1 /*
2  * Copyright © 2014 Red Hat
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/bitfield.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/random.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/iopoll.h>
33 
34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
35 #include <linux/stacktrace.h>
36 #include <linux/sort.h>
37 #include <linux/timekeeping.h>
38 #include <linux/math64.h>
39 #endif
40 
41 #include <drm/display/drm_dp_mst_helper.h>
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_drv.h>
45 #include <drm/drm_edid.h>
46 #include <drm/drm_fixed.h>
47 #include <drm/drm_print.h>
48 #include <drm/drm_probe_helper.h>
49 
50 #include "drm_dp_helper_internal.h"
51 #include "drm_dp_mst_topology_internal.h"
52 
53 /**
54  * DOC: dp mst helper
55  *
56  * These functions contain parts of the DisplayPort 1.2a MultiStream Transport
57  * protocol. The helpers contain a topology manager and bandwidth manager.
58  * The helpers encapsulate the sending and received of sideband msgs.
59  */
60 struct drm_dp_pending_up_req {
61 	struct drm_dp_sideband_msg_hdr hdr;
62 	struct drm_dp_sideband_msg_req_body msg;
63 	struct list_head next;
64 };
65 
66 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
67 				  char *buf);
68 
69 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port);
70 
71 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
72 				     int id, u8 start_slot, u8 num_slots);
73 
74 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
75 				 struct drm_dp_mst_port *port,
76 				 int offset, int size, u8 *bytes);
77 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
78 				  struct drm_dp_mst_port *port,
79 				  int offset, int size, u8 *bytes);
80 
81 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
82 				    struct drm_dp_mst_branch *mstb);
83 
84 static void
85 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
86 				   struct drm_dp_mst_branch *mstb);
87 
88 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
89 					   struct drm_dp_mst_branch *mstb,
90 					   struct drm_dp_mst_port *port);
91 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
92 				 u8 *guid);
93 
94 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port);
95 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port);
96 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr);
97 
98 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
99 						 struct drm_dp_mst_branch *branch);
100 
101 #define DBG_PREFIX "[dp_mst]"
102 
103 #define DP_STR(x) [DP_ ## x] = #x
104 
105 static const char *drm_dp_mst_req_type_str(u8 req_type)
106 {
107 	static const char * const req_type_str[] = {
108 		DP_STR(GET_MSG_TRANSACTION_VERSION),
109 		DP_STR(LINK_ADDRESS),
110 		DP_STR(CONNECTION_STATUS_NOTIFY),
111 		DP_STR(ENUM_PATH_RESOURCES),
112 		DP_STR(ALLOCATE_PAYLOAD),
113 		DP_STR(QUERY_PAYLOAD),
114 		DP_STR(RESOURCE_STATUS_NOTIFY),
115 		DP_STR(CLEAR_PAYLOAD_ID_TABLE),
116 		DP_STR(REMOTE_DPCD_READ),
117 		DP_STR(REMOTE_DPCD_WRITE),
118 		DP_STR(REMOTE_I2C_READ),
119 		DP_STR(REMOTE_I2C_WRITE),
120 		DP_STR(POWER_UP_PHY),
121 		DP_STR(POWER_DOWN_PHY),
122 		DP_STR(SINK_EVENT_NOTIFY),
123 		DP_STR(QUERY_STREAM_ENC_STATUS),
124 	};
125 
126 	if (req_type >= ARRAY_SIZE(req_type_str) ||
127 	    !req_type_str[req_type])
128 		return "unknown";
129 
130 	return req_type_str[req_type];
131 }
132 
133 #undef DP_STR
134 #define DP_STR(x) [DP_NAK_ ## x] = #x
135 
136 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason)
137 {
138 	static const char * const nak_reason_str[] = {
139 		DP_STR(WRITE_FAILURE),
140 		DP_STR(INVALID_READ),
141 		DP_STR(CRC_FAILURE),
142 		DP_STR(BAD_PARAM),
143 		DP_STR(DEFER),
144 		DP_STR(LINK_FAILURE),
145 		DP_STR(NO_RESOURCES),
146 		DP_STR(DPCD_FAIL),
147 		DP_STR(I2C_NAK),
148 		DP_STR(ALLOCATE_FAIL),
149 	};
150 
151 	if (nak_reason >= ARRAY_SIZE(nak_reason_str) ||
152 	    !nak_reason_str[nak_reason])
153 		return "unknown";
154 
155 	return nak_reason_str[nak_reason];
156 }
157 
158 #undef DP_STR
159 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x
160 
161 static const char *drm_dp_mst_sideband_tx_state_str(int state)
162 {
163 	static const char * const sideband_reason_str[] = {
164 		DP_STR(QUEUED),
165 		DP_STR(START_SEND),
166 		DP_STR(SENT),
167 		DP_STR(RX),
168 		DP_STR(TIMEOUT),
169 	};
170 
171 	if (state >= ARRAY_SIZE(sideband_reason_str) ||
172 	    !sideband_reason_str[state])
173 		return "unknown";
174 
175 	return sideband_reason_str[state];
176 }
177 
178 static int
179 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len)
180 {
181 	int i;
182 	u8 unpacked_rad[16];
183 
184 	for (i = 0; i < lct; i++) {
185 		if (i % 2)
186 			unpacked_rad[i] = rad[i / 2] >> 4;
187 		else
188 			unpacked_rad[i] = rad[i / 2] & BIT_MASK(4);
189 	}
190 
191 	/* TODO: Eventually add something to printk so we can format the rad
192 	 * like this: 1.2.3
193 	 */
194 	return snprintf(out, len, "%*phC", lct, unpacked_rad);
195 }
196 
197 /* sideband msg handling */
198 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles)
199 {
200 	u8 bitmask = 0x80;
201 	u8 bitshift = 7;
202 	u8 array_index = 0;
203 	int number_of_bits = num_nibbles * 4;
204 	u8 remainder = 0;
205 
206 	while (number_of_bits != 0) {
207 		number_of_bits--;
208 		remainder <<= 1;
209 		remainder |= (data[array_index] & bitmask) >> bitshift;
210 		bitmask >>= 1;
211 		bitshift--;
212 		if (bitmask == 0) {
213 			bitmask = 0x80;
214 			bitshift = 7;
215 			array_index++;
216 		}
217 		if ((remainder & 0x10) == 0x10)
218 			remainder ^= 0x13;
219 	}
220 
221 	number_of_bits = 4;
222 	while (number_of_bits != 0) {
223 		number_of_bits--;
224 		remainder <<= 1;
225 		if ((remainder & 0x10) != 0)
226 			remainder ^= 0x13;
227 	}
228 
229 	return remainder;
230 }
231 
232 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes)
233 {
234 	u8 bitmask = 0x80;
235 	u8 bitshift = 7;
236 	u8 array_index = 0;
237 	int number_of_bits = number_of_bytes * 8;
238 	u16 remainder = 0;
239 
240 	while (number_of_bits != 0) {
241 		number_of_bits--;
242 		remainder <<= 1;
243 		remainder |= (data[array_index] & bitmask) >> bitshift;
244 		bitmask >>= 1;
245 		bitshift--;
246 		if (bitmask == 0) {
247 			bitmask = 0x80;
248 			bitshift = 7;
249 			array_index++;
250 		}
251 		if ((remainder & 0x100) == 0x100)
252 			remainder ^= 0xd5;
253 	}
254 
255 	number_of_bits = 8;
256 	while (number_of_bits != 0) {
257 		number_of_bits--;
258 		remainder <<= 1;
259 		if ((remainder & 0x100) != 0)
260 			remainder ^= 0xd5;
261 	}
262 
263 	return remainder & 0xff;
264 }
265 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr)
266 {
267 	u8 size = 3;
268 
269 	size += (hdr->lct / 2);
270 	return size;
271 }
272 
273 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
274 					   u8 *buf, int *len)
275 {
276 	int idx = 0;
277 	int i;
278 	u8 crc4;
279 
280 	buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf);
281 	for (i = 0; i < (hdr->lct / 2); i++)
282 		buf[idx++] = hdr->rad[i];
283 	buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) |
284 		(hdr->msg_len & 0x3f);
285 	buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4);
286 
287 	crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1);
288 	buf[idx - 1] |= (crc4 & 0xf);
289 
290 	*len = idx;
291 }
292 
293 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr,
294 					   struct drm_dp_sideband_msg_hdr *hdr,
295 					   u8 *buf, int buflen, u8 *hdrlen)
296 {
297 	u8 crc4;
298 	u8 len;
299 	int i;
300 	u8 idx;
301 
302 	if (buf[0] == 0)
303 		return false;
304 	len = 3;
305 	len += ((buf[0] & 0xf0) >> 4) / 2;
306 	if (len > buflen)
307 		return false;
308 	crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1);
309 
310 	if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) {
311 		drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]);
312 		return false;
313 	}
314 
315 	hdr->lct = (buf[0] & 0xf0) >> 4;
316 	hdr->lcr = (buf[0] & 0xf);
317 	idx = 1;
318 	for (i = 0; i < (hdr->lct / 2); i++)
319 		hdr->rad[i] = buf[idx++];
320 	hdr->broadcast = (buf[idx] >> 7) & 0x1;
321 	hdr->path_msg = (buf[idx] >> 6) & 0x1;
322 	hdr->msg_len = buf[idx] & 0x3f;
323 	idx++;
324 	hdr->somt = (buf[idx] >> 7) & 0x1;
325 	hdr->eomt = (buf[idx] >> 6) & 0x1;
326 	hdr->seqno = (buf[idx] >> 4) & 0x1;
327 	idx++;
328 	*hdrlen = idx;
329 	return true;
330 }
331 
332 void
333 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req,
334 			   struct drm_dp_sideband_msg_tx *raw)
335 {
336 	int idx = 0;
337 	int i;
338 	u8 *buf = raw->msg;
339 
340 	buf[idx++] = req->req_type & 0x7f;
341 
342 	switch (req->req_type) {
343 	case DP_ENUM_PATH_RESOURCES:
344 	case DP_POWER_DOWN_PHY:
345 	case DP_POWER_UP_PHY:
346 		buf[idx] = (req->u.port_num.port_number & 0xf) << 4;
347 		idx++;
348 		break;
349 	case DP_ALLOCATE_PAYLOAD:
350 		buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 |
351 			(req->u.allocate_payload.number_sdp_streams & 0xf);
352 		idx++;
353 		buf[idx] = (req->u.allocate_payload.vcpi & 0x7f);
354 		idx++;
355 		buf[idx] = (req->u.allocate_payload.pbn >> 8);
356 		idx++;
357 		buf[idx] = (req->u.allocate_payload.pbn & 0xff);
358 		idx++;
359 		for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) {
360 			buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) |
361 				(req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf);
362 			idx++;
363 		}
364 		if (req->u.allocate_payload.number_sdp_streams & 1) {
365 			i = req->u.allocate_payload.number_sdp_streams - 1;
366 			buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4;
367 			idx++;
368 		}
369 		break;
370 	case DP_QUERY_PAYLOAD:
371 		buf[idx] = (req->u.query_payload.port_number & 0xf) << 4;
372 		idx++;
373 		buf[idx] = (req->u.query_payload.vcpi & 0x7f);
374 		idx++;
375 		break;
376 	case DP_REMOTE_DPCD_READ:
377 		buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4;
378 		buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf;
379 		idx++;
380 		buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8;
381 		idx++;
382 		buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff);
383 		idx++;
384 		buf[idx] = (req->u.dpcd_read.num_bytes);
385 		idx++;
386 		break;
387 
388 	case DP_REMOTE_DPCD_WRITE:
389 		buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4;
390 		buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf;
391 		idx++;
392 		buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8;
393 		idx++;
394 		buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff);
395 		idx++;
396 		buf[idx] = (req->u.dpcd_write.num_bytes);
397 		idx++;
398 		memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes);
399 		idx += req->u.dpcd_write.num_bytes;
400 		break;
401 	case DP_REMOTE_I2C_READ:
402 		buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4;
403 		buf[idx] |= (req->u.i2c_read.num_transactions & 0x3);
404 		idx++;
405 		for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) {
406 			buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f;
407 			idx++;
408 			buf[idx] = req->u.i2c_read.transactions[i].num_bytes;
409 			idx++;
410 			memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes);
411 			idx += req->u.i2c_read.transactions[i].num_bytes;
412 
413 			buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4;
414 			buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf);
415 			idx++;
416 		}
417 		buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f;
418 		idx++;
419 		buf[idx] = (req->u.i2c_read.num_bytes_read);
420 		idx++;
421 		break;
422 
423 	case DP_REMOTE_I2C_WRITE:
424 		buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4;
425 		idx++;
426 		buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f;
427 		idx++;
428 		buf[idx] = (req->u.i2c_write.num_bytes);
429 		idx++;
430 		memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes);
431 		idx += req->u.i2c_write.num_bytes;
432 		break;
433 	case DP_QUERY_STREAM_ENC_STATUS: {
434 		const struct drm_dp_query_stream_enc_status *msg;
435 
436 		msg = &req->u.enc_status;
437 		buf[idx] = msg->stream_id;
438 		idx++;
439 		memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id));
440 		idx += sizeof(msg->client_id);
441 		buf[idx] = 0;
442 		buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event);
443 		buf[idx] |= msg->valid_stream_event ? BIT(2) : 0;
444 		buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior);
445 		buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0;
446 		idx++;
447 		}
448 		break;
449 	}
450 	raw->cur_len = idx;
451 }
452 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req);
453 
454 /* Decode a sideband request we've encoded, mainly used for debugging */
455 int
456 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw,
457 			   struct drm_dp_sideband_msg_req_body *req)
458 {
459 	const u8 *buf = raw->msg;
460 	int i, idx = 0;
461 
462 	req->req_type = buf[idx++] & 0x7f;
463 	switch (req->req_type) {
464 	case DP_ENUM_PATH_RESOURCES:
465 	case DP_POWER_DOWN_PHY:
466 	case DP_POWER_UP_PHY:
467 		req->u.port_num.port_number = (buf[idx] >> 4) & 0xf;
468 		break;
469 	case DP_ALLOCATE_PAYLOAD:
470 		{
471 			struct drm_dp_allocate_payload *a =
472 				&req->u.allocate_payload;
473 
474 			a->number_sdp_streams = buf[idx] & 0xf;
475 			a->port_number = (buf[idx] >> 4) & 0xf;
476 
477 			WARN_ON(buf[++idx] & 0x80);
478 			a->vcpi = buf[idx] & 0x7f;
479 
480 			a->pbn = buf[++idx] << 8;
481 			a->pbn |= buf[++idx];
482 
483 			idx++;
484 			for (i = 0; i < a->number_sdp_streams; i++) {
485 				a->sdp_stream_sink[i] =
486 					(buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf;
487 			}
488 		}
489 		break;
490 	case DP_QUERY_PAYLOAD:
491 		req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf;
492 		WARN_ON(buf[++idx] & 0x80);
493 		req->u.query_payload.vcpi = buf[idx] & 0x7f;
494 		break;
495 	case DP_REMOTE_DPCD_READ:
496 		{
497 			struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read;
498 
499 			r->port_number = (buf[idx] >> 4) & 0xf;
500 
501 			r->dpcd_address = (buf[idx] << 16) & 0xf0000;
502 			r->dpcd_address |= (buf[++idx] << 8) & 0xff00;
503 			r->dpcd_address |= buf[++idx] & 0xff;
504 
505 			r->num_bytes = buf[++idx];
506 		}
507 		break;
508 	case DP_REMOTE_DPCD_WRITE:
509 		{
510 			struct drm_dp_remote_dpcd_write *w =
511 				&req->u.dpcd_write;
512 
513 			w->port_number = (buf[idx] >> 4) & 0xf;
514 
515 			w->dpcd_address = (buf[idx] << 16) & 0xf0000;
516 			w->dpcd_address |= (buf[++idx] << 8) & 0xff00;
517 			w->dpcd_address |= buf[++idx] & 0xff;
518 
519 			w->num_bytes = buf[++idx];
520 
521 			w->bytes = kmemdup(&buf[++idx], w->num_bytes,
522 					   GFP_KERNEL);
523 			if (!w->bytes)
524 				return -ENOMEM;
525 		}
526 		break;
527 	case DP_REMOTE_I2C_READ:
528 		{
529 			struct drm_dp_remote_i2c_read *r = &req->u.i2c_read;
530 			struct drm_dp_remote_i2c_read_tx *tx;
531 			bool failed = false;
532 
533 			r->num_transactions = buf[idx] & 0x3;
534 			r->port_number = (buf[idx] >> 4) & 0xf;
535 			for (i = 0; i < r->num_transactions; i++) {
536 				tx = &r->transactions[i];
537 
538 				tx->i2c_dev_id = buf[++idx] & 0x7f;
539 				tx->num_bytes = buf[++idx];
540 				tx->bytes = kmemdup(&buf[++idx],
541 						    tx->num_bytes,
542 						    GFP_KERNEL);
543 				if (!tx->bytes) {
544 					failed = true;
545 					break;
546 				}
547 				idx += tx->num_bytes;
548 				tx->no_stop_bit = (buf[idx] >> 5) & 0x1;
549 				tx->i2c_transaction_delay = buf[idx] & 0xf;
550 			}
551 
552 			if (failed) {
553 				for (i = 0; i < r->num_transactions; i++) {
554 					tx = &r->transactions[i];
555 					kfree(tx->bytes);
556 				}
557 				return -ENOMEM;
558 			}
559 
560 			r->read_i2c_device_id = buf[++idx] & 0x7f;
561 			r->num_bytes_read = buf[++idx];
562 		}
563 		break;
564 	case DP_REMOTE_I2C_WRITE:
565 		{
566 			struct drm_dp_remote_i2c_write *w = &req->u.i2c_write;
567 
568 			w->port_number = (buf[idx] >> 4) & 0xf;
569 			w->write_i2c_device_id = buf[++idx] & 0x7f;
570 			w->num_bytes = buf[++idx];
571 			w->bytes = kmemdup(&buf[++idx], w->num_bytes,
572 					   GFP_KERNEL);
573 			if (!w->bytes)
574 				return -ENOMEM;
575 		}
576 		break;
577 	case DP_QUERY_STREAM_ENC_STATUS:
578 		req->u.enc_status.stream_id = buf[idx++];
579 		for (i = 0; i < sizeof(req->u.enc_status.client_id); i++)
580 			req->u.enc_status.client_id[i] = buf[idx++];
581 
582 		req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0),
583 							   buf[idx]);
584 		req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2),
585 								 buf[idx]);
586 		req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3),
587 							      buf[idx]);
588 		req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5),
589 								    buf[idx]);
590 		break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req);
596 
597 void
598 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req,
599 				  int indent, struct drm_printer *printer)
600 {
601 	int i;
602 
603 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__)
604 	if (req->req_type == DP_LINK_ADDRESS) {
605 		/* No contents to print */
606 		P("type=%s\n", drm_dp_mst_req_type_str(req->req_type));
607 		return;
608 	}
609 
610 	P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type));
611 	indent++;
612 
613 	switch (req->req_type) {
614 	case DP_ENUM_PATH_RESOURCES:
615 	case DP_POWER_DOWN_PHY:
616 	case DP_POWER_UP_PHY:
617 		P("port=%d\n", req->u.port_num.port_number);
618 		break;
619 	case DP_ALLOCATE_PAYLOAD:
620 		P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n",
621 		  req->u.allocate_payload.port_number,
622 		  req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn,
623 		  req->u.allocate_payload.number_sdp_streams,
624 		  req->u.allocate_payload.number_sdp_streams,
625 		  req->u.allocate_payload.sdp_stream_sink);
626 		break;
627 	case DP_QUERY_PAYLOAD:
628 		P("port=%d vcpi=%d\n",
629 		  req->u.query_payload.port_number,
630 		  req->u.query_payload.vcpi);
631 		break;
632 	case DP_REMOTE_DPCD_READ:
633 		P("port=%d dpcd_addr=%05x len=%d\n",
634 		  req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address,
635 		  req->u.dpcd_read.num_bytes);
636 		break;
637 	case DP_REMOTE_DPCD_WRITE:
638 		P("port=%d addr=%05x len=%d: %*ph\n",
639 		  req->u.dpcd_write.port_number,
640 		  req->u.dpcd_write.dpcd_address,
641 		  req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes,
642 		  req->u.dpcd_write.bytes);
643 		break;
644 	case DP_REMOTE_I2C_READ:
645 		P("port=%d num_tx=%d id=%d size=%d:\n",
646 		  req->u.i2c_read.port_number,
647 		  req->u.i2c_read.num_transactions,
648 		  req->u.i2c_read.read_i2c_device_id,
649 		  req->u.i2c_read.num_bytes_read);
650 
651 		indent++;
652 		for (i = 0; i < req->u.i2c_read.num_transactions; i++) {
653 			const struct drm_dp_remote_i2c_read_tx *rtx =
654 				&req->u.i2c_read.transactions[i];
655 
656 			P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n",
657 			  i, rtx->i2c_dev_id, rtx->num_bytes,
658 			  rtx->no_stop_bit, rtx->i2c_transaction_delay,
659 			  rtx->num_bytes, rtx->bytes);
660 		}
661 		break;
662 	case DP_REMOTE_I2C_WRITE:
663 		P("port=%d id=%d size=%d: %*ph\n",
664 		  req->u.i2c_write.port_number,
665 		  req->u.i2c_write.write_i2c_device_id,
666 		  req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes,
667 		  req->u.i2c_write.bytes);
668 		break;
669 	case DP_QUERY_STREAM_ENC_STATUS:
670 		P("stream_id=%u client_id=%*ph stream_event=%x "
671 		  "valid_event=%d stream_behavior=%x valid_behavior=%d",
672 		  req->u.enc_status.stream_id,
673 		  (int)ARRAY_SIZE(req->u.enc_status.client_id),
674 		  req->u.enc_status.client_id, req->u.enc_status.stream_event,
675 		  req->u.enc_status.valid_stream_event,
676 		  req->u.enc_status.stream_behavior,
677 		  req->u.enc_status.valid_stream_behavior);
678 		break;
679 	default:
680 		P("???\n");
681 		break;
682 	}
683 #undef P
684 }
685 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body);
686 
687 static inline void
688 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p,
689 				const struct drm_dp_sideband_msg_tx *txmsg)
690 {
691 	struct drm_dp_sideband_msg_req_body req;
692 	char buf[64];
693 	int ret;
694 	int i;
695 
696 	drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf,
697 			      sizeof(buf));
698 	drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n",
699 		   txmsg->cur_offset, txmsg->cur_len, txmsg->seqno,
700 		   drm_dp_mst_sideband_tx_state_str(txmsg->state),
701 		   txmsg->path_msg, buf);
702 
703 	ret = drm_dp_decode_sideband_req(txmsg, &req);
704 	if (ret) {
705 		drm_printf(p, "<failed to decode sideband req: %d>\n", ret);
706 		return;
707 	}
708 	drm_dp_dump_sideband_msg_req_body(&req, 1, p);
709 
710 	switch (req.req_type) {
711 	case DP_REMOTE_DPCD_WRITE:
712 		kfree(req.u.dpcd_write.bytes);
713 		break;
714 	case DP_REMOTE_I2C_READ:
715 		for (i = 0; i < req.u.i2c_read.num_transactions; i++)
716 			kfree(req.u.i2c_read.transactions[i].bytes);
717 		break;
718 	case DP_REMOTE_I2C_WRITE:
719 		kfree(req.u.i2c_write.bytes);
720 		break;
721 	}
722 }
723 
724 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len)
725 {
726 	u8 crc4;
727 
728 	crc4 = drm_dp_msg_data_crc4(msg, len);
729 	msg[len] = crc4;
730 }
731 
732 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep,
733 					 struct drm_dp_sideband_msg_tx *raw)
734 {
735 	int idx = 0;
736 	u8 *buf = raw->msg;
737 
738 	buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f);
739 
740 	raw->cur_len = idx;
741 }
742 
743 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg,
744 					  struct drm_dp_sideband_msg_hdr *hdr,
745 					  u8 hdrlen)
746 {
747 	/*
748 	 * ignore out-of-order messages or messages that are part of a
749 	 * failed transaction
750 	 */
751 	if (!hdr->somt && !msg->have_somt)
752 		return false;
753 
754 	/* get length contained in this portion */
755 	msg->curchunk_idx = 0;
756 	msg->curchunk_len = hdr->msg_len;
757 	msg->curchunk_hdrlen = hdrlen;
758 
759 	/* we have already gotten an somt - don't bother parsing */
760 	if (hdr->somt && msg->have_somt)
761 		return false;
762 
763 	if (hdr->somt) {
764 		memcpy(&msg->initial_hdr, hdr,
765 		       sizeof(struct drm_dp_sideband_msg_hdr));
766 		msg->have_somt = true;
767 	}
768 	if (hdr->eomt)
769 		msg->have_eomt = true;
770 
771 	return true;
772 }
773 
774 /* this adds a chunk of msg to the builder to get the final msg */
775 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg,
776 					   u8 *replybuf, u8 replybuflen)
777 {
778 	u8 crc4;
779 
780 	memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen);
781 	msg->curchunk_idx += replybuflen;
782 
783 	if (msg->curchunk_idx >= msg->curchunk_len) {
784 		/* do CRC */
785 		crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1);
786 		if (crc4 != msg->chunk[msg->curchunk_len - 1])
787 			print_hex_dump(KERN_DEBUG, "wrong crc",
788 				       DUMP_PREFIX_NONE, 16, 1,
789 				       msg->chunk,  msg->curchunk_len, false);
790 		/* copy chunk into bigger msg */
791 		memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1);
792 		msg->curlen += msg->curchunk_len - 1;
793 	}
794 	return true;
795 }
796 
797 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr,
798 					       struct drm_dp_sideband_msg_rx *raw,
799 					       struct drm_dp_sideband_msg_reply_body *repmsg)
800 {
801 	int idx = 1;
802 	int i;
803 
804 	memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16);
805 	idx += 16;
806 	repmsg->u.link_addr.nports = raw->msg[idx] & 0xf;
807 	idx++;
808 	if (idx > raw->curlen)
809 		goto fail_len;
810 	for (i = 0; i < repmsg->u.link_addr.nports; i++) {
811 		if (raw->msg[idx] & 0x80)
812 			repmsg->u.link_addr.ports[i].input_port = 1;
813 
814 		repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7;
815 		repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf);
816 
817 		idx++;
818 		if (idx > raw->curlen)
819 			goto fail_len;
820 		repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1;
821 		repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1;
822 		if (repmsg->u.link_addr.ports[i].input_port == 0)
823 			repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
824 		idx++;
825 		if (idx > raw->curlen)
826 			goto fail_len;
827 		if (repmsg->u.link_addr.ports[i].input_port == 0) {
828 			repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]);
829 			idx++;
830 			if (idx > raw->curlen)
831 				goto fail_len;
832 			memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16);
833 			idx += 16;
834 			if (idx > raw->curlen)
835 				goto fail_len;
836 			repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf;
837 			repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf);
838 			idx++;
839 
840 		}
841 		if (idx > raw->curlen)
842 			goto fail_len;
843 	}
844 
845 	return true;
846 fail_len:
847 	DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
848 	return false;
849 }
850 
851 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw,
852 						   struct drm_dp_sideband_msg_reply_body *repmsg)
853 {
854 	int idx = 1;
855 
856 	repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf;
857 	idx++;
858 	if (idx > raw->curlen)
859 		goto fail_len;
860 	repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx];
861 	idx++;
862 	if (idx > raw->curlen)
863 		goto fail_len;
864 
865 	memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes);
866 	return true;
867 fail_len:
868 	DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
869 	return false;
870 }
871 
872 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw,
873 						      struct drm_dp_sideband_msg_reply_body *repmsg)
874 {
875 	int idx = 1;
876 
877 	repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf;
878 	idx++;
879 	if (idx > raw->curlen)
880 		goto fail_len;
881 	return true;
882 fail_len:
883 	DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen);
884 	return false;
885 }
886 
887 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw,
888 						      struct drm_dp_sideband_msg_reply_body *repmsg)
889 {
890 	int idx = 1;
891 
892 	repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf);
893 	idx++;
894 	if (idx > raw->curlen)
895 		goto fail_len;
896 	repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx];
897 	idx++;
898 	/* TODO check */
899 	memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes);
900 	return true;
901 fail_len:
902 	DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen);
903 	return false;
904 }
905 
906 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw,
907 							  struct drm_dp_sideband_msg_reply_body *repmsg)
908 {
909 	int idx = 1;
910 
911 	repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf;
912 	repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1;
913 	idx++;
914 	if (idx > raw->curlen)
915 		goto fail_len;
916 	repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
917 	idx += 2;
918 	if (idx > raw->curlen)
919 		goto fail_len;
920 	repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
921 	idx += 2;
922 	if (idx > raw->curlen)
923 		goto fail_len;
924 	return true;
925 fail_len:
926 	DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen);
927 	return false;
928 }
929 
930 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw,
931 							  struct drm_dp_sideband_msg_reply_body *repmsg)
932 {
933 	int idx = 1;
934 
935 	repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
936 	idx++;
937 	if (idx > raw->curlen)
938 		goto fail_len;
939 	repmsg->u.allocate_payload.vcpi = raw->msg[idx];
940 	idx++;
941 	if (idx > raw->curlen)
942 		goto fail_len;
943 	repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
944 	idx += 2;
945 	if (idx > raw->curlen)
946 		goto fail_len;
947 	return true;
948 fail_len:
949 	DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen);
950 	return false;
951 }
952 
953 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw,
954 						    struct drm_dp_sideband_msg_reply_body *repmsg)
955 {
956 	int idx = 1;
957 
958 	repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
959 	idx++;
960 	if (idx > raw->curlen)
961 		goto fail_len;
962 	repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
963 	idx += 2;
964 	if (idx > raw->curlen)
965 		goto fail_len;
966 	return true;
967 fail_len:
968 	DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen);
969 	return false;
970 }
971 
972 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw,
973 						       struct drm_dp_sideband_msg_reply_body *repmsg)
974 {
975 	int idx = 1;
976 
977 	repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf;
978 	idx++;
979 	if (idx > raw->curlen) {
980 		DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n",
981 			      idx, raw->curlen);
982 		return false;
983 	}
984 	return true;
985 }
986 
987 static bool
988 drm_dp_sideband_parse_query_stream_enc_status(
989 				struct drm_dp_sideband_msg_rx *raw,
990 				struct drm_dp_sideband_msg_reply_body *repmsg)
991 {
992 	struct drm_dp_query_stream_enc_status_ack_reply *reply;
993 
994 	reply = &repmsg->u.enc_status;
995 
996 	reply->stream_id = raw->msg[3];
997 
998 	reply->reply_signed = raw->msg[2] & BIT(0);
999 
1000 	/*
1001 	 * NOTE: It's my impression from reading the spec that the below parsing
1002 	 * is correct. However I noticed while testing with an HDCP 1.4 display
1003 	 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I
1004 	 * would expect both bits to be set. So keep the parsing following the
1005 	 * spec, but beware reality might not match the spec (at least for some
1006 	 * configurations).
1007 	 */
1008 	reply->hdcp_1x_device_present = raw->msg[2] & BIT(4);
1009 	reply->hdcp_2x_device_present = raw->msg[2] & BIT(3);
1010 
1011 	reply->query_capable_device_present = raw->msg[2] & BIT(5);
1012 	reply->legacy_device_present = raw->msg[2] & BIT(6);
1013 	reply->unauthorizable_device_present = raw->msg[2] & BIT(7);
1014 
1015 	reply->auth_completed = !!(raw->msg[1] & BIT(3));
1016 	reply->encryption_enabled = !!(raw->msg[1] & BIT(4));
1017 	reply->repeater_present = !!(raw->msg[1] & BIT(5));
1018 	reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6;
1019 
1020 	return true;
1021 }
1022 
1023 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr,
1024 					struct drm_dp_sideband_msg_rx *raw,
1025 					struct drm_dp_sideband_msg_reply_body *msg)
1026 {
1027 	memset(msg, 0, sizeof(*msg));
1028 	msg->reply_type = (raw->msg[0] & 0x80) >> 7;
1029 	msg->req_type = (raw->msg[0] & 0x7f);
1030 
1031 	if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) {
1032 		memcpy(msg->u.nak.guid, &raw->msg[1], 16);
1033 		msg->u.nak.reason = raw->msg[17];
1034 		msg->u.nak.nak_data = raw->msg[18];
1035 		return false;
1036 	}
1037 
1038 	switch (msg->req_type) {
1039 	case DP_LINK_ADDRESS:
1040 		return drm_dp_sideband_parse_link_address(mgr, raw, msg);
1041 	case DP_QUERY_PAYLOAD:
1042 		return drm_dp_sideband_parse_query_payload_ack(raw, msg);
1043 	case DP_REMOTE_DPCD_READ:
1044 		return drm_dp_sideband_parse_remote_dpcd_read(raw, msg);
1045 	case DP_REMOTE_DPCD_WRITE:
1046 		return drm_dp_sideband_parse_remote_dpcd_write(raw, msg);
1047 	case DP_REMOTE_I2C_READ:
1048 		return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg);
1049 	case DP_REMOTE_I2C_WRITE:
1050 		return true; /* since there's nothing to parse */
1051 	case DP_ENUM_PATH_RESOURCES:
1052 		return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg);
1053 	case DP_ALLOCATE_PAYLOAD:
1054 		return drm_dp_sideband_parse_allocate_payload_ack(raw, msg);
1055 	case DP_POWER_DOWN_PHY:
1056 	case DP_POWER_UP_PHY:
1057 		return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg);
1058 	case DP_CLEAR_PAYLOAD_ID_TABLE:
1059 		return true; /* since there's nothing to parse */
1060 	case DP_QUERY_STREAM_ENC_STATUS:
1061 		return drm_dp_sideband_parse_query_stream_enc_status(raw, msg);
1062 	default:
1063 		drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n",
1064 			msg->req_type, drm_dp_mst_req_type_str(msg->req_type));
1065 		return false;
1066 	}
1067 }
1068 
1069 static bool
1070 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr,
1071 					       struct drm_dp_sideband_msg_rx *raw,
1072 					       struct drm_dp_sideband_msg_req_body *msg)
1073 {
1074 	int idx = 1;
1075 
1076 	msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1077 	idx++;
1078 	if (idx > raw->curlen)
1079 		goto fail_len;
1080 
1081 	memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16);
1082 	idx += 16;
1083 	if (idx > raw->curlen)
1084 		goto fail_len;
1085 
1086 	msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1;
1087 	msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
1088 	msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1;
1089 	msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1;
1090 	msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7);
1091 	idx++;
1092 	return true;
1093 fail_len:
1094 	drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n",
1095 		    idx, raw->curlen);
1096 	return false;
1097 }
1098 
1099 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr,
1100 							 struct drm_dp_sideband_msg_rx *raw,
1101 							 struct drm_dp_sideband_msg_req_body *msg)
1102 {
1103 	int idx = 1;
1104 
1105 	msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1106 	idx++;
1107 	if (idx > raw->curlen)
1108 		goto fail_len;
1109 
1110 	memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16);
1111 	idx += 16;
1112 	if (idx > raw->curlen)
1113 		goto fail_len;
1114 
1115 	msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
1116 	idx++;
1117 	return true;
1118 fail_len:
1119 	drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen);
1120 	return false;
1121 }
1122 
1123 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr,
1124 				      struct drm_dp_sideband_msg_rx *raw,
1125 				      struct drm_dp_sideband_msg_req_body *msg)
1126 {
1127 	memset(msg, 0, sizeof(*msg));
1128 	msg->req_type = (raw->msg[0] & 0x7f);
1129 
1130 	switch (msg->req_type) {
1131 	case DP_CONNECTION_STATUS_NOTIFY:
1132 		return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg);
1133 	case DP_RESOURCE_STATUS_NOTIFY:
1134 		return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg);
1135 	default:
1136 		drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n",
1137 			msg->req_type, drm_dp_mst_req_type_str(msg->req_type));
1138 		return false;
1139 	}
1140 }
1141 
1142 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg,
1143 			     u8 port_num, u32 offset, u8 num_bytes, u8 *bytes)
1144 {
1145 	struct drm_dp_sideband_msg_req_body req;
1146 
1147 	req.req_type = DP_REMOTE_DPCD_WRITE;
1148 	req.u.dpcd_write.port_number = port_num;
1149 	req.u.dpcd_write.dpcd_address = offset;
1150 	req.u.dpcd_write.num_bytes = num_bytes;
1151 	req.u.dpcd_write.bytes = bytes;
1152 	drm_dp_encode_sideband_req(&req, msg);
1153 }
1154 
1155 static void build_link_address(struct drm_dp_sideband_msg_tx *msg)
1156 {
1157 	struct drm_dp_sideband_msg_req_body req;
1158 
1159 	req.req_type = DP_LINK_ADDRESS;
1160 	drm_dp_encode_sideband_req(&req, msg);
1161 }
1162 
1163 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg)
1164 {
1165 	struct drm_dp_sideband_msg_req_body req;
1166 
1167 	req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE;
1168 	drm_dp_encode_sideband_req(&req, msg);
1169 	msg->path_msg = true;
1170 }
1171 
1172 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg,
1173 				     int port_num)
1174 {
1175 	struct drm_dp_sideband_msg_req_body req;
1176 
1177 	req.req_type = DP_ENUM_PATH_RESOURCES;
1178 	req.u.port_num.port_number = port_num;
1179 	drm_dp_encode_sideband_req(&req, msg);
1180 	msg->path_msg = true;
1181 	return 0;
1182 }
1183 
1184 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg,
1185 				   int port_num,
1186 				   u8 vcpi, uint16_t pbn,
1187 				   u8 number_sdp_streams,
1188 				   u8 *sdp_stream_sink)
1189 {
1190 	struct drm_dp_sideband_msg_req_body req;
1191 
1192 	memset(&req, 0, sizeof(req));
1193 	req.req_type = DP_ALLOCATE_PAYLOAD;
1194 	req.u.allocate_payload.port_number = port_num;
1195 	req.u.allocate_payload.vcpi = vcpi;
1196 	req.u.allocate_payload.pbn = pbn;
1197 	req.u.allocate_payload.number_sdp_streams = number_sdp_streams;
1198 	memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink,
1199 		   number_sdp_streams);
1200 	drm_dp_encode_sideband_req(&req, msg);
1201 	msg->path_msg = true;
1202 }
1203 
1204 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg,
1205 				   int port_num, bool power_up)
1206 {
1207 	struct drm_dp_sideband_msg_req_body req;
1208 
1209 	if (power_up)
1210 		req.req_type = DP_POWER_UP_PHY;
1211 	else
1212 		req.req_type = DP_POWER_DOWN_PHY;
1213 
1214 	req.u.port_num.port_number = port_num;
1215 	drm_dp_encode_sideband_req(&req, msg);
1216 	msg->path_msg = true;
1217 }
1218 
1219 static int
1220 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id,
1221 			      u8 *q_id)
1222 {
1223 	struct drm_dp_sideband_msg_req_body req;
1224 
1225 	req.req_type = DP_QUERY_STREAM_ENC_STATUS;
1226 	req.u.enc_status.stream_id = stream_id;
1227 	memcpy(req.u.enc_status.client_id, q_id,
1228 	       sizeof(req.u.enc_status.client_id));
1229 	req.u.enc_status.stream_event = 0;
1230 	req.u.enc_status.valid_stream_event = false;
1231 	req.u.enc_status.stream_behavior = 0;
1232 	req.u.enc_status.valid_stream_behavior = false;
1233 
1234 	drm_dp_encode_sideband_req(&req, msg);
1235 	return 0;
1236 }
1237 
1238 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr,
1239 			      struct drm_dp_sideband_msg_tx *txmsg)
1240 {
1241 	unsigned int state;
1242 
1243 	/*
1244 	 * All updates to txmsg->state are protected by mgr->qlock, and the two
1245 	 * cases we check here are terminal states. For those the barriers
1246 	 * provided by the wake_up/wait_event pair are enough.
1247 	 */
1248 	state = READ_ONCE(txmsg->state);
1249 	return (state == DRM_DP_SIDEBAND_TX_RX ||
1250 		state == DRM_DP_SIDEBAND_TX_TIMEOUT);
1251 }
1252 
1253 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb,
1254 				    struct drm_dp_sideband_msg_tx *txmsg)
1255 {
1256 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1257 	unsigned long wait_timeout = msecs_to_jiffies(4000);
1258 	unsigned long wait_expires = jiffies + wait_timeout;
1259 	int ret;
1260 
1261 	for (;;) {
1262 		/*
1263 		 * If the driver provides a way for this, change to
1264 		 * poll-waiting for the MST reply interrupt if we didn't receive
1265 		 * it for 50 msec. This would cater for cases where the HPD
1266 		 * pulse signal got lost somewhere, even though the sink raised
1267 		 * the corresponding MST interrupt correctly. One example is the
1268 		 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason
1269 		 * filters out short pulses with a duration less than ~540 usec.
1270 		 *
1271 		 * The poll period is 50 msec to avoid missing an interrupt
1272 		 * after the sink has cleared it (after a 110msec timeout
1273 		 * since it raised the interrupt).
1274 		 */
1275 		ret = wait_event_timeout(mgr->tx_waitq,
1276 					 check_txmsg_state(mgr, txmsg),
1277 					 mgr->cbs->poll_hpd_irq ?
1278 						msecs_to_jiffies(50) :
1279 						wait_timeout);
1280 
1281 		if (ret || !mgr->cbs->poll_hpd_irq ||
1282 		    time_after(jiffies, wait_expires))
1283 			break;
1284 
1285 		mgr->cbs->poll_hpd_irq(mgr);
1286 	}
1287 
1288 	mutex_lock(&mgr->qlock);
1289 	if (ret > 0) {
1290 		if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) {
1291 			ret = -EIO;
1292 			goto out;
1293 		}
1294 	} else {
1295 		drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n",
1296 			    txmsg, txmsg->state, txmsg->seqno);
1297 
1298 		/* dump some state */
1299 		ret = -EIO;
1300 
1301 		/* remove from q */
1302 		if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED ||
1303 		    txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
1304 		    txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
1305 			list_del(&txmsg->next);
1306 	}
1307 out:
1308 	if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) {
1309 		struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1310 
1311 		drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
1312 	}
1313 	mutex_unlock(&mgr->qlock);
1314 
1315 	drm_dp_mst_kick_tx(mgr);
1316 	return ret;
1317 }
1318 
1319 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad)
1320 {
1321 	struct drm_dp_mst_branch *mstb;
1322 
1323 	mstb = kzalloc(sizeof(*mstb), GFP_KERNEL);
1324 	if (!mstb)
1325 		return NULL;
1326 
1327 	mstb->lct = lct;
1328 	if (lct > 1)
1329 		memcpy(mstb->rad, rad, lct / 2);
1330 	INIT_LIST_HEAD(&mstb->ports);
1331 	kref_init(&mstb->topology_kref);
1332 	kref_init(&mstb->malloc_kref);
1333 	return mstb;
1334 }
1335 
1336 static void drm_dp_free_mst_branch_device(struct kref *kref)
1337 {
1338 	struct drm_dp_mst_branch *mstb =
1339 		container_of(kref, struct drm_dp_mst_branch, malloc_kref);
1340 
1341 	if (mstb->port_parent)
1342 		drm_dp_mst_put_port_malloc(mstb->port_parent);
1343 
1344 	kfree(mstb);
1345 }
1346 
1347 /**
1348  * DOC: Branch device and port refcounting
1349  *
1350  * Topology refcount overview
1351  * ~~~~~~~~~~~~~~~~~~~~~~~~~~
1352  *
1353  * The refcounting schemes for &struct drm_dp_mst_branch and &struct
1354  * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have
1355  * two different kinds of refcounts: topology refcounts, and malloc refcounts.
1356  *
1357  * Topology refcounts are not exposed to drivers, and are handled internally
1358  * by the DP MST helpers. The helpers use them in order to prevent the
1359  * in-memory topology state from being changed in the middle of critical
1360  * operations like changing the internal state of payload allocations. This
1361  * means each branch and port will be considered to be connected to the rest
1362  * of the topology until its topology refcount reaches zero. Additionally,
1363  * for ports this means that their associated &struct drm_connector will stay
1364  * registered with userspace until the port's refcount reaches 0.
1365  *
1366  * Malloc refcount overview
1367  * ~~~~~~~~~~~~~~~~~~~~~~~~
1368  *
1369  * Malloc references are used to keep a &struct drm_dp_mst_port or &struct
1370  * drm_dp_mst_branch allocated even after all of its topology references have
1371  * been dropped, so that the driver or MST helpers can safely access each
1372  * branch's last known state before it was disconnected from the topology.
1373  * When the malloc refcount of a port or branch reaches 0, the memory
1374  * allocation containing the &struct drm_dp_mst_branch or &struct
1375  * drm_dp_mst_port respectively will be freed.
1376  *
1377  * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed
1378  * to drivers. As of writing this documentation, there are no drivers that
1379  * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST
1380  * helpers. Exposing this API to drivers in a race-free manner would take more
1381  * tweaking of the refcounting scheme, however patches are welcome provided
1382  * there is a legitimate driver usecase for this.
1383  *
1384  * Refcount relationships in a topology
1385  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1386  *
1387  * Let's take a look at why the relationship between topology and malloc
1388  * refcounts is designed the way it is.
1389  *
1390  * .. kernel-figure:: dp-mst/topology-figure-1.dot
1391  *
1392  *    An example of topology and malloc refs in a DP MST topology with two
1393  *    active payloads. Topology refcount increments are indicated by solid
1394  *    lines, and malloc refcount increments are indicated by dashed lines.
1395  *    Each starts from the branch which incremented the refcount, and ends at
1396  *    the branch to which the refcount belongs to, i.e. the arrow points the
1397  *    same way as the C pointers used to reference a structure.
1398  *
1399  * As you can see in the above figure, every branch increments the topology
1400  * refcount of its children, and increments the malloc refcount of its
1401  * parent. Additionally, every payload increments the malloc refcount of its
1402  * assigned port by 1.
1403  *
1404  * So, what would happen if MSTB #3 from the above figure was unplugged from
1405  * the system, but the driver hadn't yet removed payload #2 from port #3? The
1406  * topology would start to look like the figure below.
1407  *
1408  * .. kernel-figure:: dp-mst/topology-figure-2.dot
1409  *
1410  *    Ports and branch devices which have been released from memory are
1411  *    colored grey, and references which have been removed are colored red.
1412  *
1413  * Whenever a port or branch device's topology refcount reaches zero, it will
1414  * decrement the topology refcounts of all its children, the malloc refcount
1415  * of its parent, and finally its own malloc refcount. For MSTB #4 and port
1416  * #4, this means they both have been disconnected from the topology and freed
1417  * from memory. But, because payload #2 is still holding a reference to port
1418  * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port
1419  * is still accessible from memory. This also means port #3 has not yet
1420  * decremented the malloc refcount of MSTB #3, so its &struct
1421  * drm_dp_mst_branch will also stay allocated in memory until port #3's
1422  * malloc refcount reaches 0.
1423  *
1424  * This relationship is necessary because in order to release payload #2, we
1425  * need to be able to figure out the last relative of port #3 that's still
1426  * connected to the topology. In this case, we would travel up the topology as
1427  * shown below.
1428  *
1429  * .. kernel-figure:: dp-mst/topology-figure-3.dot
1430  *
1431  * And finally, remove payload #2 by communicating with port #2 through
1432  * sideband transactions.
1433  */
1434 
1435 /**
1436  * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch
1437  * device
1438  * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of
1439  *
1440  * Increments &drm_dp_mst_branch.malloc_kref. When
1441  * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1442  * will be released and @mstb may no longer be used.
1443  *
1444  * See also: drm_dp_mst_put_mstb_malloc()
1445  */
1446 static void
1447 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb)
1448 {
1449 	kref_get(&mstb->malloc_kref);
1450 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref));
1451 }
1452 
1453 /**
1454  * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch
1455  * device
1456  * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of
1457  *
1458  * Decrements &drm_dp_mst_branch.malloc_kref. When
1459  * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1460  * will be released and @mstb may no longer be used.
1461  *
1462  * See also: drm_dp_mst_get_mstb_malloc()
1463  */
1464 static void
1465 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb)
1466 {
1467 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1);
1468 	kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device);
1469 }
1470 
1471 static void drm_dp_free_mst_port(struct kref *kref)
1472 {
1473 	struct drm_dp_mst_port *port =
1474 		container_of(kref, struct drm_dp_mst_port, malloc_kref);
1475 
1476 	drm_dp_mst_put_mstb_malloc(port->parent);
1477 	kfree(port);
1478 }
1479 
1480 /**
1481  * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port
1482  * @port: The &struct drm_dp_mst_port to increment the malloc refcount of
1483  *
1484  * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1485  * reaches 0, the memory allocation for @port will be released and @port may
1486  * no longer be used.
1487  *
1488  * Because @port could potentially be freed at any time by the DP MST helpers
1489  * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this
1490  * function, drivers that which to make use of &struct drm_dp_mst_port should
1491  * ensure that they grab at least one main malloc reference to their MST ports
1492  * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before
1493  * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0.
1494  *
1495  * See also: drm_dp_mst_put_port_malloc()
1496  */
1497 void
1498 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port)
1499 {
1500 	kref_get(&port->malloc_kref);
1501 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref));
1502 }
1503 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc);
1504 
1505 /**
1506  * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port
1507  * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of
1508  *
1509  * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1510  * reaches 0, the memory allocation for @port will be released and @port may
1511  * no longer be used.
1512  *
1513  * See also: drm_dp_mst_get_port_malloc()
1514  */
1515 void
1516 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port)
1517 {
1518 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1);
1519 	kref_put(&port->malloc_kref, drm_dp_free_mst_port);
1520 }
1521 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc);
1522 
1523 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
1524 
1525 #define STACK_DEPTH 8
1526 
1527 static noinline void
1528 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr,
1529 		    struct drm_dp_mst_topology_ref_history *history,
1530 		    enum drm_dp_mst_topology_ref_type type)
1531 {
1532 	struct drm_dp_mst_topology_ref_entry *entry = NULL;
1533 	depot_stack_handle_t backtrace;
1534 	ulong stack_entries[STACK_DEPTH];
1535 	uint n;
1536 	int i;
1537 
1538 	n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1);
1539 	backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL);
1540 	if (!backtrace)
1541 		return;
1542 
1543 	/* Try to find an existing entry for this backtrace */
1544 	for (i = 0; i < history->len; i++) {
1545 		if (history->entries[i].backtrace == backtrace) {
1546 			entry = &history->entries[i];
1547 			break;
1548 		}
1549 	}
1550 
1551 	/* Otherwise add one */
1552 	if (!entry) {
1553 		struct drm_dp_mst_topology_ref_entry *new;
1554 		int new_len = history->len + 1;
1555 
1556 		new = krealloc(history->entries, sizeof(*new) * new_len,
1557 			       GFP_KERNEL);
1558 		if (!new)
1559 			return;
1560 
1561 		entry = &new[history->len];
1562 		history->len = new_len;
1563 		history->entries = new;
1564 
1565 		entry->backtrace = backtrace;
1566 		entry->type = type;
1567 		entry->count = 0;
1568 	}
1569 	entry->count++;
1570 	entry->ts_nsec = ktime_get_ns();
1571 }
1572 
1573 static int
1574 topology_ref_history_cmp(const void *a, const void *b)
1575 {
1576 	const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b;
1577 
1578 	if (entry_a->ts_nsec > entry_b->ts_nsec)
1579 		return 1;
1580 	else if (entry_a->ts_nsec < entry_b->ts_nsec)
1581 		return -1;
1582 	else
1583 		return 0;
1584 }
1585 
1586 static inline const char *
1587 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type)
1588 {
1589 	if (type == DRM_DP_MST_TOPOLOGY_REF_GET)
1590 		return "get";
1591 	else
1592 		return "put";
1593 }
1594 
1595 static void
1596 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history,
1597 			    void *ptr, const char *type_str)
1598 {
1599 	struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1600 	char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1601 	int i;
1602 
1603 	if (!buf)
1604 		return;
1605 
1606 	if (!history->len)
1607 		goto out;
1608 
1609 	/* First, sort the list so that it goes from oldest to newest
1610 	 * reference entry
1611 	 */
1612 	sort(history->entries, history->len, sizeof(*history->entries),
1613 	     topology_ref_history_cmp, NULL);
1614 
1615 	drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n",
1616 		   type_str, ptr);
1617 
1618 	for (i = 0; i < history->len; i++) {
1619 		const struct drm_dp_mst_topology_ref_entry *entry =
1620 			&history->entries[i];
1621 		u64 ts_nsec = entry->ts_nsec;
1622 		u32 rem_nsec = do_div(ts_nsec, 1000000000);
1623 
1624 		stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4);
1625 
1626 		drm_printf(&p, "  %d %ss (last at %5llu.%06u):\n%s",
1627 			   entry->count,
1628 			   topology_ref_type_to_str(entry->type),
1629 			   ts_nsec, rem_nsec / 1000, buf);
1630 	}
1631 
1632 	/* Now free the history, since this is the only time we expose it */
1633 	kfree(history->entries);
1634 out:
1635 	kfree(buf);
1636 }
1637 
1638 static __always_inline void
1639 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb)
1640 {
1641 	__dump_topology_ref_history(&mstb->topology_ref_history, mstb,
1642 				    "MSTB");
1643 }
1644 
1645 static __always_inline void
1646 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port)
1647 {
1648 	__dump_topology_ref_history(&port->topology_ref_history, port,
1649 				    "Port");
1650 }
1651 
1652 static __always_inline void
1653 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb,
1654 		       enum drm_dp_mst_topology_ref_type type)
1655 {
1656 	__topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type);
1657 }
1658 
1659 static __always_inline void
1660 save_port_topology_ref(struct drm_dp_mst_port *port,
1661 		       enum drm_dp_mst_topology_ref_type type)
1662 {
1663 	__topology_ref_save(port->mgr, &port->topology_ref_history, type);
1664 }
1665 
1666 static inline void
1667 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr)
1668 {
1669 	mutex_lock(&mgr->topology_ref_history_lock);
1670 }
1671 
1672 static inline void
1673 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr)
1674 {
1675 	mutex_unlock(&mgr->topology_ref_history_lock);
1676 }
1677 #else
1678 static inline void
1679 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {}
1680 static inline void
1681 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {}
1682 static inline void
1683 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {}
1684 static inline void
1685 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {}
1686 #define save_mstb_topology_ref(mstb, type)
1687 #define save_port_topology_ref(port, type)
1688 #endif
1689 
1690 struct drm_dp_mst_atomic_payload *
1691 drm_atomic_get_mst_payload_state(struct drm_dp_mst_topology_state *state,
1692 				 struct drm_dp_mst_port *port)
1693 {
1694 	struct drm_dp_mst_atomic_payload *payload;
1695 
1696 	list_for_each_entry(payload, &state->payloads, next)
1697 		if (payload->port == port)
1698 			return payload;
1699 
1700 	return NULL;
1701 }
1702 EXPORT_SYMBOL(drm_atomic_get_mst_payload_state);
1703 
1704 static void drm_dp_destroy_mst_branch_device(struct kref *kref)
1705 {
1706 	struct drm_dp_mst_branch *mstb =
1707 		container_of(kref, struct drm_dp_mst_branch, topology_kref);
1708 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1709 
1710 	drm_dp_mst_dump_mstb_topology_history(mstb);
1711 
1712 	INIT_LIST_HEAD(&mstb->destroy_next);
1713 
1714 	/*
1715 	 * This can get called under mgr->mutex, so we need to perform the
1716 	 * actual destruction of the mstb in another worker
1717 	 */
1718 	mutex_lock(&mgr->delayed_destroy_lock);
1719 	list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list);
1720 	mutex_unlock(&mgr->delayed_destroy_lock);
1721 	queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work);
1722 }
1723 
1724 /**
1725  * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a
1726  * branch device unless it's zero
1727  * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of
1728  *
1729  * Attempts to grab a topology reference to @mstb, if it hasn't yet been
1730  * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has
1731  * reached 0). Holding a topology reference implies that a malloc reference
1732  * will be held to @mstb as long as the user holds the topology reference.
1733  *
1734  * Care should be taken to ensure that the user has at least one malloc
1735  * reference to @mstb. If you already have a topology reference to @mstb, you
1736  * should use drm_dp_mst_topology_get_mstb() instead.
1737  *
1738  * See also:
1739  * drm_dp_mst_topology_get_mstb()
1740  * drm_dp_mst_topology_put_mstb()
1741  *
1742  * Returns:
1743  * * 1: A topology reference was grabbed successfully
1744  * * 0: @port is no longer in the topology, no reference was grabbed
1745  */
1746 static int __must_check
1747 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb)
1748 {
1749 	int ret;
1750 
1751 	topology_ref_history_lock(mstb->mgr);
1752 	ret = kref_get_unless_zero(&mstb->topology_kref);
1753 	if (ret) {
1754 		drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1755 		save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1756 	}
1757 
1758 	topology_ref_history_unlock(mstb->mgr);
1759 
1760 	return ret;
1761 }
1762 
1763 /**
1764  * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a
1765  * branch device
1766  * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of
1767  *
1768  * Increments &drm_dp_mst_branch.topology_refcount without checking whether or
1769  * not it's already reached 0. This is only valid to use in scenarios where
1770  * you are already guaranteed to have at least one active topology reference
1771  * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used.
1772  *
1773  * See also:
1774  * drm_dp_mst_topology_try_get_mstb()
1775  * drm_dp_mst_topology_put_mstb()
1776  */
1777 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb)
1778 {
1779 	topology_ref_history_lock(mstb->mgr);
1780 
1781 	save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1782 	WARN_ON(kref_read(&mstb->topology_kref) == 0);
1783 	kref_get(&mstb->topology_kref);
1784 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1785 
1786 	topology_ref_history_unlock(mstb->mgr);
1787 }
1788 
1789 /**
1790  * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch
1791  * device
1792  * @mstb: The &struct drm_dp_mst_branch to release the topology reference from
1793  *
1794  * Releases a topology reference from @mstb by decrementing
1795  * &drm_dp_mst_branch.topology_kref.
1796  *
1797  * See also:
1798  * drm_dp_mst_topology_try_get_mstb()
1799  * drm_dp_mst_topology_get_mstb()
1800  */
1801 static void
1802 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb)
1803 {
1804 	topology_ref_history_lock(mstb->mgr);
1805 
1806 	drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1);
1807 	save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT);
1808 
1809 	topology_ref_history_unlock(mstb->mgr);
1810 	kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device);
1811 }
1812 
1813 static void drm_dp_destroy_port(struct kref *kref)
1814 {
1815 	struct drm_dp_mst_port *port =
1816 		container_of(kref, struct drm_dp_mst_port, topology_kref);
1817 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1818 
1819 	drm_dp_mst_dump_port_topology_history(port);
1820 
1821 	/* There's nothing that needs locking to destroy an input port yet */
1822 	if (port->input) {
1823 		drm_dp_mst_put_port_malloc(port);
1824 		return;
1825 	}
1826 
1827 	drm_edid_free(port->cached_edid);
1828 
1829 	/*
1830 	 * we can't destroy the connector here, as we might be holding the
1831 	 * mode_config.mutex from an EDID retrieval
1832 	 */
1833 	mutex_lock(&mgr->delayed_destroy_lock);
1834 	list_add(&port->next, &mgr->destroy_port_list);
1835 	mutex_unlock(&mgr->delayed_destroy_lock);
1836 	queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work);
1837 }
1838 
1839 /**
1840  * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a
1841  * port unless it's zero
1842  * @port: &struct drm_dp_mst_port to increment the topology refcount of
1843  *
1844  * Attempts to grab a topology reference to @port, if it hasn't yet been
1845  * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached
1846  * 0). Holding a topology reference implies that a malloc reference will be
1847  * held to @port as long as the user holds the topology reference.
1848  *
1849  * Care should be taken to ensure that the user has at least one malloc
1850  * reference to @port. If you already have a topology reference to @port, you
1851  * should use drm_dp_mst_topology_get_port() instead.
1852  *
1853  * See also:
1854  * drm_dp_mst_topology_get_port()
1855  * drm_dp_mst_topology_put_port()
1856  *
1857  * Returns:
1858  * * 1: A topology reference was grabbed successfully
1859  * * 0: @port is no longer in the topology, no reference was grabbed
1860  */
1861 static int __must_check
1862 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port)
1863 {
1864 	int ret;
1865 
1866 	topology_ref_history_lock(port->mgr);
1867 	ret = kref_get_unless_zero(&port->topology_kref);
1868 	if (ret) {
1869 		drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref));
1870 		save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1871 	}
1872 
1873 	topology_ref_history_unlock(port->mgr);
1874 	return ret;
1875 }
1876 
1877 /**
1878  * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port
1879  * @port: The &struct drm_dp_mst_port to increment the topology refcount of
1880  *
1881  * Increments &drm_dp_mst_port.topology_refcount without checking whether or
1882  * not it's already reached 0. This is only valid to use in scenarios where
1883  * you are already guaranteed to have at least one active topology reference
1884  * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used.
1885  *
1886  * See also:
1887  * drm_dp_mst_topology_try_get_port()
1888  * drm_dp_mst_topology_put_port()
1889  */
1890 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port)
1891 {
1892 	topology_ref_history_lock(port->mgr);
1893 
1894 	WARN_ON(kref_read(&port->topology_kref) == 0);
1895 	kref_get(&port->topology_kref);
1896 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref));
1897 	save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1898 
1899 	topology_ref_history_unlock(port->mgr);
1900 }
1901 
1902 /**
1903  * drm_dp_mst_topology_put_port() - release a topology reference to a port
1904  * @port: The &struct drm_dp_mst_port to release the topology reference from
1905  *
1906  * Releases a topology reference from @port by decrementing
1907  * &drm_dp_mst_port.topology_kref.
1908  *
1909  * See also:
1910  * drm_dp_mst_topology_try_get_port()
1911  * drm_dp_mst_topology_get_port()
1912  */
1913 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port)
1914 {
1915 	topology_ref_history_lock(port->mgr);
1916 
1917 	drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1);
1918 	save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT);
1919 
1920 	topology_ref_history_unlock(port->mgr);
1921 	kref_put(&port->topology_kref, drm_dp_destroy_port);
1922 }
1923 
1924 static struct drm_dp_mst_branch *
1925 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb,
1926 					      struct drm_dp_mst_branch *to_find)
1927 {
1928 	struct drm_dp_mst_port *port;
1929 	struct drm_dp_mst_branch *rmstb;
1930 
1931 	if (to_find == mstb)
1932 		return mstb;
1933 
1934 	list_for_each_entry(port, &mstb->ports, next) {
1935 		if (port->mstb) {
1936 			rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1937 			    port->mstb, to_find);
1938 			if (rmstb)
1939 				return rmstb;
1940 		}
1941 	}
1942 	return NULL;
1943 }
1944 
1945 static struct drm_dp_mst_branch *
1946 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr,
1947 				       struct drm_dp_mst_branch *mstb)
1948 {
1949 	struct drm_dp_mst_branch *rmstb = NULL;
1950 
1951 	mutex_lock(&mgr->lock);
1952 	if (mgr->mst_primary) {
1953 		rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1954 		    mgr->mst_primary, mstb);
1955 
1956 		if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb))
1957 			rmstb = NULL;
1958 	}
1959 	mutex_unlock(&mgr->lock);
1960 	return rmstb;
1961 }
1962 
1963 static struct drm_dp_mst_port *
1964 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb,
1965 					      struct drm_dp_mst_port *to_find)
1966 {
1967 	struct drm_dp_mst_port *port, *mport;
1968 
1969 	list_for_each_entry(port, &mstb->ports, next) {
1970 		if (port == to_find)
1971 			return port;
1972 
1973 		if (port->mstb) {
1974 			mport = drm_dp_mst_topology_get_port_validated_locked(
1975 			    port->mstb, to_find);
1976 			if (mport)
1977 				return mport;
1978 		}
1979 	}
1980 	return NULL;
1981 }
1982 
1983 static struct drm_dp_mst_port *
1984 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr,
1985 				       struct drm_dp_mst_port *port)
1986 {
1987 	struct drm_dp_mst_port *rport = NULL;
1988 
1989 	mutex_lock(&mgr->lock);
1990 	if (mgr->mst_primary) {
1991 		rport = drm_dp_mst_topology_get_port_validated_locked(
1992 		    mgr->mst_primary, port);
1993 
1994 		if (rport && !drm_dp_mst_topology_try_get_port(rport))
1995 			rport = NULL;
1996 	}
1997 	mutex_unlock(&mgr->lock);
1998 	return rport;
1999 }
2000 
2001 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num)
2002 {
2003 	struct drm_dp_mst_port *port;
2004 	int ret;
2005 
2006 	list_for_each_entry(port, &mstb->ports, next) {
2007 		if (port->port_num == port_num) {
2008 			ret = drm_dp_mst_topology_try_get_port(port);
2009 			return ret ? port : NULL;
2010 		}
2011 	}
2012 
2013 	return NULL;
2014 }
2015 
2016 /*
2017  * calculate a new RAD for this MST branch device
2018  * if parent has an LCT of 2 then it has 1 nibble of RAD,
2019  * if parent has an LCT of 3 then it has 2 nibbles of RAD,
2020  */
2021 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port,
2022 				 u8 *rad)
2023 {
2024 	int parent_lct = port->parent->lct;
2025 	int shift = 4;
2026 	int idx = (parent_lct - 1) / 2;
2027 
2028 	if (parent_lct > 1) {
2029 		memcpy(rad, port->parent->rad, idx + 1);
2030 		shift = (parent_lct % 2) ? 4 : 0;
2031 	} else
2032 		rad[0] = 0;
2033 
2034 	rad[idx] |= port->port_num << shift;
2035 	return parent_lct + 1;
2036 }
2037 
2038 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs)
2039 {
2040 	switch (pdt) {
2041 	case DP_PEER_DEVICE_DP_LEGACY_CONV:
2042 	case DP_PEER_DEVICE_SST_SINK:
2043 		return true;
2044 	case DP_PEER_DEVICE_MST_BRANCHING:
2045 		/* For sst branch device */
2046 		if (!mcs)
2047 			return true;
2048 
2049 		return false;
2050 	}
2051 	return true;
2052 }
2053 
2054 static int
2055 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt,
2056 		    bool new_mcs)
2057 {
2058 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2059 	struct drm_dp_mst_branch *mstb;
2060 	u8 rad[8], lct;
2061 	int ret = 0;
2062 
2063 	if (port->pdt == new_pdt && port->mcs == new_mcs)
2064 		return 0;
2065 
2066 	/* Teardown the old pdt, if there is one */
2067 	if (port->pdt != DP_PEER_DEVICE_NONE) {
2068 		if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
2069 			/*
2070 			 * If the new PDT would also have an i2c bus,
2071 			 * don't bother with reregistering it
2072 			 */
2073 			if (new_pdt != DP_PEER_DEVICE_NONE &&
2074 			    drm_dp_mst_is_end_device(new_pdt, new_mcs)) {
2075 				port->pdt = new_pdt;
2076 				port->mcs = new_mcs;
2077 				return 0;
2078 			}
2079 
2080 			/* remove i2c over sideband */
2081 			drm_dp_mst_unregister_i2c_bus(port);
2082 		} else {
2083 			mutex_lock(&mgr->lock);
2084 			drm_dp_mst_topology_put_mstb(port->mstb);
2085 			port->mstb = NULL;
2086 			mutex_unlock(&mgr->lock);
2087 		}
2088 	}
2089 
2090 	port->pdt = new_pdt;
2091 	port->mcs = new_mcs;
2092 
2093 	if (port->pdt != DP_PEER_DEVICE_NONE) {
2094 		if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
2095 			/* add i2c over sideband */
2096 			ret = drm_dp_mst_register_i2c_bus(port);
2097 		} else {
2098 			lct = drm_dp_calculate_rad(port, rad);
2099 			mstb = drm_dp_add_mst_branch_device(lct, rad);
2100 			if (!mstb) {
2101 				ret = -ENOMEM;
2102 				drm_err(mgr->dev, "Failed to create MSTB for port %p", port);
2103 				goto out;
2104 			}
2105 
2106 			mutex_lock(&mgr->lock);
2107 			port->mstb = mstb;
2108 			mstb->mgr = port->mgr;
2109 			mstb->port_parent = port;
2110 
2111 			/*
2112 			 * Make sure this port's memory allocation stays
2113 			 * around until its child MSTB releases it
2114 			 */
2115 			drm_dp_mst_get_port_malloc(port);
2116 			mutex_unlock(&mgr->lock);
2117 
2118 			/* And make sure we send a link address for this */
2119 			ret = 1;
2120 		}
2121 	}
2122 
2123 out:
2124 	if (ret < 0)
2125 		port->pdt = DP_PEER_DEVICE_NONE;
2126 	return ret;
2127 }
2128 
2129 /**
2130  * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband
2131  * @aux: Fake sideband AUX CH
2132  * @offset: address of the (first) register to read
2133  * @buffer: buffer to store the register values
2134  * @size: number of bytes in @buffer
2135  *
2136  * Performs the same functionality for remote devices via
2137  * sideband messaging as drm_dp_dpcd_read() does for local
2138  * devices via actual AUX CH.
2139  *
2140  * Return: Number of bytes read, or negative error code on failure.
2141  */
2142 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux,
2143 			     unsigned int offset, void *buffer, size_t size)
2144 {
2145 	struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2146 						    aux);
2147 
2148 	return drm_dp_send_dpcd_read(port->mgr, port,
2149 				     offset, size, buffer);
2150 }
2151 
2152 /**
2153  * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband
2154  * @aux: Fake sideband AUX CH
2155  * @offset: address of the (first) register to write
2156  * @buffer: buffer containing the values to write
2157  * @size: number of bytes in @buffer
2158  *
2159  * Performs the same functionality for remote devices via
2160  * sideband messaging as drm_dp_dpcd_write() does for local
2161  * devices via actual AUX CH.
2162  *
2163  * Return: number of bytes written on success, negative error code on failure.
2164  */
2165 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux,
2166 			      unsigned int offset, void *buffer, size_t size)
2167 {
2168 	struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2169 						    aux);
2170 
2171 	return drm_dp_send_dpcd_write(port->mgr, port,
2172 				      offset, size, buffer);
2173 }
2174 
2175 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid)
2176 {
2177 	int ret = 0;
2178 
2179 	memcpy(mstb->guid, guid, 16);
2180 
2181 	if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) {
2182 		if (mstb->port_parent) {
2183 			ret = drm_dp_send_dpcd_write(mstb->mgr,
2184 						     mstb->port_parent,
2185 						     DP_GUID, 16, mstb->guid);
2186 		} else {
2187 			ret = drm_dp_dpcd_write(mstb->mgr->aux,
2188 						DP_GUID, mstb->guid, 16);
2189 		}
2190 	}
2191 
2192 	if (ret < 16 && ret > 0)
2193 		return -EPROTO;
2194 
2195 	return ret == 16 ? 0 : ret;
2196 }
2197 
2198 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb,
2199 				int pnum,
2200 				char *proppath,
2201 				size_t proppath_size)
2202 {
2203 	int i;
2204 	char temp[8];
2205 
2206 	snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id);
2207 	for (i = 0; i < (mstb->lct - 1); i++) {
2208 		int shift = (i % 2) ? 0 : 4;
2209 		int port_num = (mstb->rad[i / 2] >> shift) & 0xf;
2210 
2211 		snprintf(temp, sizeof(temp), "-%d", port_num);
2212 		strlcat(proppath, temp, proppath_size);
2213 	}
2214 	snprintf(temp, sizeof(temp), "-%d", pnum);
2215 	strlcat(proppath, temp, proppath_size);
2216 }
2217 
2218 /**
2219  * drm_dp_mst_connector_late_register() - Late MST connector registration
2220  * @connector: The MST connector
2221  * @port: The MST port for this connector
2222  *
2223  * Helper to register the remote aux device for this MST port. Drivers should
2224  * call this from their mst connector's late_register hook to enable MST aux
2225  * devices.
2226  *
2227  * Return: 0 on success, negative error code on failure.
2228  */
2229 int drm_dp_mst_connector_late_register(struct drm_connector *connector,
2230 				       struct drm_dp_mst_port *port)
2231 {
2232 	drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n",
2233 		    port->aux.name, connector->kdev->kobj.name);
2234 
2235 	port->aux.dev = connector->kdev;
2236 	return drm_dp_aux_register_devnode(&port->aux);
2237 }
2238 EXPORT_SYMBOL(drm_dp_mst_connector_late_register);
2239 
2240 /**
2241  * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration
2242  * @connector: The MST connector
2243  * @port: The MST port for this connector
2244  *
2245  * Helper to unregister the remote aux device for this MST port, registered by
2246  * drm_dp_mst_connector_late_register(). Drivers should call this from their mst
2247  * connector's early_unregister hook.
2248  */
2249 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector,
2250 					   struct drm_dp_mst_port *port)
2251 {
2252 	drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n",
2253 		    port->aux.name, connector->kdev->kobj.name);
2254 	drm_dp_aux_unregister_devnode(&port->aux);
2255 }
2256 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister);
2257 
2258 static void
2259 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb,
2260 			      struct drm_dp_mst_port *port)
2261 {
2262 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2263 	char proppath[255];
2264 	int ret;
2265 
2266 	build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath));
2267 	port->connector = mgr->cbs->add_connector(mgr, port, proppath);
2268 	if (!port->connector) {
2269 		ret = -ENOMEM;
2270 		goto error;
2271 	}
2272 
2273 	if (port->pdt != DP_PEER_DEVICE_NONE &&
2274 	    drm_dp_mst_is_end_device(port->pdt, port->mcs) &&
2275 	    port->port_num >= DP_MST_LOGICAL_PORT_0)
2276 		port->cached_edid = drm_edid_read_ddc(port->connector,
2277 						      &port->aux.ddc);
2278 
2279 	drm_connector_register(port->connector);
2280 	return;
2281 
2282 error:
2283 	drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret);
2284 }
2285 
2286 /*
2287  * Drop a topology reference, and unlink the port from the in-memory topology
2288  * layout
2289  */
2290 static void
2291 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr,
2292 				struct drm_dp_mst_port *port)
2293 {
2294 	mutex_lock(&mgr->lock);
2295 	port->parent->num_ports--;
2296 	list_del(&port->next);
2297 	mutex_unlock(&mgr->lock);
2298 	drm_dp_mst_topology_put_port(port);
2299 }
2300 
2301 static struct drm_dp_mst_port *
2302 drm_dp_mst_add_port(struct drm_device *dev,
2303 		    struct drm_dp_mst_topology_mgr *mgr,
2304 		    struct drm_dp_mst_branch *mstb, u8 port_number)
2305 {
2306 	struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL);
2307 
2308 	if (!port)
2309 		return NULL;
2310 
2311 	kref_init(&port->topology_kref);
2312 	kref_init(&port->malloc_kref);
2313 	port->parent = mstb;
2314 	port->port_num = port_number;
2315 	port->mgr = mgr;
2316 	port->aux.name = "DPMST";
2317 	port->aux.dev = dev->dev;
2318 	port->aux.is_remote = true;
2319 
2320 	/* initialize the MST downstream port's AUX crc work queue */
2321 	port->aux.drm_dev = dev;
2322 	drm_dp_remote_aux_init(&port->aux);
2323 
2324 	/*
2325 	 * Make sure the memory allocation for our parent branch stays
2326 	 * around until our own memory allocation is released
2327 	 */
2328 	drm_dp_mst_get_mstb_malloc(mstb);
2329 
2330 	return port;
2331 }
2332 
2333 static int
2334 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb,
2335 				    struct drm_device *dev,
2336 				    struct drm_dp_link_addr_reply_port *port_msg)
2337 {
2338 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2339 	struct drm_dp_mst_port *port;
2340 	int old_ddps = 0, ret;
2341 	u8 new_pdt = DP_PEER_DEVICE_NONE;
2342 	bool new_mcs = 0;
2343 	bool created = false, send_link_addr = false, changed = false;
2344 
2345 	port = drm_dp_get_port(mstb, port_msg->port_number);
2346 	if (!port) {
2347 		port = drm_dp_mst_add_port(dev, mgr, mstb,
2348 					   port_msg->port_number);
2349 		if (!port)
2350 			return -ENOMEM;
2351 		created = true;
2352 		changed = true;
2353 	} else if (!port->input && port_msg->input_port && port->connector) {
2354 		/* Since port->connector can't be changed here, we create a
2355 		 * new port if input_port changes from 0 to 1
2356 		 */
2357 		drm_dp_mst_topology_unlink_port(mgr, port);
2358 		drm_dp_mst_topology_put_port(port);
2359 		port = drm_dp_mst_add_port(dev, mgr, mstb,
2360 					   port_msg->port_number);
2361 		if (!port)
2362 			return -ENOMEM;
2363 		changed = true;
2364 		created = true;
2365 	} else if (port->input && !port_msg->input_port) {
2366 		changed = true;
2367 	} else if (port->connector) {
2368 		/* We're updating a port that's exposed to userspace, so do it
2369 		 * under lock
2370 		 */
2371 		drm_modeset_lock(&mgr->base.lock, NULL);
2372 
2373 		old_ddps = port->ddps;
2374 		changed = port->ddps != port_msg->ddps ||
2375 			(port->ddps &&
2376 			 (port->ldps != port_msg->legacy_device_plug_status ||
2377 			  port->dpcd_rev != port_msg->dpcd_revision ||
2378 			  port->mcs != port_msg->mcs ||
2379 			  port->pdt != port_msg->peer_device_type ||
2380 			  port->num_sdp_stream_sinks !=
2381 			  port_msg->num_sdp_stream_sinks));
2382 	}
2383 
2384 	port->input = port_msg->input_port;
2385 	if (!port->input)
2386 		new_pdt = port_msg->peer_device_type;
2387 	new_mcs = port_msg->mcs;
2388 	port->ddps = port_msg->ddps;
2389 	port->ldps = port_msg->legacy_device_plug_status;
2390 	port->dpcd_rev = port_msg->dpcd_revision;
2391 	port->num_sdp_streams = port_msg->num_sdp_streams;
2392 	port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks;
2393 
2394 	/* manage mstb port lists with mgr lock - take a reference
2395 	   for this list */
2396 	if (created) {
2397 		mutex_lock(&mgr->lock);
2398 		drm_dp_mst_topology_get_port(port);
2399 		list_add(&port->next, &mstb->ports);
2400 		mstb->num_ports++;
2401 		mutex_unlock(&mgr->lock);
2402 	}
2403 
2404 	/*
2405 	 * Reprobe PBN caps on both hotplug, and when re-probing the link
2406 	 * for our parent mstb
2407 	 */
2408 	if (old_ddps != port->ddps || !created) {
2409 		if (port->ddps && !port->input) {
2410 			ret = drm_dp_send_enum_path_resources(mgr, mstb,
2411 							      port);
2412 			if (ret == 1)
2413 				changed = true;
2414 		} else {
2415 			port->full_pbn = 0;
2416 		}
2417 	}
2418 
2419 	ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2420 	if (ret == 1) {
2421 		send_link_addr = true;
2422 	} else if (ret < 0) {
2423 		drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret);
2424 		goto fail;
2425 	}
2426 
2427 	/*
2428 	 * If this port wasn't just created, then we're reprobing because
2429 	 * we're coming out of suspend. In this case, always resend the link
2430 	 * address if there's an MSTB on this port
2431 	 */
2432 	if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
2433 	    port->mcs)
2434 		send_link_addr = true;
2435 
2436 	if (port->connector)
2437 		drm_modeset_unlock(&mgr->base.lock);
2438 	else if (!port->input)
2439 		drm_dp_mst_port_add_connector(mstb, port);
2440 
2441 	if (send_link_addr && port->mstb) {
2442 		ret = drm_dp_send_link_address(mgr, port->mstb);
2443 		if (ret == 1) /* MSTB below us changed */
2444 			changed = true;
2445 		else if (ret < 0)
2446 			goto fail_put;
2447 	}
2448 
2449 	/* put reference to this port */
2450 	drm_dp_mst_topology_put_port(port);
2451 	return changed;
2452 
2453 fail:
2454 	drm_dp_mst_topology_unlink_port(mgr, port);
2455 	if (port->connector)
2456 		drm_modeset_unlock(&mgr->base.lock);
2457 fail_put:
2458 	drm_dp_mst_topology_put_port(port);
2459 	return ret;
2460 }
2461 
2462 static int
2463 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb,
2464 			    struct drm_dp_connection_status_notify *conn_stat)
2465 {
2466 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2467 	struct drm_dp_mst_port *port;
2468 	int old_ddps, ret;
2469 	u8 new_pdt;
2470 	bool new_mcs;
2471 	bool dowork = false, create_connector = false;
2472 
2473 	port = drm_dp_get_port(mstb, conn_stat->port_number);
2474 	if (!port)
2475 		return 0;
2476 
2477 	if (port->connector) {
2478 		if (!port->input && conn_stat->input_port) {
2479 			/*
2480 			 * We can't remove a connector from an already exposed
2481 			 * port, so just throw the port out and make sure we
2482 			 * reprobe the link address of it's parent MSTB
2483 			 */
2484 			drm_dp_mst_topology_unlink_port(mgr, port);
2485 			mstb->link_address_sent = false;
2486 			dowork = true;
2487 			goto out;
2488 		}
2489 
2490 		/* Locking is only needed if the port's exposed to userspace */
2491 		drm_modeset_lock(&mgr->base.lock, NULL);
2492 	} else if (port->input && !conn_stat->input_port) {
2493 		create_connector = true;
2494 		/* Reprobe link address so we get num_sdp_streams */
2495 		mstb->link_address_sent = false;
2496 		dowork = true;
2497 	}
2498 
2499 	old_ddps = port->ddps;
2500 	port->input = conn_stat->input_port;
2501 	port->ldps = conn_stat->legacy_device_plug_status;
2502 	port->ddps = conn_stat->displayport_device_plug_status;
2503 
2504 	if (old_ddps != port->ddps) {
2505 		if (port->ddps && !port->input)
2506 			drm_dp_send_enum_path_resources(mgr, mstb, port);
2507 		else
2508 			port->full_pbn = 0;
2509 	}
2510 
2511 	new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type;
2512 	new_mcs = conn_stat->message_capability_status;
2513 	ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2514 	if (ret == 1) {
2515 		dowork = true;
2516 	} else if (ret < 0) {
2517 		drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret);
2518 		dowork = false;
2519 	}
2520 
2521 	if (port->connector)
2522 		drm_modeset_unlock(&mgr->base.lock);
2523 	else if (create_connector)
2524 		drm_dp_mst_port_add_connector(mstb, port);
2525 
2526 out:
2527 	drm_dp_mst_topology_put_port(port);
2528 	return dowork;
2529 }
2530 
2531 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr,
2532 							       u8 lct, u8 *rad)
2533 {
2534 	struct drm_dp_mst_branch *mstb;
2535 	struct drm_dp_mst_port *port;
2536 	int i, ret;
2537 	/* find the port by iterating down */
2538 
2539 	mutex_lock(&mgr->lock);
2540 	mstb = mgr->mst_primary;
2541 
2542 	if (!mstb)
2543 		goto out;
2544 
2545 	for (i = 0; i < lct - 1; i++) {
2546 		int shift = (i % 2) ? 0 : 4;
2547 		int port_num = (rad[i / 2] >> shift) & 0xf;
2548 
2549 		list_for_each_entry(port, &mstb->ports, next) {
2550 			if (port->port_num == port_num) {
2551 				mstb = port->mstb;
2552 				if (!mstb) {
2553 					drm_err(mgr->dev,
2554 						"failed to lookup MSTB with lct %d, rad %02x\n",
2555 						lct, rad[0]);
2556 					goto out;
2557 				}
2558 
2559 				break;
2560 			}
2561 		}
2562 	}
2563 	ret = drm_dp_mst_topology_try_get_mstb(mstb);
2564 	if (!ret)
2565 		mstb = NULL;
2566 out:
2567 	mutex_unlock(&mgr->lock);
2568 	return mstb;
2569 }
2570 
2571 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper(
2572 	struct drm_dp_mst_branch *mstb,
2573 	const uint8_t *guid)
2574 {
2575 	struct drm_dp_mst_branch *found_mstb;
2576 	struct drm_dp_mst_port *port;
2577 
2578 	if (!mstb)
2579 		return NULL;
2580 
2581 	if (memcmp(mstb->guid, guid, 16) == 0)
2582 		return mstb;
2583 
2584 
2585 	list_for_each_entry(port, &mstb->ports, next) {
2586 		found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid);
2587 
2588 		if (found_mstb)
2589 			return found_mstb;
2590 	}
2591 
2592 	return NULL;
2593 }
2594 
2595 static struct drm_dp_mst_branch *
2596 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr,
2597 				     const uint8_t *guid)
2598 {
2599 	struct drm_dp_mst_branch *mstb;
2600 	int ret;
2601 
2602 	/* find the port by iterating down */
2603 	mutex_lock(&mgr->lock);
2604 
2605 	mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid);
2606 	if (mstb) {
2607 		ret = drm_dp_mst_topology_try_get_mstb(mstb);
2608 		if (!ret)
2609 			mstb = NULL;
2610 	}
2611 
2612 	mutex_unlock(&mgr->lock);
2613 	return mstb;
2614 }
2615 
2616 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2617 					       struct drm_dp_mst_branch *mstb)
2618 {
2619 	struct drm_dp_mst_port *port;
2620 	int ret;
2621 	bool changed = false;
2622 
2623 	if (!mstb->link_address_sent) {
2624 		ret = drm_dp_send_link_address(mgr, mstb);
2625 		if (ret == 1)
2626 			changed = true;
2627 		else if (ret < 0)
2628 			return ret;
2629 	}
2630 
2631 	list_for_each_entry(port, &mstb->ports, next) {
2632 		if (port->input || !port->ddps || !port->mstb)
2633 			continue;
2634 
2635 		ret = drm_dp_check_and_send_link_address(mgr, port->mstb);
2636 		if (ret == 1)
2637 			changed = true;
2638 		else if (ret < 0)
2639 			return ret;
2640 	}
2641 
2642 	return changed;
2643 }
2644 
2645 static void drm_dp_mst_link_probe_work(struct work_struct *work)
2646 {
2647 	struct drm_dp_mst_topology_mgr *mgr =
2648 		container_of(work, struct drm_dp_mst_topology_mgr, work);
2649 	struct drm_device *dev = mgr->dev;
2650 	struct drm_dp_mst_branch *mstb;
2651 	int ret;
2652 	bool clear_payload_id_table;
2653 
2654 	mutex_lock(&mgr->probe_lock);
2655 
2656 	mutex_lock(&mgr->lock);
2657 	clear_payload_id_table = !mgr->payload_id_table_cleared;
2658 	mgr->payload_id_table_cleared = true;
2659 
2660 	mstb = mgr->mst_primary;
2661 	if (mstb) {
2662 		ret = drm_dp_mst_topology_try_get_mstb(mstb);
2663 		if (!ret)
2664 			mstb = NULL;
2665 	}
2666 	mutex_unlock(&mgr->lock);
2667 	if (!mstb) {
2668 		mutex_unlock(&mgr->probe_lock);
2669 		return;
2670 	}
2671 
2672 	/*
2673 	 * Certain branch devices seem to incorrectly report an available_pbn
2674 	 * of 0 on downstream sinks, even after clearing the
2675 	 * DP_PAYLOAD_ALLOCATE_* registers in
2676 	 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C
2677 	 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make
2678 	 * things work again.
2679 	 */
2680 	if (clear_payload_id_table) {
2681 		drm_dbg_kms(dev, "Clearing payload ID table\n");
2682 		drm_dp_send_clear_payload_id_table(mgr, mstb);
2683 	}
2684 
2685 	ret = drm_dp_check_and_send_link_address(mgr, mstb);
2686 	drm_dp_mst_topology_put_mstb(mstb);
2687 
2688 	mutex_unlock(&mgr->probe_lock);
2689 	if (ret > 0)
2690 		drm_kms_helper_hotplug_event(dev);
2691 }
2692 
2693 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
2694 				 u8 *guid)
2695 {
2696 	u64 salt;
2697 
2698 	if (memchr_inv(guid, 0, 16))
2699 		return true;
2700 
2701 	salt = get_jiffies_64();
2702 
2703 	memcpy(&guid[0], &salt, sizeof(u64));
2704 	memcpy(&guid[8], &salt, sizeof(u64));
2705 
2706 	return false;
2707 }
2708 
2709 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg,
2710 			    u8 port_num, u32 offset, u8 num_bytes)
2711 {
2712 	struct drm_dp_sideband_msg_req_body req;
2713 
2714 	req.req_type = DP_REMOTE_DPCD_READ;
2715 	req.u.dpcd_read.port_number = port_num;
2716 	req.u.dpcd_read.dpcd_address = offset;
2717 	req.u.dpcd_read.num_bytes = num_bytes;
2718 	drm_dp_encode_sideband_req(&req, msg);
2719 }
2720 
2721 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr,
2722 				    bool up, u8 *msg, int len)
2723 {
2724 	int ret;
2725 	int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE;
2726 	int tosend, total, offset;
2727 	int retries = 0;
2728 
2729 retry:
2730 	total = len;
2731 	offset = 0;
2732 	do {
2733 		tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total);
2734 
2735 		ret = drm_dp_dpcd_write(mgr->aux, regbase + offset,
2736 					&msg[offset],
2737 					tosend);
2738 		if (ret != tosend) {
2739 			if (ret == -EIO && retries < 5) {
2740 				retries++;
2741 				goto retry;
2742 			}
2743 			drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret);
2744 
2745 			return -EIO;
2746 		}
2747 		offset += tosend;
2748 		total -= tosend;
2749 	} while (total > 0);
2750 	return 0;
2751 }
2752 
2753 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr,
2754 				  struct drm_dp_sideband_msg_tx *txmsg)
2755 {
2756 	struct drm_dp_mst_branch *mstb = txmsg->dst;
2757 	u8 req_type;
2758 
2759 	req_type = txmsg->msg[0] & 0x7f;
2760 	if (req_type == DP_CONNECTION_STATUS_NOTIFY ||
2761 		req_type == DP_RESOURCE_STATUS_NOTIFY ||
2762 		req_type == DP_CLEAR_PAYLOAD_ID_TABLE)
2763 		hdr->broadcast = 1;
2764 	else
2765 		hdr->broadcast = 0;
2766 	hdr->path_msg = txmsg->path_msg;
2767 	if (hdr->broadcast) {
2768 		hdr->lct = 1;
2769 		hdr->lcr = 6;
2770 	} else {
2771 		hdr->lct = mstb->lct;
2772 		hdr->lcr = mstb->lct - 1;
2773 	}
2774 
2775 	memcpy(hdr->rad, mstb->rad, hdr->lct / 2);
2776 
2777 	return 0;
2778 }
2779 /*
2780  * process a single block of the next message in the sideband queue
2781  */
2782 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2783 				   struct drm_dp_sideband_msg_tx *txmsg,
2784 				   bool up)
2785 {
2786 	u8 chunk[48];
2787 	struct drm_dp_sideband_msg_hdr hdr;
2788 	int len, space, idx, tosend;
2789 	int ret;
2790 
2791 	if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
2792 		return 0;
2793 
2794 	memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr));
2795 
2796 	if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED)
2797 		txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND;
2798 
2799 	/* make hdr from dst mst */
2800 	ret = set_hdr_from_dst_qlock(&hdr, txmsg);
2801 	if (ret < 0)
2802 		return ret;
2803 
2804 	/* amount left to send in this message */
2805 	len = txmsg->cur_len - txmsg->cur_offset;
2806 
2807 	/* 48 - sideband msg size - 1 byte for data CRC, x header bytes */
2808 	space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr);
2809 
2810 	tosend = min(len, space);
2811 	if (len == txmsg->cur_len)
2812 		hdr.somt = 1;
2813 	if (space >= len)
2814 		hdr.eomt = 1;
2815 
2816 
2817 	hdr.msg_len = tosend + 1;
2818 	drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx);
2819 	memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend);
2820 	/* add crc at end */
2821 	drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend);
2822 	idx += tosend + 1;
2823 
2824 	ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx);
2825 	if (ret) {
2826 		if (drm_debug_enabled(DRM_UT_DP)) {
2827 			struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2828 
2829 			drm_printf(&p, "sideband msg failed to send\n");
2830 			drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2831 		}
2832 		return ret;
2833 	}
2834 
2835 	txmsg->cur_offset += tosend;
2836 	if (txmsg->cur_offset == txmsg->cur_len) {
2837 		txmsg->state = DRM_DP_SIDEBAND_TX_SENT;
2838 		return 1;
2839 	}
2840 	return 0;
2841 }
2842 
2843 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr)
2844 {
2845 	struct drm_dp_sideband_msg_tx *txmsg;
2846 	int ret;
2847 
2848 	WARN_ON(!mutex_is_locked(&mgr->qlock));
2849 
2850 	/* construct a chunk from the first msg in the tx_msg queue */
2851 	if (list_empty(&mgr->tx_msg_downq))
2852 		return;
2853 
2854 	txmsg = list_first_entry(&mgr->tx_msg_downq,
2855 				 struct drm_dp_sideband_msg_tx, next);
2856 	ret = process_single_tx_qlock(mgr, txmsg, false);
2857 	if (ret < 0) {
2858 		drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret);
2859 		list_del(&txmsg->next);
2860 		txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
2861 		wake_up_all(&mgr->tx_waitq);
2862 	}
2863 }
2864 
2865 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr,
2866 				 struct drm_dp_sideband_msg_tx *txmsg)
2867 {
2868 	mutex_lock(&mgr->qlock);
2869 	list_add_tail(&txmsg->next, &mgr->tx_msg_downq);
2870 
2871 	if (drm_debug_enabled(DRM_UT_DP)) {
2872 		struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2873 
2874 		drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2875 	}
2876 
2877 	if (list_is_singular(&mgr->tx_msg_downq))
2878 		process_single_down_tx_qlock(mgr);
2879 	mutex_unlock(&mgr->qlock);
2880 }
2881 
2882 static void
2883 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr,
2884 			 struct drm_dp_link_address_ack_reply *reply)
2885 {
2886 	struct drm_dp_link_addr_reply_port *port_reply;
2887 	int i;
2888 
2889 	for (i = 0; i < reply->nports; i++) {
2890 		port_reply = &reply->ports[i];
2891 		drm_dbg_kms(mgr->dev,
2892 			    "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n",
2893 			    i,
2894 			    port_reply->input_port,
2895 			    port_reply->peer_device_type,
2896 			    port_reply->port_number,
2897 			    port_reply->dpcd_revision,
2898 			    port_reply->mcs,
2899 			    port_reply->ddps,
2900 			    port_reply->legacy_device_plug_status,
2901 			    port_reply->num_sdp_streams,
2902 			    port_reply->num_sdp_stream_sinks);
2903 	}
2904 }
2905 
2906 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2907 				     struct drm_dp_mst_branch *mstb)
2908 {
2909 	struct drm_dp_sideband_msg_tx *txmsg;
2910 	struct drm_dp_link_address_ack_reply *reply;
2911 	struct drm_dp_mst_port *port, *tmp;
2912 	int i, ret, port_mask = 0;
2913 	bool changed = false;
2914 
2915 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2916 	if (!txmsg)
2917 		return -ENOMEM;
2918 
2919 	txmsg->dst = mstb;
2920 	build_link_address(txmsg);
2921 
2922 	mstb->link_address_sent = true;
2923 	drm_dp_queue_down_tx(mgr, txmsg);
2924 
2925 	/* FIXME: Actually do some real error handling here */
2926 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2927 	if (ret <= 0) {
2928 		drm_err(mgr->dev, "Sending link address failed with %d\n", ret);
2929 		goto out;
2930 	}
2931 	if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
2932 		drm_err(mgr->dev, "link address NAK received\n");
2933 		ret = -EIO;
2934 		goto out;
2935 	}
2936 
2937 	reply = &txmsg->reply.u.link_addr;
2938 	drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports);
2939 	drm_dp_dump_link_address(mgr, reply);
2940 
2941 	ret = drm_dp_check_mstb_guid(mstb, reply->guid);
2942 	if (ret) {
2943 		char buf[64];
2944 
2945 		drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf));
2946 		drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret);
2947 		goto out;
2948 	}
2949 
2950 	for (i = 0; i < reply->nports; i++) {
2951 		port_mask |= BIT(reply->ports[i].port_number);
2952 		ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev,
2953 							  &reply->ports[i]);
2954 		if (ret == 1)
2955 			changed = true;
2956 		else if (ret < 0)
2957 			goto out;
2958 	}
2959 
2960 	/* Prune any ports that are currently a part of mstb in our in-memory
2961 	 * topology, but were not seen in this link address. Usually this
2962 	 * means that they were removed while the topology was out of sync,
2963 	 * e.g. during suspend/resume
2964 	 */
2965 	mutex_lock(&mgr->lock);
2966 	list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
2967 		if (port_mask & BIT(port->port_num))
2968 			continue;
2969 
2970 		drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n",
2971 			    port->port_num);
2972 		list_del(&port->next);
2973 		drm_dp_mst_topology_put_port(port);
2974 		changed = true;
2975 	}
2976 	mutex_unlock(&mgr->lock);
2977 
2978 out:
2979 	if (ret <= 0)
2980 		mstb->link_address_sent = false;
2981 	kfree(txmsg);
2982 	return ret < 0 ? ret : changed;
2983 }
2984 
2985 static void
2986 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
2987 				   struct drm_dp_mst_branch *mstb)
2988 {
2989 	struct drm_dp_sideband_msg_tx *txmsg;
2990 	int ret;
2991 
2992 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2993 	if (!txmsg)
2994 		return;
2995 
2996 	txmsg->dst = mstb;
2997 	build_clear_payload_id_table(txmsg);
2998 
2999 	drm_dp_queue_down_tx(mgr, txmsg);
3000 
3001 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3002 	if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3003 		drm_dbg_kms(mgr->dev, "clear payload table id nak received\n");
3004 
3005 	kfree(txmsg);
3006 }
3007 
3008 static int
3009 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
3010 				struct drm_dp_mst_branch *mstb,
3011 				struct drm_dp_mst_port *port)
3012 {
3013 	struct drm_dp_enum_path_resources_ack_reply *path_res;
3014 	struct drm_dp_sideband_msg_tx *txmsg;
3015 	int ret;
3016 
3017 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3018 	if (!txmsg)
3019 		return -ENOMEM;
3020 
3021 	txmsg->dst = mstb;
3022 	build_enum_path_resources(txmsg, port->port_num);
3023 
3024 	drm_dp_queue_down_tx(mgr, txmsg);
3025 
3026 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3027 	if (ret > 0) {
3028 		ret = 0;
3029 		path_res = &txmsg->reply.u.path_resources;
3030 
3031 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3032 			drm_dbg_kms(mgr->dev, "enum path resources nak received\n");
3033 		} else {
3034 			if (port->port_num != path_res->port_number)
3035 				DRM_ERROR("got incorrect port in response\n");
3036 
3037 			drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n",
3038 				    path_res->port_number,
3039 				    path_res->full_payload_bw_number,
3040 				    path_res->avail_payload_bw_number);
3041 
3042 			/*
3043 			 * If something changed, make sure we send a
3044 			 * hotplug
3045 			 */
3046 			if (port->full_pbn != path_res->full_payload_bw_number ||
3047 			    port->fec_capable != path_res->fec_capable)
3048 				ret = 1;
3049 
3050 			port->full_pbn = path_res->full_payload_bw_number;
3051 			port->fec_capable = path_res->fec_capable;
3052 		}
3053 	}
3054 
3055 	kfree(txmsg);
3056 	return ret;
3057 }
3058 
3059 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb)
3060 {
3061 	if (!mstb->port_parent)
3062 		return NULL;
3063 
3064 	if (mstb->port_parent->mstb != mstb)
3065 		return mstb->port_parent;
3066 
3067 	return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent);
3068 }
3069 
3070 /*
3071  * Searches upwards in the topology starting from mstb to try to find the
3072  * closest available parent of mstb that's still connected to the rest of the
3073  * topology. This can be used in order to perform operations like releasing
3074  * payloads, where the branch device which owned the payload may no longer be
3075  * around and thus would require that the payload on the last living relative
3076  * be freed instead.
3077  */
3078 static struct drm_dp_mst_branch *
3079 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr,
3080 					struct drm_dp_mst_branch *mstb,
3081 					int *port_num)
3082 {
3083 	struct drm_dp_mst_branch *rmstb = NULL;
3084 	struct drm_dp_mst_port *found_port;
3085 
3086 	mutex_lock(&mgr->lock);
3087 	if (!mgr->mst_primary)
3088 		goto out;
3089 
3090 	do {
3091 		found_port = drm_dp_get_last_connected_port_to_mstb(mstb);
3092 		if (!found_port)
3093 			break;
3094 
3095 		if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) {
3096 			rmstb = found_port->parent;
3097 			*port_num = found_port->port_num;
3098 		} else {
3099 			/* Search again, starting from this parent */
3100 			mstb = found_port->parent;
3101 		}
3102 	} while (!rmstb);
3103 out:
3104 	mutex_unlock(&mgr->lock);
3105 	return rmstb;
3106 }
3107 
3108 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr,
3109 				   struct drm_dp_mst_port *port,
3110 				   int id,
3111 				   int pbn)
3112 {
3113 	struct drm_dp_sideband_msg_tx *txmsg;
3114 	struct drm_dp_mst_branch *mstb;
3115 	int ret, port_num;
3116 	u8 sinks[DRM_DP_MAX_SDP_STREAMS];
3117 	int i;
3118 
3119 	port_num = port->port_num;
3120 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3121 	if (!mstb) {
3122 		mstb = drm_dp_get_last_connected_port_and_mstb(mgr,
3123 							       port->parent,
3124 							       &port_num);
3125 
3126 		if (!mstb)
3127 			return -EINVAL;
3128 	}
3129 
3130 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3131 	if (!txmsg) {
3132 		ret = -ENOMEM;
3133 		goto fail_put;
3134 	}
3135 
3136 	for (i = 0; i < port->num_sdp_streams; i++)
3137 		sinks[i] = i;
3138 
3139 	txmsg->dst = mstb;
3140 	build_allocate_payload(txmsg, port_num,
3141 			       id,
3142 			       pbn, port->num_sdp_streams, sinks);
3143 
3144 	drm_dp_queue_down_tx(mgr, txmsg);
3145 
3146 	/*
3147 	 * FIXME: there is a small chance that between getting the last
3148 	 * connected mstb and sending the payload message, the last connected
3149 	 * mstb could also be removed from the topology. In the future, this
3150 	 * needs to be fixed by restarting the
3151 	 * drm_dp_get_last_connected_port_and_mstb() search in the event of a
3152 	 * timeout if the topology is still connected to the system.
3153 	 */
3154 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3155 	if (ret > 0) {
3156 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3157 			ret = -EINVAL;
3158 		else
3159 			ret = 0;
3160 	}
3161 	kfree(txmsg);
3162 fail_put:
3163 	drm_dp_mst_topology_put_mstb(mstb);
3164 	return ret;
3165 }
3166 
3167 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr,
3168 				 struct drm_dp_mst_port *port, bool power_up)
3169 {
3170 	struct drm_dp_sideband_msg_tx *txmsg;
3171 	int ret;
3172 
3173 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
3174 	if (!port)
3175 		return -EINVAL;
3176 
3177 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3178 	if (!txmsg) {
3179 		drm_dp_mst_topology_put_port(port);
3180 		return -ENOMEM;
3181 	}
3182 
3183 	txmsg->dst = port->parent;
3184 	build_power_updown_phy(txmsg, port->port_num, power_up);
3185 	drm_dp_queue_down_tx(mgr, txmsg);
3186 
3187 	ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg);
3188 	if (ret > 0) {
3189 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3190 			ret = -EINVAL;
3191 		else
3192 			ret = 0;
3193 	}
3194 	kfree(txmsg);
3195 	drm_dp_mst_topology_put_port(port);
3196 
3197 	return ret;
3198 }
3199 EXPORT_SYMBOL(drm_dp_send_power_updown_phy);
3200 
3201 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr,
3202 		struct drm_dp_mst_port *port,
3203 		struct drm_dp_query_stream_enc_status_ack_reply *status)
3204 {
3205 	struct drm_dp_mst_topology_state *state;
3206 	struct drm_dp_mst_atomic_payload *payload;
3207 	struct drm_dp_sideband_msg_tx *txmsg;
3208 	u8 nonce[7];
3209 	int ret;
3210 
3211 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3212 	if (!txmsg)
3213 		return -ENOMEM;
3214 
3215 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
3216 	if (!port) {
3217 		ret = -EINVAL;
3218 		goto out_get_port;
3219 	}
3220 
3221 	get_random_bytes(nonce, sizeof(nonce));
3222 
3223 	drm_modeset_lock(&mgr->base.lock, NULL);
3224 	state = to_drm_dp_mst_topology_state(mgr->base.state);
3225 	payload = drm_atomic_get_mst_payload_state(state, port);
3226 
3227 	/*
3228 	 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message
3229 	 *  transaction at the MST Branch device directly connected to the
3230 	 *  Source"
3231 	 */
3232 	txmsg->dst = mgr->mst_primary;
3233 
3234 	build_query_stream_enc_status(txmsg, payload->vcpi, nonce);
3235 
3236 	drm_dp_queue_down_tx(mgr, txmsg);
3237 
3238 	ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg);
3239 	if (ret < 0) {
3240 		goto out;
3241 	} else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3242 		drm_dbg_kms(mgr->dev, "query encryption status nak received\n");
3243 		ret = -ENXIO;
3244 		goto out;
3245 	}
3246 
3247 	ret = 0;
3248 	memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status));
3249 
3250 out:
3251 	drm_modeset_unlock(&mgr->base.lock);
3252 	drm_dp_mst_topology_put_port(port);
3253 out_get_port:
3254 	kfree(txmsg);
3255 	return ret;
3256 }
3257 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status);
3258 
3259 static int drm_dp_create_payload_at_dfp(struct drm_dp_mst_topology_mgr *mgr,
3260 					struct drm_dp_mst_atomic_payload *payload)
3261 {
3262 	return drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot,
3263 					 payload->time_slots);
3264 }
3265 
3266 static int drm_dp_create_payload_to_remote(struct drm_dp_mst_topology_mgr *mgr,
3267 					   struct drm_dp_mst_atomic_payload *payload)
3268 {
3269 	int ret;
3270 	struct drm_dp_mst_port *port = drm_dp_mst_topology_get_port_validated(mgr, payload->port);
3271 
3272 	if (!port)
3273 		return -EIO;
3274 
3275 	ret = drm_dp_payload_send_msg(mgr, port, payload->vcpi, payload->pbn);
3276 	drm_dp_mst_topology_put_port(port);
3277 	return ret;
3278 }
3279 
3280 static void drm_dp_destroy_payload_at_remote_and_dfp(struct drm_dp_mst_topology_mgr *mgr,
3281 						     struct drm_dp_mst_topology_state *mst_state,
3282 						     struct drm_dp_mst_atomic_payload *payload)
3283 {
3284 	drm_dbg_kms(mgr->dev, "\n");
3285 
3286 	/* it's okay for these to fail */
3287 	if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE) {
3288 		drm_dp_payload_send_msg(mgr, payload->port, payload->vcpi, 0);
3289 		payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP;
3290 	}
3291 
3292 	if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_DFP)
3293 		drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 0);
3294 }
3295 
3296 /**
3297  * drm_dp_add_payload_part1() - Execute payload update part 1
3298  * @mgr: Manager to use.
3299  * @mst_state: The MST atomic state
3300  * @payload: The payload to write
3301  *
3302  * Determines the starting time slot for the given payload, and programs the VCPI for this payload
3303  * into the DPCD of DPRX. After calling this, the driver should generate ACT and payload packets.
3304  *
3305  * Returns: 0 on success, error code on failure.
3306  */
3307 int drm_dp_add_payload_part1(struct drm_dp_mst_topology_mgr *mgr,
3308 			     struct drm_dp_mst_topology_state *mst_state,
3309 			     struct drm_dp_mst_atomic_payload *payload)
3310 {
3311 	struct drm_dp_mst_port *port;
3312 	int ret;
3313 
3314 	/* Update mst mgr info */
3315 	if (mgr->payload_count == 0)
3316 		mgr->next_start_slot = mst_state->start_slot;
3317 
3318 	payload->vc_start_slot = mgr->next_start_slot;
3319 
3320 	mgr->payload_count++;
3321 	mgr->next_start_slot += payload->time_slots;
3322 
3323 	payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL;
3324 
3325 	/* Allocate payload to immediate downstream facing port */
3326 	port = drm_dp_mst_topology_get_port_validated(mgr, payload->port);
3327 	if (!port) {
3328 		drm_dbg_kms(mgr->dev,
3329 			    "VCPI %d for port %p not in topology, not creating a payload to remote\n",
3330 			    payload->vcpi, payload->port);
3331 		return -EIO;
3332 	}
3333 
3334 	ret = drm_dp_create_payload_at_dfp(mgr, payload);
3335 	if (ret < 0) {
3336 		drm_dbg_kms(mgr->dev, "Failed to create MST payload for port %p: %d\n",
3337 			    payload->port, ret);
3338 		goto put_port;
3339 	}
3340 
3341 	payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP;
3342 
3343 put_port:
3344 	drm_dp_mst_topology_put_port(port);
3345 
3346 	return ret;
3347 }
3348 EXPORT_SYMBOL(drm_dp_add_payload_part1);
3349 
3350 /**
3351  * drm_dp_remove_payload_part1() - Remove an MST payload along the virtual channel
3352  * @mgr: Manager to use.
3353  * @mst_state: The MST atomic state
3354  * @payload: The payload to remove
3355  *
3356  * Removes a payload along the virtual channel if it was successfully allocated.
3357  * After calling this, the driver should set HW to generate ACT and then switch to new
3358  * payload allocation state.
3359  */
3360 void drm_dp_remove_payload_part1(struct drm_dp_mst_topology_mgr *mgr,
3361 				 struct drm_dp_mst_topology_state *mst_state,
3362 				 struct drm_dp_mst_atomic_payload *payload)
3363 {
3364 	/* Remove remote payload allocation */
3365 	bool send_remove = false;
3366 
3367 	mutex_lock(&mgr->lock);
3368 	send_remove = drm_dp_mst_port_downstream_of_branch(payload->port, mgr->mst_primary);
3369 	mutex_unlock(&mgr->lock);
3370 
3371 	if (send_remove)
3372 		drm_dp_destroy_payload_at_remote_and_dfp(mgr, mst_state, payload);
3373 	else
3374 		drm_dbg_kms(mgr->dev, "Payload for VCPI %d not in topology, not sending remove\n",
3375 			    payload->vcpi);
3376 
3377 	payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL;
3378 }
3379 EXPORT_SYMBOL(drm_dp_remove_payload_part1);
3380 
3381 /**
3382  * drm_dp_remove_payload_part2() - Remove an MST payload locally
3383  * @mgr: Manager to use.
3384  * @mst_state: The MST atomic state
3385  * @old_payload: The payload with its old state
3386  * @new_payload: The payload with its latest state
3387  *
3388  * Updates the starting time slots of all other payloads which would have been shifted towards
3389  * the start of the payload ID table as a result of removing a payload. Driver should call this
3390  * function whenever it removes a payload in its HW. It's independent to the result of payload
3391  * allocation/deallocation at branch devices along the virtual channel.
3392  */
3393 void drm_dp_remove_payload_part2(struct drm_dp_mst_topology_mgr *mgr,
3394 				 struct drm_dp_mst_topology_state *mst_state,
3395 				 const struct drm_dp_mst_atomic_payload *old_payload,
3396 				 struct drm_dp_mst_atomic_payload *new_payload)
3397 {
3398 	struct drm_dp_mst_atomic_payload *pos;
3399 
3400 	/* Remove local payload allocation */
3401 	list_for_each_entry(pos, &mst_state->payloads, next) {
3402 		if (pos != new_payload && pos->vc_start_slot > new_payload->vc_start_slot)
3403 			pos->vc_start_slot -= old_payload->time_slots;
3404 	}
3405 	new_payload->vc_start_slot = -1;
3406 
3407 	mgr->payload_count--;
3408 	mgr->next_start_slot -= old_payload->time_slots;
3409 
3410 	if (new_payload->delete)
3411 		drm_dp_mst_put_port_malloc(new_payload->port);
3412 
3413 	new_payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE;
3414 }
3415 EXPORT_SYMBOL(drm_dp_remove_payload_part2);
3416 /**
3417  * drm_dp_add_payload_part2() - Execute payload update part 2
3418  * @mgr: Manager to use.
3419  * @state: The global atomic state
3420  * @payload: The payload to update
3421  *
3422  * If @payload was successfully assigned a starting time slot by drm_dp_add_payload_part1(), this
3423  * function will send the sideband messages to finish allocating this payload.
3424  *
3425  * Returns: 0 on success, negative error code on failure.
3426  */
3427 int drm_dp_add_payload_part2(struct drm_dp_mst_topology_mgr *mgr,
3428 			     struct drm_atomic_state *state,
3429 			     struct drm_dp_mst_atomic_payload *payload)
3430 {
3431 	int ret = 0;
3432 
3433 	/* Skip failed payloads */
3434 	if (payload->payload_allocation_status != DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) {
3435 		drm_dbg_kms(state->dev, "Part 1 of payload creation for %s failed, skipping part 2\n",
3436 			    payload->port->connector->name);
3437 		return -EIO;
3438 	}
3439 
3440 	/* Allocate payload to remote end */
3441 	ret = drm_dp_create_payload_to_remote(mgr, payload);
3442 	if (ret < 0)
3443 		drm_err(mgr->dev, "Step 2 of creating MST payload for %p failed: %d\n",
3444 			payload->port, ret);
3445 	else
3446 		payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE;
3447 
3448 	return ret;
3449 }
3450 EXPORT_SYMBOL(drm_dp_add_payload_part2);
3451 
3452 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
3453 				 struct drm_dp_mst_port *port,
3454 				 int offset, int size, u8 *bytes)
3455 {
3456 	int ret = 0;
3457 	struct drm_dp_sideband_msg_tx *txmsg;
3458 	struct drm_dp_mst_branch *mstb;
3459 
3460 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3461 	if (!mstb)
3462 		return -EINVAL;
3463 
3464 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3465 	if (!txmsg) {
3466 		ret = -ENOMEM;
3467 		goto fail_put;
3468 	}
3469 
3470 	build_dpcd_read(txmsg, port->port_num, offset, size);
3471 	txmsg->dst = port->parent;
3472 
3473 	drm_dp_queue_down_tx(mgr, txmsg);
3474 
3475 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3476 	if (ret < 0)
3477 		goto fail_free;
3478 
3479 	if (txmsg->reply.reply_type == 1) {
3480 		drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n",
3481 			    mstb, port->port_num, offset, size);
3482 		ret = -EIO;
3483 		goto fail_free;
3484 	}
3485 
3486 	if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) {
3487 		ret = -EPROTO;
3488 		goto fail_free;
3489 	}
3490 
3491 	ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes,
3492 		    size);
3493 	memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret);
3494 
3495 fail_free:
3496 	kfree(txmsg);
3497 fail_put:
3498 	drm_dp_mst_topology_put_mstb(mstb);
3499 
3500 	return ret;
3501 }
3502 
3503 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
3504 				  struct drm_dp_mst_port *port,
3505 				  int offset, int size, u8 *bytes)
3506 {
3507 	int ret;
3508 	struct drm_dp_sideband_msg_tx *txmsg;
3509 	struct drm_dp_mst_branch *mstb;
3510 
3511 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3512 	if (!mstb)
3513 		return -EINVAL;
3514 
3515 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3516 	if (!txmsg) {
3517 		ret = -ENOMEM;
3518 		goto fail_put;
3519 	}
3520 
3521 	build_dpcd_write(txmsg, port->port_num, offset, size, bytes);
3522 	txmsg->dst = mstb;
3523 
3524 	drm_dp_queue_down_tx(mgr, txmsg);
3525 
3526 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3527 	if (ret > 0) {
3528 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3529 			ret = -EIO;
3530 		else
3531 			ret = size;
3532 	}
3533 
3534 	kfree(txmsg);
3535 fail_put:
3536 	drm_dp_mst_topology_put_mstb(mstb);
3537 	return ret;
3538 }
3539 
3540 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type)
3541 {
3542 	struct drm_dp_sideband_msg_reply_body reply;
3543 
3544 	reply.reply_type = DP_SIDEBAND_REPLY_ACK;
3545 	reply.req_type = req_type;
3546 	drm_dp_encode_sideband_reply(&reply, msg);
3547 	return 0;
3548 }
3549 
3550 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr,
3551 				    struct drm_dp_mst_branch *mstb,
3552 				    int req_type, bool broadcast)
3553 {
3554 	struct drm_dp_sideband_msg_tx *txmsg;
3555 
3556 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3557 	if (!txmsg)
3558 		return -ENOMEM;
3559 
3560 	txmsg->dst = mstb;
3561 	drm_dp_encode_up_ack_reply(txmsg, req_type);
3562 
3563 	mutex_lock(&mgr->qlock);
3564 	/* construct a chunk from the first msg in the tx_msg queue */
3565 	process_single_tx_qlock(mgr, txmsg, true);
3566 	mutex_unlock(&mgr->qlock);
3567 
3568 	kfree(txmsg);
3569 	return 0;
3570 }
3571 
3572 /**
3573  * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link
3574  * @mgr: The &drm_dp_mst_topology_mgr to use
3575  * @link_rate: link rate in 10kbits/s units
3576  * @link_lane_count: lane count
3577  *
3578  * Calculate the total bandwidth of a MultiStream Transport link. The returned
3579  * value is in units of PBNs/(timeslots/1 MTP). This value can be used to
3580  * convert the number of PBNs required for a given stream to the number of
3581  * timeslots this stream requires in each MTP.
3582  *
3583  * Returns the BW / timeslot value in 20.12 fixed point format.
3584  */
3585 fixed20_12 drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr,
3586 				    int link_rate, int link_lane_count)
3587 {
3588 	int ch_coding_efficiency =
3589 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(link_rate));
3590 	fixed20_12 ret;
3591 
3592 	if (link_rate == 0 || link_lane_count == 0)
3593 		drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n",
3594 			    link_rate, link_lane_count);
3595 
3596 	/* See DP v2.0 2.6.4.2, 2.7.6.3 VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */
3597 	ret.full = DIV_ROUND_DOWN_ULL(mul_u32_u32(link_rate * link_lane_count,
3598 						  ch_coding_efficiency),
3599 				      (1000000ULL * 8 * 5400) >> 12);
3600 
3601 	return ret;
3602 }
3603 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw);
3604 
3605 /**
3606  * drm_dp_read_mst_cap() - check whether or not a sink supports MST
3607  * @aux: The DP AUX channel to use
3608  * @dpcd: A cached copy of the DPCD capabilities for this sink
3609  *
3610  * Returns: %True if the sink supports MST, %false otherwise
3611  */
3612 bool drm_dp_read_mst_cap(struct drm_dp_aux *aux,
3613 			 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3614 {
3615 	u8 mstm_cap;
3616 
3617 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12)
3618 		return false;
3619 
3620 	if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1)
3621 		return false;
3622 
3623 	return mstm_cap & DP_MST_CAP;
3624 }
3625 EXPORT_SYMBOL(drm_dp_read_mst_cap);
3626 
3627 /**
3628  * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager
3629  * @mgr: manager to set state for
3630  * @mst_state: true to enable MST on this connector - false to disable.
3631  *
3632  * This is called by the driver when it detects an MST capable device plugged
3633  * into a DP MST capable port, or when a DP MST capable device is unplugged.
3634  */
3635 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
3636 {
3637 	int ret = 0;
3638 	struct drm_dp_mst_branch *mstb = NULL;
3639 
3640 	mutex_lock(&mgr->lock);
3641 	if (mst_state == mgr->mst_state)
3642 		goto out_unlock;
3643 
3644 	mgr->mst_state = mst_state;
3645 	/* set the device into MST mode */
3646 	if (mst_state) {
3647 		WARN_ON(mgr->mst_primary);
3648 
3649 		/* get dpcd info */
3650 		ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd);
3651 		if (ret < 0) {
3652 			drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n",
3653 				    mgr->aux->name, ret);
3654 			goto out_unlock;
3655 		}
3656 
3657 		/* add initial branch device at LCT 1 */
3658 		mstb = drm_dp_add_mst_branch_device(1, NULL);
3659 		if (mstb == NULL) {
3660 			ret = -ENOMEM;
3661 			goto out_unlock;
3662 		}
3663 		mstb->mgr = mgr;
3664 
3665 		/* give this the main reference */
3666 		mgr->mst_primary = mstb;
3667 		drm_dp_mst_topology_get_mstb(mgr->mst_primary);
3668 
3669 		ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3670 					 DP_MST_EN |
3671 					 DP_UP_REQ_EN |
3672 					 DP_UPSTREAM_IS_SRC);
3673 		if (ret < 0)
3674 			goto out_unlock;
3675 
3676 		/* Write reset payload */
3677 		drm_dp_dpcd_write_payload(mgr, 0, 0, 0x3f);
3678 
3679 		queue_work(system_long_wq, &mgr->work);
3680 
3681 		ret = 0;
3682 	} else {
3683 		/* disable MST on the device */
3684 		mstb = mgr->mst_primary;
3685 		mgr->mst_primary = NULL;
3686 		/* this can fail if the device is gone */
3687 		drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
3688 		ret = 0;
3689 		mgr->payload_id_table_cleared = false;
3690 
3691 		memset(&mgr->down_rep_recv, 0, sizeof(mgr->down_rep_recv));
3692 		memset(&mgr->up_req_recv, 0, sizeof(mgr->up_req_recv));
3693 	}
3694 
3695 out_unlock:
3696 	mutex_unlock(&mgr->lock);
3697 	if (mstb)
3698 		drm_dp_mst_topology_put_mstb(mstb);
3699 	return ret;
3700 
3701 }
3702 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst);
3703 
3704 static void
3705 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb)
3706 {
3707 	struct drm_dp_mst_port *port;
3708 
3709 	/* The link address will need to be re-sent on resume */
3710 	mstb->link_address_sent = false;
3711 
3712 	list_for_each_entry(port, &mstb->ports, next)
3713 		if (port->mstb)
3714 			drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb);
3715 }
3716 
3717 /**
3718  * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager
3719  * @mgr: manager to suspend
3720  *
3721  * This function tells the MST device that we can't handle UP messages
3722  * anymore. This should stop it from sending any since we are suspended.
3723  */
3724 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr)
3725 {
3726 	mutex_lock(&mgr->lock);
3727 	drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3728 			   DP_MST_EN | DP_UPSTREAM_IS_SRC);
3729 	mutex_unlock(&mgr->lock);
3730 	flush_work(&mgr->up_req_work);
3731 	flush_work(&mgr->work);
3732 	flush_work(&mgr->delayed_destroy_work);
3733 
3734 	mutex_lock(&mgr->lock);
3735 	if (mgr->mst_state && mgr->mst_primary)
3736 		drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary);
3737 	mutex_unlock(&mgr->lock);
3738 }
3739 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend);
3740 
3741 /**
3742  * drm_dp_mst_topology_mgr_resume() - resume the MST manager
3743  * @mgr: manager to resume
3744  * @sync: whether or not to perform topology reprobing synchronously
3745  *
3746  * This will fetch DPCD and see if the device is still there,
3747  * if it is, it will rewrite the MSTM control bits, and return.
3748  *
3749  * If the device fails this returns -1, and the driver should do
3750  * a full MST reprobe, in case we were undocked.
3751  *
3752  * During system resume (where it is assumed that the driver will be calling
3753  * drm_atomic_helper_resume()) this function should be called beforehand with
3754  * @sync set to true. In contexts like runtime resume where the driver is not
3755  * expected to be calling drm_atomic_helper_resume(), this function should be
3756  * called with @sync set to false in order to avoid deadlocking.
3757  *
3758  * Returns: -1 if the MST topology was removed while we were suspended, 0
3759  * otherwise.
3760  */
3761 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr,
3762 				   bool sync)
3763 {
3764 	int ret;
3765 	u8 guid[16];
3766 
3767 	mutex_lock(&mgr->lock);
3768 	if (!mgr->mst_primary)
3769 		goto out_fail;
3770 
3771 	if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) {
3772 		drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n");
3773 		goto out_fail;
3774 	}
3775 
3776 	ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3777 				 DP_MST_EN |
3778 				 DP_UP_REQ_EN |
3779 				 DP_UPSTREAM_IS_SRC);
3780 	if (ret < 0) {
3781 		drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n");
3782 		goto out_fail;
3783 	}
3784 
3785 	/* Some hubs forget their guids after they resume */
3786 	ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16);
3787 	if (ret != 16) {
3788 		drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n");
3789 		goto out_fail;
3790 	}
3791 
3792 	ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid);
3793 	if (ret) {
3794 		drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n");
3795 		goto out_fail;
3796 	}
3797 
3798 	/*
3799 	 * For the final step of resuming the topology, we need to bring the
3800 	 * state of our in-memory topology back into sync with reality. So,
3801 	 * restart the probing process as if we're probing a new hub
3802 	 */
3803 	queue_work(system_long_wq, &mgr->work);
3804 	mutex_unlock(&mgr->lock);
3805 
3806 	if (sync) {
3807 		drm_dbg_kms(mgr->dev,
3808 			    "Waiting for link probe work to finish re-syncing topology...\n");
3809 		flush_work(&mgr->work);
3810 	}
3811 
3812 	return 0;
3813 
3814 out_fail:
3815 	mutex_unlock(&mgr->lock);
3816 	return -1;
3817 }
3818 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume);
3819 
3820 static bool
3821 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up,
3822 		      struct drm_dp_mst_branch **mstb)
3823 {
3824 	int len;
3825 	u8 replyblock[32];
3826 	int replylen, curreply;
3827 	int ret;
3828 	u8 hdrlen;
3829 	struct drm_dp_sideband_msg_hdr hdr;
3830 	struct drm_dp_sideband_msg_rx *msg =
3831 		up ? &mgr->up_req_recv : &mgr->down_rep_recv;
3832 	int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE :
3833 			   DP_SIDEBAND_MSG_DOWN_REP_BASE;
3834 
3835 	if (!up)
3836 		*mstb = NULL;
3837 
3838 	len = min(mgr->max_dpcd_transaction_bytes, 16);
3839 	ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len);
3840 	if (ret != len) {
3841 		drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret);
3842 		return false;
3843 	}
3844 
3845 	ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen);
3846 	if (ret == false) {
3847 		print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16,
3848 			       1, replyblock, len, false);
3849 		drm_dbg_kms(mgr->dev, "ERROR: failed header\n");
3850 		return false;
3851 	}
3852 
3853 	if (!up) {
3854 		/* Caller is responsible for giving back this reference */
3855 		*mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad);
3856 		if (!*mstb) {
3857 			drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct);
3858 			return false;
3859 		}
3860 	}
3861 
3862 	if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) {
3863 		drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]);
3864 		return false;
3865 	}
3866 
3867 	replylen = min(msg->curchunk_len, (u8)(len - hdrlen));
3868 	ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen);
3869 	if (!ret) {
3870 		drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]);
3871 		return false;
3872 	}
3873 
3874 	replylen = msg->curchunk_len + msg->curchunk_hdrlen - len;
3875 	curreply = len;
3876 	while (replylen > 0) {
3877 		len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16);
3878 		ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply,
3879 				    replyblock, len);
3880 		if (ret != len) {
3881 			drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n",
3882 				    len, ret);
3883 			return false;
3884 		}
3885 
3886 		ret = drm_dp_sideband_append_payload(msg, replyblock, len);
3887 		if (!ret) {
3888 			drm_dbg_kms(mgr->dev, "failed to build sideband msg\n");
3889 			return false;
3890 		}
3891 
3892 		curreply += len;
3893 		replylen -= len;
3894 	}
3895 	return true;
3896 }
3897 
3898 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr)
3899 {
3900 	struct drm_dp_sideband_msg_tx *txmsg;
3901 	struct drm_dp_mst_branch *mstb = NULL;
3902 	struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv;
3903 
3904 	if (!drm_dp_get_one_sb_msg(mgr, false, &mstb))
3905 		goto out_clear_reply;
3906 
3907 	/* Multi-packet message transmission, don't clear the reply */
3908 	if (!msg->have_eomt)
3909 		goto out;
3910 
3911 	/* find the message */
3912 	mutex_lock(&mgr->qlock);
3913 	txmsg = list_first_entry_or_null(&mgr->tx_msg_downq,
3914 					 struct drm_dp_sideband_msg_tx, next);
3915 	mutex_unlock(&mgr->qlock);
3916 
3917 	/* Were we actually expecting a response, and from this mstb? */
3918 	if (!txmsg || txmsg->dst != mstb) {
3919 		struct drm_dp_sideband_msg_hdr *hdr;
3920 
3921 		hdr = &msg->initial_hdr;
3922 		drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n",
3923 			    mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]);
3924 		goto out_clear_reply;
3925 	}
3926 
3927 	drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply);
3928 
3929 	if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3930 		drm_dbg_kms(mgr->dev,
3931 			    "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n",
3932 			    txmsg->reply.req_type,
3933 			    drm_dp_mst_req_type_str(txmsg->reply.req_type),
3934 			    txmsg->reply.u.nak.reason,
3935 			    drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason),
3936 			    txmsg->reply.u.nak.nak_data);
3937 	}
3938 
3939 	memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx));
3940 	drm_dp_mst_topology_put_mstb(mstb);
3941 
3942 	mutex_lock(&mgr->qlock);
3943 	txmsg->state = DRM_DP_SIDEBAND_TX_RX;
3944 	list_del(&txmsg->next);
3945 	mutex_unlock(&mgr->qlock);
3946 
3947 	wake_up_all(&mgr->tx_waitq);
3948 
3949 	return 0;
3950 
3951 out_clear_reply:
3952 	memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx));
3953 out:
3954 	if (mstb)
3955 		drm_dp_mst_topology_put_mstb(mstb);
3956 
3957 	return 0;
3958 }
3959 
3960 static inline bool
3961 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr,
3962 			  struct drm_dp_pending_up_req *up_req)
3963 {
3964 	struct drm_dp_mst_branch *mstb = NULL;
3965 	struct drm_dp_sideband_msg_req_body *msg = &up_req->msg;
3966 	struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr;
3967 	bool hotplug = false, dowork = false;
3968 
3969 	if (hdr->broadcast) {
3970 		const u8 *guid = NULL;
3971 
3972 		if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY)
3973 			guid = msg->u.conn_stat.guid;
3974 		else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY)
3975 			guid = msg->u.resource_stat.guid;
3976 
3977 		if (guid)
3978 			mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid);
3979 	} else {
3980 		mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
3981 	}
3982 
3983 	if (!mstb) {
3984 		drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct);
3985 		return false;
3986 	}
3987 
3988 	/* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */
3989 	if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) {
3990 		dowork = drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat);
3991 		hotplug = true;
3992 	}
3993 
3994 	drm_dp_mst_topology_put_mstb(mstb);
3995 
3996 	if (dowork)
3997 		queue_work(system_long_wq, &mgr->work);
3998 	return hotplug;
3999 }
4000 
4001 static void drm_dp_mst_up_req_work(struct work_struct *work)
4002 {
4003 	struct drm_dp_mst_topology_mgr *mgr =
4004 		container_of(work, struct drm_dp_mst_topology_mgr,
4005 			     up_req_work);
4006 	struct drm_dp_pending_up_req *up_req;
4007 	bool send_hotplug = false;
4008 
4009 	mutex_lock(&mgr->probe_lock);
4010 	while (true) {
4011 		mutex_lock(&mgr->up_req_lock);
4012 		up_req = list_first_entry_or_null(&mgr->up_req_list,
4013 						  struct drm_dp_pending_up_req,
4014 						  next);
4015 		if (up_req)
4016 			list_del(&up_req->next);
4017 		mutex_unlock(&mgr->up_req_lock);
4018 
4019 		if (!up_req)
4020 			break;
4021 
4022 		send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req);
4023 		kfree(up_req);
4024 	}
4025 	mutex_unlock(&mgr->probe_lock);
4026 
4027 	if (send_hotplug)
4028 		drm_kms_helper_hotplug_event(mgr->dev);
4029 }
4030 
4031 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr)
4032 {
4033 	struct drm_dp_pending_up_req *up_req;
4034 
4035 	if (!drm_dp_get_one_sb_msg(mgr, true, NULL))
4036 		goto out;
4037 
4038 	if (!mgr->up_req_recv.have_eomt)
4039 		return 0;
4040 
4041 	up_req = kzalloc(sizeof(*up_req), GFP_KERNEL);
4042 	if (!up_req)
4043 		return -ENOMEM;
4044 
4045 	INIT_LIST_HEAD(&up_req->next);
4046 
4047 	drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg);
4048 
4049 	if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY &&
4050 	    up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) {
4051 		drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n",
4052 			    up_req->msg.req_type);
4053 		kfree(up_req);
4054 		goto out;
4055 	}
4056 
4057 	drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type,
4058 				 false);
4059 
4060 	if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) {
4061 		const struct drm_dp_connection_status_notify *conn_stat =
4062 			&up_req->msg.u.conn_stat;
4063 
4064 		drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n",
4065 			    conn_stat->port_number,
4066 			    conn_stat->legacy_device_plug_status,
4067 			    conn_stat->displayport_device_plug_status,
4068 			    conn_stat->message_capability_status,
4069 			    conn_stat->input_port,
4070 			    conn_stat->peer_device_type);
4071 	} else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) {
4072 		const struct drm_dp_resource_status_notify *res_stat =
4073 			&up_req->msg.u.resource_stat;
4074 
4075 		drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n",
4076 			    res_stat->port_number,
4077 			    res_stat->available_pbn);
4078 	}
4079 
4080 	up_req->hdr = mgr->up_req_recv.initial_hdr;
4081 	mutex_lock(&mgr->up_req_lock);
4082 	list_add_tail(&up_req->next, &mgr->up_req_list);
4083 	mutex_unlock(&mgr->up_req_lock);
4084 	queue_work(system_long_wq, &mgr->up_req_work);
4085 
4086 out:
4087 	memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
4088 	return 0;
4089 }
4090 
4091 /**
4092  * drm_dp_mst_hpd_irq_handle_event() - MST hotplug IRQ handle MST event
4093  * @mgr: manager to notify irq for.
4094  * @esi: 4 bytes from SINK_COUNT_ESI
4095  * @ack: 4 bytes used to ack events starting from SINK_COUNT_ESI
4096  * @handled: whether the hpd interrupt was consumed or not
4097  *
4098  * This should be called from the driver when it detects a HPD IRQ,
4099  * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The
4100  * topology manager will process the sideband messages received
4101  * as indicated in the DEVICE_SERVICE_IRQ_VECTOR_ESI0 and set the
4102  * corresponding flags that Driver has to ack the DP receiver later.
4103  *
4104  * Note that driver shall also call
4105  * drm_dp_mst_hpd_irq_send_new_request() if the 'handled' is set
4106  * after calling this function, to try to kick off a new request in
4107  * the queue if the previous message transaction is completed.
4108  *
4109  * See also:
4110  * drm_dp_mst_hpd_irq_send_new_request()
4111  */
4112 int drm_dp_mst_hpd_irq_handle_event(struct drm_dp_mst_topology_mgr *mgr, const u8 *esi,
4113 				    u8 *ack, bool *handled)
4114 {
4115 	int ret = 0;
4116 	int sc;
4117 	*handled = false;
4118 	sc = DP_GET_SINK_COUNT(esi[0]);
4119 
4120 	if (sc != mgr->sink_count) {
4121 		mgr->sink_count = sc;
4122 		*handled = true;
4123 	}
4124 
4125 	if (esi[1] & DP_DOWN_REP_MSG_RDY) {
4126 		ret = drm_dp_mst_handle_down_rep(mgr);
4127 		*handled = true;
4128 		ack[1] |= DP_DOWN_REP_MSG_RDY;
4129 	}
4130 
4131 	if (esi[1] & DP_UP_REQ_MSG_RDY) {
4132 		ret |= drm_dp_mst_handle_up_req(mgr);
4133 		*handled = true;
4134 		ack[1] |= DP_UP_REQ_MSG_RDY;
4135 	}
4136 
4137 	return ret;
4138 }
4139 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_handle_event);
4140 
4141 /**
4142  * drm_dp_mst_hpd_irq_send_new_request() - MST hotplug IRQ kick off new request
4143  * @mgr: manager to notify irq for.
4144  *
4145  * This should be called from the driver when mst irq event is handled
4146  * and acked. Note that new down request should only be sent when
4147  * previous message transaction is completed. Source is not supposed to generate
4148  * interleaved message transactions.
4149  */
4150 void drm_dp_mst_hpd_irq_send_new_request(struct drm_dp_mst_topology_mgr *mgr)
4151 {
4152 	struct drm_dp_sideband_msg_tx *txmsg;
4153 	bool kick = true;
4154 
4155 	mutex_lock(&mgr->qlock);
4156 	txmsg = list_first_entry_or_null(&mgr->tx_msg_downq,
4157 					 struct drm_dp_sideband_msg_tx, next);
4158 	/* If last transaction is not completed yet*/
4159 	if (!txmsg ||
4160 	    txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
4161 	    txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
4162 		kick = false;
4163 	mutex_unlock(&mgr->qlock);
4164 
4165 	if (kick)
4166 		drm_dp_mst_kick_tx(mgr);
4167 }
4168 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_send_new_request);
4169 /**
4170  * drm_dp_mst_detect_port() - get connection status for an MST port
4171  * @connector: DRM connector for this port
4172  * @ctx: The acquisition context to use for grabbing locks
4173  * @mgr: manager for this port
4174  * @port: pointer to a port
4175  *
4176  * This returns the current connection state for a port.
4177  */
4178 int
4179 drm_dp_mst_detect_port(struct drm_connector *connector,
4180 		       struct drm_modeset_acquire_ctx *ctx,
4181 		       struct drm_dp_mst_topology_mgr *mgr,
4182 		       struct drm_dp_mst_port *port)
4183 {
4184 	int ret;
4185 
4186 	/* we need to search for the port in the mgr in case it's gone */
4187 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
4188 	if (!port)
4189 		return connector_status_disconnected;
4190 
4191 	ret = drm_modeset_lock(&mgr->base.lock, ctx);
4192 	if (ret)
4193 		goto out;
4194 
4195 	ret = connector_status_disconnected;
4196 
4197 	if (!port->ddps)
4198 		goto out;
4199 
4200 	switch (port->pdt) {
4201 	case DP_PEER_DEVICE_NONE:
4202 		break;
4203 	case DP_PEER_DEVICE_MST_BRANCHING:
4204 		if (!port->mcs)
4205 			ret = connector_status_connected;
4206 		break;
4207 
4208 	case DP_PEER_DEVICE_SST_SINK:
4209 		ret = connector_status_connected;
4210 		/* for logical ports - cache the EDID */
4211 		if (port->port_num >= DP_MST_LOGICAL_PORT_0 && !port->cached_edid)
4212 			port->cached_edid = drm_edid_read_ddc(connector, &port->aux.ddc);
4213 		break;
4214 	case DP_PEER_DEVICE_DP_LEGACY_CONV:
4215 		if (port->ldps)
4216 			ret = connector_status_connected;
4217 		break;
4218 	}
4219 out:
4220 	drm_dp_mst_topology_put_port(port);
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL(drm_dp_mst_detect_port);
4224 
4225 /**
4226  * drm_dp_mst_edid_read() - get EDID for an MST port
4227  * @connector: toplevel connector to get EDID for
4228  * @mgr: manager for this port
4229  * @port: unverified pointer to a port.
4230  *
4231  * This returns an EDID for the port connected to a connector,
4232  * It validates the pointer still exists so the caller doesn't require a
4233  * reference.
4234  */
4235 const struct drm_edid *drm_dp_mst_edid_read(struct drm_connector *connector,
4236 					    struct drm_dp_mst_topology_mgr *mgr,
4237 					    struct drm_dp_mst_port *port)
4238 {
4239 	const struct drm_edid *drm_edid;
4240 
4241 	/* we need to search for the port in the mgr in case it's gone */
4242 	port = drm_dp_mst_topology_get_port_validated(mgr, port);
4243 	if (!port)
4244 		return NULL;
4245 
4246 	if (port->cached_edid)
4247 		drm_edid = drm_edid_dup(port->cached_edid);
4248 	else
4249 		drm_edid = drm_edid_read_ddc(connector, &port->aux.ddc);
4250 
4251 	drm_dp_mst_topology_put_port(port);
4252 
4253 	return drm_edid;
4254 }
4255 EXPORT_SYMBOL(drm_dp_mst_edid_read);
4256 
4257 /**
4258  * drm_dp_mst_get_edid() - get EDID for an MST port
4259  * @connector: toplevel connector to get EDID for
4260  * @mgr: manager for this port
4261  * @port: unverified pointer to a port.
4262  *
4263  * This function is deprecated; please use drm_dp_mst_edid_read() instead.
4264  *
4265  * This returns an EDID for the port connected to a connector,
4266  * It validates the pointer still exists so the caller doesn't require a
4267  * reference.
4268  */
4269 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector,
4270 				 struct drm_dp_mst_topology_mgr *mgr,
4271 				 struct drm_dp_mst_port *port)
4272 {
4273 	const struct drm_edid *drm_edid;
4274 	struct edid *edid;
4275 
4276 	drm_edid = drm_dp_mst_edid_read(connector, mgr, port);
4277 
4278 	edid = drm_edid_duplicate(drm_edid_raw(drm_edid));
4279 
4280 	drm_edid_free(drm_edid);
4281 
4282 	return edid;
4283 }
4284 EXPORT_SYMBOL(drm_dp_mst_get_edid);
4285 
4286 /**
4287  * drm_dp_atomic_find_time_slots() - Find and add time slots to the state
4288  * @state: global atomic state
4289  * @mgr: MST topology manager for the port
4290  * @port: port to find time slots for
4291  * @pbn: bandwidth required for the mode in PBN
4292  *
4293  * Allocates time slots to @port, replacing any previous time slot allocations it may
4294  * have had. Any atomic drivers which support MST must call this function in
4295  * their &drm_encoder_helper_funcs.atomic_check() callback unconditionally to
4296  * change the current time slot allocation for the new state, and ensure the MST
4297  * atomic state is added whenever the state of payloads in the topology changes.
4298  *
4299  * Allocations set by this function are not checked against the bandwidth
4300  * restraints of @mgr until the driver calls drm_dp_mst_atomic_check().
4301  *
4302  * Additionally, it is OK to call this function multiple times on the same
4303  * @port as needed. It is not OK however, to call this function and
4304  * drm_dp_atomic_release_time_slots() in the same atomic check phase.
4305  *
4306  * See also:
4307  * drm_dp_atomic_release_time_slots()
4308  * drm_dp_mst_atomic_check()
4309  *
4310  * Returns:
4311  * Total slots in the atomic state assigned for this port, or a negative error
4312  * code if the port no longer exists
4313  */
4314 int drm_dp_atomic_find_time_slots(struct drm_atomic_state *state,
4315 				  struct drm_dp_mst_topology_mgr *mgr,
4316 				  struct drm_dp_mst_port *port, int pbn)
4317 {
4318 	struct drm_dp_mst_topology_state *topology_state;
4319 	struct drm_dp_mst_atomic_payload *payload = NULL;
4320 	struct drm_connector_state *conn_state;
4321 	int prev_slots = 0, prev_bw = 0, req_slots;
4322 
4323 	topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4324 	if (IS_ERR(topology_state))
4325 		return PTR_ERR(topology_state);
4326 
4327 	conn_state = drm_atomic_get_new_connector_state(state, port->connector);
4328 	topology_state->pending_crtc_mask |= drm_crtc_mask(conn_state->crtc);
4329 
4330 	/* Find the current allocation for this port, if any */
4331 	payload = drm_atomic_get_mst_payload_state(topology_state, port);
4332 	if (payload) {
4333 		prev_slots = payload->time_slots;
4334 		prev_bw = payload->pbn;
4335 
4336 		/*
4337 		 * This should never happen, unless the driver tries
4338 		 * releasing and allocating the same timeslot allocation,
4339 		 * which is an error
4340 		 */
4341 		if (drm_WARN_ON(mgr->dev, payload->delete)) {
4342 			drm_err(mgr->dev,
4343 				"cannot allocate and release time slots on [MST PORT:%p] in the same state\n",
4344 				port);
4345 			return -EINVAL;
4346 		}
4347 	}
4348 
4349 	req_slots = DIV_ROUND_UP(dfixed_const(pbn), topology_state->pbn_div.full);
4350 
4351 	drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] TU %d -> %d\n",
4352 		       port->connector->base.id, port->connector->name,
4353 		       port, prev_slots, req_slots);
4354 	drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n",
4355 		       port->connector->base.id, port->connector->name,
4356 		       port, prev_bw, pbn);
4357 
4358 	/* Add the new allocation to the state, note the VCPI isn't assigned until the end */
4359 	if (!payload) {
4360 		payload = kzalloc(sizeof(*payload), GFP_KERNEL);
4361 		if (!payload)
4362 			return -ENOMEM;
4363 
4364 		drm_dp_mst_get_port_malloc(port);
4365 		payload->port = port;
4366 		payload->vc_start_slot = -1;
4367 		payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE;
4368 		list_add(&payload->next, &topology_state->payloads);
4369 	}
4370 	payload->time_slots = req_slots;
4371 	payload->pbn = pbn;
4372 
4373 	return req_slots;
4374 }
4375 EXPORT_SYMBOL(drm_dp_atomic_find_time_slots);
4376 
4377 /**
4378  * drm_dp_atomic_release_time_slots() - Release allocated time slots
4379  * @state: global atomic state
4380  * @mgr: MST topology manager for the port
4381  * @port: The port to release the time slots from
4382  *
4383  * Releases any time slots that have been allocated to a port in the atomic
4384  * state. Any atomic drivers which support MST must call this function
4385  * unconditionally in their &drm_connector_helper_funcs.atomic_check() callback.
4386  * This helper will check whether time slots would be released by the new state and
4387  * respond accordingly, along with ensuring the MST state is always added to the
4388  * atomic state whenever a new state would modify the state of payloads on the
4389  * topology.
4390  *
4391  * It is OK to call this even if @port has been removed from the system.
4392  * Additionally, it is OK to call this function multiple times on the same
4393  * @port as needed. It is not OK however, to call this function and
4394  * drm_dp_atomic_find_time_slots() on the same @port in a single atomic check
4395  * phase.
4396  *
4397  * See also:
4398  * drm_dp_atomic_find_time_slots()
4399  * drm_dp_mst_atomic_check()
4400  *
4401  * Returns:
4402  * 0 on success, negative error code otherwise
4403  */
4404 int drm_dp_atomic_release_time_slots(struct drm_atomic_state *state,
4405 				     struct drm_dp_mst_topology_mgr *mgr,
4406 				     struct drm_dp_mst_port *port)
4407 {
4408 	struct drm_dp_mst_topology_state *topology_state;
4409 	struct drm_dp_mst_atomic_payload *payload;
4410 	struct drm_connector_state *old_conn_state, *new_conn_state;
4411 	bool update_payload = true;
4412 
4413 	old_conn_state = drm_atomic_get_old_connector_state(state, port->connector);
4414 	if (!old_conn_state->crtc)
4415 		return 0;
4416 
4417 	/* If the CRTC isn't disabled by this state, don't release it's payload */
4418 	new_conn_state = drm_atomic_get_new_connector_state(state, port->connector);
4419 	if (new_conn_state->crtc) {
4420 		struct drm_crtc_state *crtc_state =
4421 			drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
4422 
4423 		/* No modeset means no payload changes, so it's safe to not pull in the MST state */
4424 		if (!crtc_state || !drm_atomic_crtc_needs_modeset(crtc_state))
4425 			return 0;
4426 
4427 		if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
4428 			update_payload = false;
4429 	}
4430 
4431 	topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4432 	if (IS_ERR(topology_state))
4433 		return PTR_ERR(topology_state);
4434 
4435 	topology_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc);
4436 	if (!update_payload)
4437 		return 0;
4438 
4439 	payload = drm_atomic_get_mst_payload_state(topology_state, port);
4440 	if (WARN_ON(!payload)) {
4441 		drm_err(mgr->dev, "No payload for [MST PORT:%p] found in mst state %p\n",
4442 			port, &topology_state->base);
4443 		return -EINVAL;
4444 	}
4445 
4446 	if (new_conn_state->crtc)
4447 		return 0;
4448 
4449 	drm_dbg_atomic(mgr->dev, "[MST PORT:%p] TU %d -> 0\n", port, payload->time_slots);
4450 	if (!payload->delete) {
4451 		payload->pbn = 0;
4452 		payload->delete = true;
4453 		topology_state->payload_mask &= ~BIT(payload->vcpi - 1);
4454 	}
4455 
4456 	return 0;
4457 }
4458 EXPORT_SYMBOL(drm_dp_atomic_release_time_slots);
4459 
4460 /**
4461  * drm_dp_mst_atomic_setup_commit() - setup_commit hook for MST helpers
4462  * @state: global atomic state
4463  *
4464  * This function saves all of the &drm_crtc_commit structs in an atomic state that touch any CRTCs
4465  * currently assigned to an MST topology. Drivers must call this hook from their
4466  * &drm_mode_config_helper_funcs.atomic_commit_setup hook.
4467  *
4468  * Returns:
4469  * 0 if all CRTC commits were retrieved successfully, negative error code otherwise
4470  */
4471 int drm_dp_mst_atomic_setup_commit(struct drm_atomic_state *state)
4472 {
4473 	struct drm_dp_mst_topology_mgr *mgr;
4474 	struct drm_dp_mst_topology_state *mst_state;
4475 	struct drm_crtc *crtc;
4476 	struct drm_crtc_state *crtc_state;
4477 	int i, j, commit_idx, num_commit_deps;
4478 
4479 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
4480 		if (!mst_state->pending_crtc_mask)
4481 			continue;
4482 
4483 		num_commit_deps = hweight32(mst_state->pending_crtc_mask);
4484 		mst_state->commit_deps = kmalloc_array(num_commit_deps,
4485 						       sizeof(*mst_state->commit_deps), GFP_KERNEL);
4486 		if (!mst_state->commit_deps)
4487 			return -ENOMEM;
4488 		mst_state->num_commit_deps = num_commit_deps;
4489 
4490 		commit_idx = 0;
4491 		for_each_new_crtc_in_state(state, crtc, crtc_state, j) {
4492 			if (mst_state->pending_crtc_mask & drm_crtc_mask(crtc)) {
4493 				mst_state->commit_deps[commit_idx++] =
4494 					drm_crtc_commit_get(crtc_state->commit);
4495 			}
4496 		}
4497 	}
4498 
4499 	return 0;
4500 }
4501 EXPORT_SYMBOL(drm_dp_mst_atomic_setup_commit);
4502 
4503 /**
4504  * drm_dp_mst_atomic_wait_for_dependencies() - Wait for all pending commits on MST topologies,
4505  * prepare new MST state for commit
4506  * @state: global atomic state
4507  *
4508  * Goes through any MST topologies in this atomic state, and waits for any pending commits which
4509  * touched CRTCs that were/are on an MST topology to be programmed to hardware and flipped to before
4510  * returning. This is to prevent multiple non-blocking commits affecting an MST topology from racing
4511  * with eachother by forcing them to be executed sequentially in situations where the only resources
4512  * the modeset objects in these commits share are an MST topology.
4513  *
4514  * This function also prepares the new MST state for commit by performing some state preparation
4515  * which can't be done until this point, such as reading back the final VC start slots (which are
4516  * determined at commit-time) from the previous state.
4517  *
4518  * All MST drivers must call this function after calling drm_atomic_helper_wait_for_dependencies(),
4519  * or whatever their equivalent of that is.
4520  */
4521 void drm_dp_mst_atomic_wait_for_dependencies(struct drm_atomic_state *state)
4522 {
4523 	struct drm_dp_mst_topology_state *old_mst_state, *new_mst_state;
4524 	struct drm_dp_mst_topology_mgr *mgr;
4525 	struct drm_dp_mst_atomic_payload *old_payload, *new_payload;
4526 	int i, j, ret;
4527 
4528 	for_each_oldnew_mst_mgr_in_state(state, mgr, old_mst_state, new_mst_state, i) {
4529 		for (j = 0; j < old_mst_state->num_commit_deps; j++) {
4530 			ret = drm_crtc_commit_wait(old_mst_state->commit_deps[j]);
4531 			if (ret < 0)
4532 				drm_err(state->dev, "Failed to wait for %s: %d\n",
4533 					old_mst_state->commit_deps[j]->crtc->name, ret);
4534 		}
4535 
4536 		/* Now that previous state is committed, it's safe to copy over the start slot
4537 		 * and allocation status assignments
4538 		 */
4539 		list_for_each_entry(old_payload, &old_mst_state->payloads, next) {
4540 			if (old_payload->delete)
4541 				continue;
4542 
4543 			new_payload = drm_atomic_get_mst_payload_state(new_mst_state,
4544 								       old_payload->port);
4545 			new_payload->vc_start_slot = old_payload->vc_start_slot;
4546 			new_payload->payload_allocation_status =
4547 							old_payload->payload_allocation_status;
4548 		}
4549 	}
4550 }
4551 EXPORT_SYMBOL(drm_dp_mst_atomic_wait_for_dependencies);
4552 
4553 /**
4554  * drm_dp_mst_root_conn_atomic_check() - Serialize CRTC commits on MST-capable connectors operating
4555  * in SST mode
4556  * @new_conn_state: The new connector state of the &drm_connector
4557  * @mgr: The MST topology manager for the &drm_connector
4558  *
4559  * Since MST uses fake &drm_encoder structs, the generic atomic modesetting code isn't able to
4560  * serialize non-blocking commits happening on the real DP connector of an MST topology switching
4561  * into/away from MST mode - as the CRTC on the real DP connector and the CRTCs on the connector's
4562  * MST topology will never share the same &drm_encoder.
4563  *
4564  * This function takes care of this serialization issue, by checking a root MST connector's atomic
4565  * state to determine if it is about to have a modeset - and then pulling in the MST topology state
4566  * if so, along with adding any relevant CRTCs to &drm_dp_mst_topology_state.pending_crtc_mask.
4567  *
4568  * Drivers implementing MST must call this function from the
4569  * &drm_connector_helper_funcs.atomic_check hook of any physical DP &drm_connector capable of
4570  * driving MST sinks.
4571  *
4572  * Returns:
4573  * 0 on success, negative error code otherwise
4574  */
4575 int drm_dp_mst_root_conn_atomic_check(struct drm_connector_state *new_conn_state,
4576 				      struct drm_dp_mst_topology_mgr *mgr)
4577 {
4578 	struct drm_atomic_state *state = new_conn_state->state;
4579 	struct drm_connector_state *old_conn_state =
4580 		drm_atomic_get_old_connector_state(state, new_conn_state->connector);
4581 	struct drm_crtc_state *crtc_state;
4582 	struct drm_dp_mst_topology_state *mst_state = NULL;
4583 
4584 	if (new_conn_state->crtc) {
4585 		crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
4586 		if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) {
4587 			mst_state = drm_atomic_get_mst_topology_state(state, mgr);
4588 			if (IS_ERR(mst_state))
4589 				return PTR_ERR(mst_state);
4590 
4591 			mst_state->pending_crtc_mask |= drm_crtc_mask(new_conn_state->crtc);
4592 		}
4593 	}
4594 
4595 	if (old_conn_state->crtc) {
4596 		crtc_state = drm_atomic_get_new_crtc_state(state, old_conn_state->crtc);
4597 		if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) {
4598 			if (!mst_state) {
4599 				mst_state = drm_atomic_get_mst_topology_state(state, mgr);
4600 				if (IS_ERR(mst_state))
4601 					return PTR_ERR(mst_state);
4602 			}
4603 
4604 			mst_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc);
4605 		}
4606 	}
4607 
4608 	return 0;
4609 }
4610 EXPORT_SYMBOL(drm_dp_mst_root_conn_atomic_check);
4611 
4612 /**
4613  * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format
4614  * @mst_state: mst_state to update
4615  * @link_encoding_cap: the ecoding format on the link
4616  */
4617 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap)
4618 {
4619 	if (link_encoding_cap == DP_CAP_ANSI_128B132B) {
4620 		mst_state->total_avail_slots = 64;
4621 		mst_state->start_slot = 0;
4622 	} else {
4623 		mst_state->total_avail_slots = 63;
4624 		mst_state->start_slot = 1;
4625 	}
4626 
4627 	DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n",
4628 		      (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b",
4629 		      mst_state);
4630 }
4631 EXPORT_SYMBOL(drm_dp_mst_update_slots);
4632 
4633 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
4634 				     int id, u8 start_slot, u8 num_slots)
4635 {
4636 	u8 payload_alloc[3], status;
4637 	int ret;
4638 	int retries = 0;
4639 
4640 	drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
4641 			   DP_PAYLOAD_TABLE_UPDATED);
4642 
4643 	payload_alloc[0] = id;
4644 	payload_alloc[1] = start_slot;
4645 	payload_alloc[2] = num_slots;
4646 
4647 	ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
4648 	if (ret != 3) {
4649 		drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret);
4650 		goto fail;
4651 	}
4652 
4653 retry:
4654 	ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4655 	if (ret < 0) {
4656 		drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret);
4657 		goto fail;
4658 	}
4659 
4660 	if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
4661 		retries++;
4662 		if (retries < 20) {
4663 			usleep_range(10000, 20000);
4664 			goto retry;
4665 		}
4666 		drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n",
4667 			    status);
4668 		ret = -EINVAL;
4669 		goto fail;
4670 	}
4671 	ret = 0;
4672 fail:
4673 	return ret;
4674 }
4675 
4676 static int do_get_act_status(struct drm_dp_aux *aux)
4677 {
4678 	int ret;
4679 	u8 status;
4680 
4681 	ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4682 	if (ret < 0)
4683 		return ret;
4684 
4685 	return status;
4686 }
4687 
4688 /**
4689  * drm_dp_check_act_status() - Polls for ACT handled status.
4690  * @mgr: manager to use
4691  *
4692  * Tries waiting for the MST hub to finish updating it's payload table by
4693  * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really
4694  * take that long).
4695  *
4696  * Returns:
4697  * 0 if the ACT was handled in time, negative error code on failure.
4698  */
4699 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr)
4700 {
4701 	/*
4702 	 * There doesn't seem to be any recommended retry count or timeout in
4703 	 * the MST specification. Since some hubs have been observed to take
4704 	 * over 1 second to update their payload allocations under certain
4705 	 * conditions, we use a rather large timeout value.
4706 	 */
4707 	const int timeout_ms = 3000;
4708 	int ret, status;
4709 
4710 	ret = readx_poll_timeout(do_get_act_status, mgr->aux, status,
4711 				 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
4712 				 200, timeout_ms * USEC_PER_MSEC);
4713 	if (ret < 0 && status >= 0) {
4714 		drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n",
4715 			timeout_ms, status);
4716 		return -EINVAL;
4717 	} else if (status < 0) {
4718 		/*
4719 		 * Failure here isn't unexpected - the hub may have
4720 		 * just been unplugged
4721 		 */
4722 		drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status);
4723 		return status;
4724 	}
4725 
4726 	return 0;
4727 }
4728 EXPORT_SYMBOL(drm_dp_check_act_status);
4729 
4730 /**
4731  * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode.
4732  * @clock: dot clock
4733  * @bpp: bpp as .4 binary fixed point
4734  *
4735  * This uses the formula in the spec to calculate the PBN value for a mode.
4736  */
4737 int drm_dp_calc_pbn_mode(int clock, int bpp)
4738 {
4739 	/*
4740 	 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
4741 	 * common multiplier to render an integer PBN for all link rate/lane
4742 	 * counts combinations
4743 	 * calculate
4744 	 * peak_kbps = clock * bpp / 16
4745 	 * peak_kbps *= SSC overhead / 1000000
4746 	 * peak_kbps /= 8    convert to Kbytes
4747 	 * peak_kBps *= (64/54) / 1000    convert to PBN
4748 	 */
4749 	/*
4750 	 * TODO: Use the actual link and mode parameters to calculate
4751 	 * the overhead. For now it's assumed that these are
4752 	 * 4 link lanes, 4096 hactive pixels, which don't add any
4753 	 * significant data padding overhead and that there is no DSC
4754 	 * or FEC overhead.
4755 	 */
4756 	int overhead = drm_dp_bw_overhead(4, 4096, 0, bpp,
4757 					  DRM_DP_BW_OVERHEAD_MST |
4758 					  DRM_DP_BW_OVERHEAD_SSC_REF_CLK);
4759 
4760 	return DIV64_U64_ROUND_UP(mul_u32_u32(clock * bpp, 64 * overhead >> 4),
4761 				  1000000ULL * 8 * 54 * 1000);
4762 }
4763 EXPORT_SYMBOL(drm_dp_calc_pbn_mode);
4764 
4765 /* we want to kick the TX after we've ack the up/down IRQs. */
4766 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr)
4767 {
4768 	queue_work(system_long_wq, &mgr->tx_work);
4769 }
4770 
4771 /*
4772  * Helper function for parsing DP device types into convenient strings
4773  * for use with dp_mst_topology
4774  */
4775 static const char *pdt_to_string(u8 pdt)
4776 {
4777 	switch (pdt) {
4778 	case DP_PEER_DEVICE_NONE:
4779 		return "NONE";
4780 	case DP_PEER_DEVICE_SOURCE_OR_SST:
4781 		return "SOURCE OR SST";
4782 	case DP_PEER_DEVICE_MST_BRANCHING:
4783 		return "MST BRANCHING";
4784 	case DP_PEER_DEVICE_SST_SINK:
4785 		return "SST SINK";
4786 	case DP_PEER_DEVICE_DP_LEGACY_CONV:
4787 		return "DP LEGACY CONV";
4788 	default:
4789 		return "ERR";
4790 	}
4791 }
4792 
4793 static void drm_dp_mst_dump_mstb(struct seq_file *m,
4794 				 struct drm_dp_mst_branch *mstb)
4795 {
4796 	struct drm_dp_mst_port *port;
4797 	int tabs = mstb->lct;
4798 	char prefix[10];
4799 	int i;
4800 
4801 	for (i = 0; i < tabs; i++)
4802 		prefix[i] = '\t';
4803 	prefix[i] = '\0';
4804 
4805 	seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports);
4806 	list_for_each_entry(port, &mstb->ports, next) {
4807 		seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n",
4808 			   prefix,
4809 			   port->port_num,
4810 			   port,
4811 			   port->input ? "input" : "output",
4812 			   pdt_to_string(port->pdt),
4813 			   port->ddps,
4814 			   port->ldps,
4815 			   port->num_sdp_streams,
4816 			   port->num_sdp_stream_sinks,
4817 			   port->fec_capable ? "true" : "false",
4818 			   port->connector);
4819 		if (port->mstb)
4820 			drm_dp_mst_dump_mstb(m, port->mstb);
4821 	}
4822 }
4823 
4824 #define DP_PAYLOAD_TABLE_SIZE		64
4825 
4826 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
4827 				  char *buf)
4828 {
4829 	int i;
4830 
4831 	for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) {
4832 		if (drm_dp_dpcd_read(mgr->aux,
4833 				     DP_PAYLOAD_TABLE_UPDATE_STATUS + i,
4834 				     &buf[i], 16) != 16)
4835 			return false;
4836 	}
4837 	return true;
4838 }
4839 
4840 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr,
4841 			       struct drm_dp_mst_port *port, char *name,
4842 			       int namelen)
4843 {
4844 	struct edid *mst_edid;
4845 
4846 	mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port);
4847 	drm_edid_get_monitor_name(mst_edid, name, namelen);
4848 	kfree(mst_edid);
4849 }
4850 
4851 /**
4852  * drm_dp_mst_dump_topology(): dump topology to seq file.
4853  * @m: seq_file to dump output to
4854  * @mgr: manager to dump current topology for.
4855  *
4856  * helper to dump MST topology to a seq file for debugfs.
4857  */
4858 void drm_dp_mst_dump_topology(struct seq_file *m,
4859 			      struct drm_dp_mst_topology_mgr *mgr)
4860 {
4861 	struct drm_dp_mst_topology_state *state;
4862 	struct drm_dp_mst_atomic_payload *payload;
4863 	int i, ret;
4864 
4865 	static const char *const status[] = {
4866 		"None",
4867 		"Local",
4868 		"DFP",
4869 		"Remote",
4870 	};
4871 
4872 	mutex_lock(&mgr->lock);
4873 	if (mgr->mst_primary)
4874 		drm_dp_mst_dump_mstb(m, mgr->mst_primary);
4875 
4876 	/* dump VCPIs */
4877 	mutex_unlock(&mgr->lock);
4878 
4879 	ret = drm_modeset_lock_single_interruptible(&mgr->base.lock);
4880 	if (ret < 0)
4881 		return;
4882 
4883 	state = to_drm_dp_mst_topology_state(mgr->base.state);
4884 	seq_printf(m, "\n*** Atomic state info ***\n");
4885 	seq_printf(m, "payload_mask: %x, max_payloads: %d, start_slot: %u, pbn_div: %d\n",
4886 		   state->payload_mask, mgr->max_payloads, state->start_slot,
4887 		   dfixed_trunc(state->pbn_div));
4888 
4889 	seq_printf(m, "\n| idx | port | vcpi | slots | pbn | dsc | status |     sink name     |\n");
4890 	for (i = 0; i < mgr->max_payloads; i++) {
4891 		list_for_each_entry(payload, &state->payloads, next) {
4892 			char name[14];
4893 
4894 			if (payload->vcpi != i || payload->delete)
4895 				continue;
4896 
4897 			fetch_monitor_name(mgr, payload->port, name, sizeof(name));
4898 			seq_printf(m, " %5d %6d %6d %02d - %02d %5d %5s %8s %19s\n",
4899 				   i,
4900 				   payload->port->port_num,
4901 				   payload->vcpi,
4902 				   payload->vc_start_slot,
4903 				   payload->vc_start_slot + payload->time_slots - 1,
4904 				   payload->pbn,
4905 				   payload->dsc_enabled ? "Y" : "N",
4906 				   status[payload->payload_allocation_status],
4907 				   (*name != 0) ? name : "Unknown");
4908 		}
4909 	}
4910 
4911 	seq_printf(m, "\n*** DPCD Info ***\n");
4912 	mutex_lock(&mgr->lock);
4913 	if (mgr->mst_primary) {
4914 		u8 buf[DP_PAYLOAD_TABLE_SIZE];
4915 		int ret;
4916 
4917 		if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) {
4918 			seq_printf(m, "dpcd read failed\n");
4919 			goto out;
4920 		}
4921 		seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf);
4922 
4923 		ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2);
4924 		if (ret != 2) {
4925 			seq_printf(m, "faux/mst read failed\n");
4926 			goto out;
4927 		}
4928 		seq_printf(m, "faux/mst: %*ph\n", 2, buf);
4929 
4930 		ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1);
4931 		if (ret != 1) {
4932 			seq_printf(m, "mst ctrl read failed\n");
4933 			goto out;
4934 		}
4935 		seq_printf(m, "mst ctrl: %*ph\n", 1, buf);
4936 
4937 		/* dump the standard OUI branch header */
4938 		ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE);
4939 		if (ret != DP_BRANCH_OUI_HEADER_SIZE) {
4940 			seq_printf(m, "branch oui read failed\n");
4941 			goto out;
4942 		}
4943 		seq_printf(m, "branch oui: %*phN devid: ", 3, buf);
4944 
4945 		for (i = 0x3; i < 0x8 && buf[i]; i++)
4946 			seq_printf(m, "%c", buf[i]);
4947 		seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n",
4948 			   buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]);
4949 		if (dump_dp_payload_table(mgr, buf))
4950 			seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf);
4951 	}
4952 
4953 out:
4954 	mutex_unlock(&mgr->lock);
4955 	drm_modeset_unlock(&mgr->base.lock);
4956 }
4957 EXPORT_SYMBOL(drm_dp_mst_dump_topology);
4958 
4959 static void drm_dp_tx_work(struct work_struct *work)
4960 {
4961 	struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work);
4962 
4963 	mutex_lock(&mgr->qlock);
4964 	if (!list_empty(&mgr->tx_msg_downq))
4965 		process_single_down_tx_qlock(mgr);
4966 	mutex_unlock(&mgr->qlock);
4967 }
4968 
4969 static inline void
4970 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port)
4971 {
4972 	drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs);
4973 
4974 	if (port->connector) {
4975 		drm_connector_unregister(port->connector);
4976 		drm_connector_put(port->connector);
4977 	}
4978 
4979 	drm_dp_mst_put_port_malloc(port);
4980 }
4981 
4982 static inline void
4983 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb)
4984 {
4985 	struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
4986 	struct drm_dp_mst_port *port, *port_tmp;
4987 	struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp;
4988 	bool wake_tx = false;
4989 
4990 	mutex_lock(&mgr->lock);
4991 	list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) {
4992 		list_del(&port->next);
4993 		drm_dp_mst_topology_put_port(port);
4994 	}
4995 	mutex_unlock(&mgr->lock);
4996 
4997 	/* drop any tx slot msg */
4998 	mutex_lock(&mstb->mgr->qlock);
4999 	list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) {
5000 		if (txmsg->dst != mstb)
5001 			continue;
5002 
5003 		txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
5004 		list_del(&txmsg->next);
5005 		wake_tx = true;
5006 	}
5007 	mutex_unlock(&mstb->mgr->qlock);
5008 
5009 	if (wake_tx)
5010 		wake_up_all(&mstb->mgr->tx_waitq);
5011 
5012 	drm_dp_mst_put_mstb_malloc(mstb);
5013 }
5014 
5015 static void drm_dp_delayed_destroy_work(struct work_struct *work)
5016 {
5017 	struct drm_dp_mst_topology_mgr *mgr =
5018 		container_of(work, struct drm_dp_mst_topology_mgr,
5019 			     delayed_destroy_work);
5020 	bool send_hotplug = false, go_again;
5021 
5022 	/*
5023 	 * Not a regular list traverse as we have to drop the destroy
5024 	 * connector lock before destroying the mstb/port, to avoid AB->BA
5025 	 * ordering between this lock and the config mutex.
5026 	 */
5027 	do {
5028 		go_again = false;
5029 
5030 		for (;;) {
5031 			struct drm_dp_mst_branch *mstb;
5032 
5033 			mutex_lock(&mgr->delayed_destroy_lock);
5034 			mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list,
5035 							struct drm_dp_mst_branch,
5036 							destroy_next);
5037 			if (mstb)
5038 				list_del(&mstb->destroy_next);
5039 			mutex_unlock(&mgr->delayed_destroy_lock);
5040 
5041 			if (!mstb)
5042 				break;
5043 
5044 			drm_dp_delayed_destroy_mstb(mstb);
5045 			go_again = true;
5046 		}
5047 
5048 		for (;;) {
5049 			struct drm_dp_mst_port *port;
5050 
5051 			mutex_lock(&mgr->delayed_destroy_lock);
5052 			port = list_first_entry_or_null(&mgr->destroy_port_list,
5053 							struct drm_dp_mst_port,
5054 							next);
5055 			if (port)
5056 				list_del(&port->next);
5057 			mutex_unlock(&mgr->delayed_destroy_lock);
5058 
5059 			if (!port)
5060 				break;
5061 
5062 			drm_dp_delayed_destroy_port(port);
5063 			send_hotplug = true;
5064 			go_again = true;
5065 		}
5066 	} while (go_again);
5067 
5068 	if (send_hotplug)
5069 		drm_kms_helper_hotplug_event(mgr->dev);
5070 }
5071 
5072 static struct drm_private_state *
5073 drm_dp_mst_duplicate_state(struct drm_private_obj *obj)
5074 {
5075 	struct drm_dp_mst_topology_state *state, *old_state =
5076 		to_dp_mst_topology_state(obj->state);
5077 	struct drm_dp_mst_atomic_payload *pos, *payload;
5078 
5079 	state = kmemdup(old_state, sizeof(*state), GFP_KERNEL);
5080 	if (!state)
5081 		return NULL;
5082 
5083 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
5084 
5085 	INIT_LIST_HEAD(&state->payloads);
5086 	state->commit_deps = NULL;
5087 	state->num_commit_deps = 0;
5088 	state->pending_crtc_mask = 0;
5089 
5090 	list_for_each_entry(pos, &old_state->payloads, next) {
5091 		/* Prune leftover freed timeslot allocations */
5092 		if (pos->delete)
5093 			continue;
5094 
5095 		payload = kmemdup(pos, sizeof(*payload), GFP_KERNEL);
5096 		if (!payload)
5097 			goto fail;
5098 
5099 		drm_dp_mst_get_port_malloc(payload->port);
5100 		list_add(&payload->next, &state->payloads);
5101 	}
5102 
5103 	return &state->base;
5104 
5105 fail:
5106 	list_for_each_entry_safe(pos, payload, &state->payloads, next) {
5107 		drm_dp_mst_put_port_malloc(pos->port);
5108 		kfree(pos);
5109 	}
5110 	kfree(state);
5111 
5112 	return NULL;
5113 }
5114 
5115 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj,
5116 				     struct drm_private_state *state)
5117 {
5118 	struct drm_dp_mst_topology_state *mst_state =
5119 		to_dp_mst_topology_state(state);
5120 	struct drm_dp_mst_atomic_payload *pos, *tmp;
5121 	int i;
5122 
5123 	list_for_each_entry_safe(pos, tmp, &mst_state->payloads, next) {
5124 		/* We only keep references to ports with active payloads */
5125 		if (!pos->delete)
5126 			drm_dp_mst_put_port_malloc(pos->port);
5127 		kfree(pos);
5128 	}
5129 
5130 	for (i = 0; i < mst_state->num_commit_deps; i++)
5131 		drm_crtc_commit_put(mst_state->commit_deps[i]);
5132 
5133 	kfree(mst_state->commit_deps);
5134 	kfree(mst_state);
5135 }
5136 
5137 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
5138 						 struct drm_dp_mst_branch *branch)
5139 {
5140 	while (port->parent) {
5141 		if (port->parent == branch)
5142 			return true;
5143 
5144 		if (port->parent->port_parent)
5145 			port = port->parent->port_parent;
5146 		else
5147 			break;
5148 	}
5149 	return false;
5150 }
5151 
5152 static bool
5153 drm_dp_mst_port_downstream_of_parent_locked(struct drm_dp_mst_topology_mgr *mgr,
5154 					    struct drm_dp_mst_port *port,
5155 					    struct drm_dp_mst_port *parent)
5156 {
5157 	if (!mgr->mst_primary)
5158 		return false;
5159 
5160 	port = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary,
5161 							     port);
5162 	if (!port)
5163 		return false;
5164 
5165 	if (!parent)
5166 		return true;
5167 
5168 	parent = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary,
5169 							       parent);
5170 	if (!parent)
5171 		return false;
5172 
5173 	if (!parent->mstb)
5174 		return false;
5175 
5176 	return drm_dp_mst_port_downstream_of_branch(port, parent->mstb);
5177 }
5178 
5179 /**
5180  * drm_dp_mst_port_downstream_of_parent - check if a port is downstream of a parent port
5181  * @mgr: MST topology manager
5182  * @port: the port being looked up
5183  * @parent: the parent port
5184  *
5185  * The function returns %true if @port is downstream of @parent. If @parent is
5186  * %NULL - denoting the root port - the function returns %true if @port is in
5187  * @mgr's topology.
5188  */
5189 bool
5190 drm_dp_mst_port_downstream_of_parent(struct drm_dp_mst_topology_mgr *mgr,
5191 				     struct drm_dp_mst_port *port,
5192 				     struct drm_dp_mst_port *parent)
5193 {
5194 	bool ret;
5195 
5196 	mutex_lock(&mgr->lock);
5197 	ret = drm_dp_mst_port_downstream_of_parent_locked(mgr, port, parent);
5198 	mutex_unlock(&mgr->lock);
5199 
5200 	return ret;
5201 }
5202 EXPORT_SYMBOL(drm_dp_mst_port_downstream_of_parent);
5203 
5204 static int
5205 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port,
5206 				      struct drm_dp_mst_topology_state *state,
5207 				      struct drm_dp_mst_port **failing_port);
5208 
5209 static int
5210 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb,
5211 				      struct drm_dp_mst_topology_state *state,
5212 				      struct drm_dp_mst_port **failing_port)
5213 {
5214 	struct drm_dp_mst_atomic_payload *payload;
5215 	struct drm_dp_mst_port *port;
5216 	int pbn_used = 0, ret;
5217 	bool found = false;
5218 
5219 	/* Check that we have at least one port in our state that's downstream
5220 	 * of this branch, otherwise we can skip this branch
5221 	 */
5222 	list_for_each_entry(payload, &state->payloads, next) {
5223 		if (!payload->pbn ||
5224 		    !drm_dp_mst_port_downstream_of_branch(payload->port, mstb))
5225 			continue;
5226 
5227 		found = true;
5228 		break;
5229 	}
5230 	if (!found)
5231 		return 0;
5232 
5233 	if (mstb->port_parent)
5234 		drm_dbg_atomic(mstb->mgr->dev,
5235 			       "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n",
5236 			       mstb->port_parent->parent, mstb->port_parent, mstb);
5237 	else
5238 		drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb);
5239 
5240 	list_for_each_entry(port, &mstb->ports, next) {
5241 		ret = drm_dp_mst_atomic_check_port_bw_limit(port, state, failing_port);
5242 		if (ret < 0)
5243 			return ret;
5244 
5245 		pbn_used += ret;
5246 	}
5247 
5248 	return pbn_used;
5249 }
5250 
5251 static int
5252 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port,
5253 				      struct drm_dp_mst_topology_state *state,
5254 				      struct drm_dp_mst_port **failing_port)
5255 {
5256 	struct drm_dp_mst_atomic_payload *payload;
5257 	int pbn_used = 0;
5258 
5259 	if (port->pdt == DP_PEER_DEVICE_NONE)
5260 		return 0;
5261 
5262 	if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
5263 		payload = drm_atomic_get_mst_payload_state(state, port);
5264 		if (!payload)
5265 			return 0;
5266 
5267 		/*
5268 		 * This could happen if the sink deasserted its HPD line, but
5269 		 * the branch device still reports it as attached (PDT != NONE).
5270 		 */
5271 		if (!port->full_pbn) {
5272 			drm_dbg_atomic(port->mgr->dev,
5273 				       "[MSTB:%p] [MST PORT:%p] no BW available for the port\n",
5274 				       port->parent, port);
5275 			*failing_port = port;
5276 			return -EINVAL;
5277 		}
5278 
5279 		pbn_used = payload->pbn;
5280 	} else {
5281 		pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb,
5282 								 state,
5283 								 failing_port);
5284 		if (pbn_used <= 0)
5285 			return pbn_used;
5286 	}
5287 
5288 	if (pbn_used > port->full_pbn) {
5289 		drm_dbg_atomic(port->mgr->dev,
5290 			       "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n",
5291 			       port->parent, port, pbn_used, port->full_pbn);
5292 		*failing_port = port;
5293 		return -ENOSPC;
5294 	}
5295 
5296 	drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n",
5297 		       port->parent, port, pbn_used, port->full_pbn);
5298 
5299 	return pbn_used;
5300 }
5301 
5302 static inline int
5303 drm_dp_mst_atomic_check_payload_alloc_limits(struct drm_dp_mst_topology_mgr *mgr,
5304 					     struct drm_dp_mst_topology_state *mst_state)
5305 {
5306 	struct drm_dp_mst_atomic_payload *payload;
5307 	int avail_slots = mst_state->total_avail_slots, payload_count = 0;
5308 
5309 	list_for_each_entry(payload, &mst_state->payloads, next) {
5310 		/* Releasing payloads is always OK-even if the port is gone */
5311 		if (payload->delete) {
5312 			drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all time slots\n",
5313 				       payload->port);
5314 			continue;
5315 		}
5316 
5317 		drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d time slots\n",
5318 			       payload->port, payload->time_slots);
5319 
5320 		avail_slots -= payload->time_slots;
5321 		if (avail_slots < 0) {
5322 			drm_dbg_atomic(mgr->dev,
5323 				       "[MST PORT:%p] not enough time slots in mst state %p (avail=%d)\n",
5324 				       payload->port, mst_state, avail_slots + payload->time_slots);
5325 			return -ENOSPC;
5326 		}
5327 
5328 		if (++payload_count > mgr->max_payloads) {
5329 			drm_dbg_atomic(mgr->dev,
5330 				       "[MST MGR:%p] state %p has too many payloads (max=%d)\n",
5331 				       mgr, mst_state, mgr->max_payloads);
5332 			return -EINVAL;
5333 		}
5334 
5335 		/* Assign a VCPI */
5336 		if (!payload->vcpi) {
5337 			payload->vcpi = ffz(mst_state->payload_mask) + 1;
5338 			drm_dbg_atomic(mgr->dev, "[MST PORT:%p] assigned VCPI #%d\n",
5339 				       payload->port, payload->vcpi);
5340 			mst_state->payload_mask |= BIT(payload->vcpi - 1);
5341 		}
5342 	}
5343 
5344 	if (!payload_count)
5345 		mst_state->pbn_div.full = dfixed_const(0);
5346 
5347 	drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p TU pbn_div=%d avail=%d used=%d\n",
5348 		       mgr, mst_state, dfixed_trunc(mst_state->pbn_div), avail_slots,
5349 		       mst_state->total_avail_slots - avail_slots);
5350 
5351 	return 0;
5352 }
5353 
5354 /**
5355  * drm_dp_mst_add_affected_dsc_crtcs
5356  * @state: Pointer to the new struct drm_dp_mst_topology_state
5357  * @mgr: MST topology manager
5358  *
5359  * Whenever there is a change in mst topology
5360  * DSC configuration would have to be recalculated
5361  * therefore we need to trigger modeset on all affected
5362  * CRTCs in that topology
5363  *
5364  * See also:
5365  * drm_dp_mst_atomic_enable_dsc()
5366  */
5367 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr)
5368 {
5369 	struct drm_dp_mst_topology_state *mst_state;
5370 	struct drm_dp_mst_atomic_payload *pos;
5371 	struct drm_connector *connector;
5372 	struct drm_connector_state *conn_state;
5373 	struct drm_crtc *crtc;
5374 	struct drm_crtc_state *crtc_state;
5375 
5376 	mst_state = drm_atomic_get_mst_topology_state(state, mgr);
5377 
5378 	if (IS_ERR(mst_state))
5379 		return PTR_ERR(mst_state);
5380 
5381 	list_for_each_entry(pos, &mst_state->payloads, next) {
5382 
5383 		connector = pos->port->connector;
5384 
5385 		if (!connector)
5386 			return -EINVAL;
5387 
5388 		conn_state = drm_atomic_get_connector_state(state, connector);
5389 
5390 		if (IS_ERR(conn_state))
5391 			return PTR_ERR(conn_state);
5392 
5393 		crtc = conn_state->crtc;
5394 
5395 		if (!crtc)
5396 			continue;
5397 
5398 		if (!drm_dp_mst_dsc_aux_for_port(pos->port))
5399 			continue;
5400 
5401 		crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc);
5402 
5403 		if (IS_ERR(crtc_state))
5404 			return PTR_ERR(crtc_state);
5405 
5406 		drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n",
5407 			       mgr, crtc);
5408 
5409 		crtc_state->mode_changed = true;
5410 	}
5411 	return 0;
5412 }
5413 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs);
5414 
5415 /**
5416  * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off
5417  * @state: Pointer to the new drm_atomic_state
5418  * @port: Pointer to the affected MST Port
5419  * @pbn: Newly recalculated bw required for link with DSC enabled
5420  * @enable: Boolean flag to enable or disable DSC on the port
5421  *
5422  * This function enables DSC on the given Port
5423  * by recalculating its vcpi from pbn provided
5424  * and sets dsc_enable flag to keep track of which
5425  * ports have DSC enabled
5426  *
5427  */
5428 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state,
5429 				 struct drm_dp_mst_port *port,
5430 				 int pbn, bool enable)
5431 {
5432 	struct drm_dp_mst_topology_state *mst_state;
5433 	struct drm_dp_mst_atomic_payload *payload;
5434 	int time_slots = 0;
5435 
5436 	mst_state = drm_atomic_get_mst_topology_state(state, port->mgr);
5437 	if (IS_ERR(mst_state))
5438 		return PTR_ERR(mst_state);
5439 
5440 	payload = drm_atomic_get_mst_payload_state(mst_state, port);
5441 	if (!payload) {
5442 		drm_dbg_atomic(state->dev,
5443 			       "[MST PORT:%p] Couldn't find payload in mst state %p\n",
5444 			       port, mst_state);
5445 		return -EINVAL;
5446 	}
5447 
5448 	if (payload->dsc_enabled == enable) {
5449 		drm_dbg_atomic(state->dev,
5450 			       "[MST PORT:%p] DSC flag is already set to %d, returning %d time slots\n",
5451 			       port, enable, payload->time_slots);
5452 		time_slots = payload->time_slots;
5453 	}
5454 
5455 	if (enable) {
5456 		time_slots = drm_dp_atomic_find_time_slots(state, port->mgr, port, pbn);
5457 		drm_dbg_atomic(state->dev,
5458 			       "[MST PORT:%p] Enabling DSC flag, reallocating %d time slots on the port\n",
5459 			       port, time_slots);
5460 		if (time_slots < 0)
5461 			return -EINVAL;
5462 	}
5463 
5464 	payload->dsc_enabled = enable;
5465 
5466 	return time_slots;
5467 }
5468 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc);
5469 
5470 /**
5471  * drm_dp_mst_atomic_check_mgr - Check the atomic state of an MST topology manager
5472  * @state: The global atomic state
5473  * @mgr: Manager to check
5474  * @mst_state: The MST atomic state for @mgr
5475  * @failing_port: Returns the port with a BW limitation
5476  *
5477  * Checks the given MST manager's topology state for an atomic update to ensure
5478  * that it's valid. This includes checking whether there's enough bandwidth to
5479  * support the new timeslot allocations in the atomic update.
5480  *
5481  * Any atomic drivers supporting DP MST must make sure to call this or
5482  * the drm_dp_mst_atomic_check() function after checking the rest of their state
5483  * in their &drm_mode_config_funcs.atomic_check() callback.
5484  *
5485  * See also:
5486  * drm_dp_mst_atomic_check()
5487  * drm_dp_atomic_find_time_slots()
5488  * drm_dp_atomic_release_time_slots()
5489  *
5490  * Returns:
5491  *   - 0 if the new state is valid
5492  *   - %-ENOSPC, if the new state is invalid, because of BW limitation
5493  *         @failing_port is set to:
5494  *
5495  *         - The non-root port where a BW limit check failed
5496  *           with all the ports downstream of @failing_port passing
5497  *           the BW limit check.
5498  *           The returned port pointer is valid until at least
5499  *           one payload downstream of it exists.
5500  *         - %NULL if the BW limit check failed at the root port
5501  *           with all the ports downstream of the root port passing
5502  *           the BW limit check.
5503  *
5504  *   - %-EINVAL, if the new state is invalid, because the root port has
5505  *     too many payloads.
5506  */
5507 int drm_dp_mst_atomic_check_mgr(struct drm_atomic_state *state,
5508 				struct drm_dp_mst_topology_mgr *mgr,
5509 				struct drm_dp_mst_topology_state *mst_state,
5510 				struct drm_dp_mst_port **failing_port)
5511 {
5512 	int ret;
5513 
5514 	*failing_port = NULL;
5515 
5516 	if (!mgr->mst_state)
5517 		return 0;
5518 
5519 	mutex_lock(&mgr->lock);
5520 	ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary,
5521 						    mst_state,
5522 						    failing_port);
5523 	mutex_unlock(&mgr->lock);
5524 
5525 	if (ret < 0)
5526 		return ret;
5527 
5528 	return drm_dp_mst_atomic_check_payload_alloc_limits(mgr, mst_state);
5529 }
5530 EXPORT_SYMBOL(drm_dp_mst_atomic_check_mgr);
5531 
5532 /**
5533  * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an
5534  * atomic update is valid
5535  * @state: Pointer to the new &struct drm_dp_mst_topology_state
5536  *
5537  * Checks the given topology state for an atomic update to ensure that it's
5538  * valid, calling drm_dp_mst_atomic_check_mgr() for all MST manager in the
5539  * atomic state. This includes checking whether there's enough bandwidth to
5540  * support the new timeslot allocations in the atomic update.
5541  *
5542  * Any atomic drivers supporting DP MST must make sure to call this after
5543  * checking the rest of their state in their
5544  * &drm_mode_config_funcs.atomic_check() callback.
5545  *
5546  * See also:
5547  * drm_dp_mst_atomic_check_mgr()
5548  * drm_dp_atomic_find_time_slots()
5549  * drm_dp_atomic_release_time_slots()
5550  *
5551  * Returns:
5552  *
5553  * 0 if the new state is valid, negative error code otherwise.
5554  */
5555 int drm_dp_mst_atomic_check(struct drm_atomic_state *state)
5556 {
5557 	struct drm_dp_mst_topology_mgr *mgr;
5558 	struct drm_dp_mst_topology_state *mst_state;
5559 	int i, ret = 0;
5560 
5561 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
5562 		struct drm_dp_mst_port *tmp_port;
5563 
5564 		ret = drm_dp_mst_atomic_check_mgr(state, mgr, mst_state, &tmp_port);
5565 		if (ret)
5566 			break;
5567 	}
5568 
5569 	return ret;
5570 }
5571 EXPORT_SYMBOL(drm_dp_mst_atomic_check);
5572 
5573 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = {
5574 	.atomic_duplicate_state = drm_dp_mst_duplicate_state,
5575 	.atomic_destroy_state = drm_dp_mst_destroy_state,
5576 };
5577 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs);
5578 
5579 /**
5580  * drm_atomic_get_mst_topology_state: get MST topology state
5581  * @state: global atomic state
5582  * @mgr: MST topology manager, also the private object in this case
5583  *
5584  * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic
5585  * state vtable so that the private object state returned is that of a MST
5586  * topology object.
5587  *
5588  * RETURNS:
5589  *
5590  * The MST topology state or error pointer.
5591  */
5592 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state,
5593 								    struct drm_dp_mst_topology_mgr *mgr)
5594 {
5595 	return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base));
5596 }
5597 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state);
5598 
5599 /**
5600  * drm_atomic_get_old_mst_topology_state: get old MST topology state in atomic state, if any
5601  * @state: global atomic state
5602  * @mgr: MST topology manager, also the private object in this case
5603  *
5604  * This function wraps drm_atomic_get_old_private_obj_state() passing in the MST atomic
5605  * state vtable so that the private object state returned is that of a MST
5606  * topology object.
5607  *
5608  * Returns:
5609  *
5610  * The old MST topology state, or NULL if there's no topology state for this MST mgr
5611  * in the global atomic state
5612  */
5613 struct drm_dp_mst_topology_state *
5614 drm_atomic_get_old_mst_topology_state(struct drm_atomic_state *state,
5615 				      struct drm_dp_mst_topology_mgr *mgr)
5616 {
5617 	struct drm_private_state *old_priv_state =
5618 		drm_atomic_get_old_private_obj_state(state, &mgr->base);
5619 
5620 	return old_priv_state ? to_dp_mst_topology_state(old_priv_state) : NULL;
5621 }
5622 EXPORT_SYMBOL(drm_atomic_get_old_mst_topology_state);
5623 
5624 /**
5625  * drm_atomic_get_new_mst_topology_state: get new MST topology state in atomic state, if any
5626  * @state: global atomic state
5627  * @mgr: MST topology manager, also the private object in this case
5628  *
5629  * This function wraps drm_atomic_get_new_private_obj_state() passing in the MST atomic
5630  * state vtable so that the private object state returned is that of a MST
5631  * topology object.
5632  *
5633  * Returns:
5634  *
5635  * The new MST topology state, or NULL if there's no topology state for this MST mgr
5636  * in the global atomic state
5637  */
5638 struct drm_dp_mst_topology_state *
5639 drm_atomic_get_new_mst_topology_state(struct drm_atomic_state *state,
5640 				      struct drm_dp_mst_topology_mgr *mgr)
5641 {
5642 	struct drm_private_state *new_priv_state =
5643 		drm_atomic_get_new_private_obj_state(state, &mgr->base);
5644 
5645 	return new_priv_state ? to_dp_mst_topology_state(new_priv_state) : NULL;
5646 }
5647 EXPORT_SYMBOL(drm_atomic_get_new_mst_topology_state);
5648 
5649 /**
5650  * drm_dp_mst_topology_mgr_init - initialise a topology manager
5651  * @mgr: manager struct to initialise
5652  * @dev: device providing this structure - for i2c addition.
5653  * @aux: DP helper aux channel to talk to this device
5654  * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit
5655  * @max_payloads: maximum number of payloads this GPU can source
5656  * @conn_base_id: the connector object ID the MST device is connected to.
5657  *
5658  * Return 0 for success, or negative error code on failure
5659  */
5660 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr,
5661 				 struct drm_device *dev, struct drm_dp_aux *aux,
5662 				 int max_dpcd_transaction_bytes, int max_payloads,
5663 				 int conn_base_id)
5664 {
5665 	struct drm_dp_mst_topology_state *mst_state;
5666 
5667 	mutex_init(&mgr->lock);
5668 	mutex_init(&mgr->qlock);
5669 	mutex_init(&mgr->delayed_destroy_lock);
5670 	mutex_init(&mgr->up_req_lock);
5671 	mutex_init(&mgr->probe_lock);
5672 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5673 	mutex_init(&mgr->topology_ref_history_lock);
5674 	stack_depot_init();
5675 #endif
5676 	INIT_LIST_HEAD(&mgr->tx_msg_downq);
5677 	INIT_LIST_HEAD(&mgr->destroy_port_list);
5678 	INIT_LIST_HEAD(&mgr->destroy_branch_device_list);
5679 	INIT_LIST_HEAD(&mgr->up_req_list);
5680 
5681 	/*
5682 	 * delayed_destroy_work will be queued on a dedicated WQ, so that any
5683 	 * requeuing will be also flushed when deiniting the topology manager.
5684 	 */
5685 	mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0);
5686 	if (mgr->delayed_destroy_wq == NULL)
5687 		return -ENOMEM;
5688 
5689 	INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work);
5690 	INIT_WORK(&mgr->tx_work, drm_dp_tx_work);
5691 	INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work);
5692 	INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work);
5693 	init_waitqueue_head(&mgr->tx_waitq);
5694 	mgr->dev = dev;
5695 	mgr->aux = aux;
5696 	mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes;
5697 	mgr->max_payloads = max_payloads;
5698 	mgr->conn_base_id = conn_base_id;
5699 
5700 	mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL);
5701 	if (mst_state == NULL)
5702 		return -ENOMEM;
5703 
5704 	mst_state->total_avail_slots = 63;
5705 	mst_state->start_slot = 1;
5706 
5707 	mst_state->mgr = mgr;
5708 	INIT_LIST_HEAD(&mst_state->payloads);
5709 
5710 	drm_atomic_private_obj_init(dev, &mgr->base,
5711 				    &mst_state->base,
5712 				    &drm_dp_mst_topology_state_funcs);
5713 
5714 	return 0;
5715 }
5716 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init);
5717 
5718 /**
5719  * drm_dp_mst_topology_mgr_destroy() - destroy topology manager.
5720  * @mgr: manager to destroy
5721  */
5722 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr)
5723 {
5724 	drm_dp_mst_topology_mgr_set_mst(mgr, false);
5725 	flush_work(&mgr->work);
5726 	/* The following will also drain any requeued work on the WQ. */
5727 	if (mgr->delayed_destroy_wq) {
5728 		destroy_workqueue(mgr->delayed_destroy_wq);
5729 		mgr->delayed_destroy_wq = NULL;
5730 	}
5731 	mgr->dev = NULL;
5732 	mgr->aux = NULL;
5733 	drm_atomic_private_obj_fini(&mgr->base);
5734 	mgr->funcs = NULL;
5735 
5736 	mutex_destroy(&mgr->delayed_destroy_lock);
5737 	mutex_destroy(&mgr->qlock);
5738 	mutex_destroy(&mgr->lock);
5739 	mutex_destroy(&mgr->up_req_lock);
5740 	mutex_destroy(&mgr->probe_lock);
5741 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5742 	mutex_destroy(&mgr->topology_ref_history_lock);
5743 #endif
5744 }
5745 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy);
5746 
5747 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num)
5748 {
5749 	int i;
5750 
5751 	if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS)
5752 		return false;
5753 
5754 	for (i = 0; i < num - 1; i++) {
5755 		if (msgs[i].flags & I2C_M_RD ||
5756 		    msgs[i].len > 0xff)
5757 			return false;
5758 	}
5759 
5760 	return msgs[num - 1].flags & I2C_M_RD &&
5761 		msgs[num - 1].len <= 0xff;
5762 }
5763 
5764 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num)
5765 {
5766 	int i;
5767 
5768 	for (i = 0; i < num - 1; i++) {
5769 		if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) ||
5770 		    msgs[i].len > 0xff)
5771 			return false;
5772 	}
5773 
5774 	return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff;
5775 }
5776 
5777 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb,
5778 			       struct drm_dp_mst_port *port,
5779 			       struct i2c_msg *msgs, int num)
5780 {
5781 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5782 	unsigned int i;
5783 	struct drm_dp_sideband_msg_req_body msg;
5784 	struct drm_dp_sideband_msg_tx *txmsg = NULL;
5785 	int ret;
5786 
5787 	memset(&msg, 0, sizeof(msg));
5788 	msg.req_type = DP_REMOTE_I2C_READ;
5789 	msg.u.i2c_read.num_transactions = num - 1;
5790 	msg.u.i2c_read.port_number = port->port_num;
5791 	for (i = 0; i < num - 1; i++) {
5792 		msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr;
5793 		msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len;
5794 		msg.u.i2c_read.transactions[i].bytes = msgs[i].buf;
5795 		msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP);
5796 	}
5797 	msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr;
5798 	msg.u.i2c_read.num_bytes_read = msgs[num - 1].len;
5799 
5800 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5801 	if (!txmsg) {
5802 		ret = -ENOMEM;
5803 		goto out;
5804 	}
5805 
5806 	txmsg->dst = mstb;
5807 	drm_dp_encode_sideband_req(&msg, txmsg);
5808 
5809 	drm_dp_queue_down_tx(mgr, txmsg);
5810 
5811 	ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5812 	if (ret > 0) {
5813 
5814 		if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5815 			ret = -EREMOTEIO;
5816 			goto out;
5817 		}
5818 		if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) {
5819 			ret = -EIO;
5820 			goto out;
5821 		}
5822 		memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len);
5823 		ret = num;
5824 	}
5825 out:
5826 	kfree(txmsg);
5827 	return ret;
5828 }
5829 
5830 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb,
5831 				struct drm_dp_mst_port *port,
5832 				struct i2c_msg *msgs, int num)
5833 {
5834 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5835 	unsigned int i;
5836 	struct drm_dp_sideband_msg_req_body msg;
5837 	struct drm_dp_sideband_msg_tx *txmsg = NULL;
5838 	int ret;
5839 
5840 	txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5841 	if (!txmsg) {
5842 		ret = -ENOMEM;
5843 		goto out;
5844 	}
5845 	for (i = 0; i < num; i++) {
5846 		memset(&msg, 0, sizeof(msg));
5847 		msg.req_type = DP_REMOTE_I2C_WRITE;
5848 		msg.u.i2c_write.port_number = port->port_num;
5849 		msg.u.i2c_write.write_i2c_device_id = msgs[i].addr;
5850 		msg.u.i2c_write.num_bytes = msgs[i].len;
5851 		msg.u.i2c_write.bytes = msgs[i].buf;
5852 
5853 		memset(txmsg, 0, sizeof(*txmsg));
5854 		txmsg->dst = mstb;
5855 
5856 		drm_dp_encode_sideband_req(&msg, txmsg);
5857 		drm_dp_queue_down_tx(mgr, txmsg);
5858 
5859 		ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5860 		if (ret > 0) {
5861 			if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5862 				ret = -EREMOTEIO;
5863 				goto out;
5864 			}
5865 		} else {
5866 			goto out;
5867 		}
5868 	}
5869 	ret = num;
5870 out:
5871 	kfree(txmsg);
5872 	return ret;
5873 }
5874 
5875 /* I2C device */
5876 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter,
5877 			       struct i2c_msg *msgs, int num)
5878 {
5879 	struct drm_dp_aux *aux = adapter->algo_data;
5880 	struct drm_dp_mst_port *port =
5881 		container_of(aux, struct drm_dp_mst_port, aux);
5882 	struct drm_dp_mst_branch *mstb;
5883 	struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5884 	int ret;
5885 
5886 	mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
5887 	if (!mstb)
5888 		return -EREMOTEIO;
5889 
5890 	if (remote_i2c_read_ok(msgs, num)) {
5891 		ret = drm_dp_mst_i2c_read(mstb, port, msgs, num);
5892 	} else if (remote_i2c_write_ok(msgs, num)) {
5893 		ret = drm_dp_mst_i2c_write(mstb, port, msgs, num);
5894 	} else {
5895 		drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n");
5896 		ret = -EIO;
5897 	}
5898 
5899 	drm_dp_mst_topology_put_mstb(mstb);
5900 	return ret;
5901 }
5902 
5903 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter)
5904 {
5905 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
5906 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
5907 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
5908 	       I2C_FUNC_10BIT_ADDR;
5909 }
5910 
5911 static const struct i2c_algorithm drm_dp_mst_i2c_algo = {
5912 	.functionality = drm_dp_mst_i2c_functionality,
5913 	.master_xfer = drm_dp_mst_i2c_xfer,
5914 };
5915 
5916 /**
5917  * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX
5918  * @port: The port to add the I2C bus on
5919  *
5920  * Returns 0 on success or a negative error code on failure.
5921  */
5922 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port)
5923 {
5924 	struct drm_dp_aux *aux = &port->aux;
5925 	struct device *parent_dev = port->mgr->dev->dev;
5926 
5927 	aux->ddc.algo = &drm_dp_mst_i2c_algo;
5928 	aux->ddc.algo_data = aux;
5929 	aux->ddc.retries = 3;
5930 
5931 	aux->ddc.owner = THIS_MODULE;
5932 	/* FIXME: set the kdev of the port's connector as parent */
5933 	aux->ddc.dev.parent = parent_dev;
5934 	aux->ddc.dev.of_node = parent_dev->of_node;
5935 
5936 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev),
5937 		sizeof(aux->ddc.name));
5938 
5939 	return i2c_add_adapter(&aux->ddc);
5940 }
5941 
5942 /**
5943  * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter
5944  * @port: The port to remove the I2C bus from
5945  */
5946 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port)
5947 {
5948 	i2c_del_adapter(&port->aux.ddc);
5949 }
5950 
5951 /**
5952  * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device
5953  * @port: The port to check
5954  *
5955  * A single physical MST hub object can be represented in the topology
5956  * by multiple branches, with virtual ports between those branches.
5957  *
5958  * As of DP1.4, An MST hub with internal (virtual) ports must expose
5959  * certain DPCD registers over those ports. See sections 2.6.1.1.1
5960  * and 2.6.1.1.2 of Display Port specification v1.4 for details.
5961  *
5962  * May acquire mgr->lock
5963  *
5964  * Returns:
5965  * true if the port is a virtual DP peer device, false otherwise
5966  */
5967 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port)
5968 {
5969 	struct drm_dp_mst_port *downstream_port;
5970 
5971 	if (!port || port->dpcd_rev < DP_DPCD_REV_14)
5972 		return false;
5973 
5974 	/* Virtual DP Sink (Internal Display Panel) */
5975 	if (port->port_num >= 8)
5976 		return true;
5977 
5978 	/* DP-to-HDMI Protocol Converter */
5979 	if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV &&
5980 	    !port->mcs &&
5981 	    port->ldps)
5982 		return true;
5983 
5984 	/* DP-to-DP */
5985 	mutex_lock(&port->mgr->lock);
5986 	if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
5987 	    port->mstb &&
5988 	    port->mstb->num_ports == 2) {
5989 		list_for_each_entry(downstream_port, &port->mstb->ports, next) {
5990 			if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK &&
5991 			    !downstream_port->input) {
5992 				mutex_unlock(&port->mgr->lock);
5993 				return true;
5994 			}
5995 		}
5996 	}
5997 	mutex_unlock(&port->mgr->lock);
5998 
5999 	return false;
6000 }
6001 
6002 /**
6003  * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC
6004  * @port: The port to check. A leaf of the MST tree with an attached display.
6005  *
6006  * Depending on the situation, DSC may be enabled via the endpoint aux,
6007  * the immediately upstream aux, or the connector's physical aux.
6008  *
6009  * This is both the correct aux to read DSC_CAPABILITY and the
6010  * correct aux to write DSC_ENABLED.
6011  *
6012  * This operation can be expensive (up to four aux reads), so
6013  * the caller should cache the return.
6014  *
6015  * Returns:
6016  * NULL if DSC cannot be enabled on this port, otherwise the aux device
6017  */
6018 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port)
6019 {
6020 	struct drm_dp_mst_port *immediate_upstream_port;
6021 	struct drm_dp_aux *immediate_upstream_aux;
6022 	struct drm_dp_mst_port *fec_port;
6023 	struct drm_dp_desc desc = {};
6024 	u8 endpoint_fec;
6025 	u8 endpoint_dsc;
6026 
6027 	if (!port)
6028 		return NULL;
6029 
6030 	if (port->parent->port_parent)
6031 		immediate_upstream_port = port->parent->port_parent;
6032 	else
6033 		immediate_upstream_port = NULL;
6034 
6035 	fec_port = immediate_upstream_port;
6036 	while (fec_port) {
6037 		/*
6038 		 * Each physical link (i.e. not a virtual port) between the
6039 		 * output and the primary device must support FEC
6040 		 */
6041 		if (!drm_dp_mst_is_virtual_dpcd(fec_port) &&
6042 		    !fec_port->fec_capable)
6043 			return NULL;
6044 
6045 		fec_port = fec_port->parent->port_parent;
6046 	}
6047 
6048 	/* DP-to-DP peer device */
6049 	if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) {
6050 		u8 upstream_dsc;
6051 
6052 		if (drm_dp_dpcd_read(&port->aux,
6053 				     DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
6054 			return NULL;
6055 		if (drm_dp_dpcd_read(&port->aux,
6056 				     DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
6057 			return NULL;
6058 		if (drm_dp_dpcd_read(&immediate_upstream_port->aux,
6059 				     DP_DSC_SUPPORT, &upstream_dsc, 1) != 1)
6060 			return NULL;
6061 
6062 		/* Enpoint decompression with DP-to-DP peer device */
6063 		if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
6064 		    (endpoint_fec & DP_FEC_CAPABLE) &&
6065 		    (upstream_dsc & DP_DSC_PASSTHROUGH_IS_SUPPORTED)) {
6066 			port->passthrough_aux = &immediate_upstream_port->aux;
6067 			return &port->aux;
6068 		}
6069 
6070 		/* Virtual DPCD decompression with DP-to-DP peer device */
6071 		return &immediate_upstream_port->aux;
6072 	}
6073 
6074 	/* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */
6075 	if (drm_dp_mst_is_virtual_dpcd(port))
6076 		return &port->aux;
6077 
6078 	/*
6079 	 * Synaptics quirk
6080 	 * Applies to ports for which:
6081 	 * - Physical aux has Synaptics OUI
6082 	 * - DPv1.4 or higher
6083 	 * - Port is on primary branch device
6084 	 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG)
6085 	 */
6086 	if (immediate_upstream_port)
6087 		immediate_upstream_aux = &immediate_upstream_port->aux;
6088 	else
6089 		immediate_upstream_aux = port->mgr->aux;
6090 
6091 	if (drm_dp_read_desc(immediate_upstream_aux, &desc, true))
6092 		return NULL;
6093 
6094 	if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)) {
6095 		u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
6096 
6097 		if (drm_dp_read_dpcd_caps(immediate_upstream_aux, dpcd_ext) < 0)
6098 			return NULL;
6099 
6100 		if (dpcd_ext[DP_DPCD_REV] >= DP_DPCD_REV_14 &&
6101 		    ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) &&
6102 		    ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK)
6103 		     != DP_DWN_STRM_PORT_TYPE_ANALOG)))
6104 			return immediate_upstream_aux;
6105 	}
6106 
6107 	/*
6108 	 * The check below verifies if the MST sink
6109 	 * connected to the GPU is capable of DSC -
6110 	 * therefore the endpoint needs to be
6111 	 * both DSC and FEC capable.
6112 	 */
6113 	if (drm_dp_dpcd_read(&port->aux,
6114 	   DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
6115 		return NULL;
6116 	if (drm_dp_dpcd_read(&port->aux,
6117 	   DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
6118 		return NULL;
6119 	if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
6120 	   (endpoint_fec & DP_FEC_CAPABLE))
6121 		return &port->aux;
6122 
6123 	return NULL;
6124 }
6125 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port);
6126