACTIVE);
3837 
3838 			if (should_use_dmub_lock(stream->link)) {
3839 				union dmub_hw_lock_flags hw_locks = { 0 };
3840 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3841 
3842 				hw_locks.bits.lock_dig = 1;
3843 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3844 
3845 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3846 							false,
3847 							&hw_locks,
3848 							&inst_flags);
3849 			} else
3850 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3851 					top_pipe_to_program->stream_res.tg);
3852 		}
3853 
3854 	if (subvp_curr_use) {
3855 		/* If enabling subvp or transitioning from subvp->subvp, enable the
3856 		 * phantom streams before we program front end for the phantom pipes.
3857 		 */
3858 		if (update_type != UPDATE_TYPE_FAST) {
3859 			if (dc->hwss.enable_phantom_streams)
3860 				dc->hwss.enable_phantom_streams(dc, context);
3861 		}
3862 	}
3863 
3864 	if (update_type != UPDATE_TYPE_FAST)
3865 		dc->hwss.post_unlock_program_front_end(dc, context);
3866 
3867 	if (subvp_prev_use && !subvp_curr_use) {
3868 		/* If disabling subvp, disable phantom streams after front end
3869 		 * programming has completed (we turn on phantom OTG in order
3870 		 * to complete the plane disable for phantom pipes).
3871 		 */
3872 		dc->hwss.apply_ctx_to_hw(dc, context);
3873 	}
3874 
3875 	if (update_type != UPDATE_TYPE_FAST)
3876 		if (dc->hwss.commit_subvp_config)
3877 			dc->hwss.commit_subvp_config(dc, context);
3878 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3879 	 * move the SubVP lock to after the phantom pipes have been setup
3880 	 */
3881 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3882 		if (dc->hwss.subvp_pipe_control_lock)
3883 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3884 	} else {
3885 		if (dc->hwss.subvp_pipe_control_lock)
3886 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3887 	}
3888 
3889 	// Fire manual trigger only when bottom plane is flipped
3890 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3891 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3892 
3893 		if (!pipe_ctx->plane_state)
3894 			continue;
3895 
3896 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3897 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3898 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
3899 				pipe_ctx->plane_state->skip_manual_trigger)
3900 			continue;
3901 
3902 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3903 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3904 	}
3905 }
3906 
3907 /**
3908  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3909  *
3910  * @dc: Used to get the current state status
3911  * @stream: Target stream, which we want to remove the attached planes
3912  * @surface_count: Number of surface update
3913  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3914  *
3915  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3916  * the MPO if used simultaneously in some specific configurations (e.g.,
3917  * 4k@144). This function checks if the incoming context requires applying a
3918  * transition state with unnecessary pipe splitting and ODM disabled to
3919  * circumvent our hardware limitations to prevent this edge case. If the OPP
3920  * associated with an MPCC might change due to plane additions, this function
3921  * returns true.
3922  *
3923  * Return:
3924  * Return true if OPP and MPCC might change, otherwise, return false.
3925  */
3926 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3927 		struct dc_stream_state *stream,
3928 		int surface_count,
3929 		bool *is_plane_addition)
3930 {
3931 
3932 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3933 	bool force_minimal_pipe_splitting = false;
3934 	bool subvp_active = false;
3935 	uint32_t i;
3936 
3937 	*is_plane_addition = false;
3938 
3939 	if (cur_stream_status &&
3940 			dc->current_state->stream_count > 0 &&
3941 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3942 		/* determine if minimal transition is required due to MPC*/
3943 		if (surface_count > 0) {
3944 			if (cur_stream_status->plane_count > surface_count) {
3945 				force_minimal_pipe_splitting = true;
3946 			} else if (cur_stream_status->plane_count < surface_count) {
3947 				force_minimal_pipe_splitting = true;
3948 				*is_plane_addition = true;
3949 			}
3950 		}
3951 	}
3952 
3953 	if (cur_stream_status &&
3954 			dc->current_state->stream_count == 1 &&
3955 			dc->debug.enable_single_display_2to1_odm_policy) {
3956 		/* determine if minimal transition is required due to dynamic ODM*/
3957 		if (surface_count > 0) {
3958 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3959 				force_minimal_pipe_splitting = true;
3960 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3961 				force_minimal_pipe_splitting = true;
3962 				*is_plane_addition = true;
3963 			}
3964 		}
3965 	}
3966 
3967 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3968 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3969 
3970 		if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3971 			subvp_active = true;
3972 			break;
3973 		}
3974 	}
3975 
3976 	/* For SubVP when adding or removing planes we need to add a minimal transition
3977 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3978 	 * must use the minimal transition path to disable the pipe correctly.
3979 	 *
3980 	 * We want to use the minimal transition whenever subvp is active, not only if
3981 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
3982 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3983 	 * a min transition to disable subvp.
3984 	 */
3985 	if (cur_stream_status && subvp_active) {
3986 		/* determine if minimal transition is required due to SubVP*/
3987 		if (cur_stream_status->plane_count > surface_count) {
3988 			force_minimal_pipe_splitting = true;
3989 		} else if (cur_stream_status->plane_count < surface_count) {
3990 			force_minimal_pipe_splitting = true;
3991 			*is_plane_addition = true;
3992 		}
3993 	}
3994 
3995 	return force_minimal_pipe_splitting;
3996 }
3997 
3998 /**
3999  * commit_minimal_transition_state - Create a transition pipe split state
4000  *
4001  * @dc: Used to get the current state status
4002  * @transition_base_context: New transition state
4003  *
4004  * In some specific configurations, such as pipe split on multi-display with
4005  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4006  * programming when moving to new planes. To mitigate those types of problems,
4007  * this function adds a transition state that minimizes pipe usage before
4008  * programming the new configuration. When adding a new plane, the current
4009  * state requires the least pipes, so it is applied without splitting. When
4010  * removing a plane, the new state requires the least pipes, so it is applied
4011  * without splitting.
4012  *
4013  * Return:
4014  * Return false if something is wrong in the transition state.
4015  */
4016 static bool commit_minimal_transition_state(struct dc *dc,
4017 		struct dc_state *transition_base_context)
4018 {
4019 	struct dc_state *transition_context = dc_create_state(dc);
4020 	enum pipe_split_policy tmp_mpc_policy = 0;
4021 	bool temp_dynamic_odm_policy = 0;
4022 	bool temp_subvp_policy = 0;
4023 	enum dc_status ret = DC_ERROR_UNEXPECTED;
4024 	unsigned int i, j;
4025 	unsigned int pipe_in_use = 0;
4026 	bool subvp_in_use = false;
4027 	bool odm_in_use = false;
4028 
4029 	if (!transition_context)
4030 		return false;
4031 	/* Setup:
4032 	 * Store the current ODM and MPC config in some temp variables to be
4033 	 * restored after we commit the transition state.
4034 	 */
4035 
4036 	/* check current pipes in use*/
4037 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4038 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4039 
4040 		if (pipe->plane_state)
4041 			pipe_in_use++;
4042 	}
4043 
4044 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4045 	 * pipe, we must use the minimal transition.
4046 	 */
4047 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4048 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4049 
4050 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4051 			subvp_in_use = true;
4052 			break;
4053 		}
4054 	}
4055 
4056 	/* If ODM is enabled and we are adding or removing planes from any ODM
4057 	 * pipe, we must use the minimal transition.
4058 	 */
4059 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4060 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4061 
4062 		if (pipe->stream && pipe->next_odm_pipe) {
4063 			odm_in_use = true;
4064 			break;
4065 		}
4066 	}
4067 
4068 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4069 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4070 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4071 	 * call it again. Otherwise return true to skip.
4072 	 *
4073 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4074 	 * enter/exit MPO when DCN still have enough resources.
4075 	 */
4076 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4077 		dc_release_state(transition_context);
4078 		return true;
4079 	}
4080 
4081 	if (!dc->config.is_vmin_only_asic) {
4082 		tmp_mpc_policy = dc->debug.pipe_split_policy;
4083 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4084 	}
4085 
4086 	temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4087 	dc->debug.enable_single_display_2to1_odm_policy = false;
4088 
4089 	temp_subvp_policy = dc->debug.force_disable_subvp;
4090 	dc->debug.force_disable_subvp = true;
4091 
4092 	dc_resource_state_copy_construct(transition_base_context, transition_context);
4093 
4094 	/* commit minimal state */
4095 	if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4096 		for (i = 0; i < transition_context->stream_count; i++) {
4097 			struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4098 
4099 			for (j = 0; j < stream_status->plane_count; j++) {
4100 				struct dc_plane_state *plane_state = stream_status->plane_states[j];
4101 
4102 				/* force vsync flip when reconfiguring pipes to prevent underflow
4103 				 * and corruption
4104 				 */
4105 				plane_state->flip_immediate = false;
4106 			}
4107 		}
4108 
4109 		ret = dc_commit_state_no_check(dc, transition_context);
4110 	}
4111 
4112 	/* always release as dc_commit_state_no_check retains in good case */
4113 	dc_release_state(transition_context);
4114 
4115 	/* TearDown:
4116 	 * Restore original configuration for ODM and MPO.
4117 	 */
4118 	if (!dc->config.is_vmin_only_asic)
4119 		dc->debug.pipe_split_policy = tmp_mpc_policy;
4120 
4121 	dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4122 	dc->debug.force_disable_subvp = temp_subvp_policy;
4123 
4124 	if (ret != DC_OK) {
4125 		/* this should never happen */
4126 		BREAK_TO_DEBUGGER();
4127 		return false;
4128 	}
4129 
4130 	/* force full surface update */
4131 	for (i = 0; i < dc->current_state->stream_count; i++) {
4132 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4133 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4134 		}
4135 	}
4136 
4137 	return true;
4138 }
4139 
4140 /**
4141  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4142  *
4143  * @dc: Current DC state
4144  * @context: New DC state to be programmed
4145  * @surface_count: Number of surfaces that have an updated
4146  * @stream: Corresponding stream to be updated in the current flip
4147  *
4148  * Updating seamless boot flags do not need to be part of the commit sequence. This
4149  * helper function will update the seamless boot flags on each flip (if required)
4150  * outside of the HW commit sequence (fast or slow).
4151  *
4152  * Return: void
4153  */
4154 static void update_seamless_boot_flags(struct dc *dc,
4155 		struct dc_state *context,
4156 		int surface_count,
4157 		struct dc_stream_state *stream)
4158 {
4159 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4160 		/* Optimize seamless boot flag keeps clocks and watermarks high until
4161 		 * first flip. After first flip, optimization is required to lower
4162 		 * bandwidth. Important to note that it is expected UEFI will
4163 		 * only light up a single display on POST, therefore we only expect
4164 		 * one stream with seamless boot flag set.
4165 		 */
4166 		if (stream->apply_seamless_boot_optimization) {
4167 			stream->apply_seamless_boot_optimization = false;
4168 
4169 			if (get_seamless_boot_stream_count(context) == 0)
4170 				dc->optimized_required = true;
4171 		}
4172 	}
4173 }
4174 
4175 static void populate_fast_updates(struct dc_fast_update *fast_update,
4176 		struct dc_surface_update *srf_updates,
4177 		int surface_count,
4178 		struct dc_stream_update *stream_update)
4179 {
4180 	int i = 0;
4181 
4182 	if (stream_update) {
4183 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4184 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4185 	}
4186 
4187 	for (i = 0; i < surface_count; i++) {
4188 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4189 		fast_update[i].gamma = srf_updates[i].gamma;
4190 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4191 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4192 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4193 	}
4194 }
4195 
4196 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4197 {
4198 	int i;
4199 
4200 	if (fast_update[0].out_transfer_func ||
4201 		fast_update[0].output_csc_transform)
4202 		return true;
4203 
4204 	for (i = 0; i < surface_count; i++) {
4205 		if (fast_update[i].flip_addr ||
4206 				fast_update[i].gamma ||
4207 				fast_update[i].gamut_remap_matrix ||
4208 				fast_update[i].input_csc_color_matrix ||
4209 				fast_update[i].coeff_reduction_factor)
4210 			return true;
4211 	}
4212 
4213 	return false;
4214 }
4215 
4216 static bool full_update_required(struct dc *dc,
4217 		struct dc_surface_update *srf_updates,
4218 		int surface_count,
4219 		struct dc_stream_update *stream_update,
4220 		struct dc_stream_state *stream)
4221 {
4222 
4223 	int i;
4224 	struct dc_stream_status *stream_status;
4225 	const struct dc_state *context = dc->current_state;
4226 
4227 	for (i = 0; i < surface_count; i++) {
4228 		if (srf_updates &&
4229 				(srf_updates[i].plane_info ||
4230 				srf_updates[i].scaling_info ||
4231 				(srf_updates[i].hdr_mult.value &&
4232 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4233 				srf_updates[i].in_transfer_func ||
4234 				srf_updates[i].func_shaper ||
4235 				srf_updates[i].lut3d_func ||
4236 				srf_updates[i].blend_tf ||
4237 				srf_updates[i].surface->force_full_update ||
4238 				(srf_updates[i].flip_addr &&
4239 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4240 				!is_surface_in_context(context, srf_updates[i].surface)))
4241 			return true;
4242 	}
4243 
4244 	if (stream_update &&
4245 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4246 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4247 			stream_update->integer_scaling_update) ||
4248 			stream_update->hdr_static_metadata ||
4249 			stream_update->abm_level ||
4250 			stream_update->periodic_interrupt ||
4251 			stream_update->vrr_infopacket ||
4252 			stream_update->vsc_infopacket ||
4253 			stream_update->vsp_infopacket ||
4254 			stream_update->hfvsif_infopacket ||
4255 			stream_update->vtem_infopacket ||
4256 			stream_update->adaptive_sync_infopacket ||
4257 			stream_update->dpms_off ||
4258 			stream_update->allow_freesync ||
4259 			stream_update->vrr_active_variable ||
4260 			stream_update->vrr_active_fixed ||
4261 			stream_update->gamut_remap ||
4262 			stream_update->output_color_space ||
4263 			stream_update->dither_option ||
4264 			stream_update->wb_update ||
4265 			stream_update->dsc_config ||
4266 			stream_update->mst_bw_update ||
4267 			stream_update->func_shaper ||
4268 			stream_update->lut3d_func ||
4269 			stream_update->pending_test_pattern ||
4270 			stream_update->crtc_timing_adjust))
4271 		return true;
4272 
4273 	if (stream) {
4274 		stream_status = dc_stream_get_status(stream);
4275 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4276 			return true;
4277 	}
4278 	if (dc->idle_optimizations_allowed)
4279 		return true;
4280 
4281 	return false;
4282 }
4283 
4284 static bool fast_update_only(struct dc *dc,
4285 		struct dc_fast_update *fast_update,
4286 		struct dc_surface_update *srf_updates,
4287 		int surface_count,
4288 		struct dc_stream_update *stream_update,
4289 		struct dc_stream_state *stream)
4290 {
4291 	return fast_updates_exist(fast_update, surface_count)
4292 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4293 }
4294 
4295 bool dc_update_planes_and_stream(struct dc *dc,
4296 		struct dc_surface_update *srf_updates, int surface_count,
4297 		struct dc_stream_state *stream,
4298 		struct dc_stream_update *stream_update)
4299 {
4300 	struct dc_state *context;
4301 	enum surface_update_type update_type;
4302 	int i;
4303 	struct mall_temp_config mall_temp_config;
4304 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4305 
4306 	/* In cases where MPO and split or ODM are used transitions can
4307 	 * cause underflow. Apply stream configuration with minimal pipe
4308 	 * split first to avoid unsupported transitions for active pipes.
4309 	 */
4310 	bool force_minimal_pipe_splitting = 0;
4311 	bool is_plane_addition = 0;
4312 
4313 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4314 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4315 			dc,
4316 			stream,
4317 			surface_count,
4318 			&is_plane_addition);
4319 
4320 	/* on plane addition, minimal state is the current one */
4321 	if (force_minimal_pipe_splitting && is_plane_addition &&
4322 		!commit_minimal_transition_state(dc, dc->current_state))
4323 				return false;
4324 
4325 	if (!update_planes_and_stream_state(
4326 			dc,
4327 			srf_updates,
4328 			surface_count,
4329 			stream,
4330 			stream_update,
4331 			&update_type,
4332 			&context))
4333 		return false;
4334 
4335 	/* on plane removal, minimal state is the new one */
4336 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4337 		/* Since all phantom pipes are removed in full validation,
4338 		 * we have to save and restore the subvp/mall config when
4339 		 * we do a minimal transition since the flags marking the
4340 		 * pipe as subvp/phantom will be cleared (dc copy constructor
4341 		 * creates a shallow copy).
4342 		 */
4343 		if (dc->res_pool->funcs->save_mall_state)
4344 			dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4345 		if (!commit_minimal_transition_state(dc, context)) {
4346 			dc_release_state(context);
4347 			return false;
4348 		}
4349 		if (dc->res_pool->funcs->restore_mall_state)
4350 			dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4351 
4352 		/* If we do a minimal transition with plane removal and the context
4353 		 * has subvp we also have to retain back the phantom stream / planes
4354 		 * since the refcount is decremented as part of the min transition
4355 		 * (we commit a state with no subvp, so the phantom streams / planes
4356 		 * had to be removed).
4357 		 */
4358 		if (dc->res_pool->funcs->retain_phantom_pipes)
4359 			dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4360 		update_type = UPDATE_TYPE_FULL;
4361 	}
4362 
4363 	update_seamless_boot_flags(dc, context, surface_count, stream);
4364 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4365 			!dc->debug.enable_legacy_fast_update) {
4366 		commit_planes_for_stream_fast(dc,
4367 				srf_updates,
4368 				surface_count,
4369 				stream,
4370 				stream_update,
4371 				update_type,
4372 				context);
4373 	} else {
4374 		commit_planes_for_stream(
4375 				dc,
4376 				srf_updates,
4377 				surface_count,
4378 				stream,
4379 				stream_update,
4380 				update_type,
4381 				context);
4382 	}
4383 
4384 	if (dc->current_state != context) {
4385 
4386 		/* Since memory free requires elevated IRQL, an interrupt
4387 		 * request is generated by mem free. If this happens
4388 		 * between freeing and reassigning the context, our vsync
4389 		 * interrupt will call into dc and cause a memory
4390 		 * corruption BSOD. Hence, we first reassign the context,
4391 		 * then free the old context.
4392 		 */
4393 
4394 		struct dc_state *old = dc->current_state;
4395 
4396 		dc->current_state = context;
4397 		dc_release_state(old);
4398 
4399 		// clear any forced full updates
4400 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4401 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4402 
4403 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4404 				pipe_ctx->plane_state->force_full_update = false;
4405 		}
4406 	}
4407 	return true;
4408 }
4409 
4410 void dc_commit_updates_for_stream(struct dc *dc,
4411 		struct dc_surface_update *srf_updates,
4412 		int surface_count,
4413 		struct dc_stream_state *stream,
4414 		struct dc_stream_update *stream_update,
4415 		struct dc_state *state)
4416 {
4417 	const struct dc_stream_status *stream_status;
4418 	enum surface_update_type update_type;
4419 	struct dc_state *context;
4420 	struct dc_context *dc_ctx = dc->ctx;
4421 	int i, j;
4422 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4423 
4424 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4425 	stream_status = dc_stream_get_status(stream);
4426 	context = dc->current_state;
4427 
4428 	update_type = dc_check_update_surfaces_for_stream(
4429 				dc, srf_updates, surface_count, stream_update, stream_status);
4430 
4431 	/* TODO: Since change commit sequence can have a huge impact,
4432 	 * we decided to only enable it for DCN3x. However, as soon as
4433 	 * we get more confident about this change we'll need to enable
4434 	 * the new sequence for all ASICs.
4435 	 */
4436 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4437 		/*
4438 		 * Previous frame finished and HW is ready for optimization.
4439 		 */
4440 		if (update_type == UPDATE_TYPE_FAST)
4441 			dc_post_update_surfaces_to_stream(dc);
4442 
4443 		dc_update_planes_and_stream(dc, srf_updates,
4444 					    surface_count, stream,
4445 					    stream_update);
4446 		return;
4447 	}
4448 
4449 	if (update_type >= update_surface_trace_level)
4450 		update_surface_trace(dc, srf_updates, surface_count);
4451 
4452 
4453 	if (update_type >= UPDATE_TYPE_FULL) {
4454 
4455 		/* initialize scratch memory for building context */
4456 		context = dc_create_state(dc);
4457 		if (context == NULL) {
4458 			DC_ERROR("Failed to allocate new validate context!\n");
4459 			return;
4460 		}
4461 
4462 		dc_resource_state_copy_construct(state, context);
4463 
4464 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4465 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4466 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4467 
4468 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4469 				new_pipe->plane_state->force_full_update = true;
4470 		}
4471 	} else if (update_type == UPDATE_TYPE_FAST) {
4472 		/*
4473 		 * Previous frame finished and HW is ready for optimization.
4474 		 */
4475 		dc_post_update_surfaces_to_stream(dc);
4476 	}
4477 
4478 
4479 	for (i = 0; i < surface_count; i++) {
4480 		struct dc_plane_state *surface = srf_updates[i].surface;
4481 
4482 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4483 
4484 		if (update_type >= UPDATE_TYPE_MED) {
4485 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4486 				struct pipe_ctx *pipe_ctx =
4487 					&context->res_ctx.pipe_ctx[j];
4488 
4489 				if (pipe_ctx->plane_state != surface)
4490 					continue;
4491 
4492 				resource_build_scaling_params(pipe_ctx);
4493 			}
4494 		}
4495 	}
4496 
4497 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4498 
4499 	if (update_type >= UPDATE_TYPE_FULL) {
4500 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4501 			DC_ERROR("Mode validation failed for stream update!\n");
4502 			dc_release_state(context);
4503 			return;
4504 		}
4505 	}
4506 
4507 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4508 
4509 	update_seamless_boot_flags(dc, context, surface_count, stream);
4510 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4511 			!dc->debug.enable_legacy_fast_update) {
4512 		commit_planes_for_stream_fast(dc,
4513 				srf_updates,
4514 				surface_count,
4515 				stream,
4516 				stream_update,
4517 				update_type,
4518 				context);
4519 	} else {
4520 		commit_planes_for_stream(
4521 				dc,
4522 				srf_updates,
4523 				surface_count,
4524 				stream,
4525 				stream_update,
4526 				update_type,
4527 				context);
4528 	}
4529 	/*update current_State*/
4530 	if (dc->current_state != context) {
4531 
4532 		struct dc_state *old = dc->current_state;
4533 
4534 		dc->current_state = context;
4535 		dc_release_state(old);
4536 
4537 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4538 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4539 
4540 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4541 				pipe_ctx->plane_state->force_full_update = false;
4542 		}
4543 	}
4544 
4545 	/* Legacy optimization path for DCE. */
4546 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4547 		dc_post_update_surfaces_to_stream(dc);
4548 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4549 	}
4550 
4551 	return;
4552 
4553 }
4554 
4555 uint8_t dc_get_current_stream_count(struct dc *dc)
4556 {
4557 	return dc->current_state->stream_count;
4558 }
4559 
4560 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4561 {
4562 	if (i < dc->current_state->stream_count)
4563 		return dc->current_state->streams[i];
4564 	return NULL;
4565 }
4566 
4567 enum dc_irq_source dc_interrupt_to_irq_source(
4568 		struct dc *dc,
4569 		uint32_t src_id,
4570 		uint32_t ext_id)
4571 {
4572 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4573 }
4574 
4575 /*
4576  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4577  */
4578 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4579 {
4580 
4581 	if (dc == NULL)
4582 		return false;
4583 
4584 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4585 }
4586 
4587 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4588 {
4589 	dal_irq_service_ack(dc->res_pool->irqs, src);
4590 }
4591 
4592 void dc_power_down_on_boot(struct dc *dc)
4593 {
4594 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4595 			dc->hwss.power_down_on_boot)
4596 		dc->hwss.power_down_on_boot(dc);
4597 }
4598 
4599 void dc_set_power_state(
4600 	struct dc *dc,
4601 	enum dc_acpi_cm_power_state power_state)
4602 {
4603 	struct kref refcount;
4604 	struct display_mode_lib *dml;
4605 
4606 	if (!dc->current_state)
4607 		return;
4608 
4609 	switch (power_state) {
4610 	case DC_ACPI_CM_POWER_STATE_D0:
4611 		dc_resource_state_construct(dc, dc->current_state);
4612 
4613 		dc_z10_restore(dc);
4614 
4615 		dc->hwss.init_hw(dc);
4616 
4617 		if (dc->hwss.init_sys_ctx != NULL &&
4618 			dc->vm_pa_config.valid) {
4619 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4620 		}
4621 
4622 		break;
4623 	default:
4624 		ASSERT(dc->current_state->stream_count == 0);
4625 		/* Zero out the current context so that on resume we start with
4626 		 * clean state, and dc hw programming optimizations will not
4627 		 * cause any trouble.
4628 		 */
4629 		dml = kzalloc(sizeof(struct display_mode_lib),
4630 				GFP_KERNEL);
4631 
4632 		ASSERT(dml);
4633 		if (!dml)
4634 			return;
4635 
4636 		/* Preserve refcount */
4637 		refcount = dc->current_state->refcount;
4638 		/* Preserve display mode lib */
4639 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4640 
4641 		dc_resource_state_destruct(dc->current_state);
4642 		memset(dc->current_state, 0,
4643 				sizeof(*dc->current_state));
4644 
4645 		dc->current_state->refcount = refcount;
4646 		dc->current_state->bw_ctx.dml = *dml;
4647 
4648 		kfree(dml);
4649 
4650 		break;
4651 	}
4652 }
4653 
4654 void dc_resume(struct dc *dc)
4655 {
4656 	uint32_t i;
4657 
4658 	for (i = 0; i < dc->link_count; i++)
4659 		dc->link_srv->resume(dc->links[i]);
4660 }
4661 
4662 bool dc_is_dmcu_initialized(struct dc *dc)
4663 {
4664 	struct dmcu *dmcu = dc->res_pool->dmcu;
4665 
4666 	if (dmcu)
4667 		return dmcu->funcs->is_dmcu_initialized(dmcu);
4668 	return false;
4669 }
4670 
4671 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4672 {
4673 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4674 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4675 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4676 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4677 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4678 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4679 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4680 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4681 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4682 }
4683 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4684 {
4685 	if (dc->hwss.set_clock)
4686 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4687 	return DC_ERROR_UNEXPECTED;
4688 }
4689 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4690 {
4691 	if (dc->hwss.get_clock)
4692 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
4693 }
4694 
4695 /* enable/disable eDP PSR without specify stream for eDP */
4696 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4697 {
4698 	int i;
4699 	bool allow_active;
4700 
4701 	for (i = 0; i < dc->current_state->stream_count ; i++) {
4702 		struct dc_link *link;
4703 		struct dc_stream_state *stream = dc->current_state->streams[i];
4704 
4705 		link = stream->link;
4706 		if (!link)
4707 			continue;
4708 
4709 		if (link->psr_settings.psr_feature_enabled) {
4710 			if (enable && !link->psr_settings.psr_allow_active) {
4711 				allow_active = true;
4712 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4713 					return false;
4714 			} else if (!enable && link->psr_settings.psr_allow_active) {
4715 				allow_active = false;
4716 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4717 					return false;
4718 			}
4719 		}
4720 	}
4721 
4722 	return true;
4723 }
4724 
4725 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4726 {
4727 	if (dc->debug.disable_idle_power_optimizations)
4728 		return;
4729 
4730 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4731 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4732 			return;
4733 
4734 	if (allow == dc->idle_optimizations_allowed)
4735 		return;
4736 
4737 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4738 		dc->idle_optimizations_allowed = allow;
4739 }
4740 
4741 /* set min and max memory clock to lowest and highest DPM level, respectively */
4742 void dc_unlock_memory_clock_frequency(struct dc *dc)
4743 {
4744 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4745 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4746 
4747 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4748 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4749 }
4750 
4751 /* set min memory clock to the min required for current mode, max to maxDPM */
4752 void dc_lock_memory_clock_frequency(struct dc *dc)
4753 {
4754 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4755 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4756 
4757 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
4758 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4759 
4760 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
4761 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4762 }
4763 
4764 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4765 {
4766 	struct dc_state *context = dc->current_state;
4767 	struct hubp *hubp;
4768 	struct pipe_ctx *pipe;
4769 	int i;
4770 
4771 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4772 		pipe = &context->res_ctx.pipe_ctx[i];
4773 
4774 		if (pipe->stream != NULL) {
4775 			dc->hwss.disable_pixel_data(dc, pipe, true);
4776 
4777 			// wait for double buffer
4778 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4779 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4780 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4781 
4782 			hubp = pipe->plane_res.hubp;
4783 			hubp->funcs->set_blank_regs(hubp, true);
4784 		}
4785 	}
4786 
4787 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4788 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4789 
4790 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4791 		pipe = &context->res_ctx.pipe_ctx[i];
4792 
4793 		if (pipe->stream != NULL) {
4794 			dc->hwss.disable_pixel_data(dc, pipe, false);
4795 
4796 			hubp = pipe->plane_res.hubp;
4797 			hubp->funcs->set_blank_regs(hubp, false);
4798 		}
4799 	}
4800 }
4801 
4802 
4803 /**
4804  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4805  * @dc: pointer to dc of the dm calling this
4806  * @enable: True = transition to DC mode, false = transition back to AC mode
4807  *
4808  * Some SoCs define additional clock limits when in DC mode, DM should
4809  * invoke this function when the platform undergoes a power source transition
4810  * so DC can apply/unapply the limit. This interface may be disruptive to
4811  * the onscreen content.
4812  *
4813  * Context: Triggered by OS through DM interface, or manually by escape calls.
4814  * Need to hold a dclock when doing so.
4815  *
4816  * Return: none (void function)
4817  *
4818  */
4819 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4820 {
4821 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4822 	bool p_state_change_support;
4823 
4824 	if (!dc->config.dc_mode_clk_limit_support)
4825 		return;
4826 
4827 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4828 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4829 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4830 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4831 	}
4832 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4833 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4834 
4835 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4836 		if (p_state_change_support) {
4837 			if (funcMin <= softMax)
4838 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4839 			// else: No-Op
4840 		} else {
4841 			if (funcMin <= softMax)
4842 				blank_and_force_memclk(dc, true, softMax);
4843 			// else: No-Op
4844 		}
4845 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4846 		if (p_state_change_support) {
4847 			if (funcMin <= softMax)
4848 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4849 			// else: No-Op
4850 		} else {
4851 			if (funcMin <= softMax)
4852 				blank_and_force_memclk(dc, true, maxDPM);
4853 			// else: No-Op
4854 		}
4855 	}
4856 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
4857 }
4858 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4859 		struct dc_cursor_attributes *cursor_attr)
4860 {
4861 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4862 		return true;
4863 	return false;
4864 }
4865 
4866 /* cleanup on driver unload */
4867 void dc_hardware_release(struct dc *dc)
4868 {
4869 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4870 
4871 	if (dc->hwss.hardware_release)
4872 		dc->hwss.hardware_release(dc);
4873 }
4874 
4875 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4876 {
4877 	if (dc->current_state)
4878 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4879 }
4880 
4881 /**
4882  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4883  *
4884  * @dc: [in] dc structure
4885  *
4886  * Checks whether DMUB FW supports outbox notifications, if supported DM
4887  * should register outbox interrupt prior to actually enabling interrupts
4888  * via dc_enable_dmub_outbox
4889  *
4890  * Return:
4891  * True if DMUB FW supports outbox notifications, False otherwise
4892  */
4893 bool dc_is_dmub_outbox_supported(struct dc *dc)
4894 {
4895 	/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4896 	if (dc->ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
4897 	    dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4898 	    !dc->debug.dpia_debug.bits.disable_dpia)
4899 		return true;
4900 
4901 	if (dc->ctx->asic_id.chip_family == AMDGPU_FAMILY_GC_11_0_1 &&
4902 	    !dc->debug.dpia_debug.bits.disable_dpia)
4903 		return true;
4904 
4905 	/* dmub aux needs dmub notifications to be enabled */
4906 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
4907 }
4908 
4909 /**
4910  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4911  *
4912  * @dc: [in] dc structure
4913  *
4914  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4915  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4916  * API shall be removed after switching.
4917  *
4918  * Return:
4919  * True if DMUB FW supports outbox notifications, False otherwise
4920  */
4921 bool dc_enable_dmub_notifications(struct dc *dc)
4922 {
4923 	return dc_is_dmub_outbox_supported(dc);
4924 }
4925 
4926 /**
4927  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4928  *
4929  * @dc: [in] dc structure
4930  *
4931  * Enables DMUB unsolicited notifications to x86 via outbox.
4932  */
4933 void dc_enable_dmub_outbox(struct dc *dc)
4934 {
4935 	struct dc_context *dc_ctx = dc->ctx;
4936 
4937 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4938 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4939 }
4940 
4941 /**
4942  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4943  *                                      Sets port index appropriately for legacy DDC
4944  * @dc: dc structure
4945  * @link_index: link index
4946  * @payload: aux payload
4947  *
4948  * Returns: True if successful, False if failure
4949  */
4950 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4951 				uint32_t link_index,
4952 				struct aux_payload *payload)
4953 {
4954 	uint8_t action;
4955 	union dmub_rb_cmd cmd = {0};
4956 
4957 	ASSERT(payload->length <= 16);
4958 
4959 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4960 	cmd.dp_aux_access.header.payload_bytes = 0;
4961 	/* For dpia, ddc_pin is set to NULL */
4962 	if (!dc->links[link_index]->ddc->ddc_pin)
4963 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4964 	else
4965 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4966 
4967 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4968 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4969 	cmd.dp_aux_access.aux_control.timeout = 0;
4970 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4971 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4972 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4973 
4974 	/* set aux action */
4975 	if (payload->i2c_over_aux) {
4976 		if (payload->write) {
4977 			if (payload->mot)
4978 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4979 			else
4980 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
4981 		} else {
4982 			if (payload->mot)
4983 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4984 			else
4985 				action = DP_AUX_REQ_ACTION_I2C_READ;
4986 			}
4987 	} else {
4988 		if (payload->write)
4989 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4990 		else
4991 			action = DP_AUX_REQ_ACTION_DPCD_READ;
4992 	}
4993 
4994 	cmd.dp_aux_access.aux_control.dpaux.action = action;
4995 
4996 	if (payload->length && payload->write) {
4997 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4998 			payload->data,
4999 			payload->length
5000 			);
5001 	}
5002 
5003 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5004 
5005 	return true;
5006 }
5007 
5008 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5009 					    uint8_t dpia_port_index)
5010 {
5011 	uint8_t index, link_index = 0xFF;
5012 
5013 	for (index = 0; index < dc->link_count; index++) {
5014 		/* ddc_hw_inst has dpia port index for dpia links
5015 		 * and ddc instance for legacy links
5016 		 */
5017 		if (!dc->links[index]->ddc->ddc_pin) {
5018 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5019 				link_index = index;
5020 				break;
5021 			}
5022 		}
5023 	}
5024 	ASSERT(link_index != 0xFF);
5025 	return link_index;
5026 }
5027 
5028 /**
5029  * dc_process_dmub_set_config_async - Submits set_config command
5030  *
5031  * @dc: [in] dc structure
5032  * @link_index: [in] link_index: link index
5033  * @payload: [in] aux payload
5034  * @notify: [out] set_config immediate reply
5035  *
5036  * Submits set_config command to dmub via inbox message.
5037  *
5038  * Return:
5039  * True if successful, False if failure
5040  */
5041 bool dc_process_dmub_set_config_async(struct dc *dc,
5042 				uint32_t link_index,
5043 				struct set_config_cmd_payload *payload,
5044 				struct dmub_notification *notify)
5045 {
5046 	union dmub_rb_cmd cmd = {0};
5047 	bool is_cmd_complete = true;
5048 
5049 	/* prepare SET_CONFIG command */
5050 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5051 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5052 
5053 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5054 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5055 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5056 
5057 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5058 		/* command is not processed by dmub */
5059 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5060 		return is_cmd_complete;
5061 	}
5062 
5063 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5064 	if (cmd.set_config_access.header.ret_status == 1)
5065 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5066 	else
5067 		/* cmd pending, will receive notification via outbox */
5068 		is_cmd_complete = false;
5069 
5070 	return is_cmd_complete;
5071 }
5072 
5073 /**
5074  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5075  *
5076  * @dc: [in] dc structure
5077  * @link_index: [in] link index
5078  * @mst_alloc_slots: [in] mst slots to be allotted
5079  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5080  *
5081  * Submits mst slot allocation command to dmub via inbox message
5082  *
5083  * Return:
5084  * DC_OK if successful, DC_ERROR if failure
5085  */
5086 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5087 				uint32_t link_index,
5088 				uint8_t mst_alloc_slots,
5089 				uint8_t *mst_slots_in_use)
5090 {
5091 	union dmub_rb_cmd cmd = {0};
5092 
5093 	/* prepare MST_ALLOC_SLOTS command */
5094 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5095 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5096 
5097 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5098 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5099 
5100 	if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5101 		/* command is not processed by dmub */
5102 		return DC_ERROR_UNEXPECTED;
5103 
5104 	/* command processed by dmub, if ret_status is 1 */
5105 	if (cmd.set_config_access.header.ret_status != 1)
5106 		/* command processing error */
5107 		return DC_ERROR_UNEXPECTED;
5108 
5109 	/* command processed and we have a status of 2, mst not enabled in dpia */
5110 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5111 		return DC_FAIL_UNSUPPORTED_1;
5112 
5113 	/* previously configured mst alloc and used slots did not match */
5114 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5115 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5116 		return DC_NOT_SUPPORTED;
5117 	}
5118 
5119 	return DC_OK;
5120 }
5121 
5122 /**
5123  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5124  *
5125  * @dc: [in] dc structure
5126  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5127  *
5128  * Submits dpia hpd int enable command to dmub via inbox message
5129  */
5130 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5131 				uint32_t hpd_int_enable)
5132 {
5133 	union dmub_rb_cmd cmd = {0};
5134 
5135 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5136 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5137 
5138 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5139 
5140 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5141 }
5142 
5143 /**
5144  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5145  *
5146  * @dc: [in] dc structure
5147  *
5148  *
5149  */
5150 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5151 {
5152 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5153 }
5154 
5155 /**
5156  * dc_disable_accelerated_mode - disable accelerated mode
5157  * @dc: dc structure
5158  */
5159 void dc_disable_accelerated_mode(struct dc *dc)
5160 {
5161 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5162 }
5163 
5164 
5165 /**
5166  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5167  *  @dc: dc structure
5168  *  @stream: stream where vsync int state changed
5169  *  @enable: whether vsync is enabled or disabled
5170  *
5171  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5172  *  interrupts after steady state is reached.
5173  */
5174 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5175 {
5176 	int i;
5177 	int edp_num;
5178 	struct pipe_ctx *pipe = NULL;
5179 	struct dc_link *link = stream->sink->link;
5180 	struct dc_link *edp_links[MAX_NUM_EDP];
5181 
5182 
5183 	if (link->psr_settings.psr_feature_enabled)
5184 		return;
5185 
5186 	if (link->replay_settings.replay_feature_enabled)
5187 		return;
5188 
5189 	/*find primary pipe associated with stream*/
5190 	for (i = 0; i < MAX_PIPES; i++) {
5191 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5192 
5193 		if (pipe->stream == stream && pipe->stream_res.tg)
5194 			break;
5195 	}
5196 
5197 	if (i == MAX_PIPES) {
5198 		ASSERT(0);
5199 		return;
5200 	}
5201 
5202 	dc_get_edp_links(dc, edp_links, &edp_num);
5203 
5204 	/* Determine panel inst */
5205 	for (i = 0; i < edp_num; i++) {
5206 		if (edp_links[i] == link)
5207 			break;
5208 	}
5209 
5210 	if (i == edp_num) {
5211 		return;
5212 	}
5213 
5214 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5215 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5216 }
5217 
5218 /*****************************************************************************
5219  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5220  *                          ABM
5221  *  @dc: dc structure
5222  *	@stream: stream where vsync int state changed
5223  *  @pData: abm hw states
5224  *
5225  ****************************************************************************/
5226 bool dc_abm_save_restore(
5227 		struct dc *dc,
5228 		struct dc_stream_state *stream,
5229 		struct abm_save_restore *pData)
5230 {
5231 	int i;
5232 	int edp_num;
5233 	struct pipe_ctx *pipe = NULL;
5234 	struct dc_link *link = stream->sink->link;
5235 	struct dc_link *edp_links[MAX_NUM_EDP];
5236 
5237 
5238 	/*find primary pipe associated with stream*/
5239 	for (i = 0; i < MAX_PIPES; i++) {
5240 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5241 
5242 		if (pipe->stream == stream && pipe->stream_res.tg)
5243 			break;
5244 	}
5245 
5246 	if (i == MAX_PIPES) {
5247 		ASSERT(0);
5248 		return false;
5249 	}
5250 
5251 	dc_get_edp_links(dc, edp_links, &edp_num);
5252 
5253 	/* Determine panel inst */
5254 	for (i = 0; i < edp_num; i++)
5255 		if (edp_links[i] == link)
5256 			break;
5257 
5258 	if (i == edp_num)
5259 		return false;
5260 
5261 	if (pipe->stream_res.abm &&
5262 		pipe->stream_res.abm->funcs->save_restore)
5263 		return pipe->stream_res.abm->funcs->save_restore(
5264 				pipe->stream_res.abm,
5265 				i,
5266 				pData);
5267 	return false;
5268 }
5269 
5270 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5271 {
5272 	unsigned int i;
5273 	bool subvp_in_use = false;
5274 
5275 	for (i = 0; i < dc->current_state->stream_count; i++) {
5276 		if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5277 			subvp_in_use = true;
5278 			break;
5279 		}
5280 	}
5281 	properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5282 }
5283 
5284