xref: /linux/drivers/gpu/drm/drm_edid.c (revision db10cb9b)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
39 
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
45 
46 #include "drm_crtc_internal.h"
47 
48 static int oui(u8 first, u8 second, u8 third)
49 {
50 	return (first << 16) | (second << 8) | third;
51 }
52 
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
56 
57 /*
58  * EDID blocks out in the wild have a variety of bugs, try to collect
59  * them here (note that userspace may work around broken monitors first,
60  * but fixes should make their way here so that the kernel "just works"
61  * on as many displays as possible).
62  */
63 
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73  * maximum size and use that.
74  */
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
80 /* Force 8bpc */
81 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
82 /* Force 12bpc */
83 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
84 /* Force 6bpc */
85 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
86 /* Force 10bpc */
87 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
90 /* Cap the DSC target bitrate to 15bpp */
91 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
92 
93 #define MICROSOFT_IEEE_OUI	0xca125c
94 
95 struct detailed_mode_closure {
96 	struct drm_connector *connector;
97 	const struct drm_edid *drm_edid;
98 	bool preferred;
99 	int modes;
100 };
101 
102 #define LEVEL_DMT	0
103 #define LEVEL_GTF	1
104 #define LEVEL_GTF2	2
105 #define LEVEL_CVT	3
106 
107 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
108 { \
109 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
110 					     product_id), \
111 	.quirks = _quirks \
112 }
113 
114 static const struct edid_quirk {
115 	u32 panel_id;
116 	u32 quirks;
117 } edid_quirk_list[] = {
118 	/* Acer AL1706 */
119 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
120 	/* Acer F51 */
121 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
122 
123 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
124 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
125 
126 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
127 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
128 
129 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
130 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
131 
132 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
133 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
134 
135 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* Belinea 10 15 55 */
139 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
140 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
141 
142 	/* Envision Peripherals, Inc. EN-7100e */
143 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
144 	/* Envision EN2028 */
145 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
146 
147 	/* Funai Electronics PM36B */
148 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
149 				       EDID_QUIRK_DETAILED_IN_CM),
150 
151 	/* LG 27GP950 */
152 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
153 
154 	/* LG 27GN950 */
155 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
156 
157 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
158 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
159 
160 	/* LG Philips LCD LP154W01-A5 */
161 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
162 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
163 
164 	/* Samsung SyncMaster 205BW.  Note: irony */
165 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
166 	/* Samsung SyncMaster 22[5-6]BW */
167 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
168 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
169 
170 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
171 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
172 
173 	/* ViewSonic VA2026w */
174 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
175 
176 	/* Medion MD 30217 PG */
177 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
178 
179 	/* Lenovo G50 */
180 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
181 
182 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
183 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
184 
185 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
186 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
187 
188 	/* Valve Index Headset */
189 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
190 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
191 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
192 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
193 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
194 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
195 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
206 
207 	/* HTC Vive and Vive Pro VR Headsets */
208 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
210 
211 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
212 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
213 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
214 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
216 
217 	/* Windows Mixed Reality Headsets */
218 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
220 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
221 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
222 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
223 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
224 
225 	/* Sony PlayStation VR Headset */
226 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
227 
228 	/* Sensics VR Headsets */
229 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
230 
231 	/* OSVR HDK and HDK2 VR Headsets */
232 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
233 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
234 };
235 
236 /*
237  * Autogenerated from the DMT spec.
238  * This table is copied from xfree86/modes/xf86EdidModes.c.
239  */
240 static const struct drm_display_mode drm_dmt_modes[] = {
241 	/* 0x01 - 640x350@85Hz */
242 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
243 		   736, 832, 0, 350, 382, 385, 445, 0,
244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 	/* 0x02 - 640x400@85Hz */
246 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
247 		   736, 832, 0, 400, 401, 404, 445, 0,
248 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 	/* 0x03 - 720x400@85Hz */
250 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
251 		   828, 936, 0, 400, 401, 404, 446, 0,
252 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
253 	/* 0x04 - 640x480@60Hz */
254 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
255 		   752, 800, 0, 480, 490, 492, 525, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
257 	/* 0x05 - 640x480@72Hz */
258 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
259 		   704, 832, 0, 480, 489, 492, 520, 0,
260 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 	/* 0x06 - 640x480@75Hz */
262 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
263 		   720, 840, 0, 480, 481, 484, 500, 0,
264 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 	/* 0x07 - 640x480@85Hz */
266 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
267 		   752, 832, 0, 480, 481, 484, 509, 0,
268 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
269 	/* 0x08 - 800x600@56Hz */
270 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
271 		   896, 1024, 0, 600, 601, 603, 625, 0,
272 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 	/* 0x09 - 800x600@60Hz */
274 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
275 		   968, 1056, 0, 600, 601, 605, 628, 0,
276 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 	/* 0x0a - 800x600@72Hz */
278 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
279 		   976, 1040, 0, 600, 637, 643, 666, 0,
280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 	/* 0x0b - 800x600@75Hz */
282 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
283 		   896, 1056, 0, 600, 601, 604, 625, 0,
284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
285 	/* 0x0c - 800x600@85Hz */
286 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
287 		   896, 1048, 0, 600, 601, 604, 631, 0,
288 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 	/* 0x0d - 800x600@120Hz RB */
290 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
291 		   880, 960, 0, 600, 603, 607, 636, 0,
292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
293 	/* 0x0e - 848x480@60Hz */
294 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
295 		   976, 1088, 0, 480, 486, 494, 517, 0,
296 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 	/* 0x0f - 1024x768@43Hz, interlace */
298 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
299 		   1208, 1264, 0, 768, 768, 776, 817, 0,
300 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
301 		   DRM_MODE_FLAG_INTERLACE) },
302 	/* 0x10 - 1024x768@60Hz */
303 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
304 		   1184, 1344, 0, 768, 771, 777, 806, 0,
305 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 	/* 0x11 - 1024x768@70Hz */
307 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
308 		   1184, 1328, 0, 768, 771, 777, 806, 0,
309 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
310 	/* 0x12 - 1024x768@75Hz */
311 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
312 		   1136, 1312, 0, 768, 769, 772, 800, 0,
313 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 	/* 0x13 - 1024x768@85Hz */
315 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
316 		   1168, 1376, 0, 768, 769, 772, 808, 0,
317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 	/* 0x14 - 1024x768@120Hz RB */
319 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
320 		   1104, 1184, 0, 768, 771, 775, 813, 0,
321 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 	/* 0x15 - 1152x864@75Hz */
323 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
324 		   1344, 1600, 0, 864, 865, 868, 900, 0,
325 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 	/* 0x55 - 1280x720@60Hz */
327 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
328 		   1430, 1650, 0, 720, 725, 730, 750, 0,
329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 	/* 0x16 - 1280x768@60Hz RB */
331 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
332 		   1360, 1440, 0, 768, 771, 778, 790, 0,
333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 	/* 0x17 - 1280x768@60Hz */
335 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
336 		   1472, 1664, 0, 768, 771, 778, 798, 0,
337 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 	/* 0x18 - 1280x768@75Hz */
339 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
340 		   1488, 1696, 0, 768, 771, 778, 805, 0,
341 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 	/* 0x19 - 1280x768@85Hz */
343 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
344 		   1496, 1712, 0, 768, 771, 778, 809, 0,
345 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 	/* 0x1a - 1280x768@120Hz RB */
347 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
348 		   1360, 1440, 0, 768, 771, 778, 813, 0,
349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
350 	/* 0x1b - 1280x800@60Hz RB */
351 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
352 		   1360, 1440, 0, 800, 803, 809, 823, 0,
353 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 	/* 0x1c - 1280x800@60Hz */
355 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
356 		   1480, 1680, 0, 800, 803, 809, 831, 0,
357 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 	/* 0x1d - 1280x800@75Hz */
359 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
360 		   1488, 1696, 0, 800, 803, 809, 838, 0,
361 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 	/* 0x1e - 1280x800@85Hz */
363 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
364 		   1496, 1712, 0, 800, 803, 809, 843, 0,
365 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 	/* 0x1f - 1280x800@120Hz RB */
367 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
368 		   1360, 1440, 0, 800, 803, 809, 847, 0,
369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 	/* 0x20 - 1280x960@60Hz */
371 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
372 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
373 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 	/* 0x21 - 1280x960@85Hz */
375 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
376 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
377 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 	/* 0x22 - 1280x960@120Hz RB */
379 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
380 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
381 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
382 	/* 0x23 - 1280x1024@60Hz */
383 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
384 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
385 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 	/* 0x24 - 1280x1024@75Hz */
387 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
388 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
390 	/* 0x25 - 1280x1024@85Hz */
391 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
392 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
393 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 	/* 0x26 - 1280x1024@120Hz RB */
395 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
396 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
397 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
398 	/* 0x27 - 1360x768@60Hz */
399 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
400 		   1536, 1792, 0, 768, 771, 777, 795, 0,
401 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 	/* 0x28 - 1360x768@120Hz RB */
403 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
404 		   1440, 1520, 0, 768, 771, 776, 813, 0,
405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 	/* 0x51 - 1366x768@60Hz */
407 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
408 		   1579, 1792, 0, 768, 771, 774, 798, 0,
409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 	/* 0x56 - 1366x768@60Hz */
411 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
412 		   1436, 1500, 0, 768, 769, 772, 800, 0,
413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 	/* 0x29 - 1400x1050@60Hz RB */
415 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
416 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
417 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
418 	/* 0x2a - 1400x1050@60Hz */
419 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
420 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
421 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 	/* 0x2b - 1400x1050@75Hz */
423 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
424 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
425 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 	/* 0x2c - 1400x1050@85Hz */
427 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
428 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
429 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 	/* 0x2d - 1400x1050@120Hz RB */
431 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
432 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
433 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 	/* 0x2e - 1440x900@60Hz RB */
435 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
436 		   1520, 1600, 0, 900, 903, 909, 926, 0,
437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 	/* 0x2f - 1440x900@60Hz */
439 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
440 		   1672, 1904, 0, 900, 903, 909, 934, 0,
441 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 	/* 0x30 - 1440x900@75Hz */
443 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
444 		   1688, 1936, 0, 900, 903, 909, 942, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 	/* 0x31 - 1440x900@85Hz */
447 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
448 		   1696, 1952, 0, 900, 903, 909, 948, 0,
449 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 	/* 0x32 - 1440x900@120Hz RB */
451 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
452 		   1520, 1600, 0, 900, 903, 909, 953, 0,
453 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
454 	/* 0x53 - 1600x900@60Hz */
455 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
456 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 	/* 0x33 - 1600x1200@60Hz */
459 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
460 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 	/* 0x34 - 1600x1200@65Hz */
463 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
464 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
465 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 	/* 0x35 - 1600x1200@70Hz */
467 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
468 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
469 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 	/* 0x36 - 1600x1200@75Hz */
471 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
472 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
473 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 	/* 0x37 - 1600x1200@85Hz */
475 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
476 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 	/* 0x38 - 1600x1200@120Hz RB */
479 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
480 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
481 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
482 	/* 0x39 - 1680x1050@60Hz RB */
483 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
484 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 	/* 0x3a - 1680x1050@60Hz */
487 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
488 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
489 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 	/* 0x3b - 1680x1050@75Hz */
491 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
492 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
493 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 	/* 0x3c - 1680x1050@85Hz */
495 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
496 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 	/* 0x3d - 1680x1050@120Hz RB */
499 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
500 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 	/* 0x3e - 1792x1344@60Hz */
503 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
504 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
505 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 	/* 0x3f - 1792x1344@75Hz */
507 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
508 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
509 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 	/* 0x40 - 1792x1344@120Hz RB */
511 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
512 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
513 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 	/* 0x41 - 1856x1392@60Hz */
515 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
516 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
517 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 	/* 0x42 - 1856x1392@75Hz */
519 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
520 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
521 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
522 	/* 0x43 - 1856x1392@120Hz RB */
523 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
524 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
525 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
526 	/* 0x52 - 1920x1080@60Hz */
527 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
528 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
529 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
530 	/* 0x44 - 1920x1200@60Hz RB */
531 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
532 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
533 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
534 	/* 0x45 - 1920x1200@60Hz */
535 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
536 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
537 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
538 	/* 0x46 - 1920x1200@75Hz */
539 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
540 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
541 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
542 	/* 0x47 - 1920x1200@85Hz */
543 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
544 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
545 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
546 	/* 0x48 - 1920x1200@120Hz RB */
547 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
548 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
549 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
550 	/* 0x49 - 1920x1440@60Hz */
551 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
552 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
553 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
554 	/* 0x4a - 1920x1440@75Hz */
555 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
556 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
557 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 	/* 0x4b - 1920x1440@120Hz RB */
559 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
560 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
562 	/* 0x54 - 2048x1152@60Hz */
563 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
564 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
565 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
566 	/* 0x4c - 2560x1600@60Hz RB */
567 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
568 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
569 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
570 	/* 0x4d - 2560x1600@60Hz */
571 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
572 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
573 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
574 	/* 0x4e - 2560x1600@75Hz */
575 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
576 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
577 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
578 	/* 0x4f - 2560x1600@85Hz */
579 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
580 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
581 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
582 	/* 0x50 - 2560x1600@120Hz RB */
583 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
584 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
585 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
586 	/* 0x57 - 4096x2160@60Hz RB */
587 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
588 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
589 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
590 	/* 0x58 - 4096x2160@59.94Hz RB */
591 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
592 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
593 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
594 };
595 
596 /*
597  * These more or less come from the DMT spec.  The 720x400 modes are
598  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
599  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
600  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
601  * mode.
602  *
603  * The DMT modes have been fact-checked; the rest are mild guesses.
604  */
605 static const struct drm_display_mode edid_est_modes[] = {
606 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
607 		   968, 1056, 0, 600, 601, 605, 628, 0,
608 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
609 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
610 		   896, 1024, 0, 600, 601, 603,  625, 0,
611 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
612 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
613 		   720, 840, 0, 480, 481, 484, 500, 0,
614 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
615 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
616 		   704,  832, 0, 480, 489, 492, 520, 0,
617 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
618 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
619 		   768,  864, 0, 480, 483, 486, 525, 0,
620 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
621 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
622 		   752, 800, 0, 480, 490, 492, 525, 0,
623 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
624 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
625 		   846, 900, 0, 400, 421, 423,  449, 0,
626 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
627 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
628 		   846,  900, 0, 400, 412, 414, 449, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
630 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
631 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
632 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
633 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
634 		   1136, 1312, 0,  768, 769, 772, 800, 0,
635 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
636 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
637 		   1184, 1328, 0,  768, 771, 777, 806, 0,
638 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
639 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
640 		   1184, 1344, 0,  768, 771, 777, 806, 0,
641 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
642 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
643 		   1208, 1264, 0, 768, 768, 776, 817, 0,
644 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
645 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
646 		   928, 1152, 0, 624, 625, 628, 667, 0,
647 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
648 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
649 		   896, 1056, 0, 600, 601, 604,  625, 0,
650 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
651 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
652 		   976, 1040, 0, 600, 637, 643, 666, 0,
653 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
654 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
655 		   1344, 1600, 0,  864, 865, 868, 900, 0,
656 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
657 };
658 
659 struct minimode {
660 	short w;
661 	short h;
662 	short r;
663 	short rb;
664 };
665 
666 static const struct minimode est3_modes[] = {
667 	/* byte 6 */
668 	{ 640, 350, 85, 0 },
669 	{ 640, 400, 85, 0 },
670 	{ 720, 400, 85, 0 },
671 	{ 640, 480, 85, 0 },
672 	{ 848, 480, 60, 0 },
673 	{ 800, 600, 85, 0 },
674 	{ 1024, 768, 85, 0 },
675 	{ 1152, 864, 75, 0 },
676 	/* byte 7 */
677 	{ 1280, 768, 60, 1 },
678 	{ 1280, 768, 60, 0 },
679 	{ 1280, 768, 75, 0 },
680 	{ 1280, 768, 85, 0 },
681 	{ 1280, 960, 60, 0 },
682 	{ 1280, 960, 85, 0 },
683 	{ 1280, 1024, 60, 0 },
684 	{ 1280, 1024, 85, 0 },
685 	/* byte 8 */
686 	{ 1360, 768, 60, 0 },
687 	{ 1440, 900, 60, 1 },
688 	{ 1440, 900, 60, 0 },
689 	{ 1440, 900, 75, 0 },
690 	{ 1440, 900, 85, 0 },
691 	{ 1400, 1050, 60, 1 },
692 	{ 1400, 1050, 60, 0 },
693 	{ 1400, 1050, 75, 0 },
694 	/* byte 9 */
695 	{ 1400, 1050, 85, 0 },
696 	{ 1680, 1050, 60, 1 },
697 	{ 1680, 1050, 60, 0 },
698 	{ 1680, 1050, 75, 0 },
699 	{ 1680, 1050, 85, 0 },
700 	{ 1600, 1200, 60, 0 },
701 	{ 1600, 1200, 65, 0 },
702 	{ 1600, 1200, 70, 0 },
703 	/* byte 10 */
704 	{ 1600, 1200, 75, 0 },
705 	{ 1600, 1200, 85, 0 },
706 	{ 1792, 1344, 60, 0 },
707 	{ 1792, 1344, 75, 0 },
708 	{ 1856, 1392, 60, 0 },
709 	{ 1856, 1392, 75, 0 },
710 	{ 1920, 1200, 60, 1 },
711 	{ 1920, 1200, 60, 0 },
712 	/* byte 11 */
713 	{ 1920, 1200, 75, 0 },
714 	{ 1920, 1200, 85, 0 },
715 	{ 1920, 1440, 60, 0 },
716 	{ 1920, 1440, 75, 0 },
717 };
718 
719 static const struct minimode extra_modes[] = {
720 	{ 1024, 576,  60, 0 },
721 	{ 1366, 768,  60, 0 },
722 	{ 1600, 900,  60, 0 },
723 	{ 1680, 945,  60, 0 },
724 	{ 1920, 1080, 60, 0 },
725 	{ 2048, 1152, 60, 0 },
726 	{ 2048, 1536, 60, 0 },
727 };
728 
729 /*
730  * From CEA/CTA-861 spec.
731  *
732  * Do not access directly, instead always use cea_mode_for_vic().
733  */
734 static const struct drm_display_mode edid_cea_modes_1[] = {
735 	/* 1 - 640x480@60Hz 4:3 */
736 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
737 		   752, 800, 0, 480, 490, 492, 525, 0,
738 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
739 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
740 	/* 2 - 720x480@60Hz 4:3 */
741 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
742 		   798, 858, 0, 480, 489, 495, 525, 0,
743 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
744 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
745 	/* 3 - 720x480@60Hz 16:9 */
746 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
747 		   798, 858, 0, 480, 489, 495, 525, 0,
748 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
749 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750 	/* 4 - 1280x720@60Hz 16:9 */
751 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
752 		   1430, 1650, 0, 720, 725, 730, 750, 0,
753 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
754 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
755 	/* 5 - 1920x1080i@60Hz 16:9 */
756 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
757 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
758 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
759 		   DRM_MODE_FLAG_INTERLACE),
760 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 	/* 6 - 720(1440)x480i@60Hz 4:3 */
762 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
763 		   801, 858, 0, 480, 488, 494, 525, 0,
764 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
765 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
766 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 	/* 7 - 720(1440)x480i@60Hz 16:9 */
768 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 		   801, 858, 0, 480, 488, 494, 525, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 	/* 8 - 720(1440)x240@60Hz 4:3 */
774 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 		   801, 858, 0, 240, 244, 247, 262, 0,
776 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 		   DRM_MODE_FLAG_DBLCLK),
778 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
779 	/* 9 - 720(1440)x240@60Hz 16:9 */
780 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 		   801, 858, 0, 240, 244, 247, 262, 0,
782 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 		   DRM_MODE_FLAG_DBLCLK),
784 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
785 	/* 10 - 2880x480i@60Hz 4:3 */
786 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
787 		   3204, 3432, 0, 480, 488, 494, 525, 0,
788 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 		   DRM_MODE_FLAG_INTERLACE),
790 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
791 	/* 11 - 2880x480i@60Hz 16:9 */
792 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 		   3204, 3432, 0, 480, 488, 494, 525, 0,
794 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 		   DRM_MODE_FLAG_INTERLACE),
796 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
797 	/* 12 - 2880x240@60Hz 4:3 */
798 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 		   3204, 3432, 0, 240, 244, 247, 262, 0,
800 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
801 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
802 	/* 13 - 2880x240@60Hz 16:9 */
803 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
804 		   3204, 3432, 0, 240, 244, 247, 262, 0,
805 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
806 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
807 	/* 14 - 1440x480@60Hz 4:3 */
808 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
809 		   1596, 1716, 0, 480, 489, 495, 525, 0,
810 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
811 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
812 	/* 15 - 1440x480@60Hz 16:9 */
813 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
814 		   1596, 1716, 0, 480, 489, 495, 525, 0,
815 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
816 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
817 	/* 16 - 1920x1080@60Hz 16:9 */
818 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
819 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
820 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
821 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 	/* 17 - 720x576@50Hz 4:3 */
823 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
824 		   796, 864, 0, 576, 581, 586, 625, 0,
825 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
826 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
827 	/* 18 - 720x576@50Hz 16:9 */
828 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
829 		   796, 864, 0, 576, 581, 586, 625, 0,
830 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
831 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 	/* 19 - 1280x720@50Hz 16:9 */
833 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
834 		   1760, 1980, 0, 720, 725, 730, 750, 0,
835 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
836 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
837 	/* 20 - 1920x1080i@50Hz 16:9 */
838 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
839 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
840 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
841 		   DRM_MODE_FLAG_INTERLACE),
842 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 	/* 21 - 720(1440)x576i@50Hz 4:3 */
844 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
845 		   795, 864, 0, 576, 580, 586, 625, 0,
846 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
847 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
848 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 	/* 22 - 720(1440)x576i@50Hz 16:9 */
850 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 		   795, 864, 0, 576, 580, 586, 625, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
855 	/* 23 - 720(1440)x288@50Hz 4:3 */
856 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 		   795, 864, 0, 288, 290, 293, 312, 0,
858 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 		   DRM_MODE_FLAG_DBLCLK),
860 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
861 	/* 24 - 720(1440)x288@50Hz 16:9 */
862 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 		   795, 864, 0, 288, 290, 293, 312, 0,
864 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 		   DRM_MODE_FLAG_DBLCLK),
866 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
867 	/* 25 - 2880x576i@50Hz 4:3 */
868 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
869 		   3180, 3456, 0, 576, 580, 586, 625, 0,
870 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 		   DRM_MODE_FLAG_INTERLACE),
872 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
873 	/* 26 - 2880x576i@50Hz 16:9 */
874 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 		   3180, 3456, 0, 576, 580, 586, 625, 0,
876 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 		   DRM_MODE_FLAG_INTERLACE),
878 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
879 	/* 27 - 2880x288@50Hz 4:3 */
880 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 		   3180, 3456, 0, 288, 290, 293, 312, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
883 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
884 	/* 28 - 2880x288@50Hz 16:9 */
885 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
886 		   3180, 3456, 0, 288, 290, 293, 312, 0,
887 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
889 	/* 29 - 1440x576@50Hz 4:3 */
890 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
891 		   1592, 1728, 0, 576, 581, 586, 625, 0,
892 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
894 	/* 30 - 1440x576@50Hz 16:9 */
895 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
896 		   1592, 1728, 0, 576, 581, 586, 625, 0,
897 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
898 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
899 	/* 31 - 1920x1080@50Hz 16:9 */
900 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
901 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
902 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 	/* 32 - 1920x1080@24Hz 16:9 */
905 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
906 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
907 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 	/* 33 - 1920x1080@25Hz 16:9 */
910 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
911 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
912 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
914 	/* 34 - 1920x1080@30Hz 16:9 */
915 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
916 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
917 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 	/* 35 - 2880x480@60Hz 4:3 */
920 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
921 		   3192, 3432, 0, 480, 489, 495, 525, 0,
922 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
923 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
924 	/* 36 - 2880x480@60Hz 16:9 */
925 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
926 		   3192, 3432, 0, 480, 489, 495, 525, 0,
927 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
928 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 	/* 37 - 2880x576@50Hz 4:3 */
930 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
931 		   3184, 3456, 0, 576, 581, 586, 625, 0,
932 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
933 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934 	/* 38 - 2880x576@50Hz 16:9 */
935 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
936 		   3184, 3456, 0, 576, 581, 586, 625, 0,
937 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
938 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 	/* 39 - 1920x1080i@50Hz 16:9 */
940 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
941 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
943 		   DRM_MODE_FLAG_INTERLACE),
944 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 40 - 1920x1080i@100Hz 16:9 */
946 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
947 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
948 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
949 		   DRM_MODE_FLAG_INTERLACE),
950 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 	/* 41 - 1280x720@100Hz 16:9 */
952 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
953 		   1760, 1980, 0, 720, 725, 730, 750, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
956 	/* 42 - 720x576@100Hz 4:3 */
957 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
958 		   796, 864, 0, 576, 581, 586, 625, 0,
959 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
960 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
961 	/* 43 - 720x576@100Hz 16:9 */
962 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
963 		   796, 864, 0, 576, 581, 586, 625, 0,
964 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
965 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 	/* 44 - 720(1440)x576i@100Hz 4:3 */
967 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
968 		   795, 864, 0, 576, 580, 586, 625, 0,
969 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
970 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
971 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
972 	/* 45 - 720(1440)x576i@100Hz 16:9 */
973 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 		   795, 864, 0, 576, 580, 586, 625, 0,
975 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
978 	/* 46 - 1920x1080i@120Hz 16:9 */
979 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
980 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
981 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
982 		   DRM_MODE_FLAG_INTERLACE),
983 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 	/* 47 - 1280x720@120Hz 16:9 */
985 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
986 		   1430, 1650, 0, 720, 725, 730, 750, 0,
987 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
988 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 	/* 48 - 720x480@120Hz 4:3 */
990 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
991 		   798, 858, 0, 480, 489, 495, 525, 0,
992 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
993 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
994 	/* 49 - 720x480@120Hz 16:9 */
995 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
996 		   798, 858, 0, 480, 489, 495, 525, 0,
997 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
998 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1000 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1001 		   801, 858, 0, 480, 488, 494, 525, 0,
1002 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1006 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 		   801, 858, 0, 480, 488, 494, 525, 0,
1008 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011 	/* 52 - 720x576@200Hz 4:3 */
1012 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1013 		   796, 864, 0, 576, 581, 586, 625, 0,
1014 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1015 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1016 	/* 53 - 720x576@200Hz 16:9 */
1017 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1018 		   796, 864, 0, 576, 581, 586, 625, 0,
1019 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1020 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1022 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1023 		   795, 864, 0, 576, 580, 586, 625, 0,
1024 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1025 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1026 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1027 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1028 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 		   795, 864, 0, 576, 580, 586, 625, 0,
1030 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1033 	/* 56 - 720x480@240Hz 4:3 */
1034 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1035 		   798, 858, 0, 480, 489, 495, 525, 0,
1036 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1037 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1038 	/* 57 - 720x480@240Hz 16:9 */
1039 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1040 		   798, 858, 0, 480, 489, 495, 525, 0,
1041 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1042 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1043 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1044 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1045 		   801, 858, 0, 480, 488, 494, 525, 0,
1046 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1047 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1048 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1049 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1050 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 		   801, 858, 0, 480, 488, 494, 525, 0,
1052 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1055 	/* 60 - 1280x720@24Hz 16:9 */
1056 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1057 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1058 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1060 	/* 61 - 1280x720@25Hz 16:9 */
1061 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1062 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1063 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1065 	/* 62 - 1280x720@30Hz 16:9 */
1066 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1067 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1068 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070 	/* 63 - 1920x1080@120Hz 16:9 */
1071 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1072 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1073 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075 	/* 64 - 1920x1080@100Hz 16:9 */
1076 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1077 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080 	/* 65 - 1280x720@24Hz 64:27 */
1081 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1082 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 	/* 66 - 1280x720@25Hz 64:27 */
1086 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1087 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1088 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 	/* 67 - 1280x720@30Hz 64:27 */
1091 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1092 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1093 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 	/* 68 - 1280x720@50Hz 64:27 */
1096 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1097 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1098 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 	/* 69 - 1280x720@60Hz 64:27 */
1101 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1102 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1103 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 	/* 70 - 1280x720@100Hz 64:27 */
1106 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1107 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1108 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 	/* 71 - 1280x720@120Hz 64:27 */
1111 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1112 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1113 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 	/* 72 - 1920x1080@24Hz 64:27 */
1116 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1117 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1118 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 	/* 73 - 1920x1080@25Hz 64:27 */
1121 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1122 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1123 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 	/* 74 - 1920x1080@30Hz 64:27 */
1126 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1127 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1128 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 	/* 75 - 1920x1080@50Hz 64:27 */
1131 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1132 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1133 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 	/* 76 - 1920x1080@60Hz 64:27 */
1136 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1137 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 	/* 77 - 1920x1080@100Hz 64:27 */
1141 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1142 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1143 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 	/* 78 - 1920x1080@120Hz 64:27 */
1146 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1147 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1148 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 	/* 79 - 1680x720@24Hz 64:27 */
1151 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1152 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1153 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 	/* 80 - 1680x720@25Hz 64:27 */
1156 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1157 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 	/* 81 - 1680x720@30Hz 64:27 */
1161 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1162 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1163 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 	/* 82 - 1680x720@50Hz 64:27 */
1166 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1167 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1168 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 	/* 83 - 1680x720@60Hz 64:27 */
1171 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1172 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 	/* 84 - 1680x720@100Hz 64:27 */
1176 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1177 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180 	/* 85 - 1680x720@120Hz 64:27 */
1181 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1182 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1183 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185 	/* 86 - 2560x1080@24Hz 64:27 */
1186 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1187 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1188 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190 	/* 87 - 2560x1080@25Hz 64:27 */
1191 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1192 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195 	/* 88 - 2560x1080@30Hz 64:27 */
1196 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1197 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1198 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200 	/* 89 - 2560x1080@50Hz 64:27 */
1201 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1202 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1203 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205 	/* 90 - 2560x1080@60Hz 64:27 */
1206 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1207 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1208 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210 	/* 91 - 2560x1080@100Hz 64:27 */
1211 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1212 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1213 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215 	/* 92 - 2560x1080@120Hz 64:27 */
1216 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1217 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220 	/* 93 - 3840x2160@24Hz 16:9 */
1221 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1222 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1225 	/* 94 - 3840x2160@25Hz 16:9 */
1226 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1227 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1230 	/* 95 - 3840x2160@30Hz 16:9 */
1231 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1232 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1235 	/* 96 - 3840x2160@50Hz 16:9 */
1236 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1237 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240 	/* 97 - 3840x2160@60Hz 16:9 */
1241 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1242 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245 	/* 98 - 4096x2160@24Hz 256:135 */
1246 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1247 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1250 	/* 99 - 4096x2160@25Hz 256:135 */
1251 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1252 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1255 	/* 100 - 4096x2160@30Hz 256:135 */
1256 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1257 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1260 	/* 101 - 4096x2160@50Hz 256:135 */
1261 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1262 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1263 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265 	/* 102 - 4096x2160@60Hz 256:135 */
1266 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1267 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1268 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270 	/* 103 - 3840x2160@24Hz 64:27 */
1271 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1272 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1273 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1275 	/* 104 - 3840x2160@25Hz 64:27 */
1276 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1277 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1280 	/* 105 - 3840x2160@30Hz 64:27 */
1281 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1282 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1285 	/* 106 - 3840x2160@50Hz 64:27 */
1286 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1287 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1288 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290 	/* 107 - 3840x2160@60Hz 64:27 */
1291 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1292 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1293 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295 	/* 108 - 1280x720@48Hz 16:9 */
1296 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1297 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1300 	/* 109 - 1280x720@48Hz 64:27 */
1301 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1302 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1303 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305 	/* 110 - 1680x720@48Hz 64:27 */
1306 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1307 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1308 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310 	/* 111 - 1920x1080@48Hz 16:9 */
1311 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1312 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1313 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315 	/* 112 - 1920x1080@48Hz 64:27 */
1316 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1317 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320 	/* 113 - 2560x1080@48Hz 64:27 */
1321 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1322 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1323 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325 	/* 114 - 3840x2160@48Hz 16:9 */
1326 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1327 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330 	/* 115 - 4096x2160@48Hz 256:135 */
1331 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1332 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1335 	/* 116 - 3840x2160@48Hz 64:27 */
1336 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1337 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340 	/* 117 - 3840x2160@100Hz 16:9 */
1341 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1342 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345 	/* 118 - 3840x2160@120Hz 16:9 */
1346 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1347 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1350 	/* 119 - 3840x2160@100Hz 64:27 */
1351 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1352 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1353 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355 	/* 120 - 3840x2160@120Hz 64:27 */
1356 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1357 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1360 	/* 121 - 5120x2160@24Hz 64:27 */
1361 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1362 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1363 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1365 	/* 122 - 5120x2160@25Hz 64:27 */
1366 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1367 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370 	/* 123 - 5120x2160@30Hz 64:27 */
1371 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1372 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1373 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375 	/* 124 - 5120x2160@48Hz 64:27 */
1376 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1377 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1378 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380 	/* 125 - 5120x2160@50Hz 64:27 */
1381 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1382 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1383 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385 	/* 126 - 5120x2160@60Hz 64:27 */
1386 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1387 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390 	/* 127 - 5120x2160@100Hz 64:27 */
1391 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1392 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1393 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395 };
1396 
1397 /*
1398  * From CEA/CTA-861 spec.
1399  *
1400  * Do not access directly, instead always use cea_mode_for_vic().
1401  */
1402 static const struct drm_display_mode edid_cea_modes_193[] = {
1403 	/* 193 - 5120x2160@120Hz 64:27 */
1404 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1405 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1406 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1407 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1408 	/* 194 - 7680x4320@24Hz 16:9 */
1409 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1410 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1412 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1413 	/* 195 - 7680x4320@25Hz 16:9 */
1414 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1415 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1416 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1417 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1418 	/* 196 - 7680x4320@30Hz 16:9 */
1419 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1420 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1421 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1423 	/* 197 - 7680x4320@48Hz 16:9 */
1424 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1425 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428 	/* 198 - 7680x4320@50Hz 16:9 */
1429 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1430 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433 	/* 199 - 7680x4320@60Hz 16:9 */
1434 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1435 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438 	/* 200 - 7680x4320@100Hz 16:9 */
1439 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1440 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1441 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443 	/* 201 - 7680x4320@120Hz 16:9 */
1444 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1445 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1446 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448 	/* 202 - 7680x4320@24Hz 64:27 */
1449 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1450 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1451 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1453 	/* 203 - 7680x4320@25Hz 64:27 */
1454 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1455 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1456 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1458 	/* 204 - 7680x4320@30Hz 64:27 */
1459 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1460 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1463 	/* 205 - 7680x4320@48Hz 64:27 */
1464 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1465 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468 	/* 206 - 7680x4320@50Hz 64:27 */
1469 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1470 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473 	/* 207 - 7680x4320@60Hz 64:27 */
1474 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1475 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478 	/* 208 - 7680x4320@100Hz 64:27 */
1479 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1480 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1481 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483 	/* 209 - 7680x4320@120Hz 64:27 */
1484 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1485 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1486 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488 	/* 210 - 10240x4320@24Hz 64:27 */
1489 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1490 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493 	/* 211 - 10240x4320@25Hz 64:27 */
1494 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1495 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1496 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498 	/* 212 - 10240x4320@30Hz 64:27 */
1499 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1500 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503 	/* 213 - 10240x4320@48Hz 64:27 */
1504 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1505 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508 	/* 214 - 10240x4320@50Hz 64:27 */
1509 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1510 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513 	/* 215 - 10240x4320@60Hz 64:27 */
1514 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1515 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518 	/* 216 - 10240x4320@100Hz 64:27 */
1519 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1520 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523 	/* 217 - 10240x4320@120Hz 64:27 */
1524 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1525 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1526 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528 	/* 218 - 4096x2160@100Hz 256:135 */
1529 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1530 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1533 	/* 219 - 4096x2160@120Hz 256:135 */
1534 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1535 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1536 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1538 };
1539 
1540 /*
1541  * HDMI 1.4 4k modes. Index using the VIC.
1542  */
1543 static const struct drm_display_mode edid_4k_modes[] = {
1544 	/* 0 - dummy, VICs start at 1 */
1545 	{ },
1546 	/* 1 - 3840x2160@30Hz */
1547 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1548 		   3840, 4016, 4104, 4400, 0,
1549 		   2160, 2168, 2178, 2250, 0,
1550 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1551 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1552 	/* 2 - 3840x2160@25Hz */
1553 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 		   3840, 4896, 4984, 5280, 0,
1555 		   2160, 2168, 2178, 2250, 0,
1556 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 	/* 3 - 3840x2160@24Hz */
1559 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 		   3840, 5116, 5204, 5500, 0,
1561 		   2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 	/* 4 - 4096x2160@24Hz (SMPTE) */
1565 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 		   4096, 5116, 5204, 5500, 0,
1567 		   2160, 2168, 2178, 2250, 0,
1568 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1570 };
1571 
1572 /*** DDC fetch and block validation ***/
1573 
1574 /*
1575  * The opaque EDID type, internal to drm_edid.c.
1576  */
1577 struct drm_edid {
1578 	/* Size allocated for edid */
1579 	size_t size;
1580 	const struct edid *edid;
1581 };
1582 
1583 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1584 
1585 static int edid_hfeeodb_block_count(const struct edid *edid)
1586 {
1587 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1588 
1589 	return eeodb ? eeodb + 1 : 0;
1590 }
1591 
1592 static int edid_extension_block_count(const struct edid *edid)
1593 {
1594 	return edid->extensions;
1595 }
1596 
1597 static int edid_block_count(const struct edid *edid)
1598 {
1599 	return edid_extension_block_count(edid) + 1;
1600 }
1601 
1602 static int edid_size_by_blocks(int num_blocks)
1603 {
1604 	return num_blocks * EDID_LENGTH;
1605 }
1606 
1607 static int edid_size(const struct edid *edid)
1608 {
1609 	return edid_size_by_blocks(edid_block_count(edid));
1610 }
1611 
1612 static const void *edid_block_data(const struct edid *edid, int index)
1613 {
1614 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1615 
1616 	return edid + index;
1617 }
1618 
1619 static const void *edid_extension_block_data(const struct edid *edid, int index)
1620 {
1621 	return edid_block_data(edid, index + 1);
1622 }
1623 
1624 /* EDID block count indicated in EDID, may exceed allocated size */
1625 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1626 {
1627 	int num_blocks;
1628 
1629 	/* Starting point */
1630 	num_blocks = edid_block_count(drm_edid->edid);
1631 
1632 	/* HF-EEODB override */
1633 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1634 		int eeodb;
1635 
1636 		/*
1637 		 * Note: HF-EEODB may specify a smaller extension count than the
1638 		 * regular one. Unlike in buffer allocation, here we can use it.
1639 		 */
1640 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1641 		if (eeodb)
1642 			num_blocks = eeodb;
1643 	}
1644 
1645 	return num_blocks;
1646 }
1647 
1648 /* EDID block count, limited by allocated size */
1649 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1650 {
1651 	/* Limit by allocated size */
1652 	return min(__drm_edid_block_count(drm_edid),
1653 		   (int)drm_edid->size / EDID_LENGTH);
1654 }
1655 
1656 /* EDID extension block count, limited by allocated size */
1657 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1658 {
1659 	return drm_edid_block_count(drm_edid) - 1;
1660 }
1661 
1662 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1663 {
1664 	return edid_block_data(drm_edid->edid, index);
1665 }
1666 
1667 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1668 						 int index)
1669 {
1670 	return edid_extension_block_data(drm_edid->edid, index);
1671 }
1672 
1673 /*
1674  * Initializer helper for legacy interfaces, where we have no choice but to
1675  * trust edid size. Not for general purpose use.
1676  */
1677 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1678 						   const struct edid *edid)
1679 {
1680 	if (!edid)
1681 		return NULL;
1682 
1683 	memset(drm_edid, 0, sizeof(*drm_edid));
1684 
1685 	drm_edid->edid = edid;
1686 	drm_edid->size = edid_size(edid);
1687 
1688 	return drm_edid;
1689 }
1690 
1691 /*
1692  * EDID base and extension block iterator.
1693  *
1694  * struct drm_edid_iter iter;
1695  * const u8 *block;
1696  *
1697  * drm_edid_iter_begin(drm_edid, &iter);
1698  * drm_edid_iter_for_each(block, &iter) {
1699  *         // do stuff with block
1700  * }
1701  * drm_edid_iter_end(&iter);
1702  */
1703 struct drm_edid_iter {
1704 	const struct drm_edid *drm_edid;
1705 
1706 	/* Current block index. */
1707 	int index;
1708 };
1709 
1710 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1711 				struct drm_edid_iter *iter)
1712 {
1713 	memset(iter, 0, sizeof(*iter));
1714 
1715 	iter->drm_edid = drm_edid;
1716 }
1717 
1718 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1719 {
1720 	const void *block = NULL;
1721 
1722 	if (!iter->drm_edid)
1723 		return NULL;
1724 
1725 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1726 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1727 
1728 	return block;
1729 }
1730 
1731 #define drm_edid_iter_for_each(__block, __iter)			\
1732 	while (((__block) = __drm_edid_iter_next(__iter)))
1733 
1734 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1735 {
1736 	memset(iter, 0, sizeof(*iter));
1737 }
1738 
1739 static const u8 edid_header[] = {
1740 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1741 };
1742 
1743 static void edid_header_fix(void *edid)
1744 {
1745 	memcpy(edid, edid_header, sizeof(edid_header));
1746 }
1747 
1748 /**
1749  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1750  * @_edid: pointer to raw base EDID block
1751  *
1752  * Sanity check the header of the base EDID block.
1753  *
1754  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1755  */
1756 int drm_edid_header_is_valid(const void *_edid)
1757 {
1758 	const struct edid *edid = _edid;
1759 	int i, score = 0;
1760 
1761 	for (i = 0; i < sizeof(edid_header); i++) {
1762 		if (edid->header[i] == edid_header[i])
1763 			score++;
1764 	}
1765 
1766 	return score;
1767 }
1768 EXPORT_SYMBOL(drm_edid_header_is_valid);
1769 
1770 static int edid_fixup __read_mostly = 6;
1771 module_param_named(edid_fixup, edid_fixup, int, 0400);
1772 MODULE_PARM_DESC(edid_fixup,
1773 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1774 
1775 static int edid_block_compute_checksum(const void *_block)
1776 {
1777 	const u8 *block = _block;
1778 	int i;
1779 	u8 csum = 0, crc = 0;
1780 
1781 	for (i = 0; i < EDID_LENGTH - 1; i++)
1782 		csum += block[i];
1783 
1784 	crc = 0x100 - csum;
1785 
1786 	return crc;
1787 }
1788 
1789 static int edid_block_get_checksum(const void *_block)
1790 {
1791 	const struct edid *block = _block;
1792 
1793 	return block->checksum;
1794 }
1795 
1796 static int edid_block_tag(const void *_block)
1797 {
1798 	const u8 *block = _block;
1799 
1800 	return block[0];
1801 }
1802 
1803 static bool edid_block_is_zero(const void *edid)
1804 {
1805 	return !memchr_inv(edid, 0, EDID_LENGTH);
1806 }
1807 
1808 /**
1809  * drm_edid_are_equal - compare two edid blobs.
1810  * @edid1: pointer to first blob
1811  * @edid2: pointer to second blob
1812  * This helper can be used during probing to determine if
1813  * edid had changed.
1814  */
1815 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1816 {
1817 	int edid1_len, edid2_len;
1818 	bool edid1_present = edid1 != NULL;
1819 	bool edid2_present = edid2 != NULL;
1820 
1821 	if (edid1_present != edid2_present)
1822 		return false;
1823 
1824 	if (edid1) {
1825 		edid1_len = edid_size(edid1);
1826 		edid2_len = edid_size(edid2);
1827 
1828 		if (edid1_len != edid2_len)
1829 			return false;
1830 
1831 		if (memcmp(edid1, edid2, edid1_len))
1832 			return false;
1833 	}
1834 
1835 	return true;
1836 }
1837 EXPORT_SYMBOL(drm_edid_are_equal);
1838 
1839 enum edid_block_status {
1840 	EDID_BLOCK_OK = 0,
1841 	EDID_BLOCK_READ_FAIL,
1842 	EDID_BLOCK_NULL,
1843 	EDID_BLOCK_ZERO,
1844 	EDID_BLOCK_HEADER_CORRUPT,
1845 	EDID_BLOCK_HEADER_REPAIR,
1846 	EDID_BLOCK_HEADER_FIXED,
1847 	EDID_BLOCK_CHECKSUM,
1848 	EDID_BLOCK_VERSION,
1849 };
1850 
1851 static enum edid_block_status edid_block_check(const void *_block,
1852 					       bool is_base_block)
1853 {
1854 	const struct edid *block = _block;
1855 
1856 	if (!block)
1857 		return EDID_BLOCK_NULL;
1858 
1859 	if (is_base_block) {
1860 		int score = drm_edid_header_is_valid(block);
1861 
1862 		if (score < clamp(edid_fixup, 0, 8)) {
1863 			if (edid_block_is_zero(block))
1864 				return EDID_BLOCK_ZERO;
1865 			else
1866 				return EDID_BLOCK_HEADER_CORRUPT;
1867 		}
1868 
1869 		if (score < 8)
1870 			return EDID_BLOCK_HEADER_REPAIR;
1871 	}
1872 
1873 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1874 		if (edid_block_is_zero(block))
1875 			return EDID_BLOCK_ZERO;
1876 		else
1877 			return EDID_BLOCK_CHECKSUM;
1878 	}
1879 
1880 	if (is_base_block) {
1881 		if (block->version != 1)
1882 			return EDID_BLOCK_VERSION;
1883 	}
1884 
1885 	return EDID_BLOCK_OK;
1886 }
1887 
1888 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1889 {
1890 	return status == EDID_BLOCK_OK ||
1891 		status == EDID_BLOCK_HEADER_FIXED ||
1892 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1893 }
1894 
1895 static bool edid_block_valid(const void *block, bool base)
1896 {
1897 	return edid_block_status_valid(edid_block_check(block, base),
1898 				       edid_block_tag(block));
1899 }
1900 
1901 static void edid_block_status_print(enum edid_block_status status,
1902 				    const struct edid *block,
1903 				    int block_num)
1904 {
1905 	switch (status) {
1906 	case EDID_BLOCK_OK:
1907 		break;
1908 	case EDID_BLOCK_READ_FAIL:
1909 		pr_debug("EDID block %d read failed\n", block_num);
1910 		break;
1911 	case EDID_BLOCK_NULL:
1912 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1913 		break;
1914 	case EDID_BLOCK_ZERO:
1915 		pr_notice("EDID block %d is all zeroes\n", block_num);
1916 		break;
1917 	case EDID_BLOCK_HEADER_CORRUPT:
1918 		pr_notice("EDID has corrupt header\n");
1919 		break;
1920 	case EDID_BLOCK_HEADER_REPAIR:
1921 		pr_debug("EDID corrupt header needs repair\n");
1922 		break;
1923 	case EDID_BLOCK_HEADER_FIXED:
1924 		pr_debug("EDID corrupt header fixed\n");
1925 		break;
1926 	case EDID_BLOCK_CHECKSUM:
1927 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1928 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1929 				 block_num, edid_block_tag(block),
1930 				 edid_block_compute_checksum(block));
1931 		} else {
1932 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1933 				  block_num, edid_block_tag(block),
1934 				  edid_block_compute_checksum(block));
1935 		}
1936 		break;
1937 	case EDID_BLOCK_VERSION:
1938 		pr_notice("EDID has major version %d, instead of 1\n",
1939 			  block->version);
1940 		break;
1941 	default:
1942 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1943 		     block_num, status);
1944 		break;
1945 	}
1946 }
1947 
1948 static void edid_block_dump(const char *level, const void *block, int block_num)
1949 {
1950 	enum edid_block_status status;
1951 	char prefix[20];
1952 
1953 	status = edid_block_check(block, block_num == 0);
1954 	if (status == EDID_BLOCK_ZERO)
1955 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1956 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1957 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1958 	else
1959 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1960 
1961 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1962 		       block, EDID_LENGTH, false);
1963 }
1964 
1965 /**
1966  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1967  * @_block: pointer to raw EDID block
1968  * @block_num: type of block to validate (0 for base, extension otherwise)
1969  * @print_bad_edid: if true, dump bad EDID blocks to the console
1970  * @edid_corrupt: if true, the header or checksum is invalid
1971  *
1972  * Validate a base or extension EDID block and optionally dump bad blocks to
1973  * the console.
1974  *
1975  * Return: True if the block is valid, false otherwise.
1976  */
1977 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1978 			  bool *edid_corrupt)
1979 {
1980 	struct edid *block = (struct edid *)_block;
1981 	enum edid_block_status status;
1982 	bool is_base_block = block_num == 0;
1983 	bool valid;
1984 
1985 	if (WARN_ON(!block))
1986 		return false;
1987 
1988 	status = edid_block_check(block, is_base_block);
1989 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1990 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1991 		edid_header_fix(block);
1992 
1993 		/* Retry with fixed header, update status if that worked. */
1994 		status = edid_block_check(block, is_base_block);
1995 		if (status == EDID_BLOCK_OK)
1996 			status = EDID_BLOCK_HEADER_FIXED;
1997 	}
1998 
1999 	if (edid_corrupt) {
2000 		/*
2001 		 * Unknown major version isn't corrupt but we can't use it. Only
2002 		 * the base block can reset edid_corrupt to false.
2003 		 */
2004 		if (is_base_block &&
2005 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2006 			*edid_corrupt = false;
2007 		else if (status != EDID_BLOCK_OK)
2008 			*edid_corrupt = true;
2009 	}
2010 
2011 	edid_block_status_print(status, block, block_num);
2012 
2013 	/* Determine whether we can use this block with this status. */
2014 	valid = edid_block_status_valid(status, edid_block_tag(block));
2015 
2016 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2017 		pr_notice("Raw EDID:\n");
2018 		edid_block_dump(KERN_NOTICE, block, block_num);
2019 	}
2020 
2021 	return valid;
2022 }
2023 EXPORT_SYMBOL(drm_edid_block_valid);
2024 
2025 /**
2026  * drm_edid_is_valid - sanity check EDID data
2027  * @edid: EDID data
2028  *
2029  * Sanity-check an entire EDID record (including extensions)
2030  *
2031  * Return: True if the EDID data is valid, false otherwise.
2032  */
2033 bool drm_edid_is_valid(struct edid *edid)
2034 {
2035 	int i;
2036 
2037 	if (!edid)
2038 		return false;
2039 
2040 	for (i = 0; i < edid_block_count(edid); i++) {
2041 		void *block = (void *)edid_block_data(edid, i);
2042 
2043 		if (!drm_edid_block_valid(block, i, true, NULL))
2044 			return false;
2045 	}
2046 
2047 	return true;
2048 }
2049 EXPORT_SYMBOL(drm_edid_is_valid);
2050 
2051 /**
2052  * drm_edid_valid - sanity check EDID data
2053  * @drm_edid: EDID data
2054  *
2055  * Sanity check an EDID. Cross check block count against allocated size and
2056  * checksum the blocks.
2057  *
2058  * Return: True if the EDID data is valid, false otherwise.
2059  */
2060 bool drm_edid_valid(const struct drm_edid *drm_edid)
2061 {
2062 	int i;
2063 
2064 	if (!drm_edid)
2065 		return false;
2066 
2067 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2068 		return false;
2069 
2070 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2071 		const void *block = drm_edid_block_data(drm_edid, i);
2072 
2073 		if (!edid_block_valid(block, i == 0))
2074 			return false;
2075 	}
2076 
2077 	return true;
2078 }
2079 EXPORT_SYMBOL(drm_edid_valid);
2080 
2081 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2082 					       size_t *alloc_size)
2083 {
2084 	struct edid *new;
2085 	int i, valid_blocks = 0;
2086 
2087 	/*
2088 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2089 	 * back to regular extension count here. We don't want to start
2090 	 * modifying the HF-EEODB extension too.
2091 	 */
2092 	for (i = 0; i < edid_block_count(edid); i++) {
2093 		const void *src_block = edid_block_data(edid, i);
2094 
2095 		if (edid_block_valid(src_block, i == 0)) {
2096 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2097 
2098 			memmove(dst_block, src_block, EDID_LENGTH);
2099 			valid_blocks++;
2100 		}
2101 	}
2102 
2103 	/* We already trusted the base block to be valid here... */
2104 	if (WARN_ON(!valid_blocks)) {
2105 		kfree(edid);
2106 		return NULL;
2107 	}
2108 
2109 	edid->extensions = valid_blocks - 1;
2110 	edid->checksum = edid_block_compute_checksum(edid);
2111 
2112 	*alloc_size = edid_size_by_blocks(valid_blocks);
2113 
2114 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2115 	if (!new)
2116 		kfree(edid);
2117 
2118 	return new;
2119 }
2120 
2121 #define DDC_SEGMENT_ADDR 0x30
2122 /**
2123  * drm_do_probe_ddc_edid() - get EDID information via I2C
2124  * @data: I2C device adapter
2125  * @buf: EDID data buffer to be filled
2126  * @block: 128 byte EDID block to start fetching from
2127  * @len: EDID data buffer length to fetch
2128  *
2129  * Try to fetch EDID information by calling I2C driver functions.
2130  *
2131  * Return: 0 on success or -1 on failure.
2132  */
2133 static int
2134 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2135 {
2136 	struct i2c_adapter *adapter = data;
2137 	unsigned char start = block * EDID_LENGTH;
2138 	unsigned char segment = block >> 1;
2139 	unsigned char xfers = segment ? 3 : 2;
2140 	int ret, retries = 5;
2141 
2142 	/*
2143 	 * The core I2C driver will automatically retry the transfer if the
2144 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2145 	 * are susceptible to errors under a heavily loaded machine and
2146 	 * generate spurious NAKs and timeouts. Retrying the transfer
2147 	 * of the individual block a few times seems to overcome this.
2148 	 */
2149 	do {
2150 		struct i2c_msg msgs[] = {
2151 			{
2152 				.addr	= DDC_SEGMENT_ADDR,
2153 				.flags	= 0,
2154 				.len	= 1,
2155 				.buf	= &segment,
2156 			}, {
2157 				.addr	= DDC_ADDR,
2158 				.flags	= 0,
2159 				.len	= 1,
2160 				.buf	= &start,
2161 			}, {
2162 				.addr	= DDC_ADDR,
2163 				.flags	= I2C_M_RD,
2164 				.len	= len,
2165 				.buf	= buf,
2166 			}
2167 		};
2168 
2169 		/*
2170 		 * Avoid sending the segment addr to not upset non-compliant
2171 		 * DDC monitors.
2172 		 */
2173 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2174 
2175 		if (ret == -ENXIO) {
2176 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2177 					adapter->name);
2178 			break;
2179 		}
2180 	} while (ret != xfers && --retries);
2181 
2182 	return ret == xfers ? 0 : -1;
2183 }
2184 
2185 static void connector_bad_edid(struct drm_connector *connector,
2186 			       const struct edid *edid, int num_blocks)
2187 {
2188 	int i;
2189 	u8 last_block;
2190 
2191 	/*
2192 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2193 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2194 	 * of 0x7e in the EDID of the _index_ of the last block in the
2195 	 * combined chunk of memory.
2196 	 */
2197 	last_block = edid->extensions;
2198 
2199 	/* Calculate real checksum for the last edid extension block data */
2200 	if (last_block < num_blocks)
2201 		connector->real_edid_checksum =
2202 			edid_block_compute_checksum(edid + last_block);
2203 
2204 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2205 		return;
2206 
2207 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2208 		    connector->base.id, connector->name);
2209 	for (i = 0; i < num_blocks; i++)
2210 		edid_block_dump(KERN_DEBUG, edid + i, i);
2211 }
2212 
2213 /* Get override or firmware EDID */
2214 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2215 {
2216 	const struct drm_edid *override = NULL;
2217 
2218 	mutex_lock(&connector->edid_override_mutex);
2219 
2220 	if (connector->edid_override)
2221 		override = drm_edid_dup(connector->edid_override);
2222 
2223 	mutex_unlock(&connector->edid_override_mutex);
2224 
2225 	if (!override)
2226 		override = drm_edid_load_firmware(connector);
2227 
2228 	return IS_ERR(override) ? NULL : override;
2229 }
2230 
2231 /* For debugfs edid_override implementation */
2232 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2233 {
2234 	const struct drm_edid *drm_edid;
2235 
2236 	mutex_lock(&connector->edid_override_mutex);
2237 
2238 	drm_edid = connector->edid_override;
2239 	if (drm_edid)
2240 		seq_write(m, drm_edid->edid, drm_edid->size);
2241 
2242 	mutex_unlock(&connector->edid_override_mutex);
2243 
2244 	return 0;
2245 }
2246 
2247 /* For debugfs edid_override implementation */
2248 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2249 			  size_t size)
2250 {
2251 	const struct drm_edid *drm_edid;
2252 
2253 	drm_edid = drm_edid_alloc(edid, size);
2254 	if (!drm_edid_valid(drm_edid)) {
2255 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2256 			    connector->base.id, connector->name);
2257 		drm_edid_free(drm_edid);
2258 		return -EINVAL;
2259 	}
2260 
2261 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2262 		    connector->base.id, connector->name);
2263 
2264 	mutex_lock(&connector->edid_override_mutex);
2265 
2266 	drm_edid_free(connector->edid_override);
2267 	connector->edid_override = drm_edid;
2268 
2269 	mutex_unlock(&connector->edid_override_mutex);
2270 
2271 	return 0;
2272 }
2273 
2274 /* For debugfs edid_override implementation */
2275 int drm_edid_override_reset(struct drm_connector *connector)
2276 {
2277 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2278 		    connector->base.id, connector->name);
2279 
2280 	mutex_lock(&connector->edid_override_mutex);
2281 
2282 	drm_edid_free(connector->edid_override);
2283 	connector->edid_override = NULL;
2284 
2285 	mutex_unlock(&connector->edid_override_mutex);
2286 
2287 	return 0;
2288 }
2289 
2290 /**
2291  * drm_edid_override_connector_update - add modes from override/firmware EDID
2292  * @connector: connector we're probing
2293  *
2294  * Add modes from the override/firmware EDID, if available. Only to be used from
2295  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2296  * failed during drm_get_edid() and caused the override/firmware EDID to be
2297  * skipped.
2298  *
2299  * Return: The number of modes added or 0 if we couldn't find any.
2300  */
2301 int drm_edid_override_connector_update(struct drm_connector *connector)
2302 {
2303 	const struct drm_edid *override;
2304 	int num_modes = 0;
2305 
2306 	override = drm_edid_override_get(connector);
2307 	if (override) {
2308 		num_modes = drm_edid_connector_update(connector, override);
2309 
2310 		drm_edid_free(override);
2311 
2312 		drm_dbg_kms(connector->dev,
2313 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2314 			    connector->base.id, connector->name, num_modes);
2315 	}
2316 
2317 	return num_modes;
2318 }
2319 EXPORT_SYMBOL(drm_edid_override_connector_update);
2320 
2321 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2322 
2323 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2324 					      read_block_fn read_block,
2325 					      void *context)
2326 {
2327 	enum edid_block_status status;
2328 	bool is_base_block = block_num == 0;
2329 	int try;
2330 
2331 	for (try = 0; try < 4; try++) {
2332 		if (read_block(context, block, block_num, EDID_LENGTH))
2333 			return EDID_BLOCK_READ_FAIL;
2334 
2335 		status = edid_block_check(block, is_base_block);
2336 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2337 			edid_header_fix(block);
2338 
2339 			/* Retry with fixed header, update status if that worked. */
2340 			status = edid_block_check(block, is_base_block);
2341 			if (status == EDID_BLOCK_OK)
2342 				status = EDID_BLOCK_HEADER_FIXED;
2343 		}
2344 
2345 		if (edid_block_status_valid(status, edid_block_tag(block)))
2346 			break;
2347 
2348 		/* Fail early for unrepairable base block all zeros. */
2349 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2350 			break;
2351 	}
2352 
2353 	return status;
2354 }
2355 
2356 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2357 				     read_block_fn read_block, void *context,
2358 				     size_t *size)
2359 {
2360 	enum edid_block_status status;
2361 	int i, num_blocks, invalid_blocks = 0;
2362 	const struct drm_edid *override;
2363 	struct edid *edid, *new;
2364 	size_t alloc_size = EDID_LENGTH;
2365 
2366 	override = drm_edid_override_get(connector);
2367 	if (override) {
2368 		alloc_size = override->size;
2369 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2370 		drm_edid_free(override);
2371 		if (!edid)
2372 			return NULL;
2373 		goto ok;
2374 	}
2375 
2376 	edid = kmalloc(alloc_size, GFP_KERNEL);
2377 	if (!edid)
2378 		return NULL;
2379 
2380 	status = edid_block_read(edid, 0, read_block, context);
2381 
2382 	edid_block_status_print(status, edid, 0);
2383 
2384 	if (status == EDID_BLOCK_READ_FAIL)
2385 		goto fail;
2386 
2387 	/* FIXME: Clarify what a corrupt EDID actually means. */
2388 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2389 		connector->edid_corrupt = false;
2390 	else
2391 		connector->edid_corrupt = true;
2392 
2393 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2394 		if (status == EDID_BLOCK_ZERO)
2395 			connector->null_edid_counter++;
2396 
2397 		connector_bad_edid(connector, edid, 1);
2398 		goto fail;
2399 	}
2400 
2401 	if (!edid_extension_block_count(edid))
2402 		goto ok;
2403 
2404 	alloc_size = edid_size(edid);
2405 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2406 	if (!new)
2407 		goto fail;
2408 	edid = new;
2409 
2410 	num_blocks = edid_block_count(edid);
2411 	for (i = 1; i < num_blocks; i++) {
2412 		void *block = (void *)edid_block_data(edid, i);
2413 
2414 		status = edid_block_read(block, i, read_block, context);
2415 
2416 		edid_block_status_print(status, block, i);
2417 
2418 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2419 			if (status == EDID_BLOCK_READ_FAIL)
2420 				goto fail;
2421 			invalid_blocks++;
2422 		} else if (i == 1) {
2423 			/*
2424 			 * If the first EDID extension is a CTA extension, and
2425 			 * the first Data Block is HF-EEODB, override the
2426 			 * extension block count.
2427 			 *
2428 			 * Note: HF-EEODB could specify a smaller extension
2429 			 * count too, but we can't risk allocating a smaller
2430 			 * amount.
2431 			 */
2432 			int eeodb = edid_hfeeodb_block_count(edid);
2433 
2434 			if (eeodb > num_blocks) {
2435 				num_blocks = eeodb;
2436 				alloc_size = edid_size_by_blocks(num_blocks);
2437 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2438 				if (!new)
2439 					goto fail;
2440 				edid = new;
2441 			}
2442 		}
2443 	}
2444 
2445 	if (invalid_blocks) {
2446 		connector_bad_edid(connector, edid, num_blocks);
2447 
2448 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2449 	}
2450 
2451 ok:
2452 	if (size)
2453 		*size = alloc_size;
2454 
2455 	return edid;
2456 
2457 fail:
2458 	kfree(edid);
2459 	return NULL;
2460 }
2461 
2462 /**
2463  * drm_do_get_edid - get EDID data using a custom EDID block read function
2464  * @connector: connector we're probing
2465  * @read_block: EDID block read function
2466  * @context: private data passed to the block read function
2467  *
2468  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2469  * exposes a different interface to read EDID blocks this function can be used
2470  * to get EDID data using a custom block read function.
2471  *
2472  * As in the general case the DDC bus is accessible by the kernel at the I2C
2473  * level, drivers must make all reasonable efforts to expose it as an I2C
2474  * adapter and use drm_get_edid() instead of abusing this function.
2475  *
2476  * The EDID may be overridden using debugfs override_edid or firmware EDID
2477  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2478  * order. Having either of them bypasses actual EDID reads.
2479  *
2480  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2481  */
2482 struct edid *drm_do_get_edid(struct drm_connector *connector,
2483 			     read_block_fn read_block,
2484 			     void *context)
2485 {
2486 	return _drm_do_get_edid(connector, read_block, context, NULL);
2487 }
2488 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2489 
2490 /**
2491  * drm_edid_raw - Get a pointer to the raw EDID data.
2492  * @drm_edid: drm_edid container
2493  *
2494  * Get a pointer to the raw EDID data.
2495  *
2496  * This is for transition only. Avoid using this like the plague.
2497  *
2498  * Return: Pointer to raw EDID data.
2499  */
2500 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2501 {
2502 	if (!drm_edid || !drm_edid->size)
2503 		return NULL;
2504 
2505 	/*
2506 	 * Do not return pointers where relying on EDID extension count would
2507 	 * lead to buffer overflow.
2508 	 */
2509 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2510 		return NULL;
2511 
2512 	return drm_edid->edid;
2513 }
2514 EXPORT_SYMBOL(drm_edid_raw);
2515 
2516 /* Allocate struct drm_edid container *without* duplicating the edid data */
2517 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2518 {
2519 	struct drm_edid *drm_edid;
2520 
2521 	if (!edid || !size || size < EDID_LENGTH)
2522 		return NULL;
2523 
2524 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2525 	if (drm_edid) {
2526 		drm_edid->edid = edid;
2527 		drm_edid->size = size;
2528 	}
2529 
2530 	return drm_edid;
2531 }
2532 
2533 /**
2534  * drm_edid_alloc - Allocate a new drm_edid container
2535  * @edid: Pointer to raw EDID data
2536  * @size: Size of memory allocated for EDID
2537  *
2538  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2539  * the actual size that has been allocated for the data. There is no validation
2540  * of the raw EDID data against the size, but at least the EDID base block must
2541  * fit in the buffer.
2542  *
2543  * The returned pointer must be freed using drm_edid_free().
2544  *
2545  * Return: drm_edid container, or NULL on errors
2546  */
2547 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2548 {
2549 	const struct drm_edid *drm_edid;
2550 
2551 	if (!edid || !size || size < EDID_LENGTH)
2552 		return NULL;
2553 
2554 	edid = kmemdup(edid, size, GFP_KERNEL);
2555 	if (!edid)
2556 		return NULL;
2557 
2558 	drm_edid = _drm_edid_alloc(edid, size);
2559 	if (!drm_edid)
2560 		kfree(edid);
2561 
2562 	return drm_edid;
2563 }
2564 EXPORT_SYMBOL(drm_edid_alloc);
2565 
2566 /**
2567  * drm_edid_dup - Duplicate a drm_edid container
2568  * @drm_edid: EDID to duplicate
2569  *
2570  * The returned pointer must be freed using drm_edid_free().
2571  *
2572  * Returns: drm_edid container copy, or NULL on errors
2573  */
2574 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2575 {
2576 	if (!drm_edid)
2577 		return NULL;
2578 
2579 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2580 }
2581 EXPORT_SYMBOL(drm_edid_dup);
2582 
2583 /**
2584  * drm_edid_free - Free the drm_edid container
2585  * @drm_edid: EDID to free
2586  */
2587 void drm_edid_free(const struct drm_edid *drm_edid)
2588 {
2589 	if (!drm_edid)
2590 		return;
2591 
2592 	kfree(drm_edid->edid);
2593 	kfree(drm_edid);
2594 }
2595 EXPORT_SYMBOL(drm_edid_free);
2596 
2597 /**
2598  * drm_probe_ddc() - probe DDC presence
2599  * @adapter: I2C adapter to probe
2600  *
2601  * Return: True on success, false on failure.
2602  */
2603 bool
2604 drm_probe_ddc(struct i2c_adapter *adapter)
2605 {
2606 	unsigned char out;
2607 
2608 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2609 }
2610 EXPORT_SYMBOL(drm_probe_ddc);
2611 
2612 /**
2613  * drm_get_edid - get EDID data, if available
2614  * @connector: connector we're probing
2615  * @adapter: I2C adapter to use for DDC
2616  *
2617  * Poke the given I2C channel to grab EDID data if possible.  If found,
2618  * attach it to the connector.
2619  *
2620  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2621  */
2622 struct edid *drm_get_edid(struct drm_connector *connector,
2623 			  struct i2c_adapter *adapter)
2624 {
2625 	struct edid *edid;
2626 
2627 	if (connector->force == DRM_FORCE_OFF)
2628 		return NULL;
2629 
2630 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2631 		return NULL;
2632 
2633 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2634 	drm_connector_update_edid_property(connector, edid);
2635 	return edid;
2636 }
2637 EXPORT_SYMBOL(drm_get_edid);
2638 
2639 /**
2640  * drm_edid_read_custom - Read EDID data using given EDID block read function
2641  * @connector: Connector to use
2642  * @read_block: EDID block read function
2643  * @context: Private data passed to the block read function
2644  *
2645  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2646  * exposes a different interface to read EDID blocks this function can be used
2647  * to get EDID data using a custom block read function.
2648  *
2649  * As in the general case the DDC bus is accessible by the kernel at the I2C
2650  * level, drivers must make all reasonable efforts to expose it as an I2C
2651  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2652  * this function.
2653  *
2654  * The EDID may be overridden using debugfs override_edid or firmware EDID
2655  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2656  * order. Having either of them bypasses actual EDID reads.
2657  *
2658  * The returned pointer must be freed using drm_edid_free().
2659  *
2660  * Return: Pointer to EDID, or NULL if probe/read failed.
2661  */
2662 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2663 					    read_block_fn read_block,
2664 					    void *context)
2665 {
2666 	const struct drm_edid *drm_edid;
2667 	struct edid *edid;
2668 	size_t size = 0;
2669 
2670 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2671 	if (!edid)
2672 		return NULL;
2673 
2674 	/* Sanity check for now */
2675 	drm_WARN_ON(connector->dev, !size);
2676 
2677 	drm_edid = _drm_edid_alloc(edid, size);
2678 	if (!drm_edid)
2679 		kfree(edid);
2680 
2681 	return drm_edid;
2682 }
2683 EXPORT_SYMBOL(drm_edid_read_custom);
2684 
2685 /**
2686  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2687  * @connector: Connector to use
2688  * @adapter: I2C adapter to use for DDC
2689  *
2690  * Read EDID using the given I2C adapter.
2691  *
2692  * The EDID may be overridden using debugfs override_edid or firmware EDID
2693  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2694  * order. Having either of them bypasses actual EDID reads.
2695  *
2696  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2697  * using drm_edid_read() instead of this function.
2698  *
2699  * The returned pointer must be freed using drm_edid_free().
2700  *
2701  * Return: Pointer to EDID, or NULL if probe/read failed.
2702  */
2703 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2704 					 struct i2c_adapter *adapter)
2705 {
2706 	const struct drm_edid *drm_edid;
2707 
2708 	if (connector->force == DRM_FORCE_OFF)
2709 		return NULL;
2710 
2711 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2712 		return NULL;
2713 
2714 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2715 
2716 	/* Note: Do *not* call connector updates here. */
2717 
2718 	return drm_edid;
2719 }
2720 EXPORT_SYMBOL(drm_edid_read_ddc);
2721 
2722 /**
2723  * drm_edid_read - Read EDID data using connector's I2C adapter
2724  * @connector: Connector to use
2725  *
2726  * Read EDID using the connector's I2C adapter.
2727  *
2728  * The EDID may be overridden using debugfs override_edid or firmware EDID
2729  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2730  * order. Having either of them bypasses actual EDID reads.
2731  *
2732  * The returned pointer must be freed using drm_edid_free().
2733  *
2734  * Return: Pointer to EDID, or NULL if probe/read failed.
2735  */
2736 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2737 {
2738 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2739 		return NULL;
2740 
2741 	return drm_edid_read_ddc(connector, connector->ddc);
2742 }
2743 EXPORT_SYMBOL(drm_edid_read);
2744 
2745 static u32 edid_extract_panel_id(const struct edid *edid)
2746 {
2747 	/*
2748 	 * We represent the ID as a 32-bit number so it can easily be compared
2749 	 * with "==".
2750 	 *
2751 	 * NOTE that we deal with endianness differently for the top half
2752 	 * of this ID than for the bottom half. The bottom half (the product
2753 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2754 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2755 	 * gets stored as big endian because that makes
2756 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2757 	 * to write (it's easier to extract the ASCII). It doesn't really
2758 	 * matter, though, as long as the number here is unique.
2759 	 */
2760 	return (u32)edid->mfg_id[0] << 24   |
2761 	       (u32)edid->mfg_id[1] << 16   |
2762 	       (u32)EDID_PRODUCT_ID(edid);
2763 }
2764 
2765 /**
2766  * drm_edid_get_panel_id - Get a panel's ID through DDC
2767  * @adapter: I2C adapter to use for DDC
2768  *
2769  * This function reads the first block of the EDID of a panel and (assuming
2770  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2771  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2772  * supposed to be different for each different modem of panel.
2773  *
2774  * This function is intended to be used during early probing on devices where
2775  * more than one panel might be present. Because of its intended use it must
2776  * assume that the EDID of the panel is correct, at least as far as the ID
2777  * is concerned (in other words, we don't process any overrides here).
2778  *
2779  * NOTE: it's expected that this function and drm_do_get_edid() will both
2780  * be read the EDID, but there is no caching between them. Since we're only
2781  * reading the first block, hopefully this extra overhead won't be too big.
2782  *
2783  * Return: A 32-bit ID that should be different for each make/model of panel.
2784  *         See the functions drm_edid_encode_panel_id() and
2785  *         drm_edid_decode_panel_id() for some details on the structure of this
2786  *         ID.
2787  */
2788 
2789 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2790 {
2791 	enum edid_block_status status;
2792 	void *base_block;
2793 	u32 panel_id = 0;
2794 
2795 	/*
2796 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2797 	 * the EDID then we'll just return 0.
2798 	 */
2799 
2800 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2801 	if (!base_block)
2802 		return 0;
2803 
2804 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2805 
2806 	edid_block_status_print(status, base_block, 0);
2807 
2808 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2809 		panel_id = edid_extract_panel_id(base_block);
2810 	else
2811 		edid_block_dump(KERN_NOTICE, base_block, 0);
2812 
2813 	kfree(base_block);
2814 
2815 	return panel_id;
2816 }
2817 EXPORT_SYMBOL(drm_edid_get_panel_id);
2818 
2819 /**
2820  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2821  * @connector: connector we're probing
2822  * @adapter: I2C adapter to use for DDC
2823  *
2824  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2825  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2826  * switch DDC to the GPU which is retrieving EDID.
2827  *
2828  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2829  */
2830 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2831 				     struct i2c_adapter *adapter)
2832 {
2833 	struct drm_device *dev = connector->dev;
2834 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2835 	struct edid *edid;
2836 
2837 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2838 		return NULL;
2839 
2840 	vga_switcheroo_lock_ddc(pdev);
2841 	edid = drm_get_edid(connector, adapter);
2842 	vga_switcheroo_unlock_ddc(pdev);
2843 
2844 	return edid;
2845 }
2846 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2847 
2848 /**
2849  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2850  * @connector: connector we're probing
2851  * @adapter: I2C adapter to use for DDC
2852  *
2853  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2854  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2855  * temporarily switch DDC to the GPU which is retrieving EDID.
2856  *
2857  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2858  */
2859 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2860 						struct i2c_adapter *adapter)
2861 {
2862 	struct drm_device *dev = connector->dev;
2863 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2864 	const struct drm_edid *drm_edid;
2865 
2866 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2867 		return NULL;
2868 
2869 	vga_switcheroo_lock_ddc(pdev);
2870 	drm_edid = drm_edid_read_ddc(connector, adapter);
2871 	vga_switcheroo_unlock_ddc(pdev);
2872 
2873 	return drm_edid;
2874 }
2875 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2876 
2877 /**
2878  * drm_edid_duplicate - duplicate an EDID and the extensions
2879  * @edid: EDID to duplicate
2880  *
2881  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2882  */
2883 struct edid *drm_edid_duplicate(const struct edid *edid)
2884 {
2885 	if (!edid)
2886 		return NULL;
2887 
2888 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2889 }
2890 EXPORT_SYMBOL(drm_edid_duplicate);
2891 
2892 /*** EDID parsing ***/
2893 
2894 /**
2895  * edid_get_quirks - return quirk flags for a given EDID
2896  * @drm_edid: EDID to process
2897  *
2898  * This tells subsequent routines what fixes they need to apply.
2899  */
2900 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2901 {
2902 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2903 	const struct edid_quirk *quirk;
2904 	int i;
2905 
2906 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2907 		quirk = &edid_quirk_list[i];
2908 		if (quirk->panel_id == panel_id)
2909 			return quirk->quirks;
2910 	}
2911 
2912 	return 0;
2913 }
2914 
2915 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2916 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2917 
2918 /*
2919  * Walk the mode list for connector, clearing the preferred status on existing
2920  * modes and setting it anew for the right mode ala quirks.
2921  */
2922 static void edid_fixup_preferred(struct drm_connector *connector)
2923 {
2924 	const struct drm_display_info *info = &connector->display_info;
2925 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2926 	int target_refresh = 0;
2927 	int cur_vrefresh, preferred_vrefresh;
2928 
2929 	if (list_empty(&connector->probed_modes))
2930 		return;
2931 
2932 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2933 		target_refresh = 60;
2934 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2935 		target_refresh = 75;
2936 
2937 	preferred_mode = list_first_entry(&connector->probed_modes,
2938 					  struct drm_display_mode, head);
2939 
2940 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2941 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2942 
2943 		if (cur_mode == preferred_mode)
2944 			continue;
2945 
2946 		/* Largest mode is preferred */
2947 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2948 			preferred_mode = cur_mode;
2949 
2950 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2951 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2952 		/* At a given size, try to get closest to target refresh */
2953 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2954 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2955 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2956 			preferred_mode = cur_mode;
2957 		}
2958 	}
2959 
2960 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2961 }
2962 
2963 static bool
2964 mode_is_rb(const struct drm_display_mode *mode)
2965 {
2966 	return (mode->htotal - mode->hdisplay == 160) &&
2967 	       (mode->hsync_end - mode->hdisplay == 80) &&
2968 	       (mode->hsync_end - mode->hsync_start == 32) &&
2969 	       (mode->vsync_start - mode->vdisplay == 3);
2970 }
2971 
2972 /*
2973  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2974  * @dev: Device to duplicate against
2975  * @hsize: Mode width
2976  * @vsize: Mode height
2977  * @fresh: Mode refresh rate
2978  * @rb: Mode reduced-blanking-ness
2979  *
2980  * Walk the DMT mode list looking for a match for the given parameters.
2981  *
2982  * Return: A newly allocated copy of the mode, or NULL if not found.
2983  */
2984 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2985 					   int hsize, int vsize, int fresh,
2986 					   bool rb)
2987 {
2988 	int i;
2989 
2990 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2991 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2992 
2993 		if (hsize != ptr->hdisplay)
2994 			continue;
2995 		if (vsize != ptr->vdisplay)
2996 			continue;
2997 		if (fresh != drm_mode_vrefresh(ptr))
2998 			continue;
2999 		if (rb != mode_is_rb(ptr))
3000 			continue;
3001 
3002 		return drm_mode_duplicate(dev, ptr);
3003 	}
3004 
3005 	return NULL;
3006 }
3007 EXPORT_SYMBOL(drm_mode_find_dmt);
3008 
3009 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3010 {
3011 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3012 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3013 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3014 
3015 	return descriptor->pixel_clock == 0 &&
3016 		descriptor->data.other_data.pad1 == 0 &&
3017 		descriptor->data.other_data.type == type;
3018 }
3019 
3020 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3021 {
3022 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3023 
3024 	return descriptor->pixel_clock != 0;
3025 }
3026 
3027 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3028 
3029 static void
3030 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3031 {
3032 	int i, n;
3033 	u8 d = ext[0x02];
3034 	const u8 *det_base = ext + d;
3035 
3036 	if (d < 4 || d > 127)
3037 		return;
3038 
3039 	n = (127 - d) / 18;
3040 	for (i = 0; i < n; i++)
3041 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3042 }
3043 
3044 static void
3045 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3046 {
3047 	unsigned int i, n = min((int)ext[0x02], 6);
3048 	const u8 *det_base = ext + 5;
3049 
3050 	if (ext[0x01] != 1)
3051 		return; /* unknown version */
3052 
3053 	for (i = 0; i < n; i++)
3054 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3055 }
3056 
3057 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3058 					detailed_cb *cb, void *closure)
3059 {
3060 	struct drm_edid_iter edid_iter;
3061 	const u8 *ext;
3062 	int i;
3063 
3064 	if (!drm_edid)
3065 		return;
3066 
3067 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3068 		cb(&drm_edid->edid->detailed_timings[i], closure);
3069 
3070 	drm_edid_iter_begin(drm_edid, &edid_iter);
3071 	drm_edid_iter_for_each(ext, &edid_iter) {
3072 		switch (*ext) {
3073 		case CEA_EXT:
3074 			cea_for_each_detailed_block(ext, cb, closure);
3075 			break;
3076 		case VTB_EXT:
3077 			vtb_for_each_detailed_block(ext, cb, closure);
3078 			break;
3079 		default:
3080 			break;
3081 		}
3082 	}
3083 	drm_edid_iter_end(&edid_iter);
3084 }
3085 
3086 static void
3087 is_rb(const struct detailed_timing *descriptor, void *data)
3088 {
3089 	bool *res = data;
3090 
3091 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3092 		return;
3093 
3094 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3095 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3096 
3097 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3098 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3099 		*res = true;
3100 }
3101 
3102 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3103 static bool
3104 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3105 {
3106 	if (drm_edid->edid->revision >= 4) {
3107 		bool ret = false;
3108 
3109 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3110 		return ret;
3111 	}
3112 
3113 	return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3114 }
3115 
3116 static void
3117 find_gtf2(const struct detailed_timing *descriptor, void *data)
3118 {
3119 	const struct detailed_timing **res = data;
3120 
3121 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3122 		return;
3123 
3124 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3125 
3126 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3127 		*res = descriptor;
3128 }
3129 
3130 /* Secondary GTF curve kicks in above some break frequency */
3131 static int
3132 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3133 {
3134 	const struct detailed_timing *descriptor = NULL;
3135 
3136 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3137 
3138 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3139 
3140 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3141 }
3142 
3143 static int
3144 drm_gtf2_2c(const struct drm_edid *drm_edid)
3145 {
3146 	const struct detailed_timing *descriptor = NULL;
3147 
3148 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3149 
3150 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3151 
3152 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3153 }
3154 
3155 static int
3156 drm_gtf2_m(const struct drm_edid *drm_edid)
3157 {
3158 	const struct detailed_timing *descriptor = NULL;
3159 
3160 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3161 
3162 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3163 
3164 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3165 }
3166 
3167 static int
3168 drm_gtf2_k(const struct drm_edid *drm_edid)
3169 {
3170 	const struct detailed_timing *descriptor = NULL;
3171 
3172 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3173 
3174 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3175 
3176 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3177 }
3178 
3179 static int
3180 drm_gtf2_2j(const struct drm_edid *drm_edid)
3181 {
3182 	const struct detailed_timing *descriptor = NULL;
3183 
3184 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3185 
3186 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3187 
3188 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3189 }
3190 
3191 static void
3192 get_timing_level(const struct detailed_timing *descriptor, void *data)
3193 {
3194 	int *res = data;
3195 
3196 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3197 		return;
3198 
3199 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3200 
3201 	switch (descriptor->data.other_data.data.range.flags) {
3202 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3203 		*res = LEVEL_GTF;
3204 		break;
3205 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3206 		*res = LEVEL_GTF2;
3207 		break;
3208 	case DRM_EDID_CVT_SUPPORT_FLAG:
3209 		*res = LEVEL_CVT;
3210 		break;
3211 	default:
3212 		break;
3213 	}
3214 }
3215 
3216 /* Get standard timing level (CVT/GTF/DMT). */
3217 static int standard_timing_level(const struct drm_edid *drm_edid)
3218 {
3219 	const struct edid *edid = drm_edid->edid;
3220 
3221 	if (edid->revision >= 4) {
3222 		/*
3223 		 * If the range descriptor doesn't
3224 		 * indicate otherwise default to CVT
3225 		 */
3226 		int ret = LEVEL_CVT;
3227 
3228 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3229 
3230 		return ret;
3231 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3232 		return LEVEL_GTF2;
3233 	} else if (edid->revision >= 2) {
3234 		return LEVEL_GTF;
3235 	} else {
3236 		return LEVEL_DMT;
3237 	}
3238 }
3239 
3240 /*
3241  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3242  * monitors fill with ascii space (0x20) instead.
3243  */
3244 static int
3245 bad_std_timing(u8 a, u8 b)
3246 {
3247 	return (a == 0x00 && b == 0x00) ||
3248 	       (a == 0x01 && b == 0x01) ||
3249 	       (a == 0x20 && b == 0x20);
3250 }
3251 
3252 static int drm_mode_hsync(const struct drm_display_mode *mode)
3253 {
3254 	if (mode->htotal <= 0)
3255 		return 0;
3256 
3257 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3258 }
3259 
3260 static struct drm_display_mode *
3261 drm_gtf2_mode(struct drm_device *dev,
3262 	      const struct drm_edid *drm_edid,
3263 	      int hsize, int vsize, int vrefresh_rate)
3264 {
3265 	struct drm_display_mode *mode;
3266 
3267 	/*
3268 	 * This is potentially wrong if there's ever a monitor with
3269 	 * more than one ranges section, each claiming a different
3270 	 * secondary GTF curve.  Please don't do that.
3271 	 */
3272 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3273 	if (!mode)
3274 		return NULL;
3275 
3276 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3277 		drm_mode_destroy(dev, mode);
3278 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3279 					    vrefresh_rate, 0, 0,
3280 					    drm_gtf2_m(drm_edid),
3281 					    drm_gtf2_2c(drm_edid),
3282 					    drm_gtf2_k(drm_edid),
3283 					    drm_gtf2_2j(drm_edid));
3284 	}
3285 
3286 	return mode;
3287 }
3288 
3289 /*
3290  * Take the standard timing params (in this case width, aspect, and refresh)
3291  * and convert them into a real mode using CVT/GTF/DMT.
3292  */
3293 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3294 					     const struct drm_edid *drm_edid,
3295 					     const struct std_timing *t)
3296 {
3297 	struct drm_device *dev = connector->dev;
3298 	struct drm_display_mode *m, *mode = NULL;
3299 	int hsize, vsize;
3300 	int vrefresh_rate;
3301 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3302 		>> EDID_TIMING_ASPECT_SHIFT;
3303 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3304 		>> EDID_TIMING_VFREQ_SHIFT;
3305 	int timing_level = standard_timing_level(drm_edid);
3306 
3307 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3308 		return NULL;
3309 
3310 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3311 	hsize = t->hsize * 8 + 248;
3312 	/* vrefresh_rate = vfreq + 60 */
3313 	vrefresh_rate = vfreq + 60;
3314 	/* the vdisplay is calculated based on the aspect ratio */
3315 	if (aspect_ratio == 0) {
3316 		if (drm_edid->edid->revision < 3)
3317 			vsize = hsize;
3318 		else
3319 			vsize = (hsize * 10) / 16;
3320 	} else if (aspect_ratio == 1)
3321 		vsize = (hsize * 3) / 4;
3322 	else if (aspect_ratio == 2)
3323 		vsize = (hsize * 4) / 5;
3324 	else
3325 		vsize = (hsize * 9) / 16;
3326 
3327 	/* HDTV hack, part 1 */
3328 	if (vrefresh_rate == 60 &&
3329 	    ((hsize == 1360 && vsize == 765) ||
3330 	     (hsize == 1368 && vsize == 769))) {
3331 		hsize = 1366;
3332 		vsize = 768;
3333 	}
3334 
3335 	/*
3336 	 * If this connector already has a mode for this size and refresh
3337 	 * rate (because it came from detailed or CVT info), use that
3338 	 * instead.  This way we don't have to guess at interlace or
3339 	 * reduced blanking.
3340 	 */
3341 	list_for_each_entry(m, &connector->probed_modes, head)
3342 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3343 		    drm_mode_vrefresh(m) == vrefresh_rate)
3344 			return NULL;
3345 
3346 	/* HDTV hack, part 2 */
3347 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3348 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3349 				    false);
3350 		if (!mode)
3351 			return NULL;
3352 		mode->hdisplay = 1366;
3353 		mode->hsync_start = mode->hsync_start - 1;
3354 		mode->hsync_end = mode->hsync_end - 1;
3355 		return mode;
3356 	}
3357 
3358 	/* check whether it can be found in default mode table */
3359 	if (drm_monitor_supports_rb(drm_edid)) {
3360 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3361 					 true);
3362 		if (mode)
3363 			return mode;
3364 	}
3365 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3366 	if (mode)
3367 		return mode;
3368 
3369 	/* okay, generate it */
3370 	switch (timing_level) {
3371 	case LEVEL_DMT:
3372 		break;
3373 	case LEVEL_GTF:
3374 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3375 		break;
3376 	case LEVEL_GTF2:
3377 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3378 		break;
3379 	case LEVEL_CVT:
3380 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3381 				    false);
3382 		break;
3383 	}
3384 	return mode;
3385 }
3386 
3387 /*
3388  * EDID is delightfully ambiguous about how interlaced modes are to be
3389  * encoded.  Our internal representation is of frame height, but some
3390  * HDTV detailed timings are encoded as field height.
3391  *
3392  * The format list here is from CEA, in frame size.  Technically we
3393  * should be checking refresh rate too.  Whatever.
3394  */
3395 static void
3396 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3397 			    const struct detailed_pixel_timing *pt)
3398 {
3399 	int i;
3400 	static const struct {
3401 		int w, h;
3402 	} cea_interlaced[] = {
3403 		{ 1920, 1080 },
3404 		{  720,  480 },
3405 		{ 1440,  480 },
3406 		{ 2880,  480 },
3407 		{  720,  576 },
3408 		{ 1440,  576 },
3409 		{ 2880,  576 },
3410 	};
3411 
3412 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3413 		return;
3414 
3415 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3416 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3417 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3418 			mode->vdisplay *= 2;
3419 			mode->vsync_start *= 2;
3420 			mode->vsync_end *= 2;
3421 			mode->vtotal *= 2;
3422 			mode->vtotal |= 1;
3423 		}
3424 	}
3425 
3426 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3427 }
3428 
3429 /*
3430  * Create a new mode from an EDID detailed timing section. An EDID detailed
3431  * timing block contains enough info for us to create and return a new struct
3432  * drm_display_mode.
3433  */
3434 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3435 						  const struct drm_edid *drm_edid,
3436 						  const struct detailed_timing *timing)
3437 {
3438 	const struct drm_display_info *info = &connector->display_info;
3439 	struct drm_device *dev = connector->dev;
3440 	struct drm_display_mode *mode;
3441 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3442 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3443 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3444 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3445 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3446 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3447 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3448 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3449 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3450 
3451 	/* ignore tiny modes */
3452 	if (hactive < 64 || vactive < 64)
3453 		return NULL;
3454 
3455 	if (pt->misc & DRM_EDID_PT_STEREO) {
3456 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3457 			    connector->base.id, connector->name);
3458 		return NULL;
3459 	}
3460 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3461 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3462 			    connector->base.id, connector->name);
3463 	}
3464 
3465 	/* it is incorrect if hsync/vsync width is zero */
3466 	if (!hsync_pulse_width || !vsync_pulse_width) {
3467 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3468 			    connector->base.id, connector->name);
3469 		return NULL;
3470 	}
3471 
3472 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3473 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3474 		if (!mode)
3475 			return NULL;
3476 
3477 		goto set_size;
3478 	}
3479 
3480 	mode = drm_mode_create(dev);
3481 	if (!mode)
3482 		return NULL;
3483 
3484 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3485 		mode->clock = 1088 * 10;
3486 	else
3487 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3488 
3489 	mode->hdisplay = hactive;
3490 	mode->hsync_start = mode->hdisplay + hsync_offset;
3491 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3492 	mode->htotal = mode->hdisplay + hblank;
3493 
3494 	mode->vdisplay = vactive;
3495 	mode->vsync_start = mode->vdisplay + vsync_offset;
3496 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3497 	mode->vtotal = mode->vdisplay + vblank;
3498 
3499 	/* Some EDIDs have bogus h/vtotal values */
3500 	if (mode->hsync_end > mode->htotal)
3501 		mode->htotal = mode->hsync_end + 1;
3502 	if (mode->vsync_end > mode->vtotal)
3503 		mode->vtotal = mode->vsync_end + 1;
3504 
3505 	drm_mode_do_interlace_quirk(mode, pt);
3506 
3507 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3508 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3509 	} else {
3510 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3511 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3512 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3513 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3514 	}
3515 
3516 set_size:
3517 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3518 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3519 
3520 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3521 		mode->width_mm *= 10;
3522 		mode->height_mm *= 10;
3523 	}
3524 
3525 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3526 		mode->width_mm = drm_edid->edid->width_cm * 10;
3527 		mode->height_mm = drm_edid->edid->height_cm * 10;
3528 	}
3529 
3530 	mode->type = DRM_MODE_TYPE_DRIVER;
3531 	drm_mode_set_name(mode);
3532 
3533 	return mode;
3534 }
3535 
3536 static bool
3537 mode_in_hsync_range(const struct drm_display_mode *mode,
3538 		    const struct edid *edid, const u8 *t)
3539 {
3540 	int hsync, hmin, hmax;
3541 
3542 	hmin = t[7];
3543 	if (edid->revision >= 4)
3544 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3545 	hmax = t[8];
3546 	if (edid->revision >= 4)
3547 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3548 	hsync = drm_mode_hsync(mode);
3549 
3550 	return (hsync <= hmax && hsync >= hmin);
3551 }
3552 
3553 static bool
3554 mode_in_vsync_range(const struct drm_display_mode *mode,
3555 		    const struct edid *edid, const u8 *t)
3556 {
3557 	int vsync, vmin, vmax;
3558 
3559 	vmin = t[5];
3560 	if (edid->revision >= 4)
3561 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3562 	vmax = t[6];
3563 	if (edid->revision >= 4)
3564 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3565 	vsync = drm_mode_vrefresh(mode);
3566 
3567 	return (vsync <= vmax && vsync >= vmin);
3568 }
3569 
3570 static u32
3571 range_pixel_clock(const struct edid *edid, const u8 *t)
3572 {
3573 	/* unspecified */
3574 	if (t[9] == 0 || t[9] == 255)
3575 		return 0;
3576 
3577 	/* 1.4 with CVT support gives us real precision, yay */
3578 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3579 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3580 
3581 	/* 1.3 is pathetic, so fuzz up a bit */
3582 	return t[9] * 10000 + 5001;
3583 }
3584 
3585 static bool mode_in_range(const struct drm_display_mode *mode,
3586 			  const struct drm_edid *drm_edid,
3587 			  const struct detailed_timing *timing)
3588 {
3589 	const struct edid *edid = drm_edid->edid;
3590 	u32 max_clock;
3591 	const u8 *t = (const u8 *)timing;
3592 
3593 	if (!mode_in_hsync_range(mode, edid, t))
3594 		return false;
3595 
3596 	if (!mode_in_vsync_range(mode, edid, t))
3597 		return false;
3598 
3599 	if ((max_clock = range_pixel_clock(edid, t)))
3600 		if (mode->clock > max_clock)
3601 			return false;
3602 
3603 	/* 1.4 max horizontal check */
3604 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3605 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3606 			return false;
3607 
3608 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3609 		return false;
3610 
3611 	return true;
3612 }
3613 
3614 static bool valid_inferred_mode(const struct drm_connector *connector,
3615 				const struct drm_display_mode *mode)
3616 {
3617 	const struct drm_display_mode *m;
3618 	bool ok = false;
3619 
3620 	list_for_each_entry(m, &connector->probed_modes, head) {
3621 		if (mode->hdisplay == m->hdisplay &&
3622 		    mode->vdisplay == m->vdisplay &&
3623 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3624 			return false; /* duplicated */
3625 		if (mode->hdisplay <= m->hdisplay &&
3626 		    mode->vdisplay <= m->vdisplay)
3627 			ok = true;
3628 	}
3629 	return ok;
3630 }
3631 
3632 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3633 				   const struct drm_edid *drm_edid,
3634 				   const struct detailed_timing *timing)
3635 {
3636 	int i, modes = 0;
3637 	struct drm_display_mode *newmode;
3638 	struct drm_device *dev = connector->dev;
3639 
3640 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3641 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3642 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3643 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3644 			if (newmode) {
3645 				drm_mode_probed_add(connector, newmode);
3646 				modes++;
3647 			}
3648 		}
3649 	}
3650 
3651 	return modes;
3652 }
3653 
3654 /* fix up 1366x768 mode from 1368x768;
3655  * GFT/CVT can't express 1366 width which isn't dividable by 8
3656  */
3657 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3658 {
3659 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3660 		mode->hdisplay = 1366;
3661 		mode->hsync_start--;
3662 		mode->hsync_end--;
3663 		drm_mode_set_name(mode);
3664 	}
3665 }
3666 
3667 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3668 				   const struct drm_edid *drm_edid,
3669 				   const struct detailed_timing *timing)
3670 {
3671 	int i, modes = 0;
3672 	struct drm_display_mode *newmode;
3673 	struct drm_device *dev = connector->dev;
3674 
3675 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3676 		const struct minimode *m = &extra_modes[i];
3677 
3678 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3679 		if (!newmode)
3680 			return modes;
3681 
3682 		drm_mode_fixup_1366x768(newmode);
3683 		if (!mode_in_range(newmode, drm_edid, timing) ||
3684 		    !valid_inferred_mode(connector, newmode)) {
3685 			drm_mode_destroy(dev, newmode);
3686 			continue;
3687 		}
3688 
3689 		drm_mode_probed_add(connector, newmode);
3690 		modes++;
3691 	}
3692 
3693 	return modes;
3694 }
3695 
3696 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3697 				    const struct drm_edid *drm_edid,
3698 				    const struct detailed_timing *timing)
3699 {
3700 	int i, modes = 0;
3701 	struct drm_display_mode *newmode;
3702 	struct drm_device *dev = connector->dev;
3703 
3704 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3705 		const struct minimode *m = &extra_modes[i];
3706 
3707 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3708 		if (!newmode)
3709 			return modes;
3710 
3711 		drm_mode_fixup_1366x768(newmode);
3712 		if (!mode_in_range(newmode, drm_edid, timing) ||
3713 		    !valid_inferred_mode(connector, newmode)) {
3714 			drm_mode_destroy(dev, newmode);
3715 			continue;
3716 		}
3717 
3718 		drm_mode_probed_add(connector, newmode);
3719 		modes++;
3720 	}
3721 
3722 	return modes;
3723 }
3724 
3725 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3726 				   const struct drm_edid *drm_edid,
3727 				   const struct detailed_timing *timing)
3728 {
3729 	int i, modes = 0;
3730 	struct drm_display_mode *newmode;
3731 	struct drm_device *dev = connector->dev;
3732 	bool rb = drm_monitor_supports_rb(drm_edid);
3733 
3734 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3735 		const struct minimode *m = &extra_modes[i];
3736 
3737 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3738 		if (!newmode)
3739 			return modes;
3740 
3741 		drm_mode_fixup_1366x768(newmode);
3742 		if (!mode_in_range(newmode, drm_edid, timing) ||
3743 		    !valid_inferred_mode(connector, newmode)) {
3744 			drm_mode_destroy(dev, newmode);
3745 			continue;
3746 		}
3747 
3748 		drm_mode_probed_add(connector, newmode);
3749 		modes++;
3750 	}
3751 
3752 	return modes;
3753 }
3754 
3755 static void
3756 do_inferred_modes(const struct detailed_timing *timing, void *c)
3757 {
3758 	struct detailed_mode_closure *closure = c;
3759 	const struct detailed_non_pixel *data = &timing->data.other_data;
3760 	const struct detailed_data_monitor_range *range = &data->data.range;
3761 
3762 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3763 		return;
3764 
3765 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3766 						  closure->drm_edid,
3767 						  timing);
3768 
3769 	if (closure->drm_edid->edid->revision < 2)
3770 		return; /* GTF not defined yet */
3771 
3772 	switch (range->flags) {
3773 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3774 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3775 							   closure->drm_edid,
3776 							   timing);
3777 		break;
3778 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3779 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3780 							  closure->drm_edid,
3781 							  timing);
3782 		break;
3783 	case DRM_EDID_CVT_SUPPORT_FLAG:
3784 		if (closure->drm_edid->edid->revision < 4)
3785 			break;
3786 
3787 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3788 							  closure->drm_edid,
3789 							  timing);
3790 		break;
3791 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3792 	default:
3793 		break;
3794 	}
3795 }
3796 
3797 static int add_inferred_modes(struct drm_connector *connector,
3798 			      const struct drm_edid *drm_edid)
3799 {
3800 	struct detailed_mode_closure closure = {
3801 		.connector = connector,
3802 		.drm_edid = drm_edid,
3803 	};
3804 
3805 	if (drm_edid->edid->revision >= 1)
3806 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3807 
3808 	return closure.modes;
3809 }
3810 
3811 static int
3812 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3813 {
3814 	int i, j, m, modes = 0;
3815 	struct drm_display_mode *mode;
3816 	const u8 *est = ((const u8 *)timing) + 6;
3817 
3818 	for (i = 0; i < 6; i++) {
3819 		for (j = 7; j >= 0; j--) {
3820 			m = (i * 8) + (7 - j);
3821 			if (m >= ARRAY_SIZE(est3_modes))
3822 				break;
3823 			if (est[i] & (1 << j)) {
3824 				mode = drm_mode_find_dmt(connector->dev,
3825 							 est3_modes[m].w,
3826 							 est3_modes[m].h,
3827 							 est3_modes[m].r,
3828 							 est3_modes[m].rb);
3829 				if (mode) {
3830 					drm_mode_probed_add(connector, mode);
3831 					modes++;
3832 				}
3833 			}
3834 		}
3835 	}
3836 
3837 	return modes;
3838 }
3839 
3840 static void
3841 do_established_modes(const struct detailed_timing *timing, void *c)
3842 {
3843 	struct detailed_mode_closure *closure = c;
3844 
3845 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3846 		return;
3847 
3848 	closure->modes += drm_est3_modes(closure->connector, timing);
3849 }
3850 
3851 /*
3852  * Get established modes from EDID and add them. Each EDID block contains a
3853  * bitmap of the supported "established modes" list (defined above). Tease them
3854  * out and add them to the global modes list.
3855  */
3856 static int add_established_modes(struct drm_connector *connector,
3857 				 const struct drm_edid *drm_edid)
3858 {
3859 	struct drm_device *dev = connector->dev;
3860 	const struct edid *edid = drm_edid->edid;
3861 	unsigned long est_bits = edid->established_timings.t1 |
3862 		(edid->established_timings.t2 << 8) |
3863 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3864 	int i, modes = 0;
3865 	struct detailed_mode_closure closure = {
3866 		.connector = connector,
3867 		.drm_edid = drm_edid,
3868 	};
3869 
3870 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3871 		if (est_bits & (1<<i)) {
3872 			struct drm_display_mode *newmode;
3873 
3874 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3875 			if (newmode) {
3876 				drm_mode_probed_add(connector, newmode);
3877 				modes++;
3878 			}
3879 		}
3880 	}
3881 
3882 	if (edid->revision >= 1)
3883 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3884 					    &closure);
3885 
3886 	return modes + closure.modes;
3887 }
3888 
3889 static void
3890 do_standard_modes(const struct detailed_timing *timing, void *c)
3891 {
3892 	struct detailed_mode_closure *closure = c;
3893 	const struct detailed_non_pixel *data = &timing->data.other_data;
3894 	struct drm_connector *connector = closure->connector;
3895 	int i;
3896 
3897 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3898 		return;
3899 
3900 	for (i = 0; i < 6; i++) {
3901 		const struct std_timing *std = &data->data.timings[i];
3902 		struct drm_display_mode *newmode;
3903 
3904 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3905 		if (newmode) {
3906 			drm_mode_probed_add(connector, newmode);
3907 			closure->modes++;
3908 		}
3909 	}
3910 }
3911 
3912 /*
3913  * Get standard modes from EDID and add them. Standard modes can be calculated
3914  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3915  * add them to the list.
3916  */
3917 static int add_standard_modes(struct drm_connector *connector,
3918 			      const struct drm_edid *drm_edid)
3919 {
3920 	int i, modes = 0;
3921 	struct detailed_mode_closure closure = {
3922 		.connector = connector,
3923 		.drm_edid = drm_edid,
3924 	};
3925 
3926 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3927 		struct drm_display_mode *newmode;
3928 
3929 		newmode = drm_mode_std(connector, drm_edid,
3930 				       &drm_edid->edid->standard_timings[i]);
3931 		if (newmode) {
3932 			drm_mode_probed_add(connector, newmode);
3933 			modes++;
3934 		}
3935 	}
3936 
3937 	if (drm_edid->edid->revision >= 1)
3938 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3939 					    &closure);
3940 
3941 	/* XXX should also look for standard codes in VTB blocks */
3942 
3943 	return modes + closure.modes;
3944 }
3945 
3946 static int drm_cvt_modes(struct drm_connector *connector,
3947 			 const struct detailed_timing *timing)
3948 {
3949 	int i, j, modes = 0;
3950 	struct drm_display_mode *newmode;
3951 	struct drm_device *dev = connector->dev;
3952 	const struct cvt_timing *cvt;
3953 	static const int rates[] = { 60, 85, 75, 60, 50 };
3954 	const u8 empty[3] = { 0, 0, 0 };
3955 
3956 	for (i = 0; i < 4; i++) {
3957 		int width, height;
3958 
3959 		cvt = &(timing->data.other_data.data.cvt[i]);
3960 
3961 		if (!memcmp(cvt->code, empty, 3))
3962 			continue;
3963 
3964 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3965 		switch (cvt->code[1] & 0x0c) {
3966 		/* default - because compiler doesn't see that we've enumerated all cases */
3967 		default:
3968 		case 0x00:
3969 			width = height * 4 / 3;
3970 			break;
3971 		case 0x04:
3972 			width = height * 16 / 9;
3973 			break;
3974 		case 0x08:
3975 			width = height * 16 / 10;
3976 			break;
3977 		case 0x0c:
3978 			width = height * 15 / 9;
3979 			break;
3980 		}
3981 
3982 		for (j = 1; j < 5; j++) {
3983 			if (cvt->code[2] & (1 << j)) {
3984 				newmode = drm_cvt_mode(dev, width, height,
3985 						       rates[j], j == 0,
3986 						       false, false);
3987 				if (newmode) {
3988 					drm_mode_probed_add(connector, newmode);
3989 					modes++;
3990 				}
3991 			}
3992 		}
3993 	}
3994 
3995 	return modes;
3996 }
3997 
3998 static void
3999 do_cvt_mode(const struct detailed_timing *timing, void *c)
4000 {
4001 	struct detailed_mode_closure *closure = c;
4002 
4003 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4004 		return;
4005 
4006 	closure->modes += drm_cvt_modes(closure->connector, timing);
4007 }
4008 
4009 static int
4010 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4011 {
4012 	struct detailed_mode_closure closure = {
4013 		.connector = connector,
4014 		.drm_edid = drm_edid,
4015 	};
4016 
4017 	if (drm_edid->edid->revision >= 3)
4018 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4019 
4020 	/* XXX should also look for CVT codes in VTB blocks */
4021 
4022 	return closure.modes;
4023 }
4024 
4025 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4026 					  struct drm_display_mode *mode);
4027 
4028 static void
4029 do_detailed_mode(const struct detailed_timing *timing, void *c)
4030 {
4031 	struct detailed_mode_closure *closure = c;
4032 	struct drm_display_mode *newmode;
4033 
4034 	if (!is_detailed_timing_descriptor(timing))
4035 		return;
4036 
4037 	newmode = drm_mode_detailed(closure->connector,
4038 				    closure->drm_edid, timing);
4039 	if (!newmode)
4040 		return;
4041 
4042 	if (closure->preferred)
4043 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4044 
4045 	/*
4046 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4047 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4048 	 * is just slightly off.
4049 	 */
4050 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4051 
4052 	drm_mode_probed_add(closure->connector, newmode);
4053 	closure->modes++;
4054 	closure->preferred = false;
4055 }
4056 
4057 /*
4058  * add_detailed_modes - Add modes from detailed timings
4059  * @connector: attached connector
4060  * @drm_edid: EDID block to scan
4061  */
4062 static int add_detailed_modes(struct drm_connector *connector,
4063 			      const struct drm_edid *drm_edid)
4064 {
4065 	struct detailed_mode_closure closure = {
4066 		.connector = connector,
4067 		.drm_edid = drm_edid,
4068 	};
4069 
4070 	if (drm_edid->edid->revision >= 4)
4071 		closure.preferred = true; /* first detailed timing is always preferred */
4072 	else
4073 		closure.preferred =
4074 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4075 
4076 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4077 
4078 	return closure.modes;
4079 }
4080 
4081 /* CTA-861-H Table 60 - CTA Tag Codes */
4082 #define CTA_DB_AUDIO			1
4083 #define CTA_DB_VIDEO			2
4084 #define CTA_DB_VENDOR			3
4085 #define CTA_DB_SPEAKER			4
4086 #define CTA_DB_EXTENDED_TAG		7
4087 
4088 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4089 #define CTA_EXT_DB_VIDEO_CAP		0
4090 #define CTA_EXT_DB_VENDOR		1
4091 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4092 #define CTA_EXT_DB_420_VIDEO_DATA	14
4093 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4094 #define CTA_EXT_DB_HF_EEODB		0x78
4095 #define CTA_EXT_DB_HF_SCDB		0x79
4096 
4097 #define EDID_BASIC_AUDIO	(1 << 6)
4098 #define EDID_CEA_YCRCB444	(1 << 5)
4099 #define EDID_CEA_YCRCB422	(1 << 4)
4100 #define EDID_CEA_VCDB_QS	(1 << 6)
4101 
4102 /*
4103  * Search EDID for CEA extension block.
4104  *
4105  * FIXME: Prefer not returning pointers to raw EDID data.
4106  */
4107 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4108 				  int ext_id, int *ext_index)
4109 {
4110 	const u8 *edid_ext = NULL;
4111 	int i;
4112 
4113 	/* No EDID or EDID extensions */
4114 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4115 		return NULL;
4116 
4117 	/* Find CEA extension */
4118 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4119 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4120 		if (edid_block_tag(edid_ext) == ext_id)
4121 			break;
4122 	}
4123 
4124 	if (i >= drm_edid_extension_block_count(drm_edid))
4125 		return NULL;
4126 
4127 	*ext_index = i + 1;
4128 
4129 	return edid_ext;
4130 }
4131 
4132 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4133 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4134 {
4135 	const struct displayid_block *block;
4136 	struct displayid_iter iter;
4137 	int ext_index = 0;
4138 	bool found = false;
4139 
4140 	/* Look for a top level CEA extension block */
4141 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4142 		return true;
4143 
4144 	/* CEA blocks can also be found embedded in a DisplayID block */
4145 	displayid_iter_edid_begin(drm_edid, &iter);
4146 	displayid_iter_for_each(block, &iter) {
4147 		if (block->tag == DATA_BLOCK_CTA) {
4148 			found = true;
4149 			break;
4150 		}
4151 	}
4152 	displayid_iter_end(&iter);
4153 
4154 	return found;
4155 }
4156 
4157 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4158 {
4159 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4160 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4161 
4162 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4163 		return &edid_cea_modes_1[vic - 1];
4164 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4165 		return &edid_cea_modes_193[vic - 193];
4166 	return NULL;
4167 }
4168 
4169 static u8 cea_num_vics(void)
4170 {
4171 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4172 }
4173 
4174 static u8 cea_next_vic(u8 vic)
4175 {
4176 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4177 		vic = 193;
4178 	return vic;
4179 }
4180 
4181 /*
4182  * Calculate the alternate clock for the CEA mode
4183  * (60Hz vs. 59.94Hz etc.)
4184  */
4185 static unsigned int
4186 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4187 {
4188 	unsigned int clock = cea_mode->clock;
4189 
4190 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4191 		return clock;
4192 
4193 	/*
4194 	 * edid_cea_modes contains the 59.94Hz
4195 	 * variant for 240 and 480 line modes,
4196 	 * and the 60Hz variant otherwise.
4197 	 */
4198 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4199 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4200 	else
4201 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4202 
4203 	return clock;
4204 }
4205 
4206 static bool
4207 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4208 {
4209 	/*
4210 	 * For certain VICs the spec allows the vertical
4211 	 * front porch to vary by one or two lines.
4212 	 *
4213 	 * cea_modes[] stores the variant with the shortest
4214 	 * vertical front porch. We can adjust the mode to
4215 	 * get the other variants by simply increasing the
4216 	 * vertical front porch length.
4217 	 */
4218 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4219 		     cea_mode_for_vic(9)->vtotal != 262 ||
4220 		     cea_mode_for_vic(12)->vtotal != 262 ||
4221 		     cea_mode_for_vic(13)->vtotal != 262 ||
4222 		     cea_mode_for_vic(23)->vtotal != 312 ||
4223 		     cea_mode_for_vic(24)->vtotal != 312 ||
4224 		     cea_mode_for_vic(27)->vtotal != 312 ||
4225 		     cea_mode_for_vic(28)->vtotal != 312);
4226 
4227 	if (((vic == 8 || vic == 9 ||
4228 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4229 	    ((vic == 23 || vic == 24 ||
4230 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4231 		mode->vsync_start++;
4232 		mode->vsync_end++;
4233 		mode->vtotal++;
4234 
4235 		return true;
4236 	}
4237 
4238 	return false;
4239 }
4240 
4241 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4242 					     unsigned int clock_tolerance)
4243 {
4244 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4245 	u8 vic;
4246 
4247 	if (!to_match->clock)
4248 		return 0;
4249 
4250 	if (to_match->picture_aspect_ratio)
4251 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4252 
4253 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4254 		struct drm_display_mode cea_mode;
4255 		unsigned int clock1, clock2;
4256 
4257 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4258 
4259 		/* Check both 60Hz and 59.94Hz */
4260 		clock1 = cea_mode.clock;
4261 		clock2 = cea_mode_alternate_clock(&cea_mode);
4262 
4263 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4264 		    abs(to_match->clock - clock2) > clock_tolerance)
4265 			continue;
4266 
4267 		do {
4268 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4269 				return vic;
4270 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4271 	}
4272 
4273 	return 0;
4274 }
4275 
4276 /**
4277  * drm_match_cea_mode - look for a CEA mode matching given mode
4278  * @to_match: display mode
4279  *
4280  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4281  * mode.
4282  */
4283 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4284 {
4285 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4286 	u8 vic;
4287 
4288 	if (!to_match->clock)
4289 		return 0;
4290 
4291 	if (to_match->picture_aspect_ratio)
4292 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4293 
4294 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4295 		struct drm_display_mode cea_mode;
4296 		unsigned int clock1, clock2;
4297 
4298 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4299 
4300 		/* Check both 60Hz and 59.94Hz */
4301 		clock1 = cea_mode.clock;
4302 		clock2 = cea_mode_alternate_clock(&cea_mode);
4303 
4304 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4305 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4306 			continue;
4307 
4308 		do {
4309 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4310 				return vic;
4311 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4312 	}
4313 
4314 	return 0;
4315 }
4316 EXPORT_SYMBOL(drm_match_cea_mode);
4317 
4318 static bool drm_valid_cea_vic(u8 vic)
4319 {
4320 	return cea_mode_for_vic(vic) != NULL;
4321 }
4322 
4323 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4324 {
4325 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4326 
4327 	if (mode)
4328 		return mode->picture_aspect_ratio;
4329 
4330 	return HDMI_PICTURE_ASPECT_NONE;
4331 }
4332 
4333 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4334 {
4335 	return edid_4k_modes[video_code].picture_aspect_ratio;
4336 }
4337 
4338 /*
4339  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4340  * specific block).
4341  */
4342 static unsigned int
4343 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4344 {
4345 	return cea_mode_alternate_clock(hdmi_mode);
4346 }
4347 
4348 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4349 					      unsigned int clock_tolerance)
4350 {
4351 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4352 	u8 vic;
4353 
4354 	if (!to_match->clock)
4355 		return 0;
4356 
4357 	if (to_match->picture_aspect_ratio)
4358 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4359 
4360 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4361 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4362 		unsigned int clock1, clock2;
4363 
4364 		/* Make sure to also match alternate clocks */
4365 		clock1 = hdmi_mode->clock;
4366 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4367 
4368 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4369 		    abs(to_match->clock - clock2) > clock_tolerance)
4370 			continue;
4371 
4372 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4373 			return vic;
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 /*
4380  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4381  * @to_match: display mode
4382  *
4383  * An HDMI mode is one defined in the HDMI vendor specific block.
4384  *
4385  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4386  */
4387 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4388 {
4389 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4390 	u8 vic;
4391 
4392 	if (!to_match->clock)
4393 		return 0;
4394 
4395 	if (to_match->picture_aspect_ratio)
4396 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4397 
4398 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4399 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4400 		unsigned int clock1, clock2;
4401 
4402 		/* Make sure to also match alternate clocks */
4403 		clock1 = hdmi_mode->clock;
4404 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4405 
4406 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4407 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4408 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4409 			return vic;
4410 	}
4411 	return 0;
4412 }
4413 
4414 static bool drm_valid_hdmi_vic(u8 vic)
4415 {
4416 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4417 }
4418 
4419 static int add_alternate_cea_modes(struct drm_connector *connector,
4420 				   const struct drm_edid *drm_edid)
4421 {
4422 	struct drm_device *dev = connector->dev;
4423 	struct drm_display_mode *mode, *tmp;
4424 	LIST_HEAD(list);
4425 	int modes = 0;
4426 
4427 	/* Don't add CTA modes if the CTA extension block is missing */
4428 	if (!drm_edid_has_cta_extension(drm_edid))
4429 		return 0;
4430 
4431 	/*
4432 	 * Go through all probed modes and create a new mode
4433 	 * with the alternate clock for certain CEA modes.
4434 	 */
4435 	list_for_each_entry(mode, &connector->probed_modes, head) {
4436 		const struct drm_display_mode *cea_mode = NULL;
4437 		struct drm_display_mode *newmode;
4438 		u8 vic = drm_match_cea_mode(mode);
4439 		unsigned int clock1, clock2;
4440 
4441 		if (drm_valid_cea_vic(vic)) {
4442 			cea_mode = cea_mode_for_vic(vic);
4443 			clock2 = cea_mode_alternate_clock(cea_mode);
4444 		} else {
4445 			vic = drm_match_hdmi_mode(mode);
4446 			if (drm_valid_hdmi_vic(vic)) {
4447 				cea_mode = &edid_4k_modes[vic];
4448 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4449 			}
4450 		}
4451 
4452 		if (!cea_mode)
4453 			continue;
4454 
4455 		clock1 = cea_mode->clock;
4456 
4457 		if (clock1 == clock2)
4458 			continue;
4459 
4460 		if (mode->clock != clock1 && mode->clock != clock2)
4461 			continue;
4462 
4463 		newmode = drm_mode_duplicate(dev, cea_mode);
4464 		if (!newmode)
4465 			continue;
4466 
4467 		/* Carry over the stereo flags */
4468 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4469 
4470 		/*
4471 		 * The current mode could be either variant. Make
4472 		 * sure to pick the "other" clock for the new mode.
4473 		 */
4474 		if (mode->clock != clock1)
4475 			newmode->clock = clock1;
4476 		else
4477 			newmode->clock = clock2;
4478 
4479 		list_add_tail(&newmode->head, &list);
4480 	}
4481 
4482 	list_for_each_entry_safe(mode, tmp, &list, head) {
4483 		list_del(&mode->head);
4484 		drm_mode_probed_add(connector, mode);
4485 		modes++;
4486 	}
4487 
4488 	return modes;
4489 }
4490 
4491 static u8 svd_to_vic(u8 svd)
4492 {
4493 	/* 0-6 bit vic, 7th bit native mode indicator */
4494 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4495 		return svd & 127;
4496 
4497 	return svd;
4498 }
4499 
4500 /*
4501  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4502  * the EDID, or NULL on errors.
4503  */
4504 static struct drm_display_mode *
4505 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4506 {
4507 	const struct drm_display_info *info = &connector->display_info;
4508 	struct drm_device *dev = connector->dev;
4509 
4510 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4511 		return NULL;
4512 
4513 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4514 }
4515 
4516 /*
4517  * do_y420vdb_modes - Parse YCBCR 420 only modes
4518  * @connector: connector corresponding to the HDMI sink
4519  * @svds: start of the data block of CEA YCBCR 420 VDB
4520  * @len: length of the CEA YCBCR 420 VDB
4521  *
4522  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4523  * which contains modes which can be supported in YCBCR 420
4524  * output format only.
4525  */
4526 static int do_y420vdb_modes(struct drm_connector *connector,
4527 			    const u8 *svds, u8 svds_len)
4528 {
4529 	struct drm_device *dev = connector->dev;
4530 	int modes = 0, i;
4531 
4532 	for (i = 0; i < svds_len; i++) {
4533 		u8 vic = svd_to_vic(svds[i]);
4534 		struct drm_display_mode *newmode;
4535 
4536 		if (!drm_valid_cea_vic(vic))
4537 			continue;
4538 
4539 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4540 		if (!newmode)
4541 			break;
4542 		drm_mode_probed_add(connector, newmode);
4543 		modes++;
4544 	}
4545 
4546 	return modes;
4547 }
4548 
4549 /**
4550  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4551  * @dev: DRM device
4552  * @video_code: CEA VIC of the mode
4553  *
4554  * Creates a new mode matching the specified CEA VIC.
4555  *
4556  * Returns: A new drm_display_mode on success or NULL on failure
4557  */
4558 struct drm_display_mode *
4559 drm_display_mode_from_cea_vic(struct drm_device *dev,
4560 			      u8 video_code)
4561 {
4562 	const struct drm_display_mode *cea_mode;
4563 	struct drm_display_mode *newmode;
4564 
4565 	cea_mode = cea_mode_for_vic(video_code);
4566 	if (!cea_mode)
4567 		return NULL;
4568 
4569 	newmode = drm_mode_duplicate(dev, cea_mode);
4570 	if (!newmode)
4571 		return NULL;
4572 
4573 	return newmode;
4574 }
4575 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4576 
4577 /* Add modes based on VICs parsed in parse_cta_vdb() */
4578 static int add_cta_vdb_modes(struct drm_connector *connector)
4579 {
4580 	const struct drm_display_info *info = &connector->display_info;
4581 	int i, modes = 0;
4582 
4583 	if (!info->vics)
4584 		return 0;
4585 
4586 	for (i = 0; i < info->vics_len; i++) {
4587 		struct drm_display_mode *mode;
4588 
4589 		mode = drm_display_mode_from_vic_index(connector, i);
4590 		if (mode) {
4591 			drm_mode_probed_add(connector, mode);
4592 			modes++;
4593 		}
4594 	}
4595 
4596 	return modes;
4597 }
4598 
4599 struct stereo_mandatory_mode {
4600 	int width, height, vrefresh;
4601 	unsigned int flags;
4602 };
4603 
4604 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4605 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4606 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4607 	{ 1920, 1080, 50,
4608 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4609 	{ 1920, 1080, 60,
4610 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4611 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4612 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4613 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4614 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4615 };
4616 
4617 static bool
4618 stereo_match_mandatory(const struct drm_display_mode *mode,
4619 		       const struct stereo_mandatory_mode *stereo_mode)
4620 {
4621 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4622 
4623 	return mode->hdisplay == stereo_mode->width &&
4624 	       mode->vdisplay == stereo_mode->height &&
4625 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4626 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4627 }
4628 
4629 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4630 {
4631 	struct drm_device *dev = connector->dev;
4632 	const struct drm_display_mode *mode;
4633 	struct list_head stereo_modes;
4634 	int modes = 0, i;
4635 
4636 	INIT_LIST_HEAD(&stereo_modes);
4637 
4638 	list_for_each_entry(mode, &connector->probed_modes, head) {
4639 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4640 			const struct stereo_mandatory_mode *mandatory;
4641 			struct drm_display_mode *new_mode;
4642 
4643 			if (!stereo_match_mandatory(mode,
4644 						    &stereo_mandatory_modes[i]))
4645 				continue;
4646 
4647 			mandatory = &stereo_mandatory_modes[i];
4648 			new_mode = drm_mode_duplicate(dev, mode);
4649 			if (!new_mode)
4650 				continue;
4651 
4652 			new_mode->flags |= mandatory->flags;
4653 			list_add_tail(&new_mode->head, &stereo_modes);
4654 			modes++;
4655 		}
4656 	}
4657 
4658 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4659 
4660 	return modes;
4661 }
4662 
4663 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4664 {
4665 	struct drm_device *dev = connector->dev;
4666 	struct drm_display_mode *newmode;
4667 
4668 	if (!drm_valid_hdmi_vic(vic)) {
4669 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4670 			connector->base.id, connector->name, vic);
4671 		return 0;
4672 	}
4673 
4674 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4675 	if (!newmode)
4676 		return 0;
4677 
4678 	drm_mode_probed_add(connector, newmode);
4679 
4680 	return 1;
4681 }
4682 
4683 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4684 			       int vic_index)
4685 {
4686 	struct drm_display_mode *newmode;
4687 	int modes = 0;
4688 
4689 	if (structure & (1 << 0)) {
4690 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4691 		if (newmode) {
4692 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4693 			drm_mode_probed_add(connector, newmode);
4694 			modes++;
4695 		}
4696 	}
4697 	if (structure & (1 << 6)) {
4698 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4699 		if (newmode) {
4700 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4701 			drm_mode_probed_add(connector, newmode);
4702 			modes++;
4703 		}
4704 	}
4705 	if (structure & (1 << 8)) {
4706 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4707 		if (newmode) {
4708 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4709 			drm_mode_probed_add(connector, newmode);
4710 			modes++;
4711 		}
4712 	}
4713 
4714 	return modes;
4715 }
4716 
4717 static bool hdmi_vsdb_latency_present(const u8 *db)
4718 {
4719 	return db[8] & BIT(7);
4720 }
4721 
4722 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4723 {
4724 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4725 }
4726 
4727 static int hdmi_vsdb_latency_length(const u8 *db)
4728 {
4729 	if (hdmi_vsdb_i_latency_present(db))
4730 		return 4;
4731 	else if (hdmi_vsdb_latency_present(db))
4732 		return 2;
4733 	else
4734 		return 0;
4735 }
4736 
4737 /*
4738  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4739  * @connector: connector corresponding to the HDMI sink
4740  * @db: start of the CEA vendor specific block
4741  * @len: length of the CEA block payload, ie. one can access up to db[len]
4742  *
4743  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4744  * also adds the stereo 3d modes when applicable.
4745  */
4746 static int
4747 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4748 {
4749 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4750 	u8 vic_len, hdmi_3d_len = 0;
4751 	u16 mask;
4752 	u16 structure_all;
4753 
4754 	if (len < 8)
4755 		goto out;
4756 
4757 	/* no HDMI_Video_Present */
4758 	if (!(db[8] & (1 << 5)))
4759 		goto out;
4760 
4761 	offset += hdmi_vsdb_latency_length(db);
4762 
4763 	/* the declared length is not long enough for the 2 first bytes
4764 	 * of additional video format capabilities */
4765 	if (len < (8 + offset + 2))
4766 		goto out;
4767 
4768 	/* 3D_Present */
4769 	offset++;
4770 	if (db[8 + offset] & (1 << 7)) {
4771 		modes += add_hdmi_mandatory_stereo_modes(connector);
4772 
4773 		/* 3D_Multi_present */
4774 		multi_present = (db[8 + offset] & 0x60) >> 5;
4775 	}
4776 
4777 	offset++;
4778 	vic_len = db[8 + offset] >> 5;
4779 	hdmi_3d_len = db[8 + offset] & 0x1f;
4780 
4781 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4782 		u8 vic;
4783 
4784 		vic = db[9 + offset + i];
4785 		modes += add_hdmi_mode(connector, vic);
4786 	}
4787 	offset += 1 + vic_len;
4788 
4789 	if (multi_present == 1)
4790 		multi_len = 2;
4791 	else if (multi_present == 2)
4792 		multi_len = 4;
4793 	else
4794 		multi_len = 0;
4795 
4796 	if (len < (8 + offset + hdmi_3d_len - 1))
4797 		goto out;
4798 
4799 	if (hdmi_3d_len < multi_len)
4800 		goto out;
4801 
4802 	if (multi_present == 1 || multi_present == 2) {
4803 		/* 3D_Structure_ALL */
4804 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4805 
4806 		/* check if 3D_MASK is present */
4807 		if (multi_present == 2)
4808 			mask = (db[10 + offset] << 8) | db[11 + offset];
4809 		else
4810 			mask = 0xffff;
4811 
4812 		for (i = 0; i < 16; i++) {
4813 			if (mask & (1 << i))
4814 				modes += add_3d_struct_modes(connector,
4815 							     structure_all, i);
4816 		}
4817 	}
4818 
4819 	offset += multi_len;
4820 
4821 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4822 		int vic_index;
4823 		struct drm_display_mode *newmode = NULL;
4824 		unsigned int newflag = 0;
4825 		bool detail_present;
4826 
4827 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4828 
4829 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4830 			break;
4831 
4832 		/* 2D_VIC_order_X */
4833 		vic_index = db[8 + offset + i] >> 4;
4834 
4835 		/* 3D_Structure_X */
4836 		switch (db[8 + offset + i] & 0x0f) {
4837 		case 0:
4838 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4839 			break;
4840 		case 6:
4841 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4842 			break;
4843 		case 8:
4844 			/* 3D_Detail_X */
4845 			if ((db[9 + offset + i] >> 4) == 1)
4846 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4847 			break;
4848 		}
4849 
4850 		if (newflag != 0) {
4851 			newmode = drm_display_mode_from_vic_index(connector,
4852 								  vic_index);
4853 
4854 			if (newmode) {
4855 				newmode->flags |= newflag;
4856 				drm_mode_probed_add(connector, newmode);
4857 				modes++;
4858 			}
4859 		}
4860 
4861 		if (detail_present)
4862 			i++;
4863 	}
4864 
4865 out:
4866 	return modes;
4867 }
4868 
4869 static int
4870 cea_revision(const u8 *cea)
4871 {
4872 	/*
4873 	 * FIXME is this correct for the DispID variant?
4874 	 * The DispID spec doesn't really specify whether
4875 	 * this is the revision of the CEA extension or
4876 	 * the DispID CEA data block. And the only value
4877 	 * given as an example is 0.
4878 	 */
4879 	return cea[1];
4880 }
4881 
4882 /*
4883  * CTA Data Block iterator.
4884  *
4885  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4886  * CTA Data Blocks.
4887  *
4888  * struct cea_db *db:
4889  * struct cea_db_iter iter;
4890  *
4891  * cea_db_iter_edid_begin(edid, &iter);
4892  * cea_db_iter_for_each(db, &iter) {
4893  *         // do stuff with db
4894  * }
4895  * cea_db_iter_end(&iter);
4896  */
4897 struct cea_db_iter {
4898 	struct drm_edid_iter edid_iter;
4899 	struct displayid_iter displayid_iter;
4900 
4901 	/* Current Data Block Collection. */
4902 	const u8 *collection;
4903 
4904 	/* Current Data Block index in current collection. */
4905 	int index;
4906 
4907 	/* End index in current collection. */
4908 	int end;
4909 };
4910 
4911 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4912 struct cea_db {
4913 	u8 tag_length;
4914 	u8 data[];
4915 } __packed;
4916 
4917 static int cea_db_tag(const struct cea_db *db)
4918 {
4919 	return db->tag_length >> 5;
4920 }
4921 
4922 static int cea_db_payload_len(const void *_db)
4923 {
4924 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4925 	const struct cea_db *db = _db;
4926 
4927 	return db->tag_length & 0x1f;
4928 }
4929 
4930 static const void *cea_db_data(const struct cea_db *db)
4931 {
4932 	return db->data;
4933 }
4934 
4935 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4936 {
4937 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4938 		cea_db_payload_len(db) >= 1 &&
4939 		db->data[0] == tag;
4940 }
4941 
4942 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4943 {
4944 	const u8 *data = cea_db_data(db);
4945 
4946 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4947 		cea_db_payload_len(db) >= 3 &&
4948 		oui(data[2], data[1], data[0]) == vendor_oui;
4949 }
4950 
4951 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4952 				   struct cea_db_iter *iter)
4953 {
4954 	memset(iter, 0, sizeof(*iter));
4955 
4956 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4957 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4958 }
4959 
4960 static const struct cea_db *
4961 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4962 {
4963 	const struct cea_db *db;
4964 
4965 	if (!iter->collection)
4966 		return NULL;
4967 
4968 	db = (const struct cea_db *)&iter->collection[iter->index];
4969 
4970 	if (iter->index + sizeof(*db) <= iter->end &&
4971 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4972 		return db;
4973 
4974 	return NULL;
4975 }
4976 
4977 /*
4978  * References:
4979  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4980  */
4981 static int cea_db_collection_size(const u8 *cta)
4982 {
4983 	u8 d = cta[2];
4984 
4985 	if (d < 4 || d > 127)
4986 		return 0;
4987 
4988 	return d - 4;
4989 }
4990 
4991 /*
4992  * References:
4993  * - VESA E-EDID v1.4
4994  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995  */
4996 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
4997 {
4998 	const u8 *ext;
4999 
5000 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5001 		int size;
5002 
5003 		/* Only support CTA Extension revision 3+ */
5004 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5005 			continue;
5006 
5007 		size = cea_db_collection_size(ext);
5008 		if (!size)
5009 			continue;
5010 
5011 		iter->index = 4;
5012 		iter->end = iter->index + size;
5013 
5014 		return ext;
5015 	}
5016 
5017 	return NULL;
5018 }
5019 
5020 /*
5021  * References:
5022  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5023  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5024  *
5025  * Note that the above do not specify any connection between DisplayID Data
5026  * Block revision and CTA Extension versions.
5027  */
5028 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5029 {
5030 	const struct displayid_block *block;
5031 
5032 	displayid_iter_for_each(block, &iter->displayid_iter) {
5033 		if (block->tag != DATA_BLOCK_CTA)
5034 			continue;
5035 
5036 		/*
5037 		 * The displayid iterator has already verified the block bounds
5038 		 * in displayid_iter_block().
5039 		 */
5040 		iter->index = sizeof(*block);
5041 		iter->end = iter->index + block->num_bytes;
5042 
5043 		return block;
5044 	}
5045 
5046 	return NULL;
5047 }
5048 
5049 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5050 {
5051 	const struct cea_db *db;
5052 
5053 	if (iter->collection) {
5054 		/* Current collection should always be valid. */
5055 		db = __cea_db_iter_current_block(iter);
5056 		if (WARN_ON(!db)) {
5057 			iter->collection = NULL;
5058 			return NULL;
5059 		}
5060 
5061 		/* Next block in CTA Data Block Collection */
5062 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5063 
5064 		db = __cea_db_iter_current_block(iter);
5065 		if (db)
5066 			return db;
5067 	}
5068 
5069 	for (;;) {
5070 		/*
5071 		 * Find the next CTA Data Block Collection. First iterate all
5072 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5073 		 *
5074 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5075 		 * Extension, it's recommended that DisplayID extensions are
5076 		 * exposed after all of the CTA Extensions.
5077 		 */
5078 		iter->collection = __cea_db_iter_edid_next(iter);
5079 		if (!iter->collection)
5080 			iter->collection = __cea_db_iter_displayid_next(iter);
5081 
5082 		if (!iter->collection)
5083 			return NULL;
5084 
5085 		db = __cea_db_iter_current_block(iter);
5086 		if (db)
5087 			return db;
5088 	}
5089 }
5090 
5091 #define cea_db_iter_for_each(__db, __iter) \
5092 	while (((__db) = __cea_db_iter_next(__iter)))
5093 
5094 static void cea_db_iter_end(struct cea_db_iter *iter)
5095 {
5096 	displayid_iter_end(&iter->displayid_iter);
5097 	drm_edid_iter_end(&iter->edid_iter);
5098 
5099 	memset(iter, 0, sizeof(*iter));
5100 }
5101 
5102 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5103 {
5104 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5105 		cea_db_payload_len(db) >= 5;
5106 }
5107 
5108 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5109 {
5110 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5111 		cea_db_payload_len(db) >= 7;
5112 }
5113 
5114 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5115 {
5116 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5117 		cea_db_payload_len(db) >= 2;
5118 }
5119 
5120 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5121 {
5122 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5123 		cea_db_payload_len(db) == 21;
5124 }
5125 
5126 static bool cea_db_is_vcdb(const struct cea_db *db)
5127 {
5128 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5129 		cea_db_payload_len(db) == 2;
5130 }
5131 
5132 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5133 {
5134 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5135 		cea_db_payload_len(db) >= 7;
5136 }
5137 
5138 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5139 {
5140 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5141 }
5142 
5143 static bool cea_db_is_y420vdb(const struct cea_db *db)
5144 {
5145 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5146 }
5147 
5148 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5149 {
5150 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5151 		cea_db_payload_len(db) >= 3;
5152 }
5153 
5154 /*
5155  * Get the HF-EEODB override extension block count from EDID.
5156  *
5157  * The passed in EDID may be partially read, as long as it has at least two
5158  * blocks (base block and one extension block) if EDID extension count is > 0.
5159  *
5160  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5161  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5162  * iterators instead.
5163  *
5164  * References:
5165  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5166  */
5167 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5168 {
5169 	const u8 *cta;
5170 
5171 	/* No extensions according to base block, no HF-EEODB. */
5172 	if (!edid_extension_block_count(edid))
5173 		return 0;
5174 
5175 	/* HF-EEODB is always in the first EDID extension block only */
5176 	cta = edid_extension_block_data(edid, 0);
5177 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5178 		return 0;
5179 
5180 	/* Need to have the data block collection, and at least 3 bytes. */
5181 	if (cea_db_collection_size(cta) < 3)
5182 		return 0;
5183 
5184 	/*
5185 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5186 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5187 	 * through 6 of Block 1 of the E-EDID.
5188 	 */
5189 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5190 		return 0;
5191 
5192 	return cta[4 + 2];
5193 }
5194 
5195 /*
5196  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5197  *
5198  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5199  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5200  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5201  * support YCBCR420 output too.
5202  */
5203 static void parse_cta_y420cmdb(struct drm_connector *connector,
5204 			       const struct cea_db *db, u64 *y420cmdb_map)
5205 {
5206 	struct drm_display_info *info = &connector->display_info;
5207 	int i, map_len = cea_db_payload_len(db) - 1;
5208 	const u8 *data = cea_db_data(db) + 1;
5209 	u64 map = 0;
5210 
5211 	if (map_len == 0) {
5212 		/* All CEA modes support ycbcr420 sampling also.*/
5213 		map = U64_MAX;
5214 		goto out;
5215 	}
5216 
5217 	/*
5218 	 * This map indicates which of the existing CEA block modes
5219 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5220 	 * set, first mode from VDB can support YCBCR420 output too.
5221 	 * We will parse and keep this map, before parsing VDB itself
5222 	 * to avoid going through the same block again and again.
5223 	 *
5224 	 * Spec is not clear about max possible size of this block.
5225 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5226 	 * address 8 CEA modes, in this way this map can address
5227 	 * 8*8 = first 64 SVDs.
5228 	 */
5229 	if (WARN_ON_ONCE(map_len > 8))
5230 		map_len = 8;
5231 
5232 	for (i = 0; i < map_len; i++)
5233 		map |= (u64)data[i] << (8 * i);
5234 
5235 out:
5236 	if (map)
5237 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5238 
5239 	*y420cmdb_map = map;
5240 }
5241 
5242 static int add_cea_modes(struct drm_connector *connector,
5243 			 const struct drm_edid *drm_edid)
5244 {
5245 	const struct cea_db *db;
5246 	struct cea_db_iter iter;
5247 	int modes;
5248 
5249 	/* CTA VDB block VICs parsed earlier */
5250 	modes = add_cta_vdb_modes(connector);
5251 
5252 	cea_db_iter_edid_begin(drm_edid, &iter);
5253 	cea_db_iter_for_each(db, &iter) {
5254 		if (cea_db_is_hdmi_vsdb(db)) {
5255 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5256 						    cea_db_payload_len(db));
5257 		} else if (cea_db_is_y420vdb(db)) {
5258 			const u8 *vdb420 = cea_db_data(db) + 1;
5259 
5260 			/* Add 4:2:0(only) modes present in EDID */
5261 			modes += do_y420vdb_modes(connector, vdb420,
5262 						  cea_db_payload_len(db) - 1);
5263 		}
5264 	}
5265 	cea_db_iter_end(&iter);
5266 
5267 	return modes;
5268 }
5269 
5270 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5271 					  struct drm_display_mode *mode)
5272 {
5273 	const struct drm_display_mode *cea_mode;
5274 	int clock1, clock2, clock;
5275 	u8 vic;
5276 	const char *type;
5277 
5278 	/*
5279 	 * allow 5kHz clock difference either way to account for
5280 	 * the 10kHz clock resolution limit of detailed timings.
5281 	 */
5282 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5283 	if (drm_valid_cea_vic(vic)) {
5284 		type = "CEA";
5285 		cea_mode = cea_mode_for_vic(vic);
5286 		clock1 = cea_mode->clock;
5287 		clock2 = cea_mode_alternate_clock(cea_mode);
5288 	} else {
5289 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5290 		if (drm_valid_hdmi_vic(vic)) {
5291 			type = "HDMI";
5292 			cea_mode = &edid_4k_modes[vic];
5293 			clock1 = cea_mode->clock;
5294 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5295 		} else {
5296 			return;
5297 		}
5298 	}
5299 
5300 	/* pick whichever is closest */
5301 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5302 		clock = clock1;
5303 	else
5304 		clock = clock2;
5305 
5306 	if (mode->clock == clock)
5307 		return;
5308 
5309 	drm_dbg_kms(connector->dev,
5310 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5311 		    connector->base.id, connector->name,
5312 		    type, vic, mode->clock, clock);
5313 	mode->clock = clock;
5314 }
5315 
5316 static void drm_calculate_luminance_range(struct drm_connector *connector)
5317 {
5318 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5319 	struct drm_luminance_range_info *luminance_range =
5320 		&connector->display_info.luminance_range;
5321 	static const u8 pre_computed_values[] = {
5322 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5323 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5324 	};
5325 	u32 max_avg, min_cll, max, min, q, r;
5326 
5327 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5328 		return;
5329 
5330 	max_avg = hdr_metadata->max_fall;
5331 	min_cll = hdr_metadata->min_cll;
5332 
5333 	/*
5334 	 * From the specification (CTA-861-G), for calculating the maximum
5335 	 * luminance we need to use:
5336 	 *	Luminance = 50*2**(CV/32)
5337 	 * Where CV is a one-byte value.
5338 	 * For calculating this expression we may need float point precision;
5339 	 * to avoid this complexity level, we take advantage that CV is divided
5340 	 * by a constant. From the Euclids division algorithm, we know that CV
5341 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5342 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5343 	 * need to pre-compute the value of r/32. For pre-computing the values
5344 	 * We just used the following Ruby line:
5345 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5346 	 * The results of the above expressions can be verified at
5347 	 * pre_computed_values.
5348 	 */
5349 	q = max_avg >> 5;
5350 	r = max_avg % 32;
5351 	max = (1 << q) * pre_computed_values[r];
5352 
5353 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5354 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5355 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5356 
5357 	luminance_range->min_luminance = min;
5358 	luminance_range->max_luminance = max;
5359 }
5360 
5361 static uint8_t eotf_supported(const u8 *edid_ext)
5362 {
5363 	return edid_ext[2] &
5364 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5365 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5366 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5367 		 BIT(HDMI_EOTF_BT_2100_HLG));
5368 }
5369 
5370 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5371 {
5372 	return edid_ext[3] &
5373 		BIT(HDMI_STATIC_METADATA_TYPE1);
5374 }
5375 
5376 static void
5377 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5378 {
5379 	u16 len;
5380 
5381 	len = cea_db_payload_len(db);
5382 
5383 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5384 						eotf_supported(db);
5385 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5386 						hdr_metadata_type(db);
5387 
5388 	if (len >= 4)
5389 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5390 	if (len >= 5)
5391 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5392 	if (len >= 6) {
5393 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5394 
5395 		/* Calculate only when all values are available */
5396 		drm_calculate_luminance_range(connector);
5397 	}
5398 }
5399 
5400 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5401 static void
5402 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5403 {
5404 	u8 len = cea_db_payload_len(db);
5405 
5406 	if (len >= 6 && (db[6] & (1 << 7)))
5407 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5408 
5409 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5410 		connector->latency_present[0] = true;
5411 		connector->video_latency[0] = db[9];
5412 		connector->audio_latency[0] = db[10];
5413 	}
5414 
5415 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5416 		connector->latency_present[1] = true;
5417 		connector->video_latency[1] = db[11];
5418 		connector->audio_latency[1] = db[12];
5419 	}
5420 
5421 	drm_dbg_kms(connector->dev,
5422 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5423 		    connector->base.id, connector->name,
5424 		    connector->latency_present[0], connector->latency_present[1],
5425 		    connector->video_latency[0], connector->video_latency[1],
5426 		    connector->audio_latency[0], connector->audio_latency[1]);
5427 }
5428 
5429 static void
5430 monitor_name(const struct detailed_timing *timing, void *data)
5431 {
5432 	const char **res = data;
5433 
5434 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5435 		return;
5436 
5437 	*res = timing->data.other_data.data.str.str;
5438 }
5439 
5440 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5441 {
5442 	const char *edid_name = NULL;
5443 	int mnl;
5444 
5445 	if (!drm_edid || !name)
5446 		return 0;
5447 
5448 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5449 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5450 		if (edid_name[mnl] == 0x0a)
5451 			break;
5452 
5453 		name[mnl] = edid_name[mnl];
5454 	}
5455 
5456 	return mnl;
5457 }
5458 
5459 /**
5460  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5461  * @edid: monitor EDID information
5462  * @name: pointer to a character array to hold the name of the monitor
5463  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5464  *
5465  */
5466 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5467 {
5468 	int name_length = 0;
5469 
5470 	if (bufsize <= 0)
5471 		return;
5472 
5473 	if (edid) {
5474 		char buf[13];
5475 		struct drm_edid drm_edid = {
5476 			.edid = edid,
5477 			.size = edid_size(edid),
5478 		};
5479 
5480 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5481 		memcpy(name, buf, name_length);
5482 	}
5483 
5484 	name[name_length] = '\0';
5485 }
5486 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5487 
5488 static void clear_eld(struct drm_connector *connector)
5489 {
5490 	memset(connector->eld, 0, sizeof(connector->eld));
5491 
5492 	connector->latency_present[0] = false;
5493 	connector->latency_present[1] = false;
5494 	connector->video_latency[0] = 0;
5495 	connector->audio_latency[0] = 0;
5496 	connector->video_latency[1] = 0;
5497 	connector->audio_latency[1] = 0;
5498 }
5499 
5500 /*
5501  * drm_edid_to_eld - build ELD from EDID
5502  * @connector: connector corresponding to the HDMI/DP sink
5503  * @drm_edid: EDID to parse
5504  *
5505  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5506  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5507  */
5508 static void drm_edid_to_eld(struct drm_connector *connector,
5509 			    const struct drm_edid *drm_edid)
5510 {
5511 	const struct drm_display_info *info = &connector->display_info;
5512 	const struct cea_db *db;
5513 	struct cea_db_iter iter;
5514 	uint8_t *eld = connector->eld;
5515 	int total_sad_count = 0;
5516 	int mnl;
5517 
5518 	if (!drm_edid)
5519 		return;
5520 
5521 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5522 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5523 		    connector->base.id, connector->name,
5524 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5525 
5526 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5527 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5528 
5529 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5530 
5531 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5532 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5533 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5534 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5535 
5536 	cea_db_iter_edid_begin(drm_edid, &iter);
5537 	cea_db_iter_for_each(db, &iter) {
5538 		const u8 *data = cea_db_data(db);
5539 		int len = cea_db_payload_len(db);
5540 		int sad_count;
5541 
5542 		switch (cea_db_tag(db)) {
5543 		case CTA_DB_AUDIO:
5544 			/* Audio Data Block, contains SADs */
5545 			sad_count = min(len / 3, 15 - total_sad_count);
5546 			if (sad_count >= 1)
5547 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5548 				       data, sad_count * 3);
5549 			total_sad_count += sad_count;
5550 			break;
5551 		case CTA_DB_SPEAKER:
5552 			/* Speaker Allocation Data Block */
5553 			if (len >= 1)
5554 				eld[DRM_ELD_SPEAKER] = data[0];
5555 			break;
5556 		case CTA_DB_VENDOR:
5557 			/* HDMI Vendor-Specific Data Block */
5558 			if (cea_db_is_hdmi_vsdb(db))
5559 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5560 			break;
5561 		default:
5562 			break;
5563 		}
5564 	}
5565 	cea_db_iter_end(&iter);
5566 
5567 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5568 
5569 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5570 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5571 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5572 	else
5573 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5574 
5575 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5576 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5577 
5578 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5579 		    connector->base.id, connector->name,
5580 		    drm_eld_size(eld), total_sad_count);
5581 }
5582 
5583 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5584 			    struct cea_sad **sads)
5585 {
5586 	const struct cea_db *db;
5587 	struct cea_db_iter iter;
5588 	int count = 0;
5589 
5590 	cea_db_iter_edid_begin(drm_edid, &iter);
5591 	cea_db_iter_for_each(db, &iter) {
5592 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5593 			int j;
5594 
5595 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5596 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5597 			if (!*sads)
5598 				return -ENOMEM;
5599 			for (j = 0; j < count; j++) {
5600 				const u8 *sad = &db->data[j * 3];
5601 
5602 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5603 				(*sads)[j].channels = sad[0] & 0x7;
5604 				(*sads)[j].freq = sad[1] & 0x7F;
5605 				(*sads)[j].byte2 = sad[2];
5606 			}
5607 			break;
5608 		}
5609 	}
5610 	cea_db_iter_end(&iter);
5611 
5612 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5613 
5614 	return count;
5615 }
5616 
5617 /**
5618  * drm_edid_to_sad - extracts SADs from EDID
5619  * @edid: EDID to parse
5620  * @sads: pointer that will be set to the extracted SADs
5621  *
5622  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5623  *
5624  * Note: The returned pointer needs to be freed using kfree().
5625  *
5626  * Return: The number of found SADs or negative number on error.
5627  */
5628 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5629 {
5630 	struct drm_edid drm_edid;
5631 
5632 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5633 }
5634 EXPORT_SYMBOL(drm_edid_to_sad);
5635 
5636 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5637 					   u8 **sadb)
5638 {
5639 	const struct cea_db *db;
5640 	struct cea_db_iter iter;
5641 	int count = 0;
5642 
5643 	cea_db_iter_edid_begin(drm_edid, &iter);
5644 	cea_db_iter_for_each(db, &iter) {
5645 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5646 		    cea_db_payload_len(db) == 3) {
5647 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5648 					GFP_KERNEL);
5649 			if (!*sadb)
5650 				return -ENOMEM;
5651 			count = cea_db_payload_len(db);
5652 			break;
5653 		}
5654 	}
5655 	cea_db_iter_end(&iter);
5656 
5657 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5658 
5659 	return count;
5660 }
5661 
5662 /**
5663  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5664  * @edid: EDID to parse
5665  * @sadb: pointer to the speaker block
5666  *
5667  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5668  *
5669  * Note: The returned pointer needs to be freed using kfree().
5670  *
5671  * Return: The number of found Speaker Allocation Blocks or negative number on
5672  * error.
5673  */
5674 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5675 {
5676 	struct drm_edid drm_edid;
5677 
5678 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5679 					       sadb);
5680 }
5681 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5682 
5683 /**
5684  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5685  * @connector: connector associated with the HDMI/DP sink
5686  * @mode: the display mode
5687  *
5688  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5689  * the sink doesn't support audio or video.
5690  */
5691 int drm_av_sync_delay(struct drm_connector *connector,
5692 		      const struct drm_display_mode *mode)
5693 {
5694 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5695 	int a, v;
5696 
5697 	if (!connector->latency_present[0])
5698 		return 0;
5699 	if (!connector->latency_present[1])
5700 		i = 0;
5701 
5702 	a = connector->audio_latency[i];
5703 	v = connector->video_latency[i];
5704 
5705 	/*
5706 	 * HDMI/DP sink doesn't support audio or video?
5707 	 */
5708 	if (a == 255 || v == 255)
5709 		return 0;
5710 
5711 	/*
5712 	 * Convert raw EDID values to millisecond.
5713 	 * Treat unknown latency as 0ms.
5714 	 */
5715 	if (a)
5716 		a = min(2 * (a - 1), 500);
5717 	if (v)
5718 		v = min(2 * (v - 1), 500);
5719 
5720 	return max(v - a, 0);
5721 }
5722 EXPORT_SYMBOL(drm_av_sync_delay);
5723 
5724 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5725 {
5726 	const struct cea_db *db;
5727 	struct cea_db_iter iter;
5728 	bool hdmi = false;
5729 
5730 	/*
5731 	 * Because HDMI identifier is in Vendor Specific Block,
5732 	 * search it from all data blocks of CEA extension.
5733 	 */
5734 	cea_db_iter_edid_begin(drm_edid, &iter);
5735 	cea_db_iter_for_each(db, &iter) {
5736 		if (cea_db_is_hdmi_vsdb(db)) {
5737 			hdmi = true;
5738 			break;
5739 		}
5740 	}
5741 	cea_db_iter_end(&iter);
5742 
5743 	return hdmi;
5744 }
5745 
5746 /**
5747  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5748  * @edid: monitor EDID information
5749  *
5750  * Parse the CEA extension according to CEA-861-B.
5751  *
5752  * Drivers that have added the modes parsed from EDID to drm_display_info
5753  * should use &drm_display_info.is_hdmi instead of calling this function.
5754  *
5755  * Return: True if the monitor is HDMI, false if not or unknown.
5756  */
5757 bool drm_detect_hdmi_monitor(const struct edid *edid)
5758 {
5759 	struct drm_edid drm_edid;
5760 
5761 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5762 }
5763 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5764 
5765 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5766 {
5767 	struct drm_edid_iter edid_iter;
5768 	const struct cea_db *db;
5769 	struct cea_db_iter iter;
5770 	const u8 *edid_ext;
5771 	bool has_audio = false;
5772 
5773 	drm_edid_iter_begin(drm_edid, &edid_iter);
5774 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5775 		if (edid_ext[0] == CEA_EXT) {
5776 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5777 			if (has_audio)
5778 				break;
5779 		}
5780 	}
5781 	drm_edid_iter_end(&edid_iter);
5782 
5783 	if (has_audio) {
5784 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5785 		goto end;
5786 	}
5787 
5788 	cea_db_iter_edid_begin(drm_edid, &iter);
5789 	cea_db_iter_for_each(db, &iter) {
5790 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5791 			const u8 *data = cea_db_data(db);
5792 			int i;
5793 
5794 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5795 				DRM_DEBUG_KMS("CEA audio format %d\n",
5796 					      (data[i] >> 3) & 0xf);
5797 			has_audio = true;
5798 			break;
5799 		}
5800 	}
5801 	cea_db_iter_end(&iter);
5802 
5803 end:
5804 	return has_audio;
5805 }
5806 
5807 /**
5808  * drm_detect_monitor_audio - check monitor audio capability
5809  * @edid: EDID block to scan
5810  *
5811  * Monitor should have CEA extension block.
5812  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5813  * audio' only. If there is any audio extension block and supported
5814  * audio format, assume at least 'basic audio' support, even if 'basic
5815  * audio' is not defined in EDID.
5816  *
5817  * Return: True if the monitor supports audio, false otherwise.
5818  */
5819 bool drm_detect_monitor_audio(const struct edid *edid)
5820 {
5821 	struct drm_edid drm_edid;
5822 
5823 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5824 }
5825 EXPORT_SYMBOL(drm_detect_monitor_audio);
5826 
5827 
5828 /**
5829  * drm_default_rgb_quant_range - default RGB quantization range
5830  * @mode: display mode
5831  *
5832  * Determine the default RGB quantization range for the mode,
5833  * as specified in CEA-861.
5834  *
5835  * Return: The default RGB quantization range for the mode
5836  */
5837 enum hdmi_quantization_range
5838 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5839 {
5840 	/* All CEA modes other than VIC 1 use limited quantization range. */
5841 	return drm_match_cea_mode(mode) > 1 ?
5842 		HDMI_QUANTIZATION_RANGE_LIMITED :
5843 		HDMI_QUANTIZATION_RANGE_FULL;
5844 }
5845 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5846 
5847 /* CTA-861 Video Data Block (CTA VDB) */
5848 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5849 {
5850 	struct drm_display_info *info = &connector->display_info;
5851 	int i, vic_index, len = cea_db_payload_len(db);
5852 	const u8 *svds = cea_db_data(db);
5853 	u8 *vics;
5854 
5855 	if (!len)
5856 		return;
5857 
5858 	/* Gracefully handle multiple VDBs, however unlikely that is */
5859 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5860 	if (!vics)
5861 		return;
5862 
5863 	vic_index = info->vics_len;
5864 	info->vics_len += len;
5865 	info->vics = vics;
5866 
5867 	for (i = 0; i < len; i++) {
5868 		u8 vic = svd_to_vic(svds[i]);
5869 
5870 		if (!drm_valid_cea_vic(vic))
5871 			vic = 0;
5872 
5873 		info->vics[vic_index++] = vic;
5874 	}
5875 }
5876 
5877 /*
5878  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5879  *
5880  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5881  * using the VICs themselves.
5882  */
5883 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5884 {
5885 	struct drm_display_info *info = &connector->display_info;
5886 	struct drm_hdmi_info *hdmi = &info->hdmi;
5887 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5888 
5889 	for (i = 0; i < len; i++) {
5890 		u8 vic = info->vics[i];
5891 
5892 		if (vic && y420cmdb_map & BIT_ULL(i))
5893 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5894 	}
5895 }
5896 
5897 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5898 {
5899 	const struct drm_display_info *info = &connector->display_info;
5900 	int i;
5901 
5902 	if (!vic || !info->vics)
5903 		return false;
5904 
5905 	for (i = 0; i < info->vics_len; i++) {
5906 		if (info->vics[i] == vic)
5907 			return true;
5908 	}
5909 
5910 	return false;
5911 }
5912 
5913 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5914 static void parse_cta_y420vdb(struct drm_connector *connector,
5915 			      const struct cea_db *db)
5916 {
5917 	struct drm_display_info *info = &connector->display_info;
5918 	struct drm_hdmi_info *hdmi = &info->hdmi;
5919 	const u8 *svds = cea_db_data(db) + 1;
5920 	int i;
5921 
5922 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5923 		u8 vic = svd_to_vic(svds[i]);
5924 
5925 		if (!drm_valid_cea_vic(vic))
5926 			continue;
5927 
5928 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5929 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5930 	}
5931 }
5932 
5933 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5934 {
5935 	struct drm_display_info *info = &connector->display_info;
5936 
5937 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5938 		    connector->base.id, connector->name, db[2]);
5939 
5940 	if (db[2] & EDID_CEA_VCDB_QS)
5941 		info->rgb_quant_range_selectable = true;
5942 }
5943 
5944 static
5945 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5946 {
5947 	switch (max_frl_rate) {
5948 	case 1:
5949 		*max_lanes = 3;
5950 		*max_rate_per_lane = 3;
5951 		break;
5952 	case 2:
5953 		*max_lanes = 3;
5954 		*max_rate_per_lane = 6;
5955 		break;
5956 	case 3:
5957 		*max_lanes = 4;
5958 		*max_rate_per_lane = 6;
5959 		break;
5960 	case 4:
5961 		*max_lanes = 4;
5962 		*max_rate_per_lane = 8;
5963 		break;
5964 	case 5:
5965 		*max_lanes = 4;
5966 		*max_rate_per_lane = 10;
5967 		break;
5968 	case 6:
5969 		*max_lanes = 4;
5970 		*max_rate_per_lane = 12;
5971 		break;
5972 	case 0:
5973 	default:
5974 		*max_lanes = 0;
5975 		*max_rate_per_lane = 0;
5976 	}
5977 }
5978 
5979 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5980 					       const u8 *db)
5981 {
5982 	u8 dc_mask;
5983 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5984 
5985 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5986 	hdmi->y420_dc_modes = dc_mask;
5987 }
5988 
5989 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
5990 			       const u8 *hf_scds)
5991 {
5992 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5993 
5994 	if (!hdmi_dsc->v_1p2)
5995 		return;
5996 
5997 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5998 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5999 
6000 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6001 		hdmi_dsc->bpc_supported = 16;
6002 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6003 		hdmi_dsc->bpc_supported = 12;
6004 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6005 		hdmi_dsc->bpc_supported = 10;
6006 	else
6007 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6008 		hdmi_dsc->bpc_supported = 8;
6009 
6010 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6011 		u8 dsc_max_slices;
6012 		u8 dsc_max_frl_rate;
6013 
6014 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6015 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6016 				     &hdmi_dsc->max_frl_rate_per_lane);
6017 
6018 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6019 
6020 		switch (dsc_max_slices) {
6021 		case 1:
6022 			hdmi_dsc->max_slices = 1;
6023 			hdmi_dsc->clk_per_slice = 340;
6024 			break;
6025 		case 2:
6026 			hdmi_dsc->max_slices = 2;
6027 			hdmi_dsc->clk_per_slice = 340;
6028 			break;
6029 		case 3:
6030 			hdmi_dsc->max_slices = 4;
6031 			hdmi_dsc->clk_per_slice = 340;
6032 			break;
6033 		case 4:
6034 			hdmi_dsc->max_slices = 8;
6035 			hdmi_dsc->clk_per_slice = 340;
6036 			break;
6037 		case 5:
6038 			hdmi_dsc->max_slices = 8;
6039 			hdmi_dsc->clk_per_slice = 400;
6040 			break;
6041 		case 6:
6042 			hdmi_dsc->max_slices = 12;
6043 			hdmi_dsc->clk_per_slice = 400;
6044 			break;
6045 		case 7:
6046 			hdmi_dsc->max_slices = 16;
6047 			hdmi_dsc->clk_per_slice = 400;
6048 			break;
6049 		case 0:
6050 		default:
6051 			hdmi_dsc->max_slices = 0;
6052 			hdmi_dsc->clk_per_slice = 0;
6053 		}
6054 	}
6055 
6056 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6057 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6058 }
6059 
6060 /* Sink Capability Data Structure */
6061 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6062 				      const u8 *hf_scds)
6063 {
6064 	struct drm_display_info *info = &connector->display_info;
6065 	struct drm_hdmi_info *hdmi = &info->hdmi;
6066 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6067 	int max_tmds_clock = 0;
6068 	u8 max_frl_rate = 0;
6069 	bool dsc_support = false;
6070 
6071 	info->has_hdmi_infoframe = true;
6072 
6073 	if (hf_scds[6] & 0x80) {
6074 		hdmi->scdc.supported = true;
6075 		if (hf_scds[6] & 0x40)
6076 			hdmi->scdc.read_request = true;
6077 	}
6078 
6079 	/*
6080 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6081 	 * And as per the spec, three factors confirm this:
6082 	 * * Availability of a HF-VSDB block in EDID (check)
6083 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6084 	 * * SCDC support available (let's check)
6085 	 * Lets check it out.
6086 	 */
6087 
6088 	if (hf_scds[5]) {
6089 		struct drm_scdc *scdc = &hdmi->scdc;
6090 
6091 		/* max clock is 5000 KHz times block value */
6092 		max_tmds_clock = hf_scds[5] * 5000;
6093 
6094 		if (max_tmds_clock > 340000) {
6095 			info->max_tmds_clock = max_tmds_clock;
6096 		}
6097 
6098 		if (scdc->supported) {
6099 			scdc->scrambling.supported = true;
6100 
6101 			/* Few sinks support scrambling for clocks < 340M */
6102 			if ((hf_scds[6] & 0x8))
6103 				scdc->scrambling.low_rates = true;
6104 		}
6105 	}
6106 
6107 	if (hf_scds[7]) {
6108 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6109 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6110 				     &hdmi->max_frl_rate_per_lane);
6111 	}
6112 
6113 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6114 
6115 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6116 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6117 		dsc_support = true;
6118 	}
6119 
6120 	drm_dbg_kms(connector->dev,
6121 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6122 		    connector->base.id, connector->name,
6123 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6124 }
6125 
6126 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6127 					   const u8 *hdmi)
6128 {
6129 	struct drm_display_info *info = &connector->display_info;
6130 	unsigned int dc_bpc = 0;
6131 
6132 	/* HDMI supports at least 8 bpc */
6133 	info->bpc = 8;
6134 
6135 	if (cea_db_payload_len(hdmi) < 6)
6136 		return;
6137 
6138 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6139 		dc_bpc = 10;
6140 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6141 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6142 			    connector->base.id, connector->name);
6143 	}
6144 
6145 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6146 		dc_bpc = 12;
6147 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6148 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6149 			    connector->base.id, connector->name);
6150 	}
6151 
6152 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6153 		dc_bpc = 16;
6154 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6155 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6156 			    connector->base.id, connector->name);
6157 	}
6158 
6159 	if (dc_bpc == 0) {
6160 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6161 			    connector->base.id, connector->name);
6162 		return;
6163 	}
6164 
6165 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6166 		    connector->base.id, connector->name, dc_bpc);
6167 	info->bpc = dc_bpc;
6168 
6169 	/* YCRCB444 is optional according to spec. */
6170 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6171 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6172 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6173 			    connector->base.id, connector->name);
6174 	}
6175 
6176 	/*
6177 	 * Spec says that if any deep color mode is supported at all,
6178 	 * then deep color 36 bit must be supported.
6179 	 */
6180 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6181 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6182 			    connector->base.id, connector->name);
6183 	}
6184 }
6185 
6186 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6187 static void
6188 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6189 {
6190 	struct drm_display_info *info = &connector->display_info;
6191 	u8 len = cea_db_payload_len(db);
6192 
6193 	info->is_hdmi = true;
6194 
6195 	if (len >= 6)
6196 		info->dvi_dual = db[6] & 1;
6197 	if (len >= 7)
6198 		info->max_tmds_clock = db[7] * 5000;
6199 
6200 	/*
6201 	 * Try to infer whether the sink supports HDMI infoframes.
6202 	 *
6203 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6204 	 * supports infoframes if HDMI_Video_present is set.
6205 	 */
6206 	if (len >= 8 && db[8] & BIT(5))
6207 		info->has_hdmi_infoframe = true;
6208 
6209 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6210 		    connector->base.id, connector->name,
6211 		    info->dvi_dual, info->max_tmds_clock);
6212 
6213 	drm_parse_hdmi_deep_color_info(connector, db);
6214 }
6215 
6216 /*
6217  * See EDID extension for head-mounted and specialized monitors, specified at:
6218  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6219  */
6220 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6221 				     const u8 *db)
6222 {
6223 	struct drm_display_info *info = &connector->display_info;
6224 	u8 version = db[4];
6225 	bool desktop_usage = db[5] & BIT(6);
6226 
6227 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6228 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6229 		info->non_desktop = true;
6230 
6231 	drm_dbg_kms(connector->dev,
6232 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6233 		    connector->base.id, connector->name, version, db[5]);
6234 }
6235 
6236 static void drm_parse_cea_ext(struct drm_connector *connector,
6237 			      const struct drm_edid *drm_edid)
6238 {
6239 	struct drm_display_info *info = &connector->display_info;
6240 	struct drm_edid_iter edid_iter;
6241 	const struct cea_db *db;
6242 	struct cea_db_iter iter;
6243 	const u8 *edid_ext;
6244 	u64 y420cmdb_map = 0;
6245 
6246 	drm_edid_iter_begin(drm_edid, &edid_iter);
6247 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6248 		if (edid_ext[0] != CEA_EXT)
6249 			continue;
6250 
6251 		if (!info->cea_rev)
6252 			info->cea_rev = edid_ext[1];
6253 
6254 		if (info->cea_rev != edid_ext[1])
6255 			drm_dbg_kms(connector->dev,
6256 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6257 				    connector->base.id, connector->name,
6258 				    info->cea_rev, edid_ext[1]);
6259 
6260 		/* The existence of a CTA extension should imply RGB support */
6261 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6262 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6263 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6264 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6265 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6266 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6267 			info->has_audio = true;
6268 
6269 	}
6270 	drm_edid_iter_end(&edid_iter);
6271 
6272 	cea_db_iter_edid_begin(drm_edid, &iter);
6273 	cea_db_iter_for_each(db, &iter) {
6274 		/* FIXME: convert parsers to use struct cea_db */
6275 		const u8 *data = (const u8 *)db;
6276 
6277 		if (cea_db_is_hdmi_vsdb(db))
6278 			drm_parse_hdmi_vsdb_video(connector, data);
6279 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6280 			 cea_db_is_hdmi_forum_scdb(db))
6281 			drm_parse_hdmi_forum_scds(connector, data);
6282 		else if (cea_db_is_microsoft_vsdb(db))
6283 			drm_parse_microsoft_vsdb(connector, data);
6284 		else if (cea_db_is_y420cmdb(db))
6285 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6286 		else if (cea_db_is_y420vdb(db))
6287 			parse_cta_y420vdb(connector, db);
6288 		else if (cea_db_is_vcdb(db))
6289 			drm_parse_vcdb(connector, data);
6290 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6291 			drm_parse_hdr_metadata_block(connector, data);
6292 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6293 			parse_cta_vdb(connector, db);
6294 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6295 			info->has_audio = true;
6296 	}
6297 	cea_db_iter_end(&iter);
6298 
6299 	if (y420cmdb_map)
6300 		update_cta_y420cmdb(connector, y420cmdb_map);
6301 }
6302 
6303 static
6304 void get_monitor_range(const struct detailed_timing *timing, void *c)
6305 {
6306 	struct detailed_mode_closure *closure = c;
6307 	struct drm_display_info *info = &closure->connector->display_info;
6308 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6309 	const struct detailed_non_pixel *data = &timing->data.other_data;
6310 	const struct detailed_data_monitor_range *range = &data->data.range;
6311 	const struct edid *edid = closure->drm_edid->edid;
6312 
6313 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6314 		return;
6315 
6316 	/*
6317 	 * These limits are used to determine the VRR refresh
6318 	 * rate range. Only the "range limits only" variant
6319 	 * of the range descriptor seems to guarantee that
6320 	 * any and all timings are accepted by the sink, as
6321 	 * opposed to just timings conforming to the indicated
6322 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6323 	 * range descriptor are not accepted here.
6324 	 */
6325 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6326 		return;
6327 
6328 	monitor_range->min_vfreq = range->min_vfreq;
6329 	monitor_range->max_vfreq = range->max_vfreq;
6330 
6331 	if (edid->revision >= 4) {
6332 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6333 			monitor_range->min_vfreq += 255;
6334 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6335 			monitor_range->max_vfreq += 255;
6336 	}
6337 }
6338 
6339 static void drm_get_monitor_range(struct drm_connector *connector,
6340 				  const struct drm_edid *drm_edid)
6341 {
6342 	const struct drm_display_info *info = &connector->display_info;
6343 	struct detailed_mode_closure closure = {
6344 		.connector = connector,
6345 		.drm_edid = drm_edid,
6346 	};
6347 
6348 	if (drm_edid->edid->revision < 4)
6349 		return;
6350 
6351 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6352 		return;
6353 
6354 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6355 
6356 	drm_dbg_kms(connector->dev,
6357 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6358 		    connector->base.id, connector->name,
6359 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6360 }
6361 
6362 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6363 				    const struct displayid_block *block)
6364 {
6365 	struct displayid_vesa_vendor_specific_block *vesa =
6366 		(struct displayid_vesa_vendor_specific_block *)block;
6367 	struct drm_display_info *info = &connector->display_info;
6368 
6369 	if (block->num_bytes < 3) {
6370 		drm_dbg_kms(connector->dev,
6371 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6372 			    connector->base.id, connector->name, block->num_bytes);
6373 		return;
6374 	}
6375 
6376 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6377 		return;
6378 
6379 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6380 		drm_dbg_kms(connector->dev,
6381 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6382 			    connector->base.id, connector->name);
6383 		return;
6384 	}
6385 
6386 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6387 	default:
6388 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6389 			    connector->base.id, connector->name);
6390 		fallthrough;
6391 	case 0:
6392 		info->mso_stream_count = 0;
6393 		break;
6394 	case 1:
6395 		info->mso_stream_count = 2; /* 2 or 4 links */
6396 		break;
6397 	case 2:
6398 		info->mso_stream_count = 4; /* 4 links */
6399 		break;
6400 	}
6401 
6402 	if (!info->mso_stream_count) {
6403 		info->mso_pixel_overlap = 0;
6404 		return;
6405 	}
6406 
6407 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6408 	if (info->mso_pixel_overlap > 8) {
6409 		drm_dbg_kms(connector->dev,
6410 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6411 			    connector->base.id, connector->name,
6412 			    info->mso_pixel_overlap);
6413 		info->mso_pixel_overlap = 8;
6414 	}
6415 
6416 	drm_dbg_kms(connector->dev,
6417 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6418 		    connector->base.id, connector->name,
6419 		    info->mso_stream_count, info->mso_pixel_overlap);
6420 }
6421 
6422 static void drm_update_mso(struct drm_connector *connector,
6423 			   const struct drm_edid *drm_edid)
6424 {
6425 	const struct displayid_block *block;
6426 	struct displayid_iter iter;
6427 
6428 	displayid_iter_edid_begin(drm_edid, &iter);
6429 	displayid_iter_for_each(block, &iter) {
6430 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6431 			drm_parse_vesa_mso_data(connector, block);
6432 	}
6433 	displayid_iter_end(&iter);
6434 }
6435 
6436 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6437  * all of the values which would have been set from EDID
6438  */
6439 static void drm_reset_display_info(struct drm_connector *connector)
6440 {
6441 	struct drm_display_info *info = &connector->display_info;
6442 
6443 	info->width_mm = 0;
6444 	info->height_mm = 0;
6445 
6446 	info->bpc = 0;
6447 	info->color_formats = 0;
6448 	info->cea_rev = 0;
6449 	info->max_tmds_clock = 0;
6450 	info->dvi_dual = false;
6451 	info->is_hdmi = false;
6452 	info->has_audio = false;
6453 	info->has_hdmi_infoframe = false;
6454 	info->rgb_quant_range_selectable = false;
6455 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6456 
6457 	info->edid_hdmi_rgb444_dc_modes = 0;
6458 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6459 
6460 	info->non_desktop = 0;
6461 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6462 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6463 
6464 	info->mso_stream_count = 0;
6465 	info->mso_pixel_overlap = 0;
6466 	info->max_dsc_bpp = 0;
6467 
6468 	kfree(info->vics);
6469 	info->vics = NULL;
6470 	info->vics_len = 0;
6471 
6472 	info->quirks = 0;
6473 }
6474 
6475 static void update_displayid_info(struct drm_connector *connector,
6476 				  const struct drm_edid *drm_edid)
6477 {
6478 	struct drm_display_info *info = &connector->display_info;
6479 	const struct displayid_block *block;
6480 	struct displayid_iter iter;
6481 
6482 	displayid_iter_edid_begin(drm_edid, &iter);
6483 	displayid_iter_for_each(block, &iter) {
6484 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6485 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6486 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6487 			info->non_desktop = true;
6488 
6489 		/*
6490 		 * We're only interested in the base section here, no need to
6491 		 * iterate further.
6492 		 */
6493 		break;
6494 	}
6495 	displayid_iter_end(&iter);
6496 }
6497 
6498 static void update_display_info(struct drm_connector *connector,
6499 				const struct drm_edid *drm_edid)
6500 {
6501 	struct drm_display_info *info = &connector->display_info;
6502 	const struct edid *edid;
6503 
6504 	drm_reset_display_info(connector);
6505 	clear_eld(connector);
6506 
6507 	if (!drm_edid)
6508 		return;
6509 
6510 	edid = drm_edid->edid;
6511 
6512 	info->quirks = edid_get_quirks(drm_edid);
6513 
6514 	info->width_mm = edid->width_cm * 10;
6515 	info->height_mm = edid->height_cm * 10;
6516 
6517 	drm_get_monitor_range(connector, drm_edid);
6518 
6519 	if (edid->revision < 3)
6520 		goto out;
6521 
6522 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6523 		goto out;
6524 
6525 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6526 	drm_parse_cea_ext(connector, drm_edid);
6527 
6528 	update_displayid_info(connector, drm_edid);
6529 
6530 	/*
6531 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6532 	 *
6533 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6534 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6535 	 * extensions which tell otherwise.
6536 	 */
6537 	if (info->bpc == 0 && edid->revision == 3 &&
6538 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6539 		info->bpc = 8;
6540 		drm_dbg_kms(connector->dev,
6541 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6542 			    connector->base.id, connector->name, info->bpc);
6543 	}
6544 
6545 	/* Only defined for 1.4 with digital displays */
6546 	if (edid->revision < 4)
6547 		goto out;
6548 
6549 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6550 	case DRM_EDID_DIGITAL_DEPTH_6:
6551 		info->bpc = 6;
6552 		break;
6553 	case DRM_EDID_DIGITAL_DEPTH_8:
6554 		info->bpc = 8;
6555 		break;
6556 	case DRM_EDID_DIGITAL_DEPTH_10:
6557 		info->bpc = 10;
6558 		break;
6559 	case DRM_EDID_DIGITAL_DEPTH_12:
6560 		info->bpc = 12;
6561 		break;
6562 	case DRM_EDID_DIGITAL_DEPTH_14:
6563 		info->bpc = 14;
6564 		break;
6565 	case DRM_EDID_DIGITAL_DEPTH_16:
6566 		info->bpc = 16;
6567 		break;
6568 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6569 	default:
6570 		info->bpc = 0;
6571 		break;
6572 	}
6573 
6574 	drm_dbg_kms(connector->dev,
6575 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6576 		    connector->base.id, connector->name, info->bpc);
6577 
6578 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6579 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6580 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6581 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6582 
6583 	drm_update_mso(connector, drm_edid);
6584 
6585 out:
6586 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6587 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6588 			    connector->base.id, connector->name,
6589 			    info->non_desktop ? " (redundant quirk)" : "");
6590 		info->non_desktop = true;
6591 	}
6592 
6593 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6594 		info->max_dsc_bpp = 15;
6595 
6596 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6597 		info->bpc = 6;
6598 
6599 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6600 		info->bpc = 8;
6601 
6602 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6603 		info->bpc = 10;
6604 
6605 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6606 		info->bpc = 12;
6607 
6608 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6609 	drm_edid_to_eld(connector, drm_edid);
6610 }
6611 
6612 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6613 							    struct displayid_detailed_timings_1 *timings,
6614 							    bool type_7)
6615 {
6616 	struct drm_display_mode *mode;
6617 	unsigned pixel_clock = (timings->pixel_clock[0] |
6618 				(timings->pixel_clock[1] << 8) |
6619 				(timings->pixel_clock[2] << 16)) + 1;
6620 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6621 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6622 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6623 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6624 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6625 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6626 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6627 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6628 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6629 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6630 
6631 	mode = drm_mode_create(dev);
6632 	if (!mode)
6633 		return NULL;
6634 
6635 	/* resolution is kHz for type VII, and 10 kHz for type I */
6636 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6637 	mode->hdisplay = hactive;
6638 	mode->hsync_start = mode->hdisplay + hsync;
6639 	mode->hsync_end = mode->hsync_start + hsync_width;
6640 	mode->htotal = mode->hdisplay + hblank;
6641 
6642 	mode->vdisplay = vactive;
6643 	mode->vsync_start = mode->vdisplay + vsync;
6644 	mode->vsync_end = mode->vsync_start + vsync_width;
6645 	mode->vtotal = mode->vdisplay + vblank;
6646 
6647 	mode->flags = 0;
6648 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6649 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6650 	mode->type = DRM_MODE_TYPE_DRIVER;
6651 
6652 	if (timings->flags & 0x80)
6653 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6654 	drm_mode_set_name(mode);
6655 
6656 	return mode;
6657 }
6658 
6659 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6660 					  const struct displayid_block *block)
6661 {
6662 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6663 	int i;
6664 	int num_timings;
6665 	struct drm_display_mode *newmode;
6666 	int num_modes = 0;
6667 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6668 	/* blocks must be multiple of 20 bytes length */
6669 	if (block->num_bytes % 20)
6670 		return 0;
6671 
6672 	num_timings = block->num_bytes / 20;
6673 	for (i = 0; i < num_timings; i++) {
6674 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6675 
6676 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6677 		if (!newmode)
6678 			continue;
6679 
6680 		drm_mode_probed_add(connector, newmode);
6681 		num_modes++;
6682 	}
6683 	return num_modes;
6684 }
6685 
6686 static int add_displayid_detailed_modes(struct drm_connector *connector,
6687 					const struct drm_edid *drm_edid)
6688 {
6689 	const struct displayid_block *block;
6690 	struct displayid_iter iter;
6691 	int num_modes = 0;
6692 
6693 	displayid_iter_edid_begin(drm_edid, &iter);
6694 	displayid_iter_for_each(block, &iter) {
6695 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6696 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6697 			num_modes += add_displayid_detailed_1_modes(connector, block);
6698 	}
6699 	displayid_iter_end(&iter);
6700 
6701 	return num_modes;
6702 }
6703 
6704 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6705 					 const struct drm_edid *drm_edid)
6706 {
6707 	const struct drm_display_info *info = &connector->display_info;
6708 	int num_modes = 0;
6709 
6710 	if (!drm_edid)
6711 		return 0;
6712 
6713 	/*
6714 	 * EDID spec says modes should be preferred in this order:
6715 	 * - preferred detailed mode
6716 	 * - other detailed modes from base block
6717 	 * - detailed modes from extension blocks
6718 	 * - CVT 3-byte code modes
6719 	 * - standard timing codes
6720 	 * - established timing codes
6721 	 * - modes inferred from GTF or CVT range information
6722 	 *
6723 	 * We get this pretty much right.
6724 	 *
6725 	 * XXX order for additional mode types in extension blocks?
6726 	 */
6727 	num_modes += add_detailed_modes(connector, drm_edid);
6728 	num_modes += add_cvt_modes(connector, drm_edid);
6729 	num_modes += add_standard_modes(connector, drm_edid);
6730 	num_modes += add_established_modes(connector, drm_edid);
6731 	num_modes += add_cea_modes(connector, drm_edid);
6732 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6733 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6734 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6735 		num_modes += add_inferred_modes(connector, drm_edid);
6736 
6737 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6738 		edid_fixup_preferred(connector);
6739 
6740 	return num_modes;
6741 }
6742 
6743 static void _drm_update_tile_info(struct drm_connector *connector,
6744 				  const struct drm_edid *drm_edid);
6745 
6746 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6747 					       const struct drm_edid *drm_edid)
6748 {
6749 	struct drm_device *dev = connector->dev;
6750 	int ret;
6751 
6752 	if (connector->edid_blob_ptr) {
6753 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6754 
6755 		if (old_edid) {
6756 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6757 				connector->epoch_counter++;
6758 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6759 					    connector->base.id, connector->name,
6760 					    connector->epoch_counter);
6761 			}
6762 		}
6763 	}
6764 
6765 	ret = drm_property_replace_global_blob(dev,
6766 					       &connector->edid_blob_ptr,
6767 					       drm_edid ? drm_edid->size : 0,
6768 					       drm_edid ? drm_edid->edid : NULL,
6769 					       &connector->base,
6770 					       dev->mode_config.edid_property);
6771 	if (ret) {
6772 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6773 			    connector->base.id, connector->name, ret);
6774 		goto out;
6775 	}
6776 
6777 	ret = drm_object_property_set_value(&connector->base,
6778 					    dev->mode_config.non_desktop_property,
6779 					    connector->display_info.non_desktop);
6780 	if (ret) {
6781 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6782 			    connector->base.id, connector->name, ret);
6783 		goto out;
6784 	}
6785 
6786 	ret = drm_connector_set_tile_property(connector);
6787 	if (ret) {
6788 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6789 			    connector->base.id, connector->name, ret);
6790 		goto out;
6791 	}
6792 
6793 out:
6794 	return ret;
6795 }
6796 
6797 /**
6798  * drm_edid_connector_update - Update connector information from EDID
6799  * @connector: Connector
6800  * @drm_edid: EDID
6801  *
6802  * Update the connector display info, ELD, HDR metadata, relevant properties,
6803  * etc. from the passed in EDID.
6804  *
6805  * If EDID is NULL, reset the information.
6806  *
6807  * Must be called before calling drm_edid_connector_add_modes().
6808  *
6809  * Return: 0 on success, negative error on errors.
6810  */
6811 int drm_edid_connector_update(struct drm_connector *connector,
6812 			      const struct drm_edid *drm_edid)
6813 {
6814 	update_display_info(connector, drm_edid);
6815 
6816 	_drm_update_tile_info(connector, drm_edid);
6817 
6818 	return _drm_edid_connector_property_update(connector, drm_edid);
6819 }
6820 EXPORT_SYMBOL(drm_edid_connector_update);
6821 
6822 /**
6823  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6824  * @connector: Connector
6825  *
6826  * Add the modes from the previously updated EDID property to the connector
6827  * probed modes list.
6828  *
6829  * drm_edid_connector_update() must have been called before this to update the
6830  * EDID property.
6831  *
6832  * Return: The number of modes added, or 0 if we couldn't find any.
6833  */
6834 int drm_edid_connector_add_modes(struct drm_connector *connector)
6835 {
6836 	const struct drm_edid *drm_edid = NULL;
6837 	int count;
6838 
6839 	if (connector->edid_blob_ptr)
6840 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6841 					  connector->edid_blob_ptr->length);
6842 
6843 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6844 
6845 	drm_edid_free(drm_edid);
6846 
6847 	return count;
6848 }
6849 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6850 
6851 /**
6852  * drm_connector_update_edid_property - update the edid property of a connector
6853  * @connector: drm connector
6854  * @edid: new value of the edid property
6855  *
6856  * This function creates a new blob modeset object and assigns its id to the
6857  * connector's edid property.
6858  * Since we also parse tile information from EDID's displayID block, we also
6859  * set the connector's tile property here. See drm_connector_set_tile_property()
6860  * for more details.
6861  *
6862  * This function is deprecated. Use drm_edid_connector_update() instead.
6863  *
6864  * Returns:
6865  * Zero on success, negative errno on failure.
6866  */
6867 int drm_connector_update_edid_property(struct drm_connector *connector,
6868 				       const struct edid *edid)
6869 {
6870 	struct drm_edid drm_edid;
6871 
6872 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6873 }
6874 EXPORT_SYMBOL(drm_connector_update_edid_property);
6875 
6876 /**
6877  * drm_add_edid_modes - add modes from EDID data, if available
6878  * @connector: connector we're probing
6879  * @edid: EDID data
6880  *
6881  * Add the specified modes to the connector's mode list. Also fills out the
6882  * &drm_display_info structure and ELD in @connector with any information which
6883  * can be derived from the edid.
6884  *
6885  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6886  *
6887  * Return: The number of modes added or 0 if we couldn't find any.
6888  */
6889 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6890 {
6891 	struct drm_edid _drm_edid;
6892 	const struct drm_edid *drm_edid;
6893 
6894 	if (edid && !drm_edid_is_valid(edid)) {
6895 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6896 			 connector->base.id, connector->name);
6897 		edid = NULL;
6898 	}
6899 
6900 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6901 
6902 	update_display_info(connector, drm_edid);
6903 
6904 	return _drm_edid_connector_add_modes(connector, drm_edid);
6905 }
6906 EXPORT_SYMBOL(drm_add_edid_modes);
6907 
6908 /**
6909  * drm_add_modes_noedid - add modes for the connectors without EDID
6910  * @connector: connector we're probing
6911  * @hdisplay: the horizontal display limit
6912  * @vdisplay: the vertical display limit
6913  *
6914  * Add the specified modes to the connector's mode list. Only when the
6915  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6916  *
6917  * Return: The number of modes added or 0 if we couldn't find any.
6918  */
6919 int drm_add_modes_noedid(struct drm_connector *connector,
6920 			int hdisplay, int vdisplay)
6921 {
6922 	int i, count, num_modes = 0;
6923 	struct drm_display_mode *mode;
6924 	struct drm_device *dev = connector->dev;
6925 
6926 	count = ARRAY_SIZE(drm_dmt_modes);
6927 	if (hdisplay < 0)
6928 		hdisplay = 0;
6929 	if (vdisplay < 0)
6930 		vdisplay = 0;
6931 
6932 	for (i = 0; i < count; i++) {
6933 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6934 
6935 		if (hdisplay && vdisplay) {
6936 			/*
6937 			 * Only when two are valid, they will be used to check
6938 			 * whether the mode should be added to the mode list of
6939 			 * the connector.
6940 			 */
6941 			if (ptr->hdisplay > hdisplay ||
6942 					ptr->vdisplay > vdisplay)
6943 				continue;
6944 		}
6945 		if (drm_mode_vrefresh(ptr) > 61)
6946 			continue;
6947 		mode = drm_mode_duplicate(dev, ptr);
6948 		if (mode) {
6949 			drm_mode_probed_add(connector, mode);
6950 			num_modes++;
6951 		}
6952 	}
6953 	return num_modes;
6954 }
6955 EXPORT_SYMBOL(drm_add_modes_noedid);
6956 
6957 /**
6958  * drm_set_preferred_mode - Sets the preferred mode of a connector
6959  * @connector: connector whose mode list should be processed
6960  * @hpref: horizontal resolution of preferred mode
6961  * @vpref: vertical resolution of preferred mode
6962  *
6963  * Marks a mode as preferred if it matches the resolution specified by @hpref
6964  * and @vpref.
6965  */
6966 void drm_set_preferred_mode(struct drm_connector *connector,
6967 			   int hpref, int vpref)
6968 {
6969 	struct drm_display_mode *mode;
6970 
6971 	list_for_each_entry(mode, &connector->probed_modes, head) {
6972 		if (mode->hdisplay == hpref &&
6973 		    mode->vdisplay == vpref)
6974 			mode->type |= DRM_MODE_TYPE_PREFERRED;
6975 	}
6976 }
6977 EXPORT_SYMBOL(drm_set_preferred_mode);
6978 
6979 static bool is_hdmi2_sink(const struct drm_connector *connector)
6980 {
6981 	/*
6982 	 * FIXME: sil-sii8620 doesn't have a connector around when
6983 	 * we need one, so we have to be prepared for a NULL connector.
6984 	 */
6985 	if (!connector)
6986 		return true;
6987 
6988 	return connector->display_info.hdmi.scdc.supported ||
6989 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6990 }
6991 
6992 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6993 			    const struct drm_display_mode *mode)
6994 {
6995 	bool has_hdmi_infoframe = connector ?
6996 		connector->display_info.has_hdmi_infoframe : false;
6997 
6998 	if (!has_hdmi_infoframe)
6999 		return 0;
7000 
7001 	/* No HDMI VIC when signalling 3D video format */
7002 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7003 		return 0;
7004 
7005 	return drm_match_hdmi_mode(mode);
7006 }
7007 
7008 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7009 			   const struct drm_display_mode *mode)
7010 {
7011 	/*
7012 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7013 	 * we should send its VIC in vendor infoframes, else send the
7014 	 * VIC in AVI infoframes. Lets check if this mode is present in
7015 	 * HDMI 1.4b 4K modes
7016 	 */
7017 	if (drm_mode_hdmi_vic(connector, mode))
7018 		return 0;
7019 
7020 	return drm_match_cea_mode(mode);
7021 }
7022 
7023 /*
7024  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7025  * conform to HDMI 1.4.
7026  *
7027  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7028  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7029  *
7030  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7031  * version.
7032  */
7033 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7034 {
7035 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7036 	    !cta_vdb_has_vic(connector, vic))
7037 		return 0;
7038 
7039 	return vic;
7040 }
7041 
7042 /**
7043  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7044  *                                              data from a DRM display mode
7045  * @frame: HDMI AVI infoframe
7046  * @connector: the connector
7047  * @mode: DRM display mode
7048  *
7049  * Return: 0 on success or a negative error code on failure.
7050  */
7051 int
7052 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7053 					 const struct drm_connector *connector,
7054 					 const struct drm_display_mode *mode)
7055 {
7056 	enum hdmi_picture_aspect picture_aspect;
7057 	u8 vic, hdmi_vic;
7058 
7059 	if (!frame || !mode)
7060 		return -EINVAL;
7061 
7062 	hdmi_avi_infoframe_init(frame);
7063 
7064 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7065 		frame->pixel_repeat = 1;
7066 
7067 	vic = drm_mode_cea_vic(connector, mode);
7068 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7069 
7070 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7071 
7072 	/*
7073 	 * As some drivers don't support atomic, we can't use connector state.
7074 	 * So just initialize the frame with default values, just the same way
7075 	 * as it's done with other properties here.
7076 	 */
7077 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7078 	frame->itc = 0;
7079 
7080 	/*
7081 	 * Populate picture aspect ratio from either
7082 	 * user input (if specified) or from the CEA/HDMI mode lists.
7083 	 */
7084 	picture_aspect = mode->picture_aspect_ratio;
7085 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7086 		if (vic)
7087 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7088 		else if (hdmi_vic)
7089 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7090 	}
7091 
7092 	/*
7093 	 * The infoframe can't convey anything but none, 4:3
7094 	 * and 16:9, so if the user has asked for anything else
7095 	 * we can only satisfy it by specifying the right VIC.
7096 	 */
7097 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7098 		if (vic) {
7099 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7100 				return -EINVAL;
7101 		} else if (hdmi_vic) {
7102 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7103 				return -EINVAL;
7104 		} else {
7105 			return -EINVAL;
7106 		}
7107 
7108 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7109 	}
7110 
7111 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7112 	frame->picture_aspect = picture_aspect;
7113 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7114 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7115 
7116 	return 0;
7117 }
7118 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7119 
7120 /**
7121  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7122  *                                        quantization range information
7123  * @frame: HDMI AVI infoframe
7124  * @connector: the connector
7125  * @mode: DRM display mode
7126  * @rgb_quant_range: RGB quantization range (Q)
7127  */
7128 void
7129 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7130 				   const struct drm_connector *connector,
7131 				   const struct drm_display_mode *mode,
7132 				   enum hdmi_quantization_range rgb_quant_range)
7133 {
7134 	const struct drm_display_info *info = &connector->display_info;
7135 
7136 	/*
7137 	 * CEA-861:
7138 	 * "A Source shall not send a non-zero Q value that does not correspond
7139 	 *  to the default RGB Quantization Range for the transmitted Picture
7140 	 *  unless the Sink indicates support for the Q bit in a Video
7141 	 *  Capabilities Data Block."
7142 	 *
7143 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7144 	 * default RGB quantization range for the mode, even when QS=0.
7145 	 */
7146 	if (info->rgb_quant_range_selectable ||
7147 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7148 		frame->quantization_range = rgb_quant_range;
7149 	else
7150 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7151 
7152 	/*
7153 	 * CEA-861-F:
7154 	 * "When transmitting any RGB colorimetry, the Source should set the
7155 	 *  YQ-field to match the RGB Quantization Range being transmitted
7156 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7157 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7158 	 *
7159 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7160 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7161 	 * good way to tell which version of CEA-861 the sink supports, so
7162 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7163 	 * on CEA-861-F.
7164 	 */
7165 	if (!is_hdmi2_sink(connector) ||
7166 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7167 		frame->ycc_quantization_range =
7168 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7169 	else
7170 		frame->ycc_quantization_range =
7171 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7172 }
7173 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7174 
7175 static enum hdmi_3d_structure
7176 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7177 {
7178 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7179 
7180 	switch (layout) {
7181 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7182 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7183 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7184 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7185 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7186 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7187 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7188 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7189 	case DRM_MODE_FLAG_3D_L_DEPTH:
7190 		return HDMI_3D_STRUCTURE_L_DEPTH;
7191 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7192 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7193 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7194 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7195 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7196 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7197 	default:
7198 		return HDMI_3D_STRUCTURE_INVALID;
7199 	}
7200 }
7201 
7202 /**
7203  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7204  * data from a DRM display mode
7205  * @frame: HDMI vendor infoframe
7206  * @connector: the connector
7207  * @mode: DRM display mode
7208  *
7209  * Note that there's is a need to send HDMI vendor infoframes only when using a
7210  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7211  * function will return -EINVAL, error that can be safely ignored.
7212  *
7213  * Return: 0 on success or a negative error code on failure.
7214  */
7215 int
7216 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7217 					    const struct drm_connector *connector,
7218 					    const struct drm_display_mode *mode)
7219 {
7220 	/*
7221 	 * FIXME: sil-sii8620 doesn't have a connector around when
7222 	 * we need one, so we have to be prepared for a NULL connector.
7223 	 */
7224 	bool has_hdmi_infoframe = connector ?
7225 		connector->display_info.has_hdmi_infoframe : false;
7226 	int err;
7227 
7228 	if (!frame || !mode)
7229 		return -EINVAL;
7230 
7231 	if (!has_hdmi_infoframe)
7232 		return -EINVAL;
7233 
7234 	err = hdmi_vendor_infoframe_init(frame);
7235 	if (err < 0)
7236 		return err;
7237 
7238 	/*
7239 	 * Even if it's not absolutely necessary to send the infoframe
7240 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7241 	 * know that the sink can handle it. This is based on a
7242 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7243 	 * have trouble realizing that they should switch from 3D to 2D
7244 	 * mode if the source simply stops sending the infoframe when
7245 	 * it wants to switch from 3D to 2D.
7246 	 */
7247 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7248 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7249 
7250 	return 0;
7251 }
7252 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7253 
7254 static void drm_parse_tiled_block(struct drm_connector *connector,
7255 				  const struct displayid_block *block)
7256 {
7257 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7258 	u16 w, h;
7259 	u8 tile_v_loc, tile_h_loc;
7260 	u8 num_v_tile, num_h_tile;
7261 	struct drm_tile_group *tg;
7262 
7263 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7264 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7265 
7266 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7267 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7268 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7269 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7270 
7271 	connector->has_tile = true;
7272 	if (tile->tile_cap & 0x80)
7273 		connector->tile_is_single_monitor = true;
7274 
7275 	connector->num_h_tile = num_h_tile + 1;
7276 	connector->num_v_tile = num_v_tile + 1;
7277 	connector->tile_h_loc = tile_h_loc;
7278 	connector->tile_v_loc = tile_v_loc;
7279 	connector->tile_h_size = w + 1;
7280 	connector->tile_v_size = h + 1;
7281 
7282 	drm_dbg_kms(connector->dev,
7283 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7284 		    connector->base.id, connector->name,
7285 		    tile->tile_cap,
7286 		    connector->tile_h_size, connector->tile_v_size,
7287 		    connector->num_h_tile, connector->num_v_tile,
7288 		    connector->tile_h_loc, connector->tile_v_loc,
7289 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7290 
7291 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7292 	if (!tg)
7293 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7294 	if (!tg)
7295 		return;
7296 
7297 	if (connector->tile_group != tg) {
7298 		/* if we haven't got a pointer,
7299 		   take the reference, drop ref to old tile group */
7300 		if (connector->tile_group)
7301 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7302 		connector->tile_group = tg;
7303 	} else {
7304 		/* if same tile group, then release the ref we just took. */
7305 		drm_mode_put_tile_group(connector->dev, tg);
7306 	}
7307 }
7308 
7309 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7310 				     const struct displayid_block *block)
7311 {
7312 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7313 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7314 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7315 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7316 }
7317 
7318 static void _drm_update_tile_info(struct drm_connector *connector,
7319 				  const struct drm_edid *drm_edid)
7320 {
7321 	const struct displayid_block *block;
7322 	struct displayid_iter iter;
7323 
7324 	connector->has_tile = false;
7325 
7326 	displayid_iter_edid_begin(drm_edid, &iter);
7327 	displayid_iter_for_each(block, &iter) {
7328 		if (displayid_is_tiled_block(&iter, block))
7329 			drm_parse_tiled_block(connector, block);
7330 	}
7331 	displayid_iter_end(&iter);
7332 
7333 	if (!connector->has_tile && connector->tile_group) {
7334 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7335 		connector->tile_group = NULL;
7336 	}
7337 }
7338