1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7 #include <linux/clk.h>
8 #include <linux/pm_runtime.h>
9 #include <linux/spinlock.h>
10 
11 #include <drm/drm_atomic.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_crtc_helper.h>
14 #include <drm/drm_print.h>
15 #include <drm/drm_vblank.h>
16 
17 #include "komeda_dev.h"
18 #include "komeda_kms.h"
19 
20 void komeda_crtc_get_color_config(struct drm_crtc_state *crtc_st,
21 				  u32 *color_depths, u32 *color_formats)
22 {
23 	struct drm_connector *conn;
24 	struct drm_connector_state *conn_st;
25 	u32 conn_color_formats = ~0u;
26 	int i, min_bpc = 31, conn_bpc = 0;
27 
28 	for_each_new_connector_in_state(crtc_st->state, conn, conn_st, i) {
29 		if (conn_st->crtc != crtc_st->crtc)
30 			continue;
31 
32 		conn_bpc = conn->display_info.bpc ? conn->display_info.bpc : 8;
33 		conn_color_formats &= conn->display_info.color_formats;
34 
35 		if (conn_bpc < min_bpc)
36 			min_bpc = conn_bpc;
37 	}
38 
39 	/* connector doesn't config any color_format, use RGB444 as default */
40 	if (!conn_color_formats)
41 		conn_color_formats = DRM_COLOR_FORMAT_RGB444;
42 
43 	*color_depths = GENMASK(min_bpc, 0);
44 	*color_formats = conn_color_formats;
45 }
46 
47 static void komeda_crtc_update_clock_ratio(struct komeda_crtc_state *kcrtc_st)
48 {
49 	u64 pxlclk, aclk;
50 
51 	if (!kcrtc_st->base.active) {
52 		kcrtc_st->clock_ratio = 0;
53 		return;
54 	}
55 
56 	pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000ULL;
57 	aclk = komeda_crtc_get_aclk(kcrtc_st);
58 
59 	kcrtc_st->clock_ratio = div64_u64(aclk << 32, pxlclk);
60 }
61 
62 /**
63  * komeda_crtc_atomic_check - build display output data flow
64  * @crtc: DRM crtc
65  * @state: the crtc state object
66  *
67  * crtc_atomic_check is the final check stage, so beside build a display data
68  * pipeline according to the crtc_state, but still needs to release or disable
69  * the unclaimed pipeline resources.
70  *
71  * RETURNS:
72  * Zero for success or -errno
73  */
74 static int
75 komeda_crtc_atomic_check(struct drm_crtc *crtc,
76 			 struct drm_atomic_state *state)
77 {
78 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
79 									  crtc);
80 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
81 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc_state);
82 	int err;
83 
84 	if (drm_atomic_crtc_needs_modeset(crtc_state))
85 		komeda_crtc_update_clock_ratio(kcrtc_st);
86 
87 	if (crtc_state->active) {
88 		err = komeda_build_display_data_flow(kcrtc, kcrtc_st);
89 		if (err)
90 			return err;
91 	}
92 
93 	/* release unclaimed pipeline resources */
94 	err = komeda_release_unclaimed_resources(kcrtc->slave, kcrtc_st);
95 	if (err)
96 		return err;
97 
98 	err = komeda_release_unclaimed_resources(kcrtc->master, kcrtc_st);
99 	if (err)
100 		return err;
101 
102 	return 0;
103 }
104 
105 /* For active a crtc, mainly need two parts of preparation
106  * 1. adjust display operation mode.
107  * 2. enable needed clk
108  */
109 static int
110 komeda_crtc_prepare(struct komeda_crtc *kcrtc)
111 {
112 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
113 	struct komeda_pipeline *master = kcrtc->master;
114 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(kcrtc->base.state);
115 	struct drm_display_mode *mode = &kcrtc_st->base.adjusted_mode;
116 	u32 new_mode;
117 	int err;
118 
119 	mutex_lock(&mdev->lock);
120 
121 	new_mode = mdev->dpmode | BIT(master->id);
122 	if (WARN_ON(new_mode == mdev->dpmode)) {
123 		err = 0;
124 		goto unlock;
125 	}
126 
127 	err = mdev->funcs->change_opmode(mdev, new_mode);
128 	if (err) {
129 		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
130 			  mdev->dpmode, new_mode);
131 		goto unlock;
132 	}
133 
134 	mdev->dpmode = new_mode;
135 	/* Only need to enable aclk on single display mode, but no need to
136 	 * enable aclk it on dual display mode, since the dual mode always
137 	 * switch from single display mode, the aclk already enabled, no need
138 	 * to enable it again.
139 	 */
140 	if (new_mode != KOMEDA_MODE_DUAL_DISP) {
141 		err = clk_set_rate(mdev->aclk, komeda_crtc_get_aclk(kcrtc_st));
142 		if (err)
143 			DRM_ERROR("failed to set aclk.\n");
144 		err = clk_prepare_enable(mdev->aclk);
145 		if (err)
146 			DRM_ERROR("failed to enable aclk.\n");
147 	}
148 
149 	err = clk_set_rate(master->pxlclk, mode->crtc_clock * 1000);
150 	if (err)
151 		DRM_ERROR("failed to set pxlclk for pipe%d\n", master->id);
152 	err = clk_prepare_enable(master->pxlclk);
153 	if (err)
154 		DRM_ERROR("failed to enable pxl clk for pipe%d.\n", master->id);
155 
156 unlock:
157 	mutex_unlock(&mdev->lock);
158 
159 	return err;
160 }
161 
162 static int
163 komeda_crtc_unprepare(struct komeda_crtc *kcrtc)
164 {
165 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
166 	struct komeda_pipeline *master = kcrtc->master;
167 	u32 new_mode;
168 	int err;
169 
170 	mutex_lock(&mdev->lock);
171 
172 	new_mode = mdev->dpmode & (~BIT(master->id));
173 
174 	if (WARN_ON(new_mode == mdev->dpmode)) {
175 		err = 0;
176 		goto unlock;
177 	}
178 
179 	err = mdev->funcs->change_opmode(mdev, new_mode);
180 	if (err) {
181 		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
182 			  mdev->dpmode, new_mode);
183 		goto unlock;
184 	}
185 
186 	mdev->dpmode = new_mode;
187 
188 	clk_disable_unprepare(master->pxlclk);
189 	if (new_mode == KOMEDA_MODE_INACTIVE)
190 		clk_disable_unprepare(mdev->aclk);
191 
192 unlock:
193 	mutex_unlock(&mdev->lock);
194 
195 	return err;
196 }
197 
198 void komeda_crtc_handle_event(struct komeda_crtc   *kcrtc,
199 			      struct komeda_events *evts)
200 {
201 	struct drm_crtc *crtc = &kcrtc->base;
202 	u32 events = evts->pipes[kcrtc->master->id];
203 
204 	if (events & KOMEDA_EVENT_VSYNC)
205 		drm_crtc_handle_vblank(crtc);
206 
207 	if (events & KOMEDA_EVENT_EOW) {
208 		struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
209 
210 		if (wb_conn)
211 			drm_writeback_signal_completion(&wb_conn->base, 0);
212 		else
213 			DRM_WARN("CRTC[%d]: EOW happen but no wb_connector.\n",
214 				 drm_crtc_index(&kcrtc->base));
215 	}
216 	/* will handle it together with the write back support */
217 	if (events & KOMEDA_EVENT_EOW)
218 		DRM_DEBUG("EOW.\n");
219 
220 	if (events & KOMEDA_EVENT_FLIP) {
221 		unsigned long flags;
222 		struct drm_pending_vblank_event *event;
223 
224 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
225 		if (kcrtc->disable_done) {
226 			complete_all(kcrtc->disable_done);
227 			kcrtc->disable_done = NULL;
228 		} else if (crtc->state->event) {
229 			event = crtc->state->event;
230 			/*
231 			 * Consume event before notifying drm core that flip
232 			 * happened.
233 			 */
234 			crtc->state->event = NULL;
235 			drm_crtc_send_vblank_event(crtc, event);
236 		} else {
237 			DRM_WARN("CRTC[%d]: FLIP happened but no pending commit.\n",
238 				 drm_crtc_index(&kcrtc->base));
239 		}
240 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
241 	}
242 }
243 
244 static void
245 komeda_crtc_do_flush(struct drm_crtc *crtc,
246 		     struct drm_crtc_state *old)
247 {
248 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
249 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc->state);
250 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
251 	struct komeda_pipeline *master = kcrtc->master;
252 	struct komeda_pipeline *slave = kcrtc->slave;
253 	struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
254 	struct drm_connector_state *conn_st;
255 
256 	DRM_DEBUG_ATOMIC("CRTC%d_FLUSH: active_pipes: 0x%x, affected: 0x%x.\n",
257 			 drm_crtc_index(crtc),
258 			 kcrtc_st->active_pipes, kcrtc_st->affected_pipes);
259 
260 	/* step 1: update the pipeline/component state to HW */
261 	if (has_bit(master->id, kcrtc_st->affected_pipes))
262 		komeda_pipeline_update(master, old->state);
263 
264 	if (slave && has_bit(slave->id, kcrtc_st->affected_pipes))
265 		komeda_pipeline_update(slave, old->state);
266 
267 	conn_st = wb_conn ? wb_conn->base.base.state : NULL;
268 	if (conn_st && conn_st->writeback_job)
269 		drm_writeback_queue_job(&wb_conn->base, conn_st);
270 
271 	/* step 2: notify the HW to kickoff the update */
272 	mdev->funcs->flush(mdev, master->id, kcrtc_st->active_pipes);
273 }
274 
275 static void
276 komeda_crtc_atomic_enable(struct drm_crtc *crtc,
277 			  struct drm_atomic_state *state)
278 {
279 	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
280 								   crtc);
281 	pm_runtime_get_sync(crtc->dev->dev);
282 	komeda_crtc_prepare(to_kcrtc(crtc));
283 	drm_crtc_vblank_on(crtc);
284 	WARN_ON(drm_crtc_vblank_get(crtc));
285 	komeda_crtc_do_flush(crtc, old);
286 }
287 
288 void
289 komeda_crtc_flush_and_wait_for_flip_done(struct komeda_crtc *kcrtc,
290 					 struct completion *input_flip_done)
291 {
292 	struct drm_device *drm = kcrtc->base.dev;
293 	struct komeda_dev *mdev = kcrtc->master->mdev;
294 	struct completion *flip_done;
295 	struct completion temp;
296 	int timeout;
297 
298 	/* if caller doesn't send a flip_done, use a private flip_done */
299 	if (input_flip_done) {
300 		flip_done = input_flip_done;
301 	} else {
302 		init_completion(&temp);
303 		kcrtc->disable_done = &temp;
304 		flip_done = &temp;
305 	}
306 
307 	mdev->funcs->flush(mdev, kcrtc->master->id, 0);
308 
309 	/* wait the flip take affect.*/
310 	timeout = wait_for_completion_timeout(flip_done, HZ);
311 	if (timeout == 0) {
312 		DRM_ERROR("wait pipe%d flip done timeout\n", kcrtc->master->id);
313 		if (!input_flip_done) {
314 			unsigned long flags;
315 
316 			spin_lock_irqsave(&drm->event_lock, flags);
317 			kcrtc->disable_done = NULL;
318 			spin_unlock_irqrestore(&drm->event_lock, flags);
319 		}
320 	}
321 }
322 
323 static void
324 komeda_crtc_atomic_disable(struct drm_crtc *crtc,
325 			   struct drm_atomic_state *state)
326 {
327 	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
328 								   crtc);
329 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
330 	struct komeda_crtc_state *old_st = to_kcrtc_st(old);
331 	struct komeda_pipeline *master = kcrtc->master;
332 	struct komeda_pipeline *slave  = kcrtc->slave;
333 	struct completion *disable_done;
334 	bool needs_phase2 = false;
335 
336 	DRM_DEBUG_ATOMIC("CRTC%d_DISABLE: active_pipes: 0x%x, affected: 0x%x\n",
337 			 drm_crtc_index(crtc),
338 			 old_st->active_pipes, old_st->affected_pipes);
339 
340 	if (slave && has_bit(slave->id, old_st->active_pipes))
341 		komeda_pipeline_disable(slave, old->state);
342 
343 	if (has_bit(master->id, old_st->active_pipes))
344 		needs_phase2 = komeda_pipeline_disable(master, old->state);
345 
346 	/* crtc_disable has two scenarios according to the state->active switch.
347 	 * 1. active -> inactive
348 	 *    this commit is a disable commit. and the commit will be finished
349 	 *    or done after the disable operation. on this case we can directly
350 	 *    use the crtc->state->event to tracking the HW disable operation.
351 	 * 2. active -> active
352 	 *    the crtc->commit is not for disable, but a modeset operation when
353 	 *    crtc is active, such commit actually has been completed by 3
354 	 *    DRM operations:
355 	 *    crtc_disable, update_planes(crtc_flush), crtc_enable
356 	 *    so on this case the crtc->commit is for the whole process.
357 	 *    we can not use it for tracing the disable, we need a temporary
358 	 *    flip_done for tracing the disable. and crtc->state->event for
359 	 *    the crtc_enable operation.
360 	 *    That's also the reason why skip modeset commit in
361 	 *    komeda_crtc_atomic_flush()
362 	 */
363 	disable_done = (needs_phase2 || crtc->state->active) ?
364 		       NULL : &crtc->state->commit->flip_done;
365 
366 	/* wait phase 1 disable done */
367 	komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
368 
369 	/* phase 2 */
370 	if (needs_phase2) {
371 		komeda_pipeline_disable(kcrtc->master, old->state);
372 
373 		disable_done = crtc->state->active ?
374 			       NULL : &crtc->state->commit->flip_done;
375 
376 		komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
377 	}
378 
379 	drm_crtc_vblank_put(crtc);
380 	drm_crtc_vblank_off(crtc);
381 	komeda_crtc_unprepare(kcrtc);
382 	pm_runtime_put(crtc->dev->dev);
383 }
384 
385 static void
386 komeda_crtc_atomic_flush(struct drm_crtc *crtc,
387 			 struct drm_atomic_state *state)
388 {
389 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
390 									  crtc);
391 	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
392 								   crtc);
393 	/* commit with modeset will be handled in enable/disable */
394 	if (drm_atomic_crtc_needs_modeset(crtc_state))
395 		return;
396 
397 	komeda_crtc_do_flush(crtc, old);
398 }
399 
400 /* Returns the minimum frequency of the aclk rate (main engine clock) in Hz */
401 static unsigned long
402 komeda_calc_min_aclk_rate(struct komeda_crtc *kcrtc,
403 			  unsigned long pxlclk)
404 {
405 	/* Once dual-link one display pipeline drives two display outputs,
406 	 * the aclk needs run on the double rate of pxlclk
407 	 */
408 	if (kcrtc->master->dual_link)
409 		return pxlclk * 2;
410 	else
411 		return pxlclk;
412 }
413 
414 /* Get current aclk rate that specified by state */
415 unsigned long komeda_crtc_get_aclk(struct komeda_crtc_state *kcrtc_st)
416 {
417 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
418 	struct komeda_dev *mdev = crtc->dev->dev_private;
419 	unsigned long pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000;
420 	unsigned long min_aclk;
421 
422 	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), pxlclk);
423 
424 	return clk_round_rate(mdev->aclk, min_aclk);
425 }
426 
427 static enum drm_mode_status
428 komeda_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *m)
429 {
430 	struct komeda_dev *mdev = crtc->dev->dev_private;
431 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
432 	struct komeda_pipeline *master = kcrtc->master;
433 	unsigned long min_pxlclk, min_aclk;
434 
435 	if (m->flags & DRM_MODE_FLAG_INTERLACE)
436 		return MODE_NO_INTERLACE;
437 
438 	min_pxlclk = m->clock * 1000;
439 	if (master->dual_link)
440 		min_pxlclk /= 2;
441 
442 	if (min_pxlclk != clk_round_rate(master->pxlclk, min_pxlclk)) {
443 		DRM_DEBUG_ATOMIC("pxlclk doesn't support %lu Hz\n", min_pxlclk);
444 
445 		return MODE_NOCLOCK;
446 	}
447 
448 	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), min_pxlclk);
449 	if (clk_round_rate(mdev->aclk, min_aclk) < min_aclk) {
450 		DRM_DEBUG_ATOMIC("engine clk can't satisfy the requirement of %s-clk: %lu.\n",
451 				 m->name, min_pxlclk);
452 
453 		return MODE_CLOCK_HIGH;
454 	}
455 
456 	return MODE_OK;
457 }
458 
459 static bool komeda_crtc_mode_fixup(struct drm_crtc *crtc,
460 				   const struct drm_display_mode *m,
461 				   struct drm_display_mode *adjusted_mode)
462 {
463 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
464 	unsigned long clk_rate;
465 
466 	drm_mode_set_crtcinfo(adjusted_mode, 0);
467 	/* In dual link half the horizontal settings */
468 	if (kcrtc->master->dual_link) {
469 		adjusted_mode->crtc_clock /= 2;
470 		adjusted_mode->crtc_hdisplay /= 2;
471 		adjusted_mode->crtc_hsync_start /= 2;
472 		adjusted_mode->crtc_hsync_end /= 2;
473 		adjusted_mode->crtc_htotal /= 2;
474 	}
475 
476 	clk_rate = adjusted_mode->crtc_clock * 1000;
477 	/* crtc_clock will be used as the komeda output pixel clock */
478 	adjusted_mode->crtc_clock = clk_round_rate(kcrtc->master->pxlclk,
479 						   clk_rate) / 1000;
480 
481 	return true;
482 }
483 
484 static const struct drm_crtc_helper_funcs komeda_crtc_helper_funcs = {
485 	.atomic_check	= komeda_crtc_atomic_check,
486 	.atomic_flush	= komeda_crtc_atomic_flush,
487 	.atomic_enable	= komeda_crtc_atomic_enable,
488 	.atomic_disable	= komeda_crtc_atomic_disable,
489 	.mode_valid	= komeda_crtc_mode_valid,
490 	.mode_fixup	= komeda_crtc_mode_fixup,
491 };
492 
493 static void komeda_crtc_reset(struct drm_crtc *crtc)
494 {
495 	struct komeda_crtc_state *state;
496 
497 	if (crtc->state)
498 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
499 
500 	kfree(to_kcrtc_st(crtc->state));
501 	crtc->state = NULL;
502 
503 	state = kzalloc(sizeof(*state), GFP_KERNEL);
504 	if (state)
505 		__drm_atomic_helper_crtc_reset(crtc, &state->base);
506 }
507 
508 static struct drm_crtc_state *
509 komeda_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
510 {
511 	struct komeda_crtc_state *old = to_kcrtc_st(crtc->state);
512 	struct komeda_crtc_state *new;
513 
514 	new = kzalloc(sizeof(*new), GFP_KERNEL);
515 	if (!new)
516 		return NULL;
517 
518 	__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
519 
520 	new->affected_pipes = old->active_pipes;
521 	new->clock_ratio = old->clock_ratio;
522 	new->max_slave_zorder = old->max_slave_zorder;
523 
524 	return &new->base;
525 }
526 
527 static void komeda_crtc_atomic_destroy_state(struct drm_crtc *crtc,
528 					     struct drm_crtc_state *state)
529 {
530 	__drm_atomic_helper_crtc_destroy_state(state);
531 	kfree(to_kcrtc_st(state));
532 }
533 
534 static int komeda_crtc_vblank_enable(struct drm_crtc *crtc)
535 {
536 	struct komeda_dev *mdev = crtc->dev->dev_private;
537 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
538 
539 	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, true);
540 	return 0;
541 }
542 
543 static void komeda_crtc_vblank_disable(struct drm_crtc *crtc)
544 {
545 	struct komeda_dev *mdev = crtc->dev->dev_private;
546 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
547 
548 	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, false);
549 }
550 
551 static const struct drm_crtc_funcs komeda_crtc_funcs = {
552 	.destroy		= drm_crtc_cleanup,
553 	.set_config		= drm_atomic_helper_set_config,
554 	.page_flip		= drm_atomic_helper_page_flip,
555 	.reset			= komeda_crtc_reset,
556 	.atomic_duplicate_state	= komeda_crtc_atomic_duplicate_state,
557 	.atomic_destroy_state	= komeda_crtc_atomic_destroy_state,
558 	.enable_vblank		= komeda_crtc_vblank_enable,
559 	.disable_vblank		= komeda_crtc_vblank_disable,
560 };
561 
562 int komeda_kms_setup_crtcs(struct komeda_kms_dev *kms,
563 			   struct komeda_dev *mdev)
564 {
565 	struct komeda_crtc *crtc;
566 	struct komeda_pipeline *master;
567 	char str[16];
568 	int i;
569 
570 	kms->n_crtcs = 0;
571 
572 	for (i = 0; i < mdev->n_pipelines; i++) {
573 		crtc = &kms->crtcs[kms->n_crtcs];
574 		master = mdev->pipelines[i];
575 
576 		crtc->master = master;
577 		crtc->slave  = komeda_pipeline_get_slave(master);
578 
579 		if (crtc->slave)
580 			sprintf(str, "pipe-%d", crtc->slave->id);
581 		else
582 			sprintf(str, "None");
583 
584 		DRM_INFO("CRTC-%d: master(pipe-%d) slave(%s).\n",
585 			 kms->n_crtcs, master->id, str);
586 
587 		kms->n_crtcs++;
588 	}
589 
590 	return 0;
591 }
592 
593 static struct drm_plane *
594 get_crtc_primary(struct komeda_kms_dev *kms, struct komeda_crtc *crtc)
595 {
596 	struct komeda_plane *kplane;
597 	struct drm_plane *plane;
598 
599 	drm_for_each_plane(plane, &kms->base) {
600 		if (plane->type != DRM_PLANE_TYPE_PRIMARY)
601 			continue;
602 
603 		kplane = to_kplane(plane);
604 		/* only master can be primary */
605 		if (kplane->layer->base.pipeline == crtc->master)
606 			return plane;
607 	}
608 
609 	return NULL;
610 }
611 
612 static int komeda_crtc_add(struct komeda_kms_dev *kms,
613 			   struct komeda_crtc *kcrtc)
614 {
615 	struct drm_crtc *crtc = &kcrtc->base;
616 	int err;
617 
618 	err = drm_crtc_init_with_planes(&kms->base, crtc,
619 					get_crtc_primary(kms, kcrtc), NULL,
620 					&komeda_crtc_funcs, NULL);
621 	if (err)
622 		return err;
623 
624 	drm_crtc_helper_add(crtc, &komeda_crtc_helper_funcs);
625 
626 	crtc->port = kcrtc->master->of_output_port;
627 
628 	drm_crtc_enable_color_mgmt(crtc, 0, true, KOMEDA_COLOR_LUT_SIZE);
629 
630 	return err;
631 }
632 
633 int komeda_kms_add_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev)
634 {
635 	int i, err;
636 
637 	for (i = 0; i < kms->n_crtcs; i++) {
638 		err = komeda_crtc_add(kms, &kms->crtcs[i]);
639 		if (err)
640 			return err;
641 	}
642 
643 	return 0;
644 }
645