1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #include "dce80/dce80_resource.h"
46 #include "dce100/dce100_resource.h"
47 #include "dce110/dce110_resource.h"
48 #include "dce112/dce112_resource.h"
49 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
50 #include "dcn10/dcn10_resource.h"
51 #endif
52 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
53 #include "dcn20/dcn20_resource.h"
54 #endif
55 #if defined(CONFIG_DRM_AMD_DC_DCN2_1)
56 #include "dcn21/dcn21_resource.h"
57 #endif
58 #include "dce120/dce120_resource.h"
59 
60 #define DC_LOGGER_INIT(logger)
61 
62 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
63 {
64 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
65 	switch (asic_id.chip_family) {
66 
67 	case FAMILY_CI:
68 		dc_version = DCE_VERSION_8_0;
69 		break;
70 	case FAMILY_KV:
71 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
72 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
73 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
74 			dc_version = DCE_VERSION_8_3;
75 		else
76 			dc_version = DCE_VERSION_8_1;
77 		break;
78 	case FAMILY_CZ:
79 		dc_version = DCE_VERSION_11_0;
80 		break;
81 
82 	case FAMILY_VI:
83 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
84 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
85 			dc_version = DCE_VERSION_10_0;
86 			break;
87 		}
88 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
89 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
90 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
91 			dc_version = DCE_VERSION_11_2;
92 		}
93 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
94 			dc_version = DCE_VERSION_11_22;
95 		break;
96 	case FAMILY_AI:
97 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
98 			dc_version = DCE_VERSION_12_1;
99 		else
100 			dc_version = DCE_VERSION_12_0;
101 		break;
102 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
103 	case FAMILY_RV:
104 		dc_version = DCN_VERSION_1_0;
105 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
106 			dc_version = DCN_VERSION_1_01;
107 #if defined(CONFIG_DRM_AMD_DC_DCN2_1)
108 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
109 			dc_version = DCN_VERSION_2_1;
110 #endif
111 		break;
112 #endif
113 
114 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
115 	case FAMILY_NV:
116 		dc_version = DCN_VERSION_2_0;
117 		break;
118 #endif
119 	default:
120 		dc_version = DCE_VERSION_UNKNOWN;
121 		break;
122 	}
123 	return dc_version;
124 }
125 
126 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
127 					      const struct dc_init_data *init_data,
128 					      enum dce_version dc_version)
129 {
130 	struct resource_pool *res_pool = NULL;
131 
132 	switch (dc_version) {
133 	case DCE_VERSION_8_0:
134 		res_pool = dce80_create_resource_pool(
135 				init_data->num_virtual_links, dc);
136 		break;
137 	case DCE_VERSION_8_1:
138 		res_pool = dce81_create_resource_pool(
139 				init_data->num_virtual_links, dc);
140 		break;
141 	case DCE_VERSION_8_3:
142 		res_pool = dce83_create_resource_pool(
143 				init_data->num_virtual_links, dc);
144 		break;
145 	case DCE_VERSION_10_0:
146 		res_pool = dce100_create_resource_pool(
147 				init_data->num_virtual_links, dc);
148 		break;
149 	case DCE_VERSION_11_0:
150 		res_pool = dce110_create_resource_pool(
151 				init_data->num_virtual_links, dc,
152 				init_data->asic_id);
153 		break;
154 	case DCE_VERSION_11_2:
155 	case DCE_VERSION_11_22:
156 		res_pool = dce112_create_resource_pool(
157 				init_data->num_virtual_links, dc);
158 		break;
159 	case DCE_VERSION_12_0:
160 	case DCE_VERSION_12_1:
161 		res_pool = dce120_create_resource_pool(
162 				init_data->num_virtual_links, dc);
163 		break;
164 
165 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
166 	case DCN_VERSION_1_0:
167 	case DCN_VERSION_1_01:
168 		res_pool = dcn10_create_resource_pool(init_data, dc);
169 		break;
170 #endif
171 
172 
173 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
174 	case DCN_VERSION_2_0:
175 		res_pool = dcn20_create_resource_pool(init_data, dc);
176 		break;
177 #endif
178 #if defined(CONFIG_DRM_AMD_DC_DCN2_1)
179 	case DCN_VERSION_2_1:
180 		res_pool = dcn21_create_resource_pool(init_data, dc);
181 		break;
182 #endif
183 
184 	default:
185 		break;
186 	}
187 
188 	if (res_pool != NULL) {
189 		if (dc->ctx->dc_bios->fw_info_valid) {
190 			res_pool->ref_clocks.xtalin_clock_inKhz =
191 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
192 			/* initialize with firmware data first, no all
193 			 * ASIC have DCCG SW component. FPGA or
194 			 * simulation need initialization of
195 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
196 			 * with xtalin_clock_inKhz
197 			 */
198 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
199 				res_pool->ref_clocks.xtalin_clock_inKhz;
200 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
201 				res_pool->ref_clocks.xtalin_clock_inKhz;
202 		} else
203 			ASSERT_CRITICAL(false);
204 	}
205 
206 	return res_pool;
207 }
208 
209 void dc_destroy_resource_pool(struct dc  *dc)
210 {
211 	if (dc) {
212 		if (dc->res_pool)
213 			dc->res_pool->funcs->destroy(&dc->res_pool);
214 
215 		kfree(dc->hwseq);
216 	}
217 }
218 
219 static void update_num_audio(
220 	const struct resource_straps *straps,
221 	unsigned int *num_audio,
222 	struct audio_support *aud_support)
223 {
224 	aud_support->dp_audio = true;
225 	aud_support->hdmi_audio_native = false;
226 	aud_support->hdmi_audio_on_dongle = false;
227 
228 	if (straps->hdmi_disable == 0) {
229 		if (straps->dc_pinstraps_audio & 0x2) {
230 			aud_support->hdmi_audio_on_dongle = true;
231 			aud_support->hdmi_audio_native = true;
232 		}
233 	}
234 
235 	switch (straps->audio_stream_number) {
236 	case 0: /* multi streams supported */
237 		break;
238 	case 1: /* multi streams not supported */
239 		*num_audio = 1;
240 		break;
241 	default:
242 		DC_ERR("DC: unexpected audio fuse!\n");
243 	}
244 }
245 
246 bool resource_construct(
247 	unsigned int num_virtual_links,
248 	struct dc  *dc,
249 	struct resource_pool *pool,
250 	const struct resource_create_funcs *create_funcs)
251 {
252 	struct dc_context *ctx = dc->ctx;
253 	const struct resource_caps *caps = pool->res_cap;
254 	int i;
255 	unsigned int num_audio = caps->num_audio;
256 	struct resource_straps straps = {0};
257 
258 	if (create_funcs->read_dce_straps)
259 		create_funcs->read_dce_straps(dc->ctx, &straps);
260 
261 	pool->audio_count = 0;
262 	if (create_funcs->create_audio) {
263 		/* find the total number of streams available via the
264 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
265 		 * registers (one for each pin) starting from pin 1
266 		 * up to the max number of audio pins.
267 		 * We stop on the first pin where
268 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
269 		 */
270 		update_num_audio(&straps, &num_audio, &pool->audio_support);
271 		for (i = 0; i < caps->num_audio; i++) {
272 			struct audio *aud = create_funcs->create_audio(ctx, i);
273 
274 			if (aud == NULL) {
275 				DC_ERR("DC: failed to create audio!\n");
276 				return false;
277 			}
278 			if (!aud->funcs->endpoint_valid(aud)) {
279 				aud->funcs->destroy(&aud);
280 				break;
281 			}
282 			pool->audios[i] = aud;
283 			pool->audio_count++;
284 		}
285 	}
286 
287 	pool->stream_enc_count = 0;
288 	if (create_funcs->create_stream_encoder) {
289 		for (i = 0; i < caps->num_stream_encoder; i++) {
290 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
291 			if (pool->stream_enc[i] == NULL)
292 				DC_ERR("DC: failed to create stream_encoder!\n");
293 			pool->stream_enc_count++;
294 		}
295 	}
296 
297 	dc->caps.dynamic_audio = false;
298 	if (pool->audio_count < pool->stream_enc_count) {
299 		dc->caps.dynamic_audio = true;
300 	}
301 	for (i = 0; i < num_virtual_links; i++) {
302 		pool->stream_enc[pool->stream_enc_count] =
303 			virtual_stream_encoder_create(
304 					ctx, ctx->dc_bios);
305 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
306 			DC_ERR("DC: failed to create stream_encoder!\n");
307 			return false;
308 		}
309 		pool->stream_enc_count++;
310 	}
311 
312 	dc->hwseq = create_funcs->create_hwseq(ctx);
313 
314 	return true;
315 }
316 static int find_matching_clock_source(
317 		const struct resource_pool *pool,
318 		struct clock_source *clock_source)
319 {
320 
321 	int i;
322 
323 	for (i = 0; i < pool->clk_src_count; i++) {
324 		if (pool->clock_sources[i] == clock_source)
325 			return i;
326 	}
327 	return -1;
328 }
329 
330 void resource_unreference_clock_source(
331 		struct resource_context *res_ctx,
332 		const struct resource_pool *pool,
333 		struct clock_source *clock_source)
334 {
335 	int i = find_matching_clock_source(pool, clock_source);
336 
337 	if (i > -1)
338 		res_ctx->clock_source_ref_count[i]--;
339 
340 	if (pool->dp_clock_source == clock_source)
341 		res_ctx->dp_clock_source_ref_count--;
342 }
343 
344 void resource_reference_clock_source(
345 		struct resource_context *res_ctx,
346 		const struct resource_pool *pool,
347 		struct clock_source *clock_source)
348 {
349 	int i = find_matching_clock_source(pool, clock_source);
350 
351 	if (i > -1)
352 		res_ctx->clock_source_ref_count[i]++;
353 
354 	if (pool->dp_clock_source == clock_source)
355 		res_ctx->dp_clock_source_ref_count++;
356 }
357 
358 int resource_get_clock_source_reference(
359 		struct resource_context *res_ctx,
360 		const struct resource_pool *pool,
361 		struct clock_source *clock_source)
362 {
363 	int i = find_matching_clock_source(pool, clock_source);
364 
365 	if (i > -1)
366 		return res_ctx->clock_source_ref_count[i];
367 
368 	if (pool->dp_clock_source == clock_source)
369 		return res_ctx->dp_clock_source_ref_count;
370 
371 	return -1;
372 }
373 
374 bool resource_are_streams_timing_synchronizable(
375 	struct dc_stream_state *stream1,
376 	struct dc_stream_state *stream2)
377 {
378 	if (stream1->timing.h_total != stream2->timing.h_total)
379 		return false;
380 
381 	if (stream1->timing.v_total != stream2->timing.v_total)
382 		return false;
383 
384 	if (stream1->timing.h_addressable
385 				!= stream2->timing.h_addressable)
386 		return false;
387 
388 	if (stream1->timing.v_addressable
389 				!= stream2->timing.v_addressable)
390 		return false;
391 
392 	if (stream1->timing.pix_clk_100hz
393 				!= stream2->timing.pix_clk_100hz)
394 		return false;
395 
396 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
397 		return false;
398 
399 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
400 			&& (!dc_is_dp_signal(stream1->signal)
401 			|| !dc_is_dp_signal(stream2->signal)))
402 		return false;
403 
404 	if (stream1->view_format != stream2->view_format)
405 		return false;
406 
407 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
408 		return false;
409 
410 	return true;
411 }
412 static bool is_dp_and_hdmi_sharable(
413 		struct dc_stream_state *stream1,
414 		struct dc_stream_state *stream2)
415 {
416 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
417 		return false;
418 
419 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
420 		stream2->clamping.c_depth != COLOR_DEPTH_888)
421 		return false;
422 
423 	return true;
424 
425 }
426 
427 static bool is_sharable_clk_src(
428 	const struct pipe_ctx *pipe_with_clk_src,
429 	const struct pipe_ctx *pipe)
430 {
431 	if (pipe_with_clk_src->clock_source == NULL)
432 		return false;
433 
434 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
435 		return false;
436 
437 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
438 		(dc_is_dp_signal(pipe->stream->signal) &&
439 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
440 				     pipe->stream)))
441 		return false;
442 
443 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
444 			&& dc_is_dual_link_signal(pipe->stream->signal))
445 		return false;
446 
447 	if (dc_is_hdmi_signal(pipe->stream->signal)
448 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
449 		return false;
450 
451 	if (!resource_are_streams_timing_synchronizable(
452 			pipe_with_clk_src->stream, pipe->stream))
453 		return false;
454 
455 	return true;
456 }
457 
458 struct clock_source *resource_find_used_clk_src_for_sharing(
459 					struct resource_context *res_ctx,
460 					struct pipe_ctx *pipe_ctx)
461 {
462 	int i;
463 
464 	for (i = 0; i < MAX_PIPES; i++) {
465 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
466 			return res_ctx->pipe_ctx[i].clock_source;
467 	}
468 
469 	return NULL;
470 }
471 
472 static enum pixel_format convert_pixel_format_to_dalsurface(
473 		enum surface_pixel_format surface_pixel_format)
474 {
475 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
476 
477 	switch (surface_pixel_format) {
478 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
479 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
480 		break;
481 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
482 		dal_pixel_format = PIXEL_FORMAT_RGB565;
483 		break;
484 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
485 		dal_pixel_format = PIXEL_FORMAT_RGB565;
486 		break;
487 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
488 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
489 		break;
490 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
491 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
492 		break;
493 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
494 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
495 		break;
496 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
497 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
498 		break;
499 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
500 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
501 		break;
502 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
503 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
504 		dal_pixel_format = PIXEL_FORMAT_FP16;
505 		break;
506 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
507 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
508 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
509 		break;
510 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
511 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
512 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
513 		break;
514 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
515 	default:
516 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
517 		break;
518 	}
519 	return dal_pixel_format;
520 }
521 
522 static inline void get_vp_scan_direction(
523 	enum dc_rotation_angle rotation,
524 	bool horizontal_mirror,
525 	bool *orthogonal_rotation,
526 	bool *flip_vert_scan_dir,
527 	bool *flip_horz_scan_dir)
528 {
529 	*orthogonal_rotation = false;
530 	*flip_vert_scan_dir = false;
531 	*flip_horz_scan_dir = false;
532 	if (rotation == ROTATION_ANGLE_180) {
533 		*flip_vert_scan_dir = true;
534 		*flip_horz_scan_dir = true;
535 	} else if (rotation == ROTATION_ANGLE_90) {
536 		*orthogonal_rotation = true;
537 		*flip_horz_scan_dir = true;
538 	} else if (rotation == ROTATION_ANGLE_270) {
539 		*orthogonal_rotation = true;
540 		*flip_vert_scan_dir = true;
541 	}
542 
543 	if (horizontal_mirror)
544 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
545 }
546 
547 static void calculate_viewport(struct pipe_ctx *pipe_ctx)
548 {
549 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
550 	const struct dc_stream_state *stream = pipe_ctx->stream;
551 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
552 	struct rect surf_src = plane_state->src_rect;
553 	struct rect clip, dest;
554 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
555 			|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
556 	bool pri_split = pipe_ctx->bottom_pipe &&
557 			pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state;
558 	bool sec_split = pipe_ctx->top_pipe &&
559 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
560 	bool orthogonal_rotation, flip_y_start, flip_x_start;
561 
562 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE ||
563 		stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
564 		pri_split = false;
565 		sec_split = false;
566 	}
567 
568 	/* The actual clip is an intersection between stream
569 	 * source and surface clip
570 	 */
571 	dest = plane_state->dst_rect;
572 	clip.x = stream->src.x > plane_state->clip_rect.x ?
573 			stream->src.x : plane_state->clip_rect.x;
574 
575 	clip.width = stream->src.x + stream->src.width <
576 			plane_state->clip_rect.x + plane_state->clip_rect.width ?
577 			stream->src.x + stream->src.width - clip.x :
578 			plane_state->clip_rect.x + plane_state->clip_rect.width - clip.x ;
579 
580 	clip.y = stream->src.y > plane_state->clip_rect.y ?
581 			stream->src.y : plane_state->clip_rect.y;
582 
583 	clip.height = stream->src.y + stream->src.height <
584 			plane_state->clip_rect.y + plane_state->clip_rect.height ?
585 			stream->src.y + stream->src.height - clip.y :
586 			plane_state->clip_rect.y + plane_state->clip_rect.height - clip.y ;
587 
588 	/*
589 	 * Need to calculate how scan origin is shifted in vp space
590 	 * to correctly rotate clip and dst
591 	 */
592 	get_vp_scan_direction(
593 			plane_state->rotation,
594 			plane_state->horizontal_mirror,
595 			&orthogonal_rotation,
596 			&flip_y_start,
597 			&flip_x_start);
598 
599 	if (orthogonal_rotation) {
600 		swap(clip.x, clip.y);
601 		swap(clip.width, clip.height);
602 		swap(dest.x, dest.y);
603 		swap(dest.width, dest.height);
604 	}
605 	if (flip_x_start) {
606 		clip.x = dest.x + dest.width - clip.x - clip.width;
607 		dest.x = 0;
608 	}
609 	if (flip_y_start) {
610 		clip.y = dest.y + dest.height - clip.y - clip.height;
611 		dest.y = 0;
612 	}
613 
614 	/* offset = surf_src.ofs + (clip.ofs - surface->dst_rect.ofs) * scl_ratio
615 	 * num_pixels = clip.num_pix * scl_ratio
616 	 */
617 	data->viewport.x = surf_src.x + (clip.x - dest.x) * surf_src.width / dest.width;
618 	data->viewport.width = clip.width * surf_src.width / dest.width;
619 
620 	data->viewport.y = surf_src.y + (clip.y - dest.y) * surf_src.height / dest.height;
621 	data->viewport.height = clip.height * surf_src.height / dest.height;
622 
623 	/* Handle split */
624 	if (pri_split || sec_split) {
625 		if (orthogonal_rotation) {
626 			if (flip_y_start != pri_split)
627 				data->viewport.height /= 2;
628 			else {
629 				data->viewport.y +=  data->viewport.height / 2;
630 				/* Ceil offset pipe */
631 				data->viewport.height = (data->viewport.height + 1) / 2;
632 			}
633 		} else {
634 			if (flip_x_start != pri_split)
635 				data->viewport.width /= 2;
636 			else {
637 				data->viewport.x +=  data->viewport.width / 2;
638 				/* Ceil offset pipe */
639 				data->viewport.width = (data->viewport.width + 1) / 2;
640 			}
641 		}
642 	}
643 
644 	/* Round down, compensate in init */
645 	data->viewport_c.x = data->viewport.x / vpc_div;
646 	data->viewport_c.y = data->viewport.y / vpc_div;
647 	data->inits.h_c = (data->viewport.x % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
648 	data->inits.v_c = (data->viewport.y % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
649 
650 	/* Round up, assume original video size always even dimensions */
651 	data->viewport_c.width = (data->viewport.width + vpc_div - 1) / vpc_div;
652 	data->viewport_c.height = (data->viewport.height + vpc_div - 1) / vpc_div;
653 }
654 
655 static void calculate_recout(struct pipe_ctx *pipe_ctx)
656 {
657 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
658 	const struct dc_stream_state *stream = pipe_ctx->stream;
659 	struct rect surf_clip = plane_state->clip_rect;
660 	bool pri_split = pipe_ctx->bottom_pipe &&
661 			pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state;
662 	bool sec_split = pipe_ctx->top_pipe &&
663 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
664 	bool top_bottom_split = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
665 
666 	pipe_ctx->plane_res.scl_data.recout.x = stream->dst.x;
667 	if (stream->src.x < surf_clip.x)
668 		pipe_ctx->plane_res.scl_data.recout.x += (surf_clip.x
669 			- stream->src.x) * stream->dst.width
670 						/ stream->src.width;
671 
672 	pipe_ctx->plane_res.scl_data.recout.width = surf_clip.width *
673 			stream->dst.width / stream->src.width;
674 	if (pipe_ctx->plane_res.scl_data.recout.width + pipe_ctx->plane_res.scl_data.recout.x >
675 			stream->dst.x + stream->dst.width)
676 		pipe_ctx->plane_res.scl_data.recout.width =
677 			stream->dst.x + stream->dst.width
678 						- pipe_ctx->plane_res.scl_data.recout.x;
679 
680 	pipe_ctx->plane_res.scl_data.recout.y = stream->dst.y;
681 	if (stream->src.y < surf_clip.y)
682 		pipe_ctx->plane_res.scl_data.recout.y += (surf_clip.y
683 			- stream->src.y) * stream->dst.height
684 						/ stream->src.height;
685 
686 	pipe_ctx->plane_res.scl_data.recout.height = surf_clip.height *
687 			stream->dst.height / stream->src.height;
688 	if (pipe_ctx->plane_res.scl_data.recout.height + pipe_ctx->plane_res.scl_data.recout.y >
689 			stream->dst.y + stream->dst.height)
690 		pipe_ctx->plane_res.scl_data.recout.height =
691 			stream->dst.y + stream->dst.height
692 						- pipe_ctx->plane_res.scl_data.recout.y;
693 
694 	/* Handle h & v split, handle rotation using viewport */
695 	if (sec_split && top_bottom_split) {
696 		pipe_ctx->plane_res.scl_data.recout.y +=
697 				pipe_ctx->plane_res.scl_data.recout.height / 2;
698 		/* Floor primary pipe, ceil 2ndary pipe */
699 		pipe_ctx->plane_res.scl_data.recout.height =
700 				(pipe_ctx->plane_res.scl_data.recout.height + 1) / 2;
701 	} else if (pri_split && top_bottom_split)
702 		pipe_ctx->plane_res.scl_data.recout.height /= 2;
703 	else if (sec_split) {
704 		pipe_ctx->plane_res.scl_data.recout.x +=
705 				pipe_ctx->plane_res.scl_data.recout.width / 2;
706 		/* Ceil offset pipe */
707 		pipe_ctx->plane_res.scl_data.recout.width =
708 				(pipe_ctx->plane_res.scl_data.recout.width + 1) / 2;
709 	} else if (pri_split)
710 		pipe_ctx->plane_res.scl_data.recout.width /= 2;
711 }
712 
713 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
714 {
715 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
716 	const struct dc_stream_state *stream = pipe_ctx->stream;
717 	struct rect surf_src = plane_state->src_rect;
718 	const int in_w = stream->src.width;
719 	const int in_h = stream->src.height;
720 	const int out_w = stream->dst.width;
721 	const int out_h = stream->dst.height;
722 
723 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
724 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
725 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
726 		swap(surf_src.height, surf_src.width);
727 
728 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
729 					surf_src.width,
730 					plane_state->dst_rect.width);
731 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
732 					surf_src.height,
733 					plane_state->dst_rect.height);
734 
735 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
736 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
737 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
738 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
739 
740 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
741 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
742 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
743 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
744 
745 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
746 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
747 
748 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
749 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
750 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
751 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
752 	}
753 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
754 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
755 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
756 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
757 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
758 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
759 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
760 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
761 }
762 
763 static inline void adjust_vp_and_init_for_seamless_clip(
764 		bool flip_scan_dir,
765 		int recout_skip,
766 		int src_size,
767 		int taps,
768 		struct fixed31_32 ratio,
769 		struct fixed31_32 *init,
770 		int *vp_offset,
771 		int *vp_size)
772 {
773 	if (!flip_scan_dir) {
774 		/* Adjust for viewport end clip-off */
775 		if ((*vp_offset + *vp_size) < src_size) {
776 			int vp_clip = src_size - *vp_size - *vp_offset;
777 			int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
778 
779 			int_part = int_part > 0 ? int_part : 0;
780 			*vp_size += int_part < vp_clip ? int_part : vp_clip;
781 		}
782 
783 		/* Adjust for non-0 viewport offset */
784 		if (*vp_offset) {
785 			int int_part;
786 
787 			*init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
788 			int_part = dc_fixpt_floor(*init) - *vp_offset;
789 			if (int_part < taps) {
790 				int int_adj = *vp_offset >= (taps - int_part) ?
791 							(taps - int_part) : *vp_offset;
792 				*vp_offset -= int_adj;
793 				*vp_size += int_adj;
794 				int_part += int_adj;
795 			} else if (int_part > taps) {
796 				*vp_offset += int_part - taps;
797 				*vp_size -= int_part - taps;
798 				int_part = taps;
799 			}
800 			init->value &= 0xffffffff;
801 			*init = dc_fixpt_add_int(*init, int_part);
802 		}
803 	} else {
804 		/* Adjust for non-0 viewport offset */
805 		if (*vp_offset) {
806 			int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
807 
808 			int_part = int_part > 0 ? int_part : 0;
809 			*vp_size += int_part < *vp_offset ? int_part : *vp_offset;
810 			*vp_offset -= int_part < *vp_offset ? int_part : *vp_offset;
811 		}
812 
813 		/* Adjust for viewport end clip-off */
814 		if ((*vp_offset + *vp_size) < src_size) {
815 			int int_part;
816 			int end_offset = src_size - *vp_offset - *vp_size;
817 
818 			/*
819 			 * this is init if vp had no offset, keep in mind this is from the
820 			 * right side of vp due to scan direction
821 			 */
822 			*init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
823 			/*
824 			 * this is the difference between first pixel of viewport available to read
825 			 * and init position, takning into account scan direction
826 			 */
827 			int_part = dc_fixpt_floor(*init) - end_offset;
828 			if (int_part < taps) {
829 				int int_adj = end_offset >= (taps - int_part) ?
830 							(taps - int_part) : end_offset;
831 				*vp_size += int_adj;
832 				int_part += int_adj;
833 			} else if (int_part > taps) {
834 				*vp_size += int_part - taps;
835 				int_part = taps;
836 			}
837 			init->value &= 0xffffffff;
838 			*init = dc_fixpt_add_int(*init, int_part);
839 		}
840 	}
841 }
842 
843 static void calculate_inits_and_adj_vp(struct pipe_ctx *pipe_ctx)
844 {
845 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
846 	const struct dc_stream_state *stream = pipe_ctx->stream;
847 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
848 	struct rect src = pipe_ctx->plane_state->src_rect;
849 	int recout_skip_h, recout_skip_v, surf_size_h, surf_size_v;
850 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
851 			|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
852 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
853 
854 	/*
855 	 * Need to calculate the scan direction for viewport to make adjustments
856 	 */
857 	get_vp_scan_direction(
858 			plane_state->rotation,
859 			plane_state->horizontal_mirror,
860 			&orthogonal_rotation,
861 			&flip_vert_scan_dir,
862 			&flip_horz_scan_dir);
863 
864 	/* Calculate src rect rotation adjusted to recout space */
865 	surf_size_h = src.x + src.width;
866 	surf_size_v = src.y + src.height;
867 	if (flip_horz_scan_dir)
868 		src.x = 0;
869 	if (flip_vert_scan_dir)
870 		src.y = 0;
871 	if (orthogonal_rotation) {
872 		swap(src.x, src.y);
873 		swap(src.width, src.height);
874 	}
875 
876 	/* Recout matching initial vp offset = recout_offset - (stream dst offset +
877 	 *			((surf dst offset - stream src offset) * 1/ stream scaling ratio)
878 	 *			- (surf surf_src offset * 1/ full scl ratio))
879 	 */
880 	recout_skip_h = data->recout.x - (stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
881 					* stream->dst.width / stream->src.width -
882 					src.x * plane_state->dst_rect.width / src.width
883 					* stream->dst.width / stream->src.width);
884 	recout_skip_v = data->recout.y - (stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
885 					* stream->dst.height / stream->src.height -
886 					src.y * plane_state->dst_rect.height / src.height
887 					* stream->dst.height / stream->src.height);
888 	if (orthogonal_rotation)
889 		swap(recout_skip_h, recout_skip_v);
890 	/*
891 	 * Init calculated according to formula:
892 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
893 	 * 	init_bot = init + scaling_ratio
894 	 * 	init_c = init + truncated_vp_c_offset(from calculate viewport)
895 	 */
896 	data->inits.h = dc_fixpt_truncate(dc_fixpt_div_int(
897 			dc_fixpt_add_int(data->ratios.horz, data->taps.h_taps + 1), 2), 19);
898 
899 	data->inits.h_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.h_c, dc_fixpt_div_int(
900 			dc_fixpt_add_int(data->ratios.horz_c, data->taps.h_taps_c + 1), 2)), 19);
901 
902 	data->inits.v = dc_fixpt_truncate(dc_fixpt_div_int(
903 			dc_fixpt_add_int(data->ratios.vert, data->taps.v_taps + 1), 2), 19);
904 
905 	data->inits.v_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.v_c, dc_fixpt_div_int(
906 			dc_fixpt_add_int(data->ratios.vert_c, data->taps.v_taps_c + 1), 2)), 19);
907 
908 	/*
909 	 * Taps, inits and scaling ratios are in recout space need to rotate
910 	 * to viewport rotation before adjustment
911 	 */
912 	adjust_vp_and_init_for_seamless_clip(
913 			flip_horz_scan_dir,
914 			recout_skip_h,
915 			surf_size_h,
916 			orthogonal_rotation ? data->taps.v_taps : data->taps.h_taps,
917 			orthogonal_rotation ? data->ratios.vert : data->ratios.horz,
918 			orthogonal_rotation ? &data->inits.v : &data->inits.h,
919 			&data->viewport.x,
920 			&data->viewport.width);
921 	adjust_vp_and_init_for_seamless_clip(
922 			flip_horz_scan_dir,
923 			recout_skip_h,
924 			surf_size_h / vpc_div,
925 			orthogonal_rotation ? data->taps.v_taps_c : data->taps.h_taps_c,
926 			orthogonal_rotation ? data->ratios.vert_c : data->ratios.horz_c,
927 			orthogonal_rotation ? &data->inits.v_c : &data->inits.h_c,
928 			&data->viewport_c.x,
929 			&data->viewport_c.width);
930 	adjust_vp_and_init_for_seamless_clip(
931 			flip_vert_scan_dir,
932 			recout_skip_v,
933 			surf_size_v,
934 			orthogonal_rotation ? data->taps.h_taps : data->taps.v_taps,
935 			orthogonal_rotation ? data->ratios.horz : data->ratios.vert,
936 			orthogonal_rotation ? &data->inits.h : &data->inits.v,
937 			&data->viewport.y,
938 			&data->viewport.height);
939 	adjust_vp_and_init_for_seamless_clip(
940 			flip_vert_scan_dir,
941 			recout_skip_v,
942 			surf_size_v / vpc_div,
943 			orthogonal_rotation ? data->taps.h_taps_c : data->taps.v_taps_c,
944 			orthogonal_rotation ? data->ratios.horz_c : data->ratios.vert_c,
945 			orthogonal_rotation ? &data->inits.h_c : &data->inits.v_c,
946 			&data->viewport_c.y,
947 			&data->viewport_c.height);
948 
949 	/* Interlaced inits based on final vert inits */
950 	data->inits.v_bot = dc_fixpt_add(data->inits.v, data->ratios.vert);
951 	data->inits.v_c_bot = dc_fixpt_add(data->inits.v_c, data->ratios.vert_c);
952 
953 }
954 static bool are_rect_integer_multiples(struct rect src, struct rect dest)
955 {
956 	if (dest.width  >= src.width  && dest.width  % src.width  == 0 &&
957 		dest.height >= src.height && dest.height % src.height == 0)
958 		return true;
959 
960 	return false;
961 }
962 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
963 {
964 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
965 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
966 	bool res = false;
967 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
968 	/* Important: scaling ratio calculation requires pixel format,
969 	 * lb depth calculation requires recout and taps require scaling ratios.
970 	 * Inits require viewport, taps, ratios and recout of split pipe
971 	 */
972 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
973 			pipe_ctx->plane_state->format);
974 
975 	calculate_scaling_ratios(pipe_ctx);
976 
977 	calculate_viewport(pipe_ctx);
978 
979 	if (pipe_ctx->plane_res.scl_data.viewport.height < 16 || pipe_ctx->plane_res.scl_data.viewport.width < 16)
980 		return false;
981 
982 	calculate_recout(pipe_ctx);
983 
984 	/**
985 	 * Setting line buffer pixel depth to 24bpp yields banding
986 	 * on certain displays, such as the Sharp 4k
987 	 */
988 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
989 
990 	pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left;
991 	pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top;
992 
993 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable + timing->h_border_left + timing->h_border_right;
994 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable + timing->v_border_top + timing->v_border_bottom;
995 
996 	/* Taps calculations */
997 	if (pipe_ctx->plane_res.xfm != NULL)
998 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
999 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1000 
1001 	if (pipe_ctx->plane_res.dpp != NULL)
1002 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1003 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1004 
1005 	if (res &&
1006 	    plane_state->scaling_quality.integer_scaling &&
1007 	    are_rect_integer_multiples(pipe_ctx->plane_res.scl_data.viewport,
1008 				       pipe_ctx->plane_res.scl_data.recout)) {
1009 		pipe_ctx->plane_res.scl_data.taps.v_taps = 1;
1010 		pipe_ctx->plane_res.scl_data.taps.h_taps = 1;
1011 	}
1012 
1013 	if (!res) {
1014 		/* Try 24 bpp linebuffer */
1015 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1016 
1017 		if (pipe_ctx->plane_res.xfm != NULL)
1018 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1019 					pipe_ctx->plane_res.xfm,
1020 					&pipe_ctx->plane_res.scl_data,
1021 					&plane_state->scaling_quality);
1022 
1023 		if (pipe_ctx->plane_res.dpp != NULL)
1024 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1025 					pipe_ctx->plane_res.dpp,
1026 					&pipe_ctx->plane_res.scl_data,
1027 					&plane_state->scaling_quality);
1028 	}
1029 
1030 	if (res)
1031 		/* May need to re-check lb size after this in some obscure scenario */
1032 		calculate_inits_and_adj_vp(pipe_ctx);
1033 
1034 	DC_LOG_SCALER(
1035 				"%s: Viewport:\nheight:%d width:%d x:%d "
1036 				"y:%d\n dst_rect:\nheight:%d width:%d x:%d "
1037 				"y:%d\n",
1038 				__func__,
1039 				pipe_ctx->plane_res.scl_data.viewport.height,
1040 				pipe_ctx->plane_res.scl_data.viewport.width,
1041 				pipe_ctx->plane_res.scl_data.viewport.x,
1042 				pipe_ctx->plane_res.scl_data.viewport.y,
1043 				plane_state->dst_rect.height,
1044 				plane_state->dst_rect.width,
1045 				plane_state->dst_rect.x,
1046 				plane_state->dst_rect.y);
1047 
1048 	return res;
1049 }
1050 
1051 
1052 enum dc_status resource_build_scaling_params_for_context(
1053 	const struct dc  *dc,
1054 	struct dc_state *context)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < MAX_PIPES; i++) {
1059 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1060 				context->res_ctx.pipe_ctx[i].stream != NULL)
1061 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1062 				return DC_FAIL_SCALING;
1063 	}
1064 
1065 	return DC_OK;
1066 }
1067 
1068 struct pipe_ctx *find_idle_secondary_pipe(
1069 		struct resource_context *res_ctx,
1070 		const struct resource_pool *pool,
1071 		const struct pipe_ctx *primary_pipe)
1072 {
1073 	int i;
1074 	struct pipe_ctx *secondary_pipe = NULL;
1075 
1076 	/*
1077 	 * We add a preferred pipe mapping to avoid the chance that
1078 	 * MPCCs already in use will need to be reassigned to other trees.
1079 	 * For example, if we went with the strict, assign backwards logic:
1080 	 *
1081 	 * (State 1)
1082 	 * Display A on, no surface, top pipe = 0
1083 	 * Display B on, no surface, top pipe = 1
1084 	 *
1085 	 * (State 2)
1086 	 * Display A on, no surface, top pipe = 0
1087 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1088 	 *
1089 	 * (State 3)
1090 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1091 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1092 	 *
1093 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1094 	 * to display A.
1095 	 *
1096 	 * However, with the preferred pipe logic, state 2 would look like:
1097 	 *
1098 	 * (State 2)
1099 	 * Display A on, no surface, top pipe = 0
1100 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1101 	 *
1102 	 * This would then cause 2->3 to not require remapping any MPCCs.
1103 	 */
1104 	if (primary_pipe) {
1105 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1106 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1107 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1108 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1109 		}
1110 	}
1111 
1112 	/*
1113 	 * search backwards for the second pipe to keep pipe
1114 	 * assignment more consistent
1115 	 */
1116 	if (!secondary_pipe)
1117 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1118 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1119 				secondary_pipe = &res_ctx->pipe_ctx[i];
1120 				secondary_pipe->pipe_idx = i;
1121 				break;
1122 			}
1123 		}
1124 
1125 	return secondary_pipe;
1126 }
1127 
1128 struct pipe_ctx *resource_get_head_pipe_for_stream(
1129 		struct resource_context *res_ctx,
1130 		struct dc_stream_state *stream)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < MAX_PIPES; i++) {
1135 		if (res_ctx->pipe_ctx[i].stream == stream
1136 				&& !res_ctx->pipe_ctx[i].top_pipe
1137 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1138 			return &res_ctx->pipe_ctx[i];
1139 	}
1140 	return NULL;
1141 }
1142 
1143 static struct pipe_ctx *resource_get_tail_pipe(
1144 		struct resource_context *res_ctx,
1145 		struct pipe_ctx *head_pipe)
1146 {
1147 	struct pipe_ctx *tail_pipe;
1148 
1149 	tail_pipe = head_pipe->bottom_pipe;
1150 
1151 	while (tail_pipe) {
1152 		head_pipe = tail_pipe;
1153 		tail_pipe = tail_pipe->bottom_pipe;
1154 	}
1155 
1156 	return head_pipe;
1157 }
1158 
1159 /*
1160  * A free_pipe for a stream is defined here as a pipe
1161  * that has no surface attached yet
1162  */
1163 static struct pipe_ctx *acquire_free_pipe_for_head(
1164 		struct dc_state *context,
1165 		const struct resource_pool *pool,
1166 		struct pipe_ctx *head_pipe)
1167 {
1168 	int i;
1169 	struct resource_context *res_ctx = &context->res_ctx;
1170 
1171 	if (!head_pipe->plane_state)
1172 		return head_pipe;
1173 
1174 	/* Re-use pipe already acquired for this stream if available*/
1175 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1176 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1177 				!res_ctx->pipe_ctx[i].plane_state) {
1178 			return &res_ctx->pipe_ctx[i];
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * At this point we have no re-useable pipe for this stream and we need
1184 	 * to acquire an idle one to satisfy the request
1185 	 */
1186 
1187 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1188 		return NULL;
1189 
1190 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1191 }
1192 
1193 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1194 static int acquire_first_split_pipe(
1195 		struct resource_context *res_ctx,
1196 		const struct resource_pool *pool,
1197 		struct dc_stream_state *stream)
1198 {
1199 	int i;
1200 
1201 	for (i = 0; i < pool->pipe_count; i++) {
1202 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1203 
1204 		if (split_pipe->top_pipe &&
1205 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1206 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1207 			if (split_pipe->bottom_pipe)
1208 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1209 
1210 			if (split_pipe->top_pipe->plane_state)
1211 				resource_build_scaling_params(split_pipe->top_pipe);
1212 
1213 			memset(split_pipe, 0, sizeof(*split_pipe));
1214 			split_pipe->stream_res.tg = pool->timing_generators[i];
1215 			split_pipe->plane_res.hubp = pool->hubps[i];
1216 			split_pipe->plane_res.ipp = pool->ipps[i];
1217 			split_pipe->plane_res.dpp = pool->dpps[i];
1218 			split_pipe->stream_res.opp = pool->opps[i];
1219 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1220 			split_pipe->pipe_idx = i;
1221 
1222 			split_pipe->stream = stream;
1223 			return i;
1224 		}
1225 	}
1226 	return -1;
1227 }
1228 #endif
1229 
1230 bool dc_add_plane_to_context(
1231 		const struct dc *dc,
1232 		struct dc_stream_state *stream,
1233 		struct dc_plane_state *plane_state,
1234 		struct dc_state *context)
1235 {
1236 	int i;
1237 	struct resource_pool *pool = dc->res_pool;
1238 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1239 	struct dc_stream_status *stream_status = NULL;
1240 
1241 	for (i = 0; i < context->stream_count; i++)
1242 		if (context->streams[i] == stream) {
1243 			stream_status = &context->stream_status[i];
1244 			break;
1245 		}
1246 	if (stream_status == NULL) {
1247 		dm_error("Existing stream not found; failed to attach surface!\n");
1248 		return false;
1249 	}
1250 
1251 
1252 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1253 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1254 				plane_state, MAX_SURFACE_NUM);
1255 		return false;
1256 	}
1257 
1258 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1259 
1260 	if (!head_pipe) {
1261 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1262 		return false;
1263 	}
1264 
1265 	/* retain new surface, but only once per stream */
1266 	dc_plane_state_retain(plane_state);
1267 
1268 	while (head_pipe) {
1269 		tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1270 		ASSERT(tail_pipe);
1271 
1272 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1273 
1274 	#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1275 		if (!free_pipe) {
1276 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1277 			if (pipe_idx >= 0)
1278 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1279 		}
1280 	#endif
1281 		if (!free_pipe) {
1282 			dc_plane_state_release(plane_state);
1283 			return false;
1284 		}
1285 
1286 		free_pipe->plane_state = plane_state;
1287 
1288 		if (head_pipe != free_pipe) {
1289 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1290 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1291 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1292 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1293 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1294 			free_pipe->clock_source = tail_pipe->clock_source;
1295 			free_pipe->top_pipe = tail_pipe;
1296 			tail_pipe->bottom_pipe = free_pipe;
1297 		}
1298 		head_pipe = head_pipe->next_odm_pipe;
1299 	}
1300 	/* assign new surfaces*/
1301 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1302 
1303 	stream_status->plane_count++;
1304 
1305 	return true;
1306 }
1307 
1308 bool dc_remove_plane_from_context(
1309 		const struct dc *dc,
1310 		struct dc_stream_state *stream,
1311 		struct dc_plane_state *plane_state,
1312 		struct dc_state *context)
1313 {
1314 	int i;
1315 	struct dc_stream_status *stream_status = NULL;
1316 	struct resource_pool *pool = dc->res_pool;
1317 
1318 	for (i = 0; i < context->stream_count; i++)
1319 		if (context->streams[i] == stream) {
1320 			stream_status = &context->stream_status[i];
1321 			break;
1322 		}
1323 
1324 	if (stream_status == NULL) {
1325 		dm_error("Existing stream not found; failed to remove plane.\n");
1326 		return false;
1327 	}
1328 
1329 	/* release pipe for plane*/
1330 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1331 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1332 
1333 		if (pipe_ctx->plane_state == plane_state) {
1334 			if (pipe_ctx->top_pipe)
1335 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1336 
1337 			/* Second condition is to avoid setting NULL to top pipe
1338 			 * of tail pipe making it look like head pipe in subsequent
1339 			 * deletes
1340 			 */
1341 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1342 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1343 
1344 			/*
1345 			 * For head pipe detach surfaces from pipe for tail
1346 			 * pipe just zero it out
1347 			 */
1348 			if (!pipe_ctx->top_pipe)
1349 				pipe_ctx->plane_state = NULL;
1350 			else
1351 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1352 		}
1353 	}
1354 
1355 
1356 	for (i = 0; i < stream_status->plane_count; i++) {
1357 		if (stream_status->plane_states[i] == plane_state) {
1358 
1359 			dc_plane_state_release(stream_status->plane_states[i]);
1360 			break;
1361 		}
1362 	}
1363 
1364 	if (i == stream_status->plane_count) {
1365 		dm_error("Existing plane_state not found; failed to detach it!\n");
1366 		return false;
1367 	}
1368 
1369 	stream_status->plane_count--;
1370 
1371 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1372 	for (; i < stream_status->plane_count; i++)
1373 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1374 
1375 	stream_status->plane_states[stream_status->plane_count] = NULL;
1376 
1377 	return true;
1378 }
1379 
1380 bool dc_rem_all_planes_for_stream(
1381 		const struct dc *dc,
1382 		struct dc_stream_state *stream,
1383 		struct dc_state *context)
1384 {
1385 	int i, old_plane_count;
1386 	struct dc_stream_status *stream_status = NULL;
1387 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1388 
1389 	for (i = 0; i < context->stream_count; i++)
1390 			if (context->streams[i] == stream) {
1391 				stream_status = &context->stream_status[i];
1392 				break;
1393 			}
1394 
1395 	if (stream_status == NULL) {
1396 		dm_error("Existing stream %p not found!\n", stream);
1397 		return false;
1398 	}
1399 
1400 	old_plane_count = stream_status->plane_count;
1401 
1402 	for (i = 0; i < old_plane_count; i++)
1403 		del_planes[i] = stream_status->plane_states[i];
1404 
1405 	for (i = 0; i < old_plane_count; i++)
1406 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1407 			return false;
1408 
1409 	return true;
1410 }
1411 
1412 static bool add_all_planes_for_stream(
1413 		const struct dc *dc,
1414 		struct dc_stream_state *stream,
1415 		const struct dc_validation_set set[],
1416 		int set_count,
1417 		struct dc_state *context)
1418 {
1419 	int i, j;
1420 
1421 	for (i = 0; i < set_count; i++)
1422 		if (set[i].stream == stream)
1423 			break;
1424 
1425 	if (i == set_count) {
1426 		dm_error("Stream %p not found in set!\n", stream);
1427 		return false;
1428 	}
1429 
1430 	for (j = 0; j < set[i].plane_count; j++)
1431 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1432 			return false;
1433 
1434 	return true;
1435 }
1436 
1437 bool dc_add_all_planes_for_stream(
1438 		const struct dc *dc,
1439 		struct dc_stream_state *stream,
1440 		struct dc_plane_state * const *plane_states,
1441 		int plane_count,
1442 		struct dc_state *context)
1443 {
1444 	struct dc_validation_set set;
1445 	int i;
1446 
1447 	set.stream = stream;
1448 	set.plane_count = plane_count;
1449 
1450 	for (i = 0; i < plane_count; i++)
1451 		set.plane_states[i] = plane_states[i];
1452 
1453 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1454 }
1455 
1456 
1457 static bool is_hdr_static_meta_changed(struct dc_stream_state *cur_stream,
1458 	struct dc_stream_state *new_stream)
1459 {
1460 	if (cur_stream == NULL)
1461 		return true;
1462 
1463 	if (memcmp(&cur_stream->hdr_static_metadata,
1464 			&new_stream->hdr_static_metadata,
1465 			sizeof(struct dc_info_packet)) != 0)
1466 		return true;
1467 
1468 	return false;
1469 }
1470 
1471 static bool is_vsc_info_packet_changed(struct dc_stream_state *cur_stream,
1472 		struct dc_stream_state *new_stream)
1473 {
1474 	if (cur_stream == NULL)
1475 		return true;
1476 
1477 	if (memcmp(&cur_stream->vsc_infopacket,
1478 			&new_stream->vsc_infopacket,
1479 			sizeof(struct dc_info_packet)) != 0)
1480 		return true;
1481 
1482 	return false;
1483 }
1484 
1485 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1486 		struct dc_stream_state *new_stream)
1487 {
1488 	if (cur_stream == NULL)
1489 		return true;
1490 
1491 	/* If sink pointer changed, it means this is a hotplug, we should do
1492 	 * full hw setting.
1493 	 */
1494 	if (cur_stream->sink != new_stream->sink)
1495 		return true;
1496 
1497 	/* If output color space is changed, need to reprogram info frames */
1498 	if (cur_stream->output_color_space != new_stream->output_color_space)
1499 		return true;
1500 
1501 	return memcmp(
1502 		&cur_stream->timing,
1503 		&new_stream->timing,
1504 		sizeof(struct dc_crtc_timing)) != 0;
1505 }
1506 
1507 static bool are_stream_backends_same(
1508 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1509 {
1510 	if (stream_a == stream_b)
1511 		return true;
1512 
1513 	if (stream_a == NULL || stream_b == NULL)
1514 		return false;
1515 
1516 	if (is_timing_changed(stream_a, stream_b))
1517 		return false;
1518 
1519 	if (is_hdr_static_meta_changed(stream_a, stream_b))
1520 		return false;
1521 
1522 	if (stream_a->dpms_off != stream_b->dpms_off)
1523 		return false;
1524 
1525 	if (is_vsc_info_packet_changed(stream_a, stream_b))
1526 		return false;
1527 
1528 	return true;
1529 }
1530 
1531 /**
1532  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1533  *
1534  * Checks if there a difference between the two states
1535  * that would require a mode change.
1536  *
1537  * Does not compare cursor position or attributes.
1538  */
1539 bool dc_is_stream_unchanged(
1540 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1541 {
1542 
1543 	if (!are_stream_backends_same(old_stream, stream))
1544 		return false;
1545 
1546 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1547 		return false;
1548 
1549 	return true;
1550 }
1551 
1552 /**
1553  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1554  */
1555 bool dc_is_stream_scaling_unchanged(
1556 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1557 {
1558 	if (old_stream == stream)
1559 		return true;
1560 
1561 	if (old_stream == NULL || stream == NULL)
1562 		return false;
1563 
1564 	if (memcmp(&old_stream->src,
1565 			&stream->src,
1566 			sizeof(struct rect)) != 0)
1567 		return false;
1568 
1569 	if (memcmp(&old_stream->dst,
1570 			&stream->dst,
1571 			sizeof(struct rect)) != 0)
1572 		return false;
1573 
1574 	return true;
1575 }
1576 
1577 static void update_stream_engine_usage(
1578 		struct resource_context *res_ctx,
1579 		const struct resource_pool *pool,
1580 		struct stream_encoder *stream_enc,
1581 		bool acquired)
1582 {
1583 	int i;
1584 
1585 	for (i = 0; i < pool->stream_enc_count; i++) {
1586 		if (pool->stream_enc[i] == stream_enc)
1587 			res_ctx->is_stream_enc_acquired[i] = acquired;
1588 	}
1589 }
1590 
1591 /* TODO: release audio object */
1592 void update_audio_usage(
1593 		struct resource_context *res_ctx,
1594 		const struct resource_pool *pool,
1595 		struct audio *audio,
1596 		bool acquired)
1597 {
1598 	int i;
1599 	for (i = 0; i < pool->audio_count; i++) {
1600 		if (pool->audios[i] == audio)
1601 			res_ctx->is_audio_acquired[i] = acquired;
1602 	}
1603 }
1604 
1605 static int acquire_first_free_pipe(
1606 		struct resource_context *res_ctx,
1607 		const struct resource_pool *pool,
1608 		struct dc_stream_state *stream)
1609 {
1610 	int i;
1611 
1612 	for (i = 0; i < pool->pipe_count; i++) {
1613 		if (!res_ctx->pipe_ctx[i].stream) {
1614 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1615 
1616 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1617 			pipe_ctx->plane_res.mi = pool->mis[i];
1618 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1619 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1620 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1621 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1622 			pipe_ctx->stream_res.opp = pool->opps[i];
1623 			if (pool->dpps[i])
1624 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1625 			pipe_ctx->pipe_idx = i;
1626 
1627 
1628 			pipe_ctx->stream = stream;
1629 			return i;
1630 		}
1631 	}
1632 	return -1;
1633 }
1634 
1635 static struct audio *find_first_free_audio(
1636 		struct resource_context *res_ctx,
1637 		const struct resource_pool *pool,
1638 		enum engine_id id)
1639 {
1640 	int i, available_audio_count;
1641 
1642 	available_audio_count = pool->audio_count;
1643 
1644 	for (i = 0; i < available_audio_count; i++) {
1645 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1646 			/*we have enough audio endpoint, find the matching inst*/
1647 			if (id != i)
1648 				continue;
1649 			return pool->audios[i];
1650 		}
1651 	}
1652 
1653 	/* use engine id to find free audio */
1654 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1655 		return pool->audios[id];
1656 	}
1657 	/*not found the matching one, first come first serve*/
1658 	for (i = 0; i < available_audio_count; i++) {
1659 		if (res_ctx->is_audio_acquired[i] == false) {
1660 			return pool->audios[i];
1661 		}
1662 	}
1663 	return 0;
1664 }
1665 
1666 bool resource_is_stream_unchanged(
1667 	struct dc_state *old_context, struct dc_stream_state *stream)
1668 {
1669 	int i;
1670 
1671 	for (i = 0; i < old_context->stream_count; i++) {
1672 		struct dc_stream_state *old_stream = old_context->streams[i];
1673 
1674 		if (are_stream_backends_same(old_stream, stream))
1675 				return true;
1676 	}
1677 
1678 	return false;
1679 }
1680 
1681 /**
1682  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1683  */
1684 enum dc_status dc_add_stream_to_ctx(
1685 		struct dc *dc,
1686 		struct dc_state *new_ctx,
1687 		struct dc_stream_state *stream)
1688 {
1689 	enum dc_status res;
1690 	DC_LOGGER_INIT(dc->ctx->logger);
1691 
1692 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1693 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1694 		return DC_ERROR_UNEXPECTED;
1695 	}
1696 
1697 	new_ctx->streams[new_ctx->stream_count] = stream;
1698 	dc_stream_retain(stream);
1699 	new_ctx->stream_count++;
1700 
1701 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1702 	if (res != DC_OK)
1703 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1704 
1705 	return res;
1706 }
1707 
1708 /**
1709  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1710  */
1711 enum dc_status dc_remove_stream_from_ctx(
1712 			struct dc *dc,
1713 			struct dc_state *new_ctx,
1714 			struct dc_stream_state *stream)
1715 {
1716 	int i;
1717 	struct dc_context *dc_ctx = dc->ctx;
1718 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1719 	struct pipe_ctx *odm_pipe;
1720 
1721 	if (!del_pipe) {
1722 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1723 		return DC_ERROR_UNEXPECTED;
1724 	}
1725 
1726 	odm_pipe = del_pipe->next_odm_pipe;
1727 
1728 	/* Release primary pipe */
1729 	ASSERT(del_pipe->stream_res.stream_enc);
1730 	update_stream_engine_usage(
1731 			&new_ctx->res_ctx,
1732 				dc->res_pool,
1733 			del_pipe->stream_res.stream_enc,
1734 			false);
1735 
1736 	if (del_pipe->stream_res.audio)
1737 		update_audio_usage(
1738 			&new_ctx->res_ctx,
1739 			dc->res_pool,
1740 			del_pipe->stream_res.audio,
1741 			false);
1742 
1743 	resource_unreference_clock_source(&new_ctx->res_ctx,
1744 					  dc->res_pool,
1745 					  del_pipe->clock_source);
1746 
1747 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1748 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1749 
1750 	while (odm_pipe) {
1751 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1752 
1753 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1754 		odm_pipe = next_odm_pipe;
1755 	}
1756 	memset(del_pipe, 0, sizeof(*del_pipe));
1757 
1758 	for (i = 0; i < new_ctx->stream_count; i++)
1759 		if (new_ctx->streams[i] == stream)
1760 			break;
1761 
1762 	if (new_ctx->streams[i] != stream) {
1763 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1764 		return DC_ERROR_UNEXPECTED;
1765 	}
1766 
1767 	dc_stream_release(new_ctx->streams[i]);
1768 	new_ctx->stream_count--;
1769 
1770 	/* Trim back arrays */
1771 	for (; i < new_ctx->stream_count; i++) {
1772 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1773 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1774 	}
1775 
1776 	new_ctx->streams[new_ctx->stream_count] = NULL;
1777 	memset(
1778 			&new_ctx->stream_status[new_ctx->stream_count],
1779 			0,
1780 			sizeof(new_ctx->stream_status[0]));
1781 
1782 	return DC_OK;
1783 }
1784 
1785 static struct dc_stream_state *find_pll_sharable_stream(
1786 		struct dc_stream_state *stream_needs_pll,
1787 		struct dc_state *context)
1788 {
1789 	int i;
1790 
1791 	for (i = 0; i < context->stream_count; i++) {
1792 		struct dc_stream_state *stream_has_pll = context->streams[i];
1793 
1794 		/* We are looking for non dp, non virtual stream */
1795 		if (resource_are_streams_timing_synchronizable(
1796 			stream_needs_pll, stream_has_pll)
1797 			&& !dc_is_dp_signal(stream_has_pll->signal)
1798 			&& stream_has_pll->link->connector_signal
1799 			!= SIGNAL_TYPE_VIRTUAL)
1800 			return stream_has_pll;
1801 
1802 	}
1803 
1804 	return NULL;
1805 }
1806 
1807 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1808 {
1809 	uint32_t pix_clk = timing->pix_clk_100hz;
1810 	uint32_t normalized_pix_clk = pix_clk;
1811 
1812 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1813 		pix_clk /= 2;
1814 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1815 		switch (timing->display_color_depth) {
1816 		case COLOR_DEPTH_666:
1817 		case COLOR_DEPTH_888:
1818 			normalized_pix_clk = pix_clk;
1819 			break;
1820 		case COLOR_DEPTH_101010:
1821 			normalized_pix_clk = (pix_clk * 30) / 24;
1822 			break;
1823 		case COLOR_DEPTH_121212:
1824 			normalized_pix_clk = (pix_clk * 36) / 24;
1825 		break;
1826 		case COLOR_DEPTH_161616:
1827 			normalized_pix_clk = (pix_clk * 48) / 24;
1828 		break;
1829 		default:
1830 			ASSERT(0);
1831 		break;
1832 		}
1833 	}
1834 	return normalized_pix_clk;
1835 }
1836 
1837 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1838 {
1839 	/* update actual pixel clock on all streams */
1840 	if (dc_is_hdmi_signal(stream->signal))
1841 		stream->phy_pix_clk = get_norm_pix_clk(
1842 			&stream->timing) / 10;
1843 	else
1844 		stream->phy_pix_clk =
1845 			stream->timing.pix_clk_100hz / 10;
1846 
1847 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1848 		stream->phy_pix_clk *= 2;
1849 }
1850 
1851 static int acquire_resource_from_hw_enabled_state(
1852 		struct resource_context *res_ctx,
1853 		const struct resource_pool *pool,
1854 		struct dc_stream_state *stream)
1855 {
1856 	struct dc_link *link = stream->link;
1857 	unsigned int inst, tg_inst;
1858 
1859 	/* Check for enabled DIG to identify enabled display */
1860 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1861 		return -1;
1862 
1863 	/* Check for which front end is used by this encoder.
1864 	 * Note the inst is 1 indexed, where 0 is undefined.
1865 	 * Note that DIG_FE can source from different OTG but our
1866 	 * current implementation always map 1-to-1, so this code makes
1867 	 * the same assumption and doesn't check OTG source.
1868 	 */
1869 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1870 
1871 	/* Instance should be within the range of the pool */
1872 	if (inst >= pool->pipe_count)
1873 		return -1;
1874 
1875 	if (inst >= pool->stream_enc_count)
1876 		return -1;
1877 
1878 	tg_inst = pool->stream_enc[inst]->funcs->dig_source_otg(pool->stream_enc[inst]);
1879 
1880 	if (tg_inst >= pool->timing_generator_count)
1881 		return false;
1882 
1883 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
1884 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1885 
1886 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1887 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1888 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1889 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1890 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1891 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1892 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1893 
1894 		if (pool->dpps[tg_inst])
1895 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1896 		pipe_ctx->pipe_idx = tg_inst;
1897 
1898 		pipe_ctx->stream = stream;
1899 		return tg_inst;
1900 	}
1901 
1902 	return -1;
1903 }
1904 
1905 enum dc_status resource_map_pool_resources(
1906 		const struct dc  *dc,
1907 		struct dc_state *context,
1908 		struct dc_stream_state *stream)
1909 {
1910 	const struct resource_pool *pool = dc->res_pool;
1911 	int i;
1912 	struct dc_context *dc_ctx = dc->ctx;
1913 	struct pipe_ctx *pipe_ctx = NULL;
1914 	int pipe_idx = -1;
1915 	struct dc_bios *dcb = dc->ctx->dc_bios;
1916 
1917 	/* TODO Check if this is needed */
1918 	/*if (!resource_is_stream_unchanged(old_context, stream)) {
1919 			if (stream != NULL && old_context->streams[i] != NULL) {
1920 				stream->bit_depth_params =
1921 						old_context->streams[i]->bit_depth_params;
1922 				stream->clamping = old_context->streams[i]->clamping;
1923 				continue;
1924 			}
1925 		}
1926 	*/
1927 
1928 	calculate_phy_pix_clks(stream);
1929 
1930 	/* TODO: Check Linux */
1931 	if (dc->config.allow_seamless_boot_optimization &&
1932 			!dcb->funcs->is_accelerated_mode(dcb)) {
1933 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1934 			stream->apply_seamless_boot_optimization = true;
1935 	}
1936 
1937 	if (stream->apply_seamless_boot_optimization)
1938 		pipe_idx = acquire_resource_from_hw_enabled_state(
1939 				&context->res_ctx,
1940 				pool,
1941 				stream);
1942 
1943 	if (pipe_idx < 0)
1944 		/* acquire new resources */
1945 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
1946 
1947 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
1948 	if (pipe_idx < 0)
1949 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1950 #endif
1951 
1952 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
1953 		return DC_NO_CONTROLLER_RESOURCE;
1954 
1955 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1956 
1957 	pipe_ctx->stream_res.stream_enc =
1958 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
1959 			&context->res_ctx, pool, stream);
1960 
1961 	if (!pipe_ctx->stream_res.stream_enc)
1962 		return DC_NO_STREAM_ENC_RESOURCE;
1963 
1964 	update_stream_engine_usage(
1965 		&context->res_ctx, pool,
1966 		pipe_ctx->stream_res.stream_enc,
1967 		true);
1968 
1969 	/* TODO: Add check if ASIC support and EDID audio */
1970 	if (!stream->converter_disable_audio &&
1971 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
1972 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
1973 		pipe_ctx->stream_res.audio = find_first_free_audio(
1974 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id);
1975 
1976 		/*
1977 		 * Audio assigned in order first come first get.
1978 		 * There are asics which has number of audio
1979 		 * resources less then number of pipes
1980 		 */
1981 		if (pipe_ctx->stream_res.audio)
1982 			update_audio_usage(&context->res_ctx, pool,
1983 					   pipe_ctx->stream_res.audio, true);
1984 	}
1985 
1986 	/* Add ABM to the resource if on EDP */
1987 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal))
1988 		pipe_ctx->stream_res.abm = pool->abm;
1989 
1990 	for (i = 0; i < context->stream_count; i++)
1991 		if (context->streams[i] == stream) {
1992 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
1993 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->id;
1994 			context->stream_status[i].audio_inst =
1995 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
1996 
1997 			return DC_OK;
1998 		}
1999 
2000 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2001 	return DC_ERROR_UNEXPECTED;
2002 }
2003 
2004 /**
2005  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2006  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2007  * @dc: copy out of dc->current_state
2008  * @dst_ctx: copy into this
2009  */
2010 void dc_resource_state_copy_construct_current(
2011 		const struct dc *dc,
2012 		struct dc_state *dst_ctx)
2013 {
2014 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2015 }
2016 
2017 
2018 void dc_resource_state_construct(
2019 		const struct dc *dc,
2020 		struct dc_state *dst_ctx)
2021 {
2022 	dst_ctx->clk_mgr = dc->clk_mgr;
2023 }
2024 
2025 /**
2026  * dc_validate_global_state() - Determine if HW can support a given state
2027  * Checks HW resource availability and bandwidth requirement.
2028  * @dc: dc struct for this driver
2029  * @new_ctx: state to be validated
2030  * @fast_validate: set to true if only yes/no to support matters
2031  *
2032  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2033  */
2034 enum dc_status dc_validate_global_state(
2035 		struct dc *dc,
2036 		struct dc_state *new_ctx,
2037 		bool fast_validate)
2038 {
2039 	enum dc_status result = DC_ERROR_UNEXPECTED;
2040 	int i, j;
2041 
2042 	if (!new_ctx)
2043 		return DC_ERROR_UNEXPECTED;
2044 
2045 	if (dc->res_pool->funcs->validate_global) {
2046 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2047 		if (result != DC_OK)
2048 			return result;
2049 	}
2050 
2051 	for (i = 0; i < new_ctx->stream_count; i++) {
2052 		struct dc_stream_state *stream = new_ctx->streams[i];
2053 
2054 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2055 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2056 
2057 			if (pipe_ctx->stream != stream)
2058 				continue;
2059 
2060 			if (dc->res_pool->funcs->get_default_swizzle_mode &&
2061 					pipe_ctx->plane_state &&
2062 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2063 				result = dc->res_pool->funcs->get_default_swizzle_mode(pipe_ctx->plane_state);
2064 				if (result != DC_OK)
2065 					return result;
2066 			}
2067 
2068 			/* Switch to dp clock source only if there is
2069 			 * no non dp stream that shares the same timing
2070 			 * with the dp stream.
2071 			 */
2072 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2073 				!find_pll_sharable_stream(stream, new_ctx)) {
2074 
2075 				resource_unreference_clock_source(
2076 						&new_ctx->res_ctx,
2077 						dc->res_pool,
2078 						pipe_ctx->clock_source);
2079 
2080 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2081 				resource_reference_clock_source(
2082 						&new_ctx->res_ctx,
2083 						dc->res_pool,
2084 						 pipe_ctx->clock_source);
2085 			}
2086 		}
2087 	}
2088 
2089 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2090 
2091 	if (result == DC_OK)
2092 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2093 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2094 
2095 	return result;
2096 }
2097 
2098 static void patch_gamut_packet_checksum(
2099 		struct dc_info_packet *gamut_packet)
2100 {
2101 	/* For gamut we recalc checksum */
2102 	if (gamut_packet->valid) {
2103 		uint8_t chk_sum = 0;
2104 		uint8_t *ptr;
2105 		uint8_t i;
2106 
2107 		/*start of the Gamut data. */
2108 		ptr = &gamut_packet->sb[3];
2109 
2110 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2111 			chk_sum += ptr[i];
2112 
2113 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2114 	}
2115 }
2116 
2117 static void set_avi_info_frame(
2118 		struct dc_info_packet *info_packet,
2119 		struct pipe_ctx *pipe_ctx)
2120 {
2121 	struct dc_stream_state *stream = pipe_ctx->stream;
2122 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2123 	uint32_t pixel_encoding = 0;
2124 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2125 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2126 	bool itc = false;
2127 	uint8_t itc_value = 0;
2128 	uint8_t cn0_cn1 = 0;
2129 	unsigned int cn0_cn1_value = 0;
2130 	uint8_t *check_sum = NULL;
2131 	uint8_t byte_index = 0;
2132 	union hdmi_info_packet hdmi_info;
2133 	union display_content_support support = {0};
2134 	unsigned int vic = pipe_ctx->stream->timing.vic;
2135 	enum dc_timing_3d_format format;
2136 
2137 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2138 
2139 	color_space = pipe_ctx->stream->output_color_space;
2140 	if (color_space == COLOR_SPACE_UNKNOWN)
2141 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2142 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2143 
2144 	/* Initialize header */
2145 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2146 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2147 	* not be used in HDMI 2.0 (Section 10.1) */
2148 	hdmi_info.bits.header.version = 2;
2149 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2150 
2151 	/*
2152 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2153 	 * according to HDMI 2.0 spec (Section 10.1)
2154 	 */
2155 
2156 	switch (stream->timing.pixel_encoding) {
2157 	case PIXEL_ENCODING_YCBCR422:
2158 		pixel_encoding = 1;
2159 		break;
2160 
2161 	case PIXEL_ENCODING_YCBCR444:
2162 		pixel_encoding = 2;
2163 		break;
2164 	case PIXEL_ENCODING_YCBCR420:
2165 		pixel_encoding = 3;
2166 		break;
2167 
2168 	case PIXEL_ENCODING_RGB:
2169 	default:
2170 		pixel_encoding = 0;
2171 	}
2172 
2173 	/* Y0_Y1_Y2 : The pixel encoding */
2174 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2175 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2176 
2177 	/* A0 = 1 Active Format Information valid */
2178 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2179 
2180 	/* B0, B1 = 3; Bar info data is valid */
2181 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2182 
2183 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2184 
2185 	/* S0, S1 : Underscan / Overscan */
2186 	/* TODO: un-hardcode scan type */
2187 	scan_type = SCANNING_TYPE_UNDERSCAN;
2188 	hdmi_info.bits.S0_S1 = scan_type;
2189 
2190 	/* C0, C1 : Colorimetry */
2191 	if (color_space == COLOR_SPACE_YCBCR709 ||
2192 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2193 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2194 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2195 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2196 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2197 	else {
2198 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2199 	}
2200 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2201 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2202 			color_space == COLOR_SPACE_2020_YCBCR) {
2203 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2204 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2205 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2206 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2207 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2208 	}
2209 
2210 	/* TODO: un-hardcode aspect ratio */
2211 	aspect = stream->timing.aspect_ratio;
2212 
2213 	switch (aspect) {
2214 	case ASPECT_RATIO_4_3:
2215 	case ASPECT_RATIO_16_9:
2216 		hdmi_info.bits.M0_M1 = aspect;
2217 		break;
2218 
2219 	case ASPECT_RATIO_NO_DATA:
2220 	case ASPECT_RATIO_64_27:
2221 	case ASPECT_RATIO_256_135:
2222 	default:
2223 		hdmi_info.bits.M0_M1 = 0;
2224 	}
2225 
2226 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2227 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2228 
2229 	/* TODO: un-hardcode cn0_cn1 and itc */
2230 
2231 	cn0_cn1 = 0;
2232 	cn0_cn1_value = 0;
2233 
2234 	itc = true;
2235 	itc_value = 1;
2236 
2237 	support = stream->content_support;
2238 
2239 	if (itc) {
2240 		if (!support.bits.valid_content_type) {
2241 			cn0_cn1_value = 0;
2242 		} else {
2243 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2244 				if (support.bits.graphics_content == 1) {
2245 					cn0_cn1_value = 0;
2246 				}
2247 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2248 				if (support.bits.photo_content == 1) {
2249 					cn0_cn1_value = 1;
2250 				} else {
2251 					cn0_cn1_value = 0;
2252 					itc_value = 0;
2253 				}
2254 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2255 				if (support.bits.cinema_content == 1) {
2256 					cn0_cn1_value = 2;
2257 				} else {
2258 					cn0_cn1_value = 0;
2259 					itc_value = 0;
2260 				}
2261 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2262 				if (support.bits.game_content == 1) {
2263 					cn0_cn1_value = 3;
2264 				} else {
2265 					cn0_cn1_value = 0;
2266 					itc_value = 0;
2267 				}
2268 			}
2269 		}
2270 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2271 		hdmi_info.bits.ITC = itc_value;
2272 	}
2273 
2274 	/* TODO : We should handle YCC quantization */
2275 	/* but we do not have matrix calculation */
2276 	if (stream->qs_bit == 1 &&
2277 			stream->qy_bit == 1) {
2278 		if (color_space == COLOR_SPACE_SRGB ||
2279 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE) {
2280 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2281 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_FULL_RANGE;
2282 		} else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2283 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE) {
2284 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2285 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2286 		} else {
2287 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2288 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2289 		}
2290 	} else {
2291 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2292 		hdmi_info.bits.YQ0_YQ1   = YYC_QUANTIZATION_LIMITED_RANGE;
2293 	}
2294 
2295 	///VIC
2296 	format = stream->timing.timing_3d_format;
2297 	/*todo, add 3DStereo support*/
2298 	if (format != TIMING_3D_FORMAT_NONE) {
2299 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2300 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2301 		case 1:
2302 			vic = 95;
2303 			break;
2304 		case 2:
2305 			vic = 94;
2306 			break;
2307 		case 3:
2308 			vic = 93;
2309 			break;
2310 		case 4:
2311 			vic = 98;
2312 			break;
2313 		default:
2314 			break;
2315 		}
2316 	}
2317 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2318 	hdmi_info.bits.VIC0_VIC7 = vic;
2319 	if (vic >= 128)
2320 		hdmi_info.bits.header.version = 3;
2321 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2322 	 * the Source shall use 20 AVI InfoFrame Version 4
2323 	 */
2324 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2325 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2326 		hdmi_info.bits.header.version = 4;
2327 		hdmi_info.bits.header.length = 14;
2328 	}
2329 
2330 	/* pixel repetition
2331 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2332 	 * repetition start from 1 */
2333 	hdmi_info.bits.PR0_PR3 = 0;
2334 
2335 	/* Bar Info
2336 	 * barTop:    Line Number of End of Top Bar.
2337 	 * barBottom: Line Number of Start of Bottom Bar.
2338 	 * barLeft:   Pixel Number of End of Left Bar.
2339 	 * barRight:  Pixel Number of Start of Right Bar. */
2340 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2341 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2342 			- stream->timing.v_border_bottom + 1);
2343 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2344 	hdmi_info.bits.bar_right = (stream->timing.h_total
2345 			- stream->timing.h_border_right + 1);
2346 
2347     /* Additional Colorimetry Extension
2348      * Used in conduction with C0-C1 and EC0-EC2
2349      * 0 = DCI-P3 RGB (D65)
2350      * 1 = DCI-P3 RGB (theater)
2351      */
2352 	hdmi_info.bits.ACE0_ACE3 = 0;
2353 
2354 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2355 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2356 
2357 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2358 
2359 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2360 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2361 
2362 	/* one byte complement */
2363 	*check_sum = (uint8_t) (0x100 - *check_sum);
2364 
2365 	/* Store in hw_path_mode */
2366 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2367 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2368 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2369 
2370 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2371 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2372 
2373 	info_packet->valid = true;
2374 }
2375 
2376 static void set_vendor_info_packet(
2377 		struct dc_info_packet *info_packet,
2378 		struct dc_stream_state *stream)
2379 {
2380 	/* SPD info packet for FreeSync */
2381 
2382 	/* Check if Freesync is supported. Return if false. If true,
2383 	 * set the corresponding bit in the info packet
2384 	 */
2385 	if (!stream->vsp_infopacket.valid)
2386 		return;
2387 
2388 	*info_packet = stream->vsp_infopacket;
2389 }
2390 
2391 static void set_spd_info_packet(
2392 		struct dc_info_packet *info_packet,
2393 		struct dc_stream_state *stream)
2394 {
2395 	/* SPD info packet for FreeSync */
2396 
2397 	/* Check if Freesync is supported. Return if false. If true,
2398 	 * set the corresponding bit in the info packet
2399 	 */
2400 	if (!stream->vrr_infopacket.valid)
2401 		return;
2402 
2403 	*info_packet = stream->vrr_infopacket;
2404 }
2405 
2406 static void set_hdr_static_info_packet(
2407 		struct dc_info_packet *info_packet,
2408 		struct dc_stream_state *stream)
2409 {
2410 	/* HDR Static Metadata info packet for HDR10 */
2411 
2412 	if (!stream->hdr_static_metadata.valid ||
2413 			stream->use_dynamic_meta)
2414 		return;
2415 
2416 	*info_packet = stream->hdr_static_metadata;
2417 }
2418 
2419 static void set_vsc_info_packet(
2420 		struct dc_info_packet *info_packet,
2421 		struct dc_stream_state *stream)
2422 {
2423 	if (!stream->vsc_infopacket.valid)
2424 		return;
2425 
2426 	*info_packet = stream->vsc_infopacket;
2427 }
2428 
2429 void dc_resource_state_destruct(struct dc_state *context)
2430 {
2431 	int i, j;
2432 
2433 	for (i = 0; i < context->stream_count; i++) {
2434 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2435 			dc_plane_state_release(
2436 				context->stream_status[i].plane_states[j]);
2437 
2438 		context->stream_status[i].plane_count = 0;
2439 		dc_stream_release(context->streams[i]);
2440 		context->streams[i] = NULL;
2441 	}
2442 }
2443 
2444 void dc_resource_state_copy_construct(
2445 		const struct dc_state *src_ctx,
2446 		struct dc_state *dst_ctx)
2447 {
2448 	int i, j;
2449 	struct kref refcount = dst_ctx->refcount;
2450 
2451 	*dst_ctx = *src_ctx;
2452 
2453 	for (i = 0; i < MAX_PIPES; i++) {
2454 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2455 
2456 		if (cur_pipe->top_pipe)
2457 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2458 
2459 		if (cur_pipe->bottom_pipe)
2460 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2461 
2462 		if (cur_pipe->next_odm_pipe)
2463 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2464 
2465 		if (cur_pipe->prev_odm_pipe)
2466 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2467 	}
2468 
2469 	for (i = 0; i < dst_ctx->stream_count; i++) {
2470 		dc_stream_retain(dst_ctx->streams[i]);
2471 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2472 			dc_plane_state_retain(
2473 				dst_ctx->stream_status[i].plane_states[j]);
2474 	}
2475 
2476 	/* context refcount should not be overridden */
2477 	dst_ctx->refcount = refcount;
2478 
2479 }
2480 
2481 struct clock_source *dc_resource_find_first_free_pll(
2482 		struct resource_context *res_ctx,
2483 		const struct resource_pool *pool)
2484 {
2485 	int i;
2486 
2487 	for (i = 0; i < pool->clk_src_count; ++i) {
2488 		if (res_ctx->clock_source_ref_count[i] == 0)
2489 			return pool->clock_sources[i];
2490 	}
2491 
2492 	return NULL;
2493 }
2494 
2495 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2496 {
2497 	enum signal_type signal = SIGNAL_TYPE_NONE;
2498 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2499 
2500 	/* default all packets to invalid */
2501 	info->avi.valid = false;
2502 	info->gamut.valid = false;
2503 	info->vendor.valid = false;
2504 	info->spd.valid = false;
2505 	info->hdrsmd.valid = false;
2506 	info->vsc.valid = false;
2507 
2508 	signal = pipe_ctx->stream->signal;
2509 
2510 	/* HDMi and DP have different info packets*/
2511 	if (dc_is_hdmi_signal(signal)) {
2512 		set_avi_info_frame(&info->avi, pipe_ctx);
2513 
2514 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2515 
2516 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2517 
2518 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2519 
2520 	} else if (dc_is_dp_signal(signal)) {
2521 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2522 
2523 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2524 
2525 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2526 	}
2527 
2528 	patch_gamut_packet_checksum(&info->gamut);
2529 }
2530 
2531 enum dc_status resource_map_clock_resources(
2532 		const struct dc  *dc,
2533 		struct dc_state *context,
2534 		struct dc_stream_state *stream)
2535 {
2536 	/* acquire new resources */
2537 	const struct resource_pool *pool = dc->res_pool;
2538 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2539 				&context->res_ctx, stream);
2540 
2541 	if (!pipe_ctx)
2542 		return DC_ERROR_UNEXPECTED;
2543 
2544 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2545 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2546 		pipe_ctx->clock_source = pool->dp_clock_source;
2547 	else {
2548 		pipe_ctx->clock_source = NULL;
2549 
2550 		if (!dc->config.disable_disp_pll_sharing)
2551 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2552 				&context->res_ctx,
2553 				pipe_ctx);
2554 
2555 		if (pipe_ctx->clock_source == NULL)
2556 			pipe_ctx->clock_source =
2557 				dc_resource_find_first_free_pll(
2558 					&context->res_ctx,
2559 					pool);
2560 	}
2561 
2562 	if (pipe_ctx->clock_source == NULL)
2563 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2564 
2565 	resource_reference_clock_source(
2566 		&context->res_ctx, pool,
2567 		pipe_ctx->clock_source);
2568 
2569 	return DC_OK;
2570 }
2571 
2572 /*
2573  * Note: We need to disable output if clock sources change,
2574  * since bios does optimization and doesn't apply if changing
2575  * PHY when not already disabled.
2576  */
2577 bool pipe_need_reprogram(
2578 		struct pipe_ctx *pipe_ctx_old,
2579 		struct pipe_ctx *pipe_ctx)
2580 {
2581 	if (!pipe_ctx_old->stream)
2582 		return false;
2583 
2584 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2585 		return true;
2586 
2587 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2588 		return true;
2589 
2590 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2591 		return true;
2592 
2593 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2594 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2595 		return true;
2596 
2597 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2598 		return true;
2599 
2600 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2601 		return true;
2602 
2603 	if (is_hdr_static_meta_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2604 		return true;
2605 
2606 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2607 		return true;
2608 
2609 	if (is_vsc_info_packet_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2610 		return true;
2611 
2612 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2613 		false == pipe_ctx_old->stream->dpms_off)
2614 		return true;
2615 
2616 	return false;
2617 }
2618 
2619 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2620 		struct bit_depth_reduction_params *fmt_bit_depth)
2621 {
2622 	enum dc_dither_option option = stream->dither_option;
2623 	enum dc_pixel_encoding pixel_encoding =
2624 			stream->timing.pixel_encoding;
2625 
2626 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2627 
2628 	if (option == DITHER_OPTION_DEFAULT) {
2629 		switch (stream->timing.display_color_depth) {
2630 		case COLOR_DEPTH_666:
2631 			option = DITHER_OPTION_SPATIAL6;
2632 			break;
2633 		case COLOR_DEPTH_888:
2634 			option = DITHER_OPTION_SPATIAL8;
2635 			break;
2636 		case COLOR_DEPTH_101010:
2637 			option = DITHER_OPTION_SPATIAL10;
2638 			break;
2639 		default:
2640 			option = DITHER_OPTION_DISABLE;
2641 		}
2642 	}
2643 
2644 	if (option == DITHER_OPTION_DISABLE)
2645 		return;
2646 
2647 	if (option == DITHER_OPTION_TRUN6) {
2648 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2649 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2650 	} else if (option == DITHER_OPTION_TRUN8 ||
2651 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2652 			option == DITHER_OPTION_TRUN8_FM6) {
2653 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2654 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2655 	} else if (option == DITHER_OPTION_TRUN10        ||
2656 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2657 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2658 			option == DITHER_OPTION_TRUN10_FM8     ||
2659 			option == DITHER_OPTION_TRUN10_FM6     ||
2660 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2661 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2662 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2663 	}
2664 
2665 	/* special case - Formatter can only reduce by 4 bits at most.
2666 	 * When reducing from 12 to 6 bits,
2667 	 * HW recommends we use trunc with round mode
2668 	 * (if we did nothing, trunc to 10 bits would be used)
2669 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2670 	 * as the input was 10 bits.
2671 	 */
2672 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2673 			option == DITHER_OPTION_SPATIAL6 ||
2674 			option == DITHER_OPTION_FM6) {
2675 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2676 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2677 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2678 	}
2679 
2680 	/* spatial dither
2681 	 * note that spatial modes 1-3 are never used
2682 	 */
2683 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2684 			option == DITHER_OPTION_SPATIAL6 ||
2685 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2686 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2687 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2688 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2689 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2690 		fmt_bit_depth->flags.RGB_RANDOM =
2691 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2692 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2693 			option == DITHER_OPTION_SPATIAL8 ||
2694 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2695 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2696 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2697 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2698 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2699 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2700 		fmt_bit_depth->flags.RGB_RANDOM =
2701 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2702 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2703 			option == DITHER_OPTION_SPATIAL10 ||
2704 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2705 			option == DITHER_OPTION_SPATIAL10_FM6) {
2706 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2707 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2708 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2709 		fmt_bit_depth->flags.RGB_RANDOM =
2710 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2711 	}
2712 
2713 	if (option == DITHER_OPTION_SPATIAL6 ||
2714 			option == DITHER_OPTION_SPATIAL8 ||
2715 			option == DITHER_OPTION_SPATIAL10) {
2716 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2717 	} else {
2718 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2719 	}
2720 
2721 	//////////////////////
2722 	//// temporal dither
2723 	//////////////////////
2724 	if (option == DITHER_OPTION_FM6           ||
2725 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2726 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2727 			option == DITHER_OPTION_TRUN10_FM6     ||
2728 			option == DITHER_OPTION_TRUN8_FM6      ||
2729 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2730 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2731 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2732 	} else if (option == DITHER_OPTION_FM8        ||
2733 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2734 			option == DITHER_OPTION_TRUN10_FM8) {
2735 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2736 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2737 	} else if (option == DITHER_OPTION_FM10) {
2738 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2739 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2740 	}
2741 
2742 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2743 }
2744 
2745 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2746 {
2747 	struct dc  *core_dc = dc;
2748 	struct dc_link *link = stream->link;
2749 	struct timing_generator *tg = core_dc->res_pool->timing_generators[0];
2750 	enum dc_status res = DC_OK;
2751 
2752 	calculate_phy_pix_clks(stream);
2753 
2754 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2755 		res = DC_FAIL_CONTROLLER_VALIDATE;
2756 
2757 	if (res == DC_OK) {
2758 		if (!link->link_enc->funcs->validate_output_with_stream(
2759 						link->link_enc, stream))
2760 			res = DC_FAIL_ENC_VALIDATE;
2761 	}
2762 
2763 	/* TODO: validate audio ASIC caps, encoder */
2764 
2765 	if (res == DC_OK)
2766 		res = dc_link_validate_mode_timing(stream,
2767 		      link,
2768 		      &stream->timing);
2769 
2770 	return res;
2771 }
2772 
2773 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2774 {
2775 	enum dc_status res = DC_OK;
2776 
2777 	/* TODO For now validates pixel format only */
2778 	if (dc->res_pool->funcs->validate_plane)
2779 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2780 
2781 	return res;
2782 }
2783 
2784 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2785 {
2786 	switch (format) {
2787 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2788 		return 8;
2789 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2790 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2791 		return 12;
2792 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2793 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2794 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2795 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2796 		return 16;
2797 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2798 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2799 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2800 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2801 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2802 		return 32;
2803 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2804 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2805 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2806 		return 64;
2807 	default:
2808 		ASSERT_CRITICAL(false);
2809 		return -1;
2810 	}
2811 }
2812