1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dc_link_dp.h"
28 #include "dcn32/dcn32_resource.h"
29 #include "dcn20/dcn20_resource.h"
30 #include "display_mode_vba_util_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 
35 #define DC_LOGGER_INIT(logger)
36 
37 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
38 	.gpuvm_enable = 0,
39 	.gpuvm_max_page_table_levels = 4,
40 	.hostvm_enable = 0,
41 	.rob_buffer_size_kbytes = 128,
42 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
43 	.config_return_buffer_size_in_kbytes = 1280,
44 	.compressed_buffer_segment_size_in_kbytes = 64,
45 	.meta_fifo_size_in_kentries = 22,
46 	.zero_size_buffer_entries = 512,
47 	.compbuf_reserved_space_64b = 256,
48 	.compbuf_reserved_space_zs = 64,
49 	.dpp_output_buffer_pixels = 2560,
50 	.opp_output_buffer_lines = 1,
51 	.pixel_chunk_size_kbytes = 8,
52 	.alpha_pixel_chunk_size_kbytes = 4,
53 	.min_pixel_chunk_size_bytes = 1024,
54 	.dcc_meta_buffer_size_bytes = 6272,
55 	.meta_chunk_size_kbytes = 2,
56 	.min_meta_chunk_size_bytes = 256,
57 	.writeback_chunk_size_kbytes = 8,
58 	.ptoi_supported = false,
59 	.num_dsc = 4,
60 	.maximum_dsc_bits_per_component = 12,
61 	.maximum_pixels_per_line_per_dsc_unit = 6016,
62 	.dsc422_native_support = true,
63 	.is_line_buffer_bpp_fixed = true,
64 	.line_buffer_fixed_bpp = 57,
65 	.line_buffer_size_bits = 1171920,
66 	.max_line_buffer_lines = 32,
67 	.writeback_interface_buffer_size_kbytes = 90,
68 	.max_num_dpp = 4,
69 	.max_num_otg = 4,
70 	.max_num_hdmi_frl_outputs = 1,
71 	.max_num_wb = 1,
72 	.max_dchub_pscl_bw_pix_per_clk = 4,
73 	.max_pscl_lb_bw_pix_per_clk = 2,
74 	.max_lb_vscl_bw_pix_per_clk = 4,
75 	.max_vscl_hscl_bw_pix_per_clk = 4,
76 	.max_hscl_ratio = 6,
77 	.max_vscl_ratio = 6,
78 	.max_hscl_taps = 8,
79 	.max_vscl_taps = 8,
80 	.dpte_buffer_size_in_pte_reqs_luma = 64,
81 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
82 	.dispclk_ramp_margin_percent = 1,
83 	.max_inter_dcn_tile_repeaters = 8,
84 	.cursor_buffer_size = 16,
85 	.cursor_chunk_size = 2,
86 	.writeback_line_buffer_buffer_size = 0,
87 	.writeback_min_hscl_ratio = 1,
88 	.writeback_min_vscl_ratio = 1,
89 	.writeback_max_hscl_ratio = 1,
90 	.writeback_max_vscl_ratio = 1,
91 	.writeback_max_hscl_taps = 1,
92 	.writeback_max_vscl_taps = 1,
93 	.dppclk_delay_subtotal = 47,
94 	.dppclk_delay_scl = 50,
95 	.dppclk_delay_scl_lb_only = 16,
96 	.dppclk_delay_cnvc_formatter = 28,
97 	.dppclk_delay_cnvc_cursor = 6,
98 	.dispclk_delay_subtotal = 125,
99 	.dynamic_metadata_vm_enabled = false,
100 	.odm_combine_4to1_supported = false,
101 	.dcc_supported = true,
102 	.max_num_dp2p0_outputs = 2,
103 	.max_num_dp2p0_streams = 4,
104 };
105 
106 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
107 	.clock_limits = {
108 		{
109 			.state = 0,
110 			.dcfclk_mhz = 1564.0,
111 			.fabricclk_mhz = 400.0,
112 			.dispclk_mhz = 2150.0,
113 			.dppclk_mhz = 2150.0,
114 			.phyclk_mhz = 810.0,
115 			.phyclk_d18_mhz = 667.0,
116 			.phyclk_d32_mhz = 625.0,
117 			.socclk_mhz = 1200.0,
118 			.dscclk_mhz = 716.667,
119 			.dram_speed_mts = 16000.0,
120 			.dtbclk_mhz = 1564.0,
121 		},
122 	},
123 	.num_states = 1,
124 	.sr_exit_time_us = 42.97,
125 	.sr_enter_plus_exit_time_us = 49.94,
126 	.sr_exit_z8_time_us = 285.0,
127 	.sr_enter_plus_exit_z8_time_us = 320,
128 	.writeback_latency_us = 12.0,
129 	.round_trip_ping_latency_dcfclk_cycles = 263,
130 	.urgent_latency_pixel_data_only_us = 4.0,
131 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
132 	.urgent_latency_vm_data_only_us = 4.0,
133 	.fclk_change_latency_us = 20,
134 	.usr_retraining_latency_us = 2,
135 	.smn_latency_us = 2,
136 	.mall_allocated_for_dcn_mbytes = 64,
137 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
138 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
139 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
140 	.pct_ideal_sdp_bw_after_urgent = 100.0,
141 	.pct_ideal_fabric_bw_after_urgent = 67.0,
142 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
143 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
144 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
145 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
146 	.max_avg_sdp_bw_use_normal_percent = 80.0,
147 	.max_avg_fabric_bw_use_normal_percent = 60.0,
148 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
149 	.max_avg_dram_bw_use_normal_percent = 15.0,
150 	.num_chans = 8,
151 	.dram_channel_width_bytes = 2,
152 	.fabric_datapath_to_dcn_data_return_bytes = 64,
153 	.return_bus_width_bytes = 64,
154 	.downspread_percent = 0.38,
155 	.dcn_downspread_percent = 0.5,
156 	.dram_clock_change_latency_us = 400,
157 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
158 	.do_urgent_latency_adjustment = true,
159 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
160 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
161 };
162 
163 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
164 {
165 	/* defaults */
166 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
167 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
168 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
169 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
170 	/* For min clocks use as reported by PM FW and report those as min */
171 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
172 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
173 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
174 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
175 
176 	dc_assert_fp_enabled();
177 
178 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
179 	if (dcfclk_mhz_for_the_second_state)
180 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
181 	else
182 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 
184 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
185 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
186 
187 	/* Set A - Normal - default values */
188 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
189 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
190 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
191 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
192 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
193 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
194 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
195 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
196 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
197 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
198 
199 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
208 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
209 
210 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
211 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
212 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
213 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
214 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 38;
215 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
216 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
217 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
218 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
219 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
220 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
221 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
222 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
223 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
224 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 38;
225 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
226 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
227 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
228 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
229 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
230 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
231 	}
232 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
233 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
234 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
235 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
236 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
237 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
238 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
239 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
240 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
241 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
242 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
243 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
244 }
245 
246 /*
247  * Finds dummy_latency_index when MCLK switching using firmware based
248  * vblank stretch is enabled. This function will iterate through the
249  * table of dummy pstate latencies until the lowest value that allows
250  * dm_allow_self_refresh_and_mclk_switch to happen is found
251  */
252 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
253 							    struct dc_state *context,
254 							    display_e2e_pipe_params_st *pipes,
255 							    int pipe_cnt,
256 							    int vlevel)
257 {
258 	const int max_latency_table_entries = 4;
259 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
260 	int dummy_latency_index = 0;
261 
262 	dc_assert_fp_enabled();
263 
264 	while (dummy_latency_index < max_latency_table_entries) {
265 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
266 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
267 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
268 
269 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
270 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
271 			break;
272 
273 		dummy_latency_index++;
274 	}
275 
276 	if (dummy_latency_index == max_latency_table_entries) {
277 		ASSERT(dummy_latency_index != max_latency_table_entries);
278 		/* If the execution gets here, it means dummy p_states are
279 		 * not possible. This should never happen and would mean
280 		 * something is severely wrong.
281 		 * Here we reset dummy_latency_index to 3, because it is
282 		 * better to have underflows than system crashes.
283 		 */
284 		dummy_latency_index = max_latency_table_entries - 1;
285 	}
286 
287 	return dummy_latency_index;
288 }
289 
290 /**
291  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
292  * and populate pipe_ctx with those params.
293  * @dc: [in] current dc state
294  * @context: [in] new dc state
295  * @pipes: [in] DML pipe params array
296  * @pipe_cnt: [in] DML pipe count
297  *
298  * This function must be called AFTER the phantom pipes are added to context
299  * and run through DML (so that the DLG params for the phantom pipes can be
300  * populated), and BEFORE we program the timing for the phantom pipes.
301  */
302 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
303 					      struct dc_state *context,
304 					      display_e2e_pipe_params_st *pipes,
305 					      int pipe_cnt)
306 {
307 	uint32_t i, pipe_idx;
308 
309 	dc_assert_fp_enabled();
310 
311 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
312 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
313 
314 		if (!pipe->stream)
315 			continue;
316 
317 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
318 			pipes[pipe_idx].pipe.dest.vstartup_start =
319 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
320 			pipes[pipe_idx].pipe.dest.vupdate_offset =
321 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
322 			pipes[pipe_idx].pipe.dest.vupdate_width =
323 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
324 			pipes[pipe_idx].pipe.dest.vready_offset =
325 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
326 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
327 		}
328 		pipe_idx++;
329 	}
330 }
331 
332 /**
333  * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
334  * @context: [in] New DC state to be programmed
335  * @pipe_e2e: [in] DML pipe end to end context
336  *
337  * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
338  * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
339  * determined by DPPClk requirements
340  *
341  * This function follows the same policy as DML:
342  * - Check for ODM combine requirements / policy first
343  * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
344  *   MPC is required
345  *
346  * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
347  */
348 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
349 				  display_e2e_pipe_params_st *pipe_e2e)
350 {
351 	double pscl_throughput;
352 	double pscl_throughput_chroma;
353 	double dpp_clk_single_dpp, clock;
354 	double clk_frequency = 0.0;
355 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
356 	bool total_available_pipes_support = false;
357 	uint32_t number_of_dpp = 0;
358 	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
359 	double req_dispclk_per_surface = 0;
360 	uint8_t num_splits = 0;
361 
362 	dc_assert_fp_enabled();
363 
364 	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
365 			pipe_e2e->pipe.dest.hactive,
366 			pipe_e2e->dout.output_format,
367 			pipe_e2e->dout.output_type,
368 			pipe_e2e->pipe.dest.odm_combine_policy,
369 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
370 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
371 			pipe_e2e->dout.dsc_enable != 0,
372 			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
373 			context->bw_ctx.dml.ip.max_num_dpp,
374 			pipe_e2e->pipe.dest.pixel_rate_mhz,
375 			context->bw_ctx.dml.soc.dcn_downspread_percent,
376 			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
377 			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
378 			pipe_e2e->dout.dsc_slices,
379 			/* Output */
380 			&total_available_pipes_support,
381 			&number_of_dpp,
382 			&odm_mode,
383 			&req_dispclk_per_surface);
384 
385 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
386 			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
387 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
388 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
389 			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
390 			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
391 			pipe_e2e->pipe.dest.pixel_rate_mhz,
392 			pipe_e2e->pipe.src.source_format,
393 			pipe_e2e->pipe.scale_taps.htaps,
394 			pipe_e2e->pipe.scale_taps.htaps_c,
395 			pipe_e2e->pipe.scale_taps.vtaps,
396 			pipe_e2e->pipe.scale_taps.vtaps_c,
397 			/* Output */
398 			&pscl_throughput, &pscl_throughput_chroma,
399 			&dpp_clk_single_dpp);
400 
401 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
402 
403 	if (clock > 0)
404 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
405 
406 	if (odm_mode == dm_odm_combine_mode_2to1)
407 		num_splits = 1;
408 	else if (odm_mode == dm_odm_combine_mode_4to1)
409 		num_splits = 3;
410 	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
411 		num_splits = 1;
412 
413 	return num_splits;
414 }
415 
416 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
417 {
418 	float memory_bw_kbytes_sec;
419 	float fabric_bw_kbytes_sec;
420 	float sdp_bw_kbytes_sec;
421 	float limiting_bw_kbytes_sec;
422 
423 	memory_bw_kbytes_sec = entry->dram_speed_mts *
424 				dcn3_2_soc.num_chans *
425 				dcn3_2_soc.dram_channel_width_bytes *
426 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
427 
428 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
429 				dcn3_2_soc.return_bus_width_bytes *
430 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
431 
432 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
433 				dcn3_2_soc.return_bus_width_bytes *
434 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
435 
436 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
437 
438 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
439 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
440 
441 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
442 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
443 
444 	return limiting_bw_kbytes_sec;
445 }
446 
447 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
448 {
449 	if (entry->dcfclk_mhz > 0) {
450 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
451 
452 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
453 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
454 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
455 	} else if (entry->fabricclk_mhz > 0) {
456 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
457 
458 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
459 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
460 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
461 	} else if (entry->dram_speed_mts > 0) {
462 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
463 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
464 
465 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
466 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
467 	}
468 }
469 
470 void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
471 				    unsigned int *num_entries,
472 				    struct _vcs_dpi_voltage_scaling_st *entry)
473 {
474 	int i = 0;
475 	int index = 0;
476 	float net_bw_of_new_state = 0;
477 
478 	dc_assert_fp_enabled();
479 
480 	get_optimal_ntuple(entry);
481 
482 	if (*num_entries == 0) {
483 		table[0] = *entry;
484 		(*num_entries)++;
485 	} else {
486 		net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
487 		while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
488 			index++;
489 			if (index >= *num_entries)
490 				break;
491 		}
492 
493 		for (i = *num_entries; i > index; i--)
494 			table[i] = table[i - 1];
495 
496 		table[index] = *entry;
497 		(*num_entries)++;
498 	}
499 }
500 
501 /**
502  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
503  * @dc: current dc state
504  * @context: new dc state
505  * @ref_pipe: Main pipe for the phantom stream
506  * @phantom_stream: target phantom stream state
507  * @pipes: DML pipe params
508  * @pipe_cnt: number of DML pipes
509  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
510  *
511  * Set timing params of the phantom stream based on calculated output from DML.
512  * This function first gets the DML pipe index using the DC pipe index, then
513  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
514  * lines required for SubVP MCLK switching and assigns to the phantom stream
515  * accordingly.
516  *
517  * - The number of SubVP lines calculated in DML does not take into account
518  * FW processing delays and required pstate allow width, so we must include
519  * that separately.
520  *
521  * - Set phantom backporch = vstartup of main pipe
522  */
523 void dcn32_set_phantom_stream_timing(struct dc *dc,
524 				     struct dc_state *context,
525 				     struct pipe_ctx *ref_pipe,
526 				     struct dc_stream_state *phantom_stream,
527 				     display_e2e_pipe_params_st *pipes,
528 				     unsigned int pipe_cnt,
529 				     unsigned int dc_pipe_idx)
530 {
531 	unsigned int i, pipe_idx;
532 	struct pipe_ctx *pipe;
533 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
534 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
535 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
536 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
537 
538 	dc_assert_fp_enabled();
539 
540 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
541 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
542 		pipe = &context->res_ctx.pipe_ctx[i];
543 
544 		if (!pipe->stream)
545 			continue;
546 
547 		if (i == dc_pipe_idx)
548 			break;
549 
550 		pipe_idx++;
551 	}
552 
553 	// Calculate lines required for pstate allow width and FW processing delays
554 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
555 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
556 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
557 			(double)ref_pipe->stream->timing.h_total;
558 
559 	// Update clks_cfg for calling into recalculate
560 	pipes[0].clks_cfg.voltage = vlevel;
561 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
562 	pipes[0].clks_cfg.socclk_mhz = socclk;
563 
564 	// DML calculation for MALL region doesn't take into account FW delay
565 	// and required pstate allow width for multi-display cases
566 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
567 	 * to 2 swaths (i.e. 16 lines)
568 	 */
569 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
570 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
571 
572 	// For backporch of phantom pipe, use vstartup of the main pipe
573 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
574 
575 	phantom_stream->dst.y = 0;
576 	phantom_stream->dst.height = phantom_vactive;
577 	phantom_stream->src.y = 0;
578 	phantom_stream->src.height = phantom_vactive;
579 
580 	phantom_stream->timing.v_addressable = phantom_vactive;
581 	phantom_stream->timing.v_front_porch = 1;
582 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
583 						phantom_stream->timing.v_front_porch +
584 						phantom_stream->timing.v_sync_width +
585 						phantom_bp;
586 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
587 }
588 
589 /**
590  * dcn32_get_num_free_pipes - Calculate number of free pipes
591  * @dc: current dc state
592  * @context: new dc state
593  *
594  * This function assumes that a "used" pipe is a pipe that has
595  * both a stream and a plane assigned to it.
596  *
597  * Return: Number of free pipes available in the context
598  */
599 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
600 {
601 	unsigned int i;
602 	unsigned int free_pipes = 0;
603 	unsigned int num_pipes = 0;
604 
605 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
606 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
607 
608 		if (pipe->stream && !pipe->top_pipe) {
609 			while (pipe) {
610 				num_pipes++;
611 				pipe = pipe->bottom_pipe;
612 			}
613 		}
614 	}
615 
616 	free_pipes = dc->res_pool->pipe_count - num_pipes;
617 	return free_pipes;
618 }
619 
620 /**
621  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
622  * @dc: current dc state
623  * @context: new dc state
624  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
625  *
626  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
627  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
628  * we are forcing SubVP P-State switching on the current config.
629  *
630  * The number of pipes used for the chosen surface must be less than or equal to the
631  * number of free pipes available.
632  *
633  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
634  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
635  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
636  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
637  *
638  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
639  */
640 static bool dcn32_assign_subvp_pipe(struct dc *dc,
641 				    struct dc_state *context,
642 				    unsigned int *index)
643 {
644 	unsigned int i, pipe_idx;
645 	unsigned int max_frame_time = 0;
646 	bool valid_assignment_found = false;
647 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
648 	bool current_assignment_freesync = false;
649 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
650 
651 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
652 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
653 		unsigned int num_pipes = 0;
654 		unsigned int refresh_rate = 0;
655 
656 		if (!pipe->stream)
657 			continue;
658 
659 		// Round up
660 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
661 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
662 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
663 		/* SubVP pipe candidate requirements:
664 		 * - Refresh rate < 120hz
665 		 * - Not able to switch in vactive naturally (switching in active means the
666 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
667 		 *   to combine this with SubVP can cause issues with the scheduling).
668 		 * - Not TMZ surface
669 		 */
670 		if (pipe->plane_state && !pipe->top_pipe &&
671 				pipe->stream->mall_stream_config.type == SUBVP_NONE && refresh_rate < 120 && !pipe->plane_state->address.tmz_surface &&
672 				vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
673 			while (pipe) {
674 				num_pipes++;
675 				pipe = pipe->bottom_pipe;
676 			}
677 
678 			pipe = &context->res_ctx.pipe_ctx[i];
679 			if (num_pipes <= free_pipes) {
680 				struct dc_stream_state *stream = pipe->stream;
681 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
682 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
683 				if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
684 					*index = i;
685 					max_frame_time = frame_us;
686 					valid_assignment_found = true;
687 					current_assignment_freesync = false;
688 				/* For the 2-Freesync display case, still choose the one with the
689 			     * longest frame time
690 			     */
691 				} else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
692 						(current_assignment_freesync && frame_us > max_frame_time))) {
693 					*index = i;
694 					valid_assignment_found = true;
695 					current_assignment_freesync = true;
696 				}
697 			}
698 		}
699 		pipe_idx++;
700 	}
701 	return valid_assignment_found;
702 }
703 
704 /**
705  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
706  * @dc: current dc state
707  * @context: new dc state
708  *
709  * This function returns true if there are enough free pipes
710  * to create the required phantom pipes for any given stream
711  * (that does not already have phantom pipe assigned).
712  *
713  * e.g. For a 2 stream config where the first stream uses one
714  * pipe and the second stream uses 2 pipes (i.e. pipe split),
715  * this function will return true because there is 1 remaining
716  * pipe which can be used as the phantom pipe for the non pipe
717  * split pipe.
718  *
719  * Return:
720  * True if there are enough free pipes to assign phantom pipes to at least one
721  * stream that does not already have phantom pipes assigned. Otherwise false.
722  */
723 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
724 {
725 	unsigned int i, split_cnt, free_pipes;
726 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
727 	bool subvp_possible = false;
728 
729 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
730 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
731 
732 		// Find the minimum pipe split count for non SubVP pipes
733 		if (pipe->stream && !pipe->top_pipe &&
734 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
735 			split_cnt = 0;
736 			while (pipe) {
737 				split_cnt++;
738 				pipe = pipe->bottom_pipe;
739 			}
740 
741 			if (split_cnt < min_pipe_split)
742 				min_pipe_split = split_cnt;
743 		}
744 	}
745 
746 	free_pipes = dcn32_get_num_free_pipes(dc, context);
747 
748 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
749 	// should not equal to the pipe_count)
750 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
751 		subvp_possible = true;
752 
753 	return subvp_possible;
754 }
755 
756 /**
757  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
758  * @dc: current dc state
759  * @context: new dc state
760  *
761  * High level algorithm:
762  * 1. Find longest microschedule length (in us) between the two SubVP pipes
763  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
764  * pipes still allows for the maximum microschedule to fit in the active
765  * region for both pipes.
766  *
767  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
768  */
769 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
770 {
771 	struct pipe_ctx *subvp_pipes[2];
772 	struct dc_stream_state *phantom = NULL;
773 	uint32_t microschedule_lines = 0;
774 	uint32_t index = 0;
775 	uint32_t i;
776 	uint32_t max_microschedule_us = 0;
777 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
778 
779 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
780 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
781 		uint32_t time_us = 0;
782 
783 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
784 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
785 		 */
786 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
787 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
788 			phantom = pipe->stream->mall_stream_config.paired_stream;
789 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
790 					phantom->timing.v_addressable;
791 
792 			// Round up when calculating microschedule time (+ 1 at the end)
793 			time_us = (microschedule_lines * phantom->timing.h_total) /
794 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
795 						dc->caps.subvp_prefetch_end_to_mall_start_us +
796 						dc->caps.subvp_fw_processing_delay_us + 1;
797 			if (time_us > max_microschedule_us)
798 				max_microschedule_us = time_us;
799 
800 			subvp_pipes[index] = pipe;
801 			index++;
802 
803 			// Maximum 2 SubVP pipes
804 			if (index == 2)
805 				break;
806 		}
807 	}
808 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
809 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
810 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
811 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
812 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
813 			subvp_pipes[0]->stream->timing.h_total) /
814 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
815 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
816 			subvp_pipes[1]->stream->timing.h_total) /
817 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
818 
819 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
820 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
821 		return true;
822 
823 	return false;
824 }
825 
826 /**
827  * subvp_drr_schedulable - Determine if SubVP + DRR config is schedulable
828  * @dc: current dc state
829  * @context: new dc state
830  * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config
831  *
832  * High level algorithm:
833  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
834  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
835  * (the margin is equal to the MALL region + DRR margin (500us))
836  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
837  * then report the configuration as supported
838  *
839  * Return: True if the SubVP + DRR config is schedulable, false otherwise
840  */
841 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
842 {
843 	bool schedulable = false;
844 	uint32_t i;
845 	struct pipe_ctx *pipe = NULL;
846 	struct dc_crtc_timing *main_timing = NULL;
847 	struct dc_crtc_timing *phantom_timing = NULL;
848 	struct dc_crtc_timing *drr_timing = NULL;
849 	int16_t prefetch_us = 0;
850 	int16_t mall_region_us = 0;
851 	int16_t drr_frame_us = 0;	// nominal frame time
852 	int16_t subvp_active_us = 0;
853 	int16_t stretched_drr_us = 0;
854 	int16_t drr_stretched_vblank_us = 0;
855 	int16_t max_vblank_mallregion = 0;
856 
857 	// Find SubVP pipe
858 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
859 		pipe = &context->res_ctx.pipe_ctx[i];
860 
861 		// We check for master pipe, but it shouldn't matter since we only need
862 		// the pipe for timing info (stream should be same for any pipe splits)
863 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
864 			continue;
865 
866 		// Find the SubVP pipe
867 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
868 			break;
869 	}
870 
871 	main_timing = &pipe->stream->timing;
872 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
873 	drr_timing = &drr_pipe->stream->timing;
874 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
875 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
876 			dc->caps.subvp_prefetch_end_to_mall_start_us;
877 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
878 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
879 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
880 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
881 	// P-State allow width and FW delays already included phantom_timing->v_addressable
882 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
883 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
884 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
885 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
886 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
887 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
888 
889 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
890 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
891 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
892 	 * and the max of (VBLANK blanking time, MALL region)).
893 	 */
894 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
895 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
896 		schedulable = true;
897 
898 	return schedulable;
899 }
900 
901 
902 /**
903  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
904  * @dc: current dc state
905  * @context: new dc state
906  *
907  * High level algorithm:
908  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
909  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
910  * then report the configuration as supported
911  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
912  *
913  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
914  */
915 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
916 {
917 	struct pipe_ctx *pipe = NULL;
918 	struct pipe_ctx *subvp_pipe = NULL;
919 	bool found = false;
920 	bool schedulable = false;
921 	uint32_t i = 0;
922 	uint8_t vblank_index = 0;
923 	uint16_t prefetch_us = 0;
924 	uint16_t mall_region_us = 0;
925 	uint16_t vblank_frame_us = 0;
926 	uint16_t subvp_active_us = 0;
927 	uint16_t vblank_blank_us = 0;
928 	uint16_t max_vblank_mallregion = 0;
929 	struct dc_crtc_timing *main_timing = NULL;
930 	struct dc_crtc_timing *phantom_timing = NULL;
931 	struct dc_crtc_timing *vblank_timing = NULL;
932 
933 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
934 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
935 	 * is supported, it is either a single VBLANK case or two VBLANK
936 	 * displays which are synchronized (in which case they have identical
937 	 * timings).
938 	 */
939 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
940 		pipe = &context->res_ctx.pipe_ctx[i];
941 
942 		// We check for master pipe, but it shouldn't matter since we only need
943 		// the pipe for timing info (stream should be same for any pipe splits)
944 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
945 			continue;
946 
947 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
948 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
949 			vblank_index = i;
950 			found = true;
951 		}
952 
953 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
954 			subvp_pipe = pipe;
955 	}
956 	// Use ignore_msa_timing_param flag to identify as DRR
957 	if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) {
958 		// SUBVP + DRR case
959 		schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
960 	} else if (found) {
961 		main_timing = &subvp_pipe->stream->timing;
962 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
963 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
964 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
965 		// Also include the prefetch end to mallstart delay time
966 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
967 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
968 				dc->caps.subvp_prefetch_end_to_mall_start_us;
969 		// P-State allow width and FW delays already included phantom_timing->v_addressable
970 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
971 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
972 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
973 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
974 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
975 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
976 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
977 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
978 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
979 
980 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
981 		// and the max of (VBLANK blanking time, MALL region)
982 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
983 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
984 			schedulable = true;
985 	}
986 	return schedulable;
987 }
988 
989 /**
990  * subvp_validate_static_schedulability - Check which SubVP case is calculated
991  * and handle static analysis based on the case.
992  * @dc: current dc state
993  * @context: new dc state
994  * @vlevel: Voltage level calculated by DML
995  *
996  * Three cases:
997  * 1. SubVP + SubVP
998  * 2. SubVP + VBLANK (DRR checked internally)
999  * 3. SubVP + VACTIVE (currently unsupported)
1000  *
1001  * Return: True if statically schedulable, false otherwise
1002  */
1003 static bool subvp_validate_static_schedulability(struct dc *dc,
1004 				struct dc_state *context,
1005 				int vlevel)
1006 {
1007 	bool schedulable = true;	// true by default for single display case
1008 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1009 	uint32_t i, pipe_idx;
1010 	uint8_t subvp_count = 0;
1011 	uint8_t vactive_count = 0;
1012 
1013 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1014 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1015 
1016 		if (!pipe->stream)
1017 			continue;
1018 
1019 		if (pipe->plane_state && !pipe->top_pipe &&
1020 				pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1021 			subvp_count++;
1022 
1023 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1024 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1025 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1026 		if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
1027 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1028 			vactive_count++;
1029 		}
1030 		pipe_idx++;
1031 	}
1032 
1033 	if (subvp_count == 2) {
1034 		// Static schedulability check for SubVP + SubVP case
1035 		schedulable = subvp_subvp_schedulable(dc, context);
1036 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
1037 		// Static schedulability check for SubVP + VBLANK case. Also handle the case where
1038 		// DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
1039 		if (vactive_count > 0)
1040 			schedulable = false;
1041 		else
1042 			schedulable = subvp_vblank_schedulable(dc, context);
1043 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1044 			vactive_count > 0) {
1045 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1046 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1047 		// SubVP + VACTIVE currently unsupported
1048 		schedulable = false;
1049 	}
1050 	return schedulable;
1051 }
1052 
1053 static void dcn32_full_validate_bw_helper(struct dc *dc,
1054 				   struct dc_state *context,
1055 				   display_e2e_pipe_params_st *pipes,
1056 				   int *vlevel,
1057 				   int *split,
1058 				   bool *merge,
1059 				   int *pipe_cnt)
1060 {
1061 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1062 	unsigned int dc_pipe_idx = 0;
1063 	bool found_supported_config = false;
1064 	struct pipe_ctx *pipe = NULL;
1065 	uint32_t non_subvp_pipes = 0;
1066 	bool drr_pipe_found = false;
1067 	uint32_t drr_pipe_index = 0;
1068 	uint32_t i = 0;
1069 
1070 	dc_assert_fp_enabled();
1071 
1072 	/*
1073 	 * DML favors voltage over p-state, but we're more interested in
1074 	 * supporting p-state over voltage. We can't support p-state in
1075 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1076 	 * Override present for testing.
1077 	 */
1078 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1079 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1080 			dm_prefetch_support_uclk_fclk_and_stutter;
1081 	else
1082 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1083 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1084 
1085 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1086 	/* This may adjust vlevel and maxMpcComb */
1087 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1088 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1089 		vba->VoltageLevel = *vlevel;
1090 	}
1091 
1092 	/* Conditions for setting up phantom pipes for SubVP:
1093 	 * 1. Not force disable SubVP
1094 	 * 2. Full update (i.e. !fast_validate)
1095 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1096 	 * 4. Display configuration passes validation
1097 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1098 	 */
1099 	if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1100 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1101 		(*vlevel == context->bw_ctx.dml.soc.num_states ||
1102 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1103 	    dc->debug.force_subvp_mclk_switch)) {
1104 
1105 		dcn32_merge_pipes_for_subvp(dc, context);
1106 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1107 
1108 		/* to re-initialize viewport after the pipe merge */
1109 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1110 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1111 
1112 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1113 				continue;
1114 
1115 			resource_build_scaling_params(pipe_ctx);
1116 		}
1117 
1118 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1119 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1120 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1121 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1122 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1123 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1124 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1125 			 * enough to support MCLK switching.
1126 			 */
1127 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1128 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1129 					dm_prefetch_support_uclk_fclk_and_stutter) {
1130 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1131 								dm_prefetch_support_stutter;
1132 				/* There are params (such as FabricClock) that need to be recalculated
1133 				 * after validation fails (otherwise it will be 0). Calculation for
1134 				 * phantom vactive requires call into DML, so we must ensure all the
1135 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1136 				 */
1137 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1138 			}
1139 
1140 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1141 
1142 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1143 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1144 			// so the phantom pipe DLG params can be assigned correctly.
1145 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1146 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1147 
1148 			if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1149 			    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
1150 			    && subvp_validate_static_schedulability(dc, context, *vlevel)) {
1151 				found_supported_config = true;
1152 			} else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1153 					vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1154 				/* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
1155 				 * the case for SubVP + DRR, where the DRR display does not support MCLK switch
1156 				 * at it's native refresh rate / timing.
1157 				 */
1158 				for (i = 0; i < dc->res_pool->pipe_count; i++) {
1159 					pipe = &context->res_ctx.pipe_ctx[i];
1160 					if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1161 					    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1162 						non_subvp_pipes++;
1163 						// Use ignore_msa_timing_param flag to identify as DRR
1164 						if (pipe->stream->ignore_msa_timing_param) {
1165 							drr_pipe_found = true;
1166 							drr_pipe_index = i;
1167 						}
1168 					}
1169 				}
1170 				// If there is only 1 remaining non SubVP pipe that is DRR, check static
1171 				// schedulability for SubVP + DRR.
1172 				if (non_subvp_pipes == 1 && drr_pipe_found) {
1173 					found_supported_config = subvp_drr_schedulable(dc, context,
1174 										       &context->res_ctx.pipe_ctx[drr_pipe_index]);
1175 				}
1176 			}
1177 		}
1178 
1179 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1180 		// remove phantom pipes and repopulate dml pipes
1181 		if (!found_supported_config) {
1182 			dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1183 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1184 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1185 
1186 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1187 			/* This may adjust vlevel and maxMpcComb */
1188 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1189 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1190 				vba->VoltageLevel = *vlevel;
1191 			}
1192 		} else {
1193 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1194 			DC_FP_START();
1195 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1196 			DC_FP_END();
1197 
1198 			/* Call validate_apply_pipe_split flags after calling DML getters for
1199 			 * phantom dlg params, or some of the VBA params indicating pipe split
1200 			 * can be overwritten by the getters.
1201 			 *
1202 			 * When setting up SubVP config, all pipes are merged before attempting to
1203 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1204 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1205 			 */
1206 			memset(split, 0, MAX_PIPES * sizeof(int));
1207 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1208 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1209 			vba->VoltageLevel = *vlevel;
1210 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1211 			// until driver has acquired the DMCUB lock to do it safely.
1212 		}
1213 	}
1214 }
1215 
1216 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1217 {
1218 	int i;
1219 
1220 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1221 		if (!context->res_ctx.pipe_ctx[i].stream)
1222 			continue;
1223 		if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1224 			return true;
1225 	}
1226 	return false;
1227 }
1228 
1229 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1230 				       display_e2e_pipe_params_st *pipes,
1231 				       int pipe_cnt, int vlevel)
1232 {
1233 	int i, pipe_idx;
1234 	bool usr_retraining_support = false;
1235 	bool unbounded_req_enabled = false;
1236 
1237 	dc_assert_fp_enabled();
1238 
1239 	/* Writeback MCIF_WB arbitration parameters */
1240 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1241 
1242 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1243 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1244 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1245 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1246 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1247 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1248 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1249 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1250 					!= dm_dram_clock_change_unsupported;
1251 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1252 
1253 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1254 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1255 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1256 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1257 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1258 	else
1259 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1260 
1261 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1262 	ASSERT(usr_retraining_support);
1263 
1264 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1265 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1266 
1267 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1268 
1269 	if (unbounded_req_enabled && pipe_cnt > 1) {
1270 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1271 		ASSERT(false);
1272 		unbounded_req_enabled = false;
1273 	}
1274 
1275 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1276 		if (!context->res_ctx.pipe_ctx[i].stream)
1277 			continue;
1278 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1279 				pipe_idx);
1280 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1281 				pipe_idx);
1282 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1283 				pipe_idx);
1284 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1285 				pipe_idx);
1286 
1287 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1288 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1289 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1290 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1291 		} else {
1292 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1293 							pipe_idx);
1294 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1295 		}
1296 
1297 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1298 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1299 		context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1300 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1301 		pipe_idx++;
1302 	}
1303 	/*save a original dppclock copy*/
1304 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1305 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1306 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1307 			* 1000;
1308 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1309 			* 1000;
1310 
1311 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1312 
1313 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1314 		if (context->res_ctx.pipe_ctx[i].stream)
1315 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1316 	}
1317 
1318 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1319 
1320 		if (!context->res_ctx.pipe_ctx[i].stream)
1321 			continue;
1322 
1323 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1324 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1325 				pipe_cnt, pipe_idx);
1326 
1327 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1328 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1329 		pipe_idx++;
1330 	}
1331 }
1332 
1333 static struct pipe_ctx *dcn32_find_split_pipe(
1334 		struct dc *dc,
1335 		struct dc_state *context,
1336 		int old_index)
1337 {
1338 	struct pipe_ctx *pipe = NULL;
1339 	int i;
1340 
1341 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1342 		pipe = &context->res_ctx.pipe_ctx[old_index];
1343 		pipe->pipe_idx = old_index;
1344 	}
1345 
1346 	if (!pipe)
1347 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1348 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1349 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1350 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1351 					pipe = &context->res_ctx.pipe_ctx[i];
1352 					pipe->pipe_idx = i;
1353 					break;
1354 				}
1355 			}
1356 		}
1357 
1358 	/*
1359 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1360 	 * Add for debugging transient underflow during topology updates:
1361 	 * ASSERT(pipe);
1362 	 */
1363 	if (!pipe)
1364 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1365 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1366 				pipe = &context->res_ctx.pipe_ctx[i];
1367 				pipe->pipe_idx = i;
1368 				break;
1369 			}
1370 		}
1371 
1372 	return pipe;
1373 }
1374 
1375 static bool dcn32_split_stream_for_mpc_or_odm(
1376 		const struct dc *dc,
1377 		struct resource_context *res_ctx,
1378 		struct pipe_ctx *pri_pipe,
1379 		struct pipe_ctx *sec_pipe,
1380 		bool odm)
1381 {
1382 	int pipe_idx = sec_pipe->pipe_idx;
1383 	const struct resource_pool *pool = dc->res_pool;
1384 
1385 	DC_LOGGER_INIT(dc->ctx->logger);
1386 
1387 	if (odm && pri_pipe->plane_state) {
1388 		/* ODM + window MPO, where MPO window is on left half only */
1389 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1390 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1391 
1392 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1393 					__func__,
1394 					pri_pipe->pipe_idx);
1395 			return true;
1396 		}
1397 
1398 		/* ODM + window MPO, where MPO window is on right half only */
1399 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1400 
1401 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1402 					__func__,
1403 					pri_pipe->pipe_idx);
1404 			return true;
1405 		}
1406 	}
1407 
1408 	*sec_pipe = *pri_pipe;
1409 
1410 	sec_pipe->pipe_idx = pipe_idx;
1411 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1412 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1413 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1414 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1415 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1416 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1417 	sec_pipe->stream_res.dsc = NULL;
1418 	if (odm) {
1419 		if (pri_pipe->next_odm_pipe) {
1420 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1421 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1422 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1423 		}
1424 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1425 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1426 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1427 		}
1428 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1429 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1430 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1431 		}
1432 		pri_pipe->next_odm_pipe = sec_pipe;
1433 		sec_pipe->prev_odm_pipe = pri_pipe;
1434 		ASSERT(sec_pipe->top_pipe == NULL);
1435 
1436 		if (!sec_pipe->top_pipe)
1437 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1438 		else
1439 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1440 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1441 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1442 			ASSERT(sec_pipe->stream_res.dsc);
1443 			if (sec_pipe->stream_res.dsc == NULL)
1444 				return false;
1445 		}
1446 	} else {
1447 		if (pri_pipe->bottom_pipe) {
1448 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1449 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1450 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1451 		}
1452 		pri_pipe->bottom_pipe = sec_pipe;
1453 		sec_pipe->top_pipe = pri_pipe;
1454 
1455 		ASSERT(pri_pipe->plane_state);
1456 	}
1457 
1458 	return true;
1459 }
1460 
1461 bool dcn32_internal_validate_bw(struct dc *dc,
1462 				struct dc_state *context,
1463 				display_e2e_pipe_params_st *pipes,
1464 				int *pipe_cnt_out,
1465 				int *vlevel_out,
1466 				bool fast_validate)
1467 {
1468 	bool out = false;
1469 	bool repopulate_pipes = false;
1470 	int split[MAX_PIPES] = { 0 };
1471 	bool merge[MAX_PIPES] = { false };
1472 	bool newly_split[MAX_PIPES] = { false };
1473 	int pipe_cnt, i, pipe_idx;
1474 	int vlevel = context->bw_ctx.dml.soc.num_states;
1475 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1476 
1477 	dc_assert_fp_enabled();
1478 
1479 	ASSERT(pipes);
1480 	if (!pipes)
1481 		return false;
1482 
1483 	// For each full update, remove all existing phantom pipes first
1484 	dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1485 
1486 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1487 
1488 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1489 
1490 	if (!pipe_cnt) {
1491 		out = true;
1492 		goto validate_out;
1493 	}
1494 
1495 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1496 
1497 	if (!fast_validate) {
1498 		DC_FP_START();
1499 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1500 		DC_FP_END();
1501 	}
1502 
1503 	if (fast_validate ||
1504 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1505 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1506 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1507 		/*
1508 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1509 		 * tried alternate prefetch modes during full validation.
1510 		 *
1511 		 * If mode is unsupported or there is no p-state support, then
1512 		 * fall back to favouring voltage.
1513 		 *
1514 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1515 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1516 		 */
1517 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1518 			dm_prefetch_support_fclk_and_stutter;
1519 
1520 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1521 
1522 		/* Last attempt with Prefetch mode 2 (dm_prefetch_support_stutter == 3) */
1523 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1524 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1525 				dm_prefetch_support_stutter;
1526 			vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1527 		}
1528 
1529 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1530 			memset(split, 0, sizeof(split));
1531 			memset(merge, 0, sizeof(merge));
1532 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1533 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1534 			vba->VoltageLevel = vlevel;
1535 		}
1536 	}
1537 
1538 	dml_log_mode_support_params(&context->bw_ctx.dml);
1539 
1540 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1541 		goto validate_fail;
1542 
1543 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1544 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1545 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1546 
1547 		if (!pipe->stream)
1548 			continue;
1549 
1550 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1551 				&& !dc->config.enable_windowed_mpo_odm
1552 				&& pipe->plane_state && mpo_pipe
1553 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1554 						&pipe->plane_res.scl_data.recout,
1555 						sizeof(struct rect)) != 0) {
1556 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1557 			goto validate_fail;
1558 		}
1559 		pipe_idx++;
1560 	}
1561 
1562 	/* merge pipes if necessary */
1563 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1564 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1565 
1566 		/*skip pipes that don't need merging*/
1567 		if (!merge[i])
1568 			continue;
1569 
1570 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1571 		if (pipe->prev_odm_pipe) {
1572 			/*split off odm pipe*/
1573 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1574 			if (pipe->next_odm_pipe)
1575 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1576 
1577 			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1578 			if (pipe->bottom_pipe) {
1579 				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1580 					/*MPC split rules will handle this case*/
1581 					pipe->bottom_pipe->top_pipe = NULL;
1582 				} else {
1583 					/* when merging an ODM pipes, the bottom MPC pipe must now point to
1584 					 * the previous ODM pipe and its associated stream assets
1585 					 */
1586 					if (pipe->prev_odm_pipe->bottom_pipe) {
1587 						/* 3 plane MPO*/
1588 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1589 						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1590 					} else {
1591 						/* 2 plane MPO*/
1592 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1593 						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1594 					}
1595 
1596 					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1597 				}
1598 			}
1599 
1600 			if (pipe->top_pipe) {
1601 				pipe->top_pipe->bottom_pipe = NULL;
1602 			}
1603 
1604 			pipe->bottom_pipe = NULL;
1605 			pipe->next_odm_pipe = NULL;
1606 			pipe->plane_state = NULL;
1607 			pipe->stream = NULL;
1608 			pipe->top_pipe = NULL;
1609 			pipe->prev_odm_pipe = NULL;
1610 			if (pipe->stream_res.dsc)
1611 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1612 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1613 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1614 			repopulate_pipes = true;
1615 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1616 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1617 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1618 
1619 			top_pipe->bottom_pipe = bottom_pipe;
1620 			if (bottom_pipe)
1621 				bottom_pipe->top_pipe = top_pipe;
1622 
1623 			pipe->top_pipe = NULL;
1624 			pipe->bottom_pipe = NULL;
1625 			pipe->plane_state = NULL;
1626 			pipe->stream = NULL;
1627 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1628 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1629 			repopulate_pipes = true;
1630 		} else
1631 			ASSERT(0); /* Should never try to merge master pipe */
1632 
1633 	}
1634 
1635 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1636 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1637 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1638 		struct pipe_ctx *hsplit_pipe = NULL;
1639 		bool odm;
1640 		int old_index = -1;
1641 
1642 		if (!pipe->stream || newly_split[i])
1643 			continue;
1644 
1645 		pipe_idx++;
1646 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1647 
1648 		if (!pipe->plane_state && !odm)
1649 			continue;
1650 
1651 		if (split[i]) {
1652 			if (odm) {
1653 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1654 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1655 				else if (old_pipe->next_odm_pipe)
1656 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1657 			} else {
1658 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1659 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1660 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1661 				else if (old_pipe->bottom_pipe &&
1662 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1663 					old_index = old_pipe->bottom_pipe->pipe_idx;
1664 			}
1665 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1666 			ASSERT(hsplit_pipe);
1667 			if (!hsplit_pipe)
1668 				goto validate_fail;
1669 
1670 			if (!dcn32_split_stream_for_mpc_or_odm(
1671 					dc, &context->res_ctx,
1672 					pipe, hsplit_pipe, odm))
1673 				goto validate_fail;
1674 
1675 			newly_split[hsplit_pipe->pipe_idx] = true;
1676 			repopulate_pipes = true;
1677 		}
1678 		if (split[i] == 4) {
1679 			struct pipe_ctx *pipe_4to1;
1680 
1681 			if (odm && old_pipe->next_odm_pipe)
1682 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1683 			else if (!odm && old_pipe->bottom_pipe &&
1684 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1685 				old_index = old_pipe->bottom_pipe->pipe_idx;
1686 			else
1687 				old_index = -1;
1688 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1689 			ASSERT(pipe_4to1);
1690 			if (!pipe_4to1)
1691 				goto validate_fail;
1692 			if (!dcn32_split_stream_for_mpc_or_odm(
1693 					dc, &context->res_ctx,
1694 					pipe, pipe_4to1, odm))
1695 				goto validate_fail;
1696 			newly_split[pipe_4to1->pipe_idx] = true;
1697 
1698 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1699 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1700 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1701 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1702 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1703 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1704 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1705 			else
1706 				old_index = -1;
1707 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1708 			ASSERT(pipe_4to1);
1709 			if (!pipe_4to1)
1710 				goto validate_fail;
1711 			if (!dcn32_split_stream_for_mpc_or_odm(
1712 					dc, &context->res_ctx,
1713 					hsplit_pipe, pipe_4to1, odm))
1714 				goto validate_fail;
1715 			newly_split[pipe_4to1->pipe_idx] = true;
1716 		}
1717 		if (odm)
1718 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1719 	}
1720 
1721 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1722 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1723 
1724 		if (pipe->plane_state) {
1725 			if (!resource_build_scaling_params(pipe))
1726 				goto validate_fail;
1727 		}
1728 	}
1729 
1730 	/* Actual dsc count per stream dsc validation*/
1731 	if (!dcn20_validate_dsc(dc, context)) {
1732 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1733 		goto validate_fail;
1734 	}
1735 
1736 	if (repopulate_pipes) {
1737 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1738 
1739 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1740 		 * we have to re-calculate the DET allocation and run through DML once more to
1741 		 * ensure all the params are calculated correctly. We do not need to run the
1742 		 * pipe split check again after this call (pipes are already split / merged).
1743 		 * */
1744 		if (!fast_validate) {
1745 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1746 						dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1747 			vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1748 		}
1749 	}
1750 	*vlevel_out = vlevel;
1751 	*pipe_cnt_out = pipe_cnt;
1752 
1753 	out = true;
1754 	goto validate_out;
1755 
1756 validate_fail:
1757 	out = false;
1758 
1759 validate_out:
1760 	return out;
1761 }
1762 
1763 
1764 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1765 				display_e2e_pipe_params_st *pipes,
1766 				int pipe_cnt,
1767 				int vlevel)
1768 {
1769 	int i, pipe_idx, vlevel_temp = 0;
1770 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1771 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1772 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1773 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1774 			dm_dram_clock_change_unsupported;
1775 	unsigned int dummy_latency_index = 0;
1776 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1777 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1778 	unsigned int min_dram_speed_mts_margin;
1779 
1780 	dc_assert_fp_enabled();
1781 
1782 	// Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK
1783 	if (!pstate_en && dcn32_subvp_in_use(dc, context)) {
1784 		context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1785 		pstate_en = true;
1786 	}
1787 
1788 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1789 
1790 	if (!pstate_en) {
1791 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
1792 		context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching =
1793 			dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1794 
1795 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1796 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1797 				context, pipes, pipe_cnt, vlevel);
1798 
1799 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
1800 			 * we reinstate the original dram_clock_change_latency_us on the context
1801 			 * and all variables that may have changed up to this point, except the
1802 			 * newly found dummy_latency_index
1803 			 */
1804 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1805 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1806 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
1807 			maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1808 			dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1809 			pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] !=
1810 					dm_dram_clock_change_unsupported;
1811 		}
1812 	}
1813 
1814 	/* Set B:
1815 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
1816 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
1817 	 * calculations to cover bootup clocks.
1818 	 * DCFCLK: soc.clock_limits[2] when available
1819 	 * UCLK: soc.clock_limits[2] when available
1820 	 */
1821 	if (dcn3_2_soc.num_states > 2) {
1822 		vlevel_temp = 2;
1823 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
1824 	} else
1825 		dcfclk = 615; //DCFCLK Vmin_lv
1826 
1827 	pipes[0].clks_cfg.voltage = vlevel_temp;
1828 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1829 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1830 
1831 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
1832 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
1833 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
1834 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
1835 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
1836 	}
1837 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1838 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1839 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1840 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1841 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1842 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1843 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1844 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1845 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1846 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1847 
1848 	/* Set D:
1849 	 * All clocks min.
1850 	 * DCFCLK: Min, as reported by PM FW when available
1851 	 * UCLK  : Min, as reported by PM FW when available
1852 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
1853 	 */
1854 
1855 	if (dcn3_2_soc.num_states > 2) {
1856 		vlevel_temp = 0;
1857 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
1858 	} else
1859 		dcfclk = 615; //DCFCLK Vmin_lv
1860 
1861 	pipes[0].clks_cfg.voltage = vlevel_temp;
1862 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1863 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1864 
1865 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
1866 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
1867 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
1868 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
1869 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
1870 	}
1871 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1872 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1873 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1874 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1875 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1876 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1877 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1878 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1879 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1880 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1881 
1882 	/* Set C, for Dummy P-State:
1883 	 * All clocks min.
1884 	 * DCFCLK: Min, as reported by PM FW, when available
1885 	 * UCLK  : Min,  as reported by PM FW, when available
1886 	 * pstate latency as per UCLK state dummy pstate latency
1887 	 */
1888 
1889 	// For Set A and Set C use values from validation
1890 	pipes[0].clks_cfg.voltage = vlevel;
1891 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
1892 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
1893 
1894 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1895 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
1896 	}
1897 
1898 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
1899 		min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1900 		min_dram_speed_mts_margin = 160;
1901 
1902 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1903 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
1904 
1905 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
1906 			dm_dram_clock_change_unsupported) {
1907 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries - 1;
1908 
1909 			min_dram_speed_mts =
1910 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
1911 		}
1912 
1913 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1914 			/* find largest table entry that is lower than dram speed,
1915 			 * but lower than DPM0 still uses DPM0
1916 			 */
1917 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
1918 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
1919 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
1920 					break;
1921 		}
1922 
1923 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1924 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1925 
1926 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
1927 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
1928 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
1929 	}
1930 
1931 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1932 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1933 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1934 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1935 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1936 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1937 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1938 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1939 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
1940 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
1941 	 * value.
1942 	 */
1943 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1944 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1945 
1946 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
1947 		/* The only difference between A and C is p-state latency, if p-state is not supported
1948 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
1949 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
1950 		 */
1951 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
1952 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
1953 	} else {
1954 		/* Set A:
1955 		 * All clocks min.
1956 		 * DCFCLK: Min, as reported by PM FW, when available
1957 		 * UCLK: Min, as reported by PM FW, when available
1958 		 */
1959 		dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1960 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1961 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1962 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1963 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1964 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1965 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1966 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1967 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1968 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1969 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1970 	}
1971 
1972 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1973 		if (!context->res_ctx.pipe_ctx[i].stream)
1974 			continue;
1975 
1976 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
1977 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1978 
1979 		if (dc->config.forced_clocks) {
1980 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
1981 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
1982 		}
1983 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
1984 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
1985 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1986 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
1987 
1988 		pipe_idx++;
1989 	}
1990 
1991 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
1992 
1993 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
1994 
1995 	if (!pstate_en)
1996 		/* Restore full p-state latency */
1997 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1998 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1999 
2000 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching)
2001 		dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2002 }
2003 
2004 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2005 		unsigned int *optimal_dcfclk,
2006 		unsigned int *optimal_fclk)
2007 {
2008 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2009 
2010 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2011 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2012 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2013 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2014 
2015 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2016 
2017 	if (optimal_fclk)
2018 		*optimal_fclk = bw_from_dram /
2019 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2020 
2021 	if (optimal_dcfclk)
2022 		*optimal_dcfclk =  bw_from_dram /
2023 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2024 }
2025 
2026 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2027 		unsigned int index)
2028 {
2029 	int i;
2030 
2031 	if (*num_entries == 0)
2032 		return;
2033 
2034 	for (i = index; i < *num_entries - 1; i++) {
2035 		table[i] = table[i + 1];
2036 	}
2037 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2038 }
2039 
2040 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2041 {
2042 	int i;
2043 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2044 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2045 
2046 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2047 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2048 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2049 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2050 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2051 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2052 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2053 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2054 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2055 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2056 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2057 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2058 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2059 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2060 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2061 	}
2062 
2063 	/* Scan through clock values we currently have and if they are 0,
2064 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2065 	 *
2066 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2067 	 *  0, will cause it to skip building the clock table.
2068 	 */
2069 	if (max_dcfclk_mhz == 0)
2070 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2071 	if (max_dispclk_mhz == 0)
2072 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2073 	if (max_dtbclk_mhz == 0)
2074 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2075 	if (max_uclk_mhz == 0)
2076 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2077 }
2078 
2079 static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
2080 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2081 {
2082 	int i, j;
2083 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2084 
2085 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2086 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2087 
2088 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2089 
2090 	static const unsigned int num_dcfclk_stas = 5;
2091 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2092 
2093 	unsigned int num_uclk_dpms = 0;
2094 	unsigned int num_fclk_dpms = 0;
2095 	unsigned int num_dcfclk_dpms = 0;
2096 
2097 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2098 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2099 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2100 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2101 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2102 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2103 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2104 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2105 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2106 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2107 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2108 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2109 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2110 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2111 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2112 
2113 		if (bw_params->clk_table.entries[i].memclk_mhz > 0)
2114 			num_uclk_dpms++;
2115 		if (bw_params->clk_table.entries[i].fclk_mhz > 0)
2116 			num_fclk_dpms++;
2117 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
2118 			num_dcfclk_dpms++;
2119 	}
2120 
2121 	if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
2122 		return -1;
2123 
2124 	if (max_dppclk_mhz == 0)
2125 		max_dppclk_mhz = max_dispclk_mhz;
2126 
2127 	if (max_fclk_mhz == 0)
2128 		max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2129 
2130 	if (max_phyclk_mhz == 0)
2131 		max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2132 
2133 	*num_entries = 0;
2134 	entry.dispclk_mhz = max_dispclk_mhz;
2135 	entry.dscclk_mhz = max_dispclk_mhz / 3;
2136 	entry.dppclk_mhz = max_dppclk_mhz;
2137 	entry.dtbclk_mhz = max_dtbclk_mhz;
2138 	entry.phyclk_mhz = max_phyclk_mhz;
2139 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2140 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2141 
2142 	// Insert all the DCFCLK STAs
2143 	for (i = 0; i < num_dcfclk_stas; i++) {
2144 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2145 		entry.fabricclk_mhz = 0;
2146 		entry.dram_speed_mts = 0;
2147 
2148 		DC_FP_START();
2149 		insert_entry_into_table_sorted(table, num_entries, &entry);
2150 		DC_FP_END();
2151 	}
2152 
2153 	// Insert the max DCFCLK
2154 	entry.dcfclk_mhz = max_dcfclk_mhz;
2155 	entry.fabricclk_mhz = 0;
2156 	entry.dram_speed_mts = 0;
2157 
2158 	DC_FP_START();
2159 	insert_entry_into_table_sorted(table, num_entries, &entry);
2160 	DC_FP_END();
2161 
2162 	// Insert the UCLK DPMS
2163 	for (i = 0; i < num_uclk_dpms; i++) {
2164 		entry.dcfclk_mhz = 0;
2165 		entry.fabricclk_mhz = 0;
2166 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2167 
2168 		DC_FP_START();
2169 		insert_entry_into_table_sorted(table, num_entries, &entry);
2170 		DC_FP_END();
2171 	}
2172 
2173 	// If FCLK is coarse grained, insert individual DPMs.
2174 	if (num_fclk_dpms > 2) {
2175 		for (i = 0; i < num_fclk_dpms; i++) {
2176 			entry.dcfclk_mhz = 0;
2177 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2178 			entry.dram_speed_mts = 0;
2179 
2180 			DC_FP_START();
2181 			insert_entry_into_table_sorted(table, num_entries, &entry);
2182 			DC_FP_END();
2183 		}
2184 	}
2185 	// If FCLK fine grained, only insert max
2186 	else {
2187 		entry.dcfclk_mhz = 0;
2188 		entry.fabricclk_mhz = max_fclk_mhz;
2189 		entry.dram_speed_mts = 0;
2190 
2191 		DC_FP_START();
2192 		insert_entry_into_table_sorted(table, num_entries, &entry);
2193 		DC_FP_END();
2194 	}
2195 
2196 	// At this point, the table contains all "points of interest" based on
2197 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2198 	// ratios (by derate, are exact).
2199 
2200 	// Remove states that require higher clocks than are supported
2201 	for (i = *num_entries - 1; i >= 0 ; i--) {
2202 		if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
2203 				table[i].fabricclk_mhz > max_fclk_mhz ||
2204 				table[i].dram_speed_mts > max_uclk_mhz * 16)
2205 			remove_entry_from_table_at_index(table, num_entries, i);
2206 	}
2207 
2208 	// At this point, the table only contains supported points of interest
2209 	// it could be used as is, but some states may be redundant due to
2210 	// coarse grained nature of some clocks, so we want to round up to
2211 	// coarse grained DPMs and remove duplicates.
2212 
2213 	// Round up UCLKs
2214 	for (i = *num_entries - 1; i >= 0 ; i--) {
2215 		for (j = 0; j < num_uclk_dpms; j++) {
2216 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2217 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2218 				break;
2219 			}
2220 		}
2221 	}
2222 
2223 	// If FCLK is coarse grained, round up to next DPMs
2224 	if (num_fclk_dpms > 2) {
2225 		for (i = *num_entries - 1; i >= 0 ; i--) {
2226 			for (j = 0; j < num_fclk_dpms; j++) {
2227 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2228 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2229 					break;
2230 				}
2231 			}
2232 		}
2233 	}
2234 	// Otherwise, round up to minimum.
2235 	else {
2236 		for (i = *num_entries - 1; i >= 0 ; i--) {
2237 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2238 				table[i].fabricclk_mhz = min_fclk_mhz;
2239 				break;
2240 			}
2241 		}
2242 	}
2243 
2244 	// Round DCFCLKs up to minimum
2245 	for (i = *num_entries - 1; i >= 0 ; i--) {
2246 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2247 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2248 			break;
2249 		}
2250 	}
2251 
2252 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2253 	i = 0;
2254 	while (i < *num_entries - 1) {
2255 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2256 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2257 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2258 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2259 		else
2260 			i++;
2261 	}
2262 
2263 	// Fix up the state indicies
2264 	for (i = *num_entries - 1; i >= 0 ; i--) {
2265 		table[i].state = i;
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 /*
2272  * dcn32_update_bw_bounding_box
2273  *
2274  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2275  * spreadsheet with actual values as per dGPU SKU:
2276  * - with passed few options from dc->config
2277  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2278  *   need to get it from PM FW)
2279  * - with passed latency values (passed in ns units) in dc-> bb override for
2280  *   debugging purposes
2281  * - with passed latencies from VBIOS (in 100_ns units) if available for
2282  *   certain dGPU SKU
2283  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2284  *   of the same ASIC)
2285  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2286  *   FW for different clocks (which might differ for certain dGPU SKU of the
2287  *   same ASIC)
2288  */
2289 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2290 {
2291 	dc_assert_fp_enabled();
2292 
2293 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2294 		/* Overrides from dc->config options */
2295 		dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2296 
2297 		/* Override from passed dc->bb_overrides if available*/
2298 		if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2299 				&& dc->bb_overrides.sr_exit_time_ns) {
2300 			dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2301 		}
2302 
2303 		if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2304 				!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2305 				&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2306 			dcn3_2_soc.sr_enter_plus_exit_time_us =
2307 				dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2308 		}
2309 
2310 		if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2311 			&& dc->bb_overrides.urgent_latency_ns) {
2312 			dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2313 			dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2314 		}
2315 
2316 		if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2317 				!= dc->bb_overrides.dram_clock_change_latency_ns
2318 				&& dc->bb_overrides.dram_clock_change_latency_ns) {
2319 			dcn3_2_soc.dram_clock_change_latency_us =
2320 				dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2321 		}
2322 
2323 		if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2324 				!= dc->bb_overrides.fclk_clock_change_latency_ns
2325 				&& dc->bb_overrides.fclk_clock_change_latency_ns) {
2326 			dcn3_2_soc.fclk_change_latency_us =
2327 				dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2328 		}
2329 
2330 		if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2331 				!= dc->bb_overrides.dummy_clock_change_latency_ns
2332 				&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2333 			dcn3_2_soc.dummy_pstate_latency_us =
2334 				dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2335 		}
2336 
2337 		/* Override from VBIOS if VBIOS bb_info available */
2338 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2339 			struct bp_soc_bb_info bb_info = {0};
2340 
2341 			if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2342 				if (bb_info.dram_clock_change_latency_100ns > 0)
2343 					dcn3_2_soc.dram_clock_change_latency_us =
2344 						bb_info.dram_clock_change_latency_100ns * 10;
2345 
2346 				if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2347 					dcn3_2_soc.sr_enter_plus_exit_time_us =
2348 						bb_info.dram_sr_enter_exit_latency_100ns * 10;
2349 
2350 				if (bb_info.dram_sr_exit_latency_100ns > 0)
2351 					dcn3_2_soc.sr_exit_time_us =
2352 						bb_info.dram_sr_exit_latency_100ns * 10;
2353 			}
2354 		}
2355 
2356 		/* Override from VBIOS for num_chan */
2357 		if (dc->ctx->dc_bios->vram_info.num_chans)
2358 			dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2359 
2360 		if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2361 			dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2362 	}
2363 
2364 	/* DML DSC delay factor workaround */
2365 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2366 
2367 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2368 
2369 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2370 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2371 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2372 
2373 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2374 	if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
2375 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2376 			unsigned int i = 0, j = 0, num_states = 0;
2377 
2378 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2379 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2380 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2381 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2382 			unsigned int min_dcfclk = UINT_MAX;
2383 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2384 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2385 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2386 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2387 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2388 
2389 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2390 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2391 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2392 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2393 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2394 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2395 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2396 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2397 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2398 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2399 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2400 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2401 			}
2402 			if (min_dcfclk > dcfclk_sta_targets[0])
2403 				dcfclk_sta_targets[0] = min_dcfclk;
2404 			if (!max_dcfclk_mhz)
2405 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2406 			if (!max_dispclk_mhz)
2407 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2408 			if (!max_dppclk_mhz)
2409 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2410 			if (!max_phyclk_mhz)
2411 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2412 
2413 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2414 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2415 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2416 				num_dcfclk_sta_targets++;
2417 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2418 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2419 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2420 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2421 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2422 						break;
2423 					}
2424 				}
2425 				// Update size of array since we "removed" duplicates
2426 				num_dcfclk_sta_targets = i + 1;
2427 			}
2428 
2429 			num_uclk_states = bw_params->clk_table.num_entries;
2430 
2431 			// Calculate optimal dcfclk for each uclk
2432 			for (i = 0; i < num_uclk_states; i++) {
2433 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2434 						&optimal_dcfclk_for_uclk[i], NULL);
2435 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2436 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2437 				}
2438 			}
2439 
2440 			// Calculate optimal uclk for each dcfclk sta target
2441 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2442 				for (j = 0; j < num_uclk_states; j++) {
2443 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2444 						optimal_uclk_for_dcfclk_sta_targets[i] =
2445 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2446 						break;
2447 					}
2448 				}
2449 			}
2450 
2451 			i = 0;
2452 			j = 0;
2453 			// create the final dcfclk and uclk table
2454 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2455 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2456 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2457 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2458 				} else {
2459 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2460 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2461 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2462 					} else {
2463 						j = num_uclk_states;
2464 					}
2465 				}
2466 			}
2467 
2468 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2469 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2470 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2471 			}
2472 
2473 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2474 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2475 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2476 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2477 			}
2478 
2479 			dcn3_2_soc.num_states = num_states;
2480 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2481 				dcn3_2_soc.clock_limits[i].state = i;
2482 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2483 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2484 
2485 				/* Fill all states with max values of all these clocks */
2486 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2487 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2488 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2489 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2490 
2491 				/* Populate from bw_params for DTBCLK, SOCCLK */
2492 				if (i > 0) {
2493 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2494 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2495 					} else {
2496 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2497 					}
2498 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2499 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2500 				}
2501 
2502 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2503 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2504 				else
2505 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2506 
2507 				if (!dram_speed_mts[i] && i > 0)
2508 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2509 				else
2510 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2511 
2512 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2513 				/* PHYCLK_D18, PHYCLK_D32 */
2514 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2515 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2516 			}
2517 		} else {
2518 			build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2519 		}
2520 
2521 		/* Re-init DML with updated bb */
2522 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2523 		if (dc->current_state)
2524 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2525 	}
2526 }
2527 
2528