1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DesignWare MIPI DSI Host Controller v1.02 driver
4  *
5  * Copyright (c) 2016 Linaro Limited.
6  * Copyright (c) 2014-2016 HiSilicon Limited.
7  *
8  * Author:
9  *	Xinliang Liu <z.liuxinliang@hisilicon.com>
10  *	Xinliang Liu <xinliang.liu@linaro.org>
11  *	Xinwei Kong <kong.kongxinwei@hisilicon.com>
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/component.h>
16 #include <linux/delay.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 
21 #include <drm/drm_atomic_helper.h>
22 #include <drm/drm_bridge.h>
23 #include <drm/drm_device.h>
24 #include <drm/drm_mipi_dsi.h>
25 #include <drm/drm_of.h>
26 #include <drm/drm_print.h>
27 #include <drm/drm_probe_helper.h>
28 #include <drm/drm_simple_kms_helper.h>
29 
30 #include "dw_dsi_reg.h"
31 
32 #define MAX_TX_ESC_CLK		10
33 #define ROUND(x, y)		((x) / (y) + \
34 				((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
35 #define PHY_REF_CLK_RATE	19200000
36 #define PHY_REF_CLK_PERIOD_PS	(1000000000 / (PHY_REF_CLK_RATE / 1000))
37 
38 #define encoder_to_dsi(encoder) \
39 	container_of(encoder, struct dw_dsi, encoder)
40 #define host_to_dsi(host) \
41 	container_of(host, struct dw_dsi, host)
42 
43 struct mipi_phy_params {
44 	u32 clk_t_lpx;
45 	u32 clk_t_hs_prepare;
46 	u32 clk_t_hs_zero;
47 	u32 clk_t_hs_trial;
48 	u32 clk_t_wakeup;
49 	u32 data_t_lpx;
50 	u32 data_t_hs_prepare;
51 	u32 data_t_hs_zero;
52 	u32 data_t_hs_trial;
53 	u32 data_t_ta_go;
54 	u32 data_t_ta_get;
55 	u32 data_t_wakeup;
56 	u32 hstx_ckg_sel;
57 	u32 pll_fbd_div5f;
58 	u32 pll_fbd_div1f;
59 	u32 pll_fbd_2p;
60 	u32 pll_enbwt;
61 	u32 pll_fbd_p;
62 	u32 pll_fbd_s;
63 	u32 pll_pre_div1p;
64 	u32 pll_pre_p;
65 	u32 pll_vco_750M;
66 	u32 pll_lpf_rs;
67 	u32 pll_lpf_cs;
68 	u32 clklp2hs_time;
69 	u32 clkhs2lp_time;
70 	u32 lp2hs_time;
71 	u32 hs2lp_time;
72 	u32 clk_to_data_delay;
73 	u32 data_to_clk_delay;
74 	u32 lane_byte_clk_kHz;
75 	u32 clk_division;
76 };
77 
78 struct dsi_hw_ctx {
79 	void __iomem *base;
80 	struct clk *pclk;
81 };
82 
83 struct dw_dsi {
84 	struct drm_encoder encoder;
85 	struct device *dev;
86 	struct mipi_dsi_host host;
87 	struct drm_display_mode cur_mode;
88 	struct dsi_hw_ctx *ctx;
89 	struct mipi_phy_params phy;
90 
91 	u32 lanes;
92 	enum mipi_dsi_pixel_format format;
93 	unsigned long mode_flags;
94 	bool enable;
95 };
96 
97 struct dsi_data {
98 	struct dw_dsi dsi;
99 	struct dsi_hw_ctx ctx;
100 };
101 
102 struct dsi_phy_range {
103 	u32 min_range_kHz;
104 	u32 max_range_kHz;
105 	u32 pll_vco_750M;
106 	u32 hstx_ckg_sel;
107 };
108 
109 static const struct dsi_phy_range dphy_range_info[] = {
110 	{   46875,    62500,   1,    7 },
111 	{   62500,    93750,   0,    7 },
112 	{   93750,   125000,   1,    6 },
113 	{  125000,   187500,   0,    6 },
114 	{  187500,   250000,   1,    5 },
115 	{  250000,   375000,   0,    5 },
116 	{  375000,   500000,   1,    4 },
117 	{  500000,   750000,   0,    4 },
118 	{  750000,  1000000,   1,    0 },
119 	{ 1000000,  1500000,   0,    0 }
120 };
121 
122 static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
123 {
124 	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
125 	u32 tmp_kHz = req_kHz;
126 	u32 i = 0;
127 	u32 q_pll = 1;
128 	u32 m_pll = 0;
129 	u32 n_pll = 0;
130 	u32 r_pll = 1;
131 	u32 m_n = 0;
132 	u32 m_n_int = 0;
133 	u32 f_kHz = 0;
134 	u64 temp;
135 
136 	/*
137 	 * Find a rate >= req_kHz.
138 	 */
139 	do {
140 		f_kHz = tmp_kHz;
141 
142 		for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
143 			if (f_kHz >= dphy_range_info[i].min_range_kHz &&
144 			    f_kHz <= dphy_range_info[i].max_range_kHz)
145 				break;
146 
147 		if (i == ARRAY_SIZE(dphy_range_info)) {
148 			DRM_ERROR("%dkHz out of range\n", f_kHz);
149 			return 0;
150 		}
151 
152 		phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
153 		phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;
154 
155 		if (phy->hstx_ckg_sel <= 7 &&
156 		    phy->hstx_ckg_sel >= 4)
157 			q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);
158 
159 		temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
160 		m_n_int = temp / (u64)1000000000;
161 		m_n = (temp % (u64)1000000000) / (u64)100000000;
162 
163 		if (m_n_int % 2 == 0) {
164 			if (m_n * 6 >= 50) {
165 				n_pll = 2;
166 				m_pll = (m_n_int + 1) * n_pll;
167 			} else if (m_n * 6 >= 30) {
168 				n_pll = 3;
169 				m_pll = m_n_int * n_pll + 2;
170 			} else {
171 				n_pll = 1;
172 				m_pll = m_n_int * n_pll;
173 			}
174 		} else {
175 			if (m_n * 6 >= 50) {
176 				n_pll = 1;
177 				m_pll = (m_n_int + 1) * n_pll;
178 			} else if (m_n * 6 >= 30) {
179 				n_pll = 1;
180 				m_pll = (m_n_int + 1) * n_pll;
181 			} else if (m_n * 6 >= 10) {
182 				n_pll = 3;
183 				m_pll = m_n_int * n_pll + 1;
184 			} else {
185 				n_pll = 2;
186 				m_pll = m_n_int * n_pll;
187 			}
188 		}
189 
190 		if (n_pll == 1) {
191 			phy->pll_fbd_p = 0;
192 			phy->pll_pre_div1p = 1;
193 		} else {
194 			phy->pll_fbd_p = n_pll;
195 			phy->pll_pre_div1p = 0;
196 		}
197 
198 		if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
199 			r_pll = 0x10 >> (7 - phy->pll_fbd_2p);
200 
201 		if (m_pll == 2) {
202 			phy->pll_pre_p = 0;
203 			phy->pll_fbd_s = 0;
204 			phy->pll_fbd_div1f = 0;
205 			phy->pll_fbd_div5f = 1;
206 		} else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
207 			phy->pll_pre_p = m_pll / (2 * r_pll);
208 			phy->pll_fbd_s = 0;
209 			phy->pll_fbd_div1f = 1;
210 			phy->pll_fbd_div5f = 0;
211 		} else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
212 			if (((m_pll / (2 * r_pll)) % 2) == 0) {
213 				phy->pll_pre_p =
214 					(m_pll / (2 * r_pll)) / 2 - 1;
215 				phy->pll_fbd_s =
216 					(m_pll / (2 * r_pll)) % 2 + 2;
217 			} else {
218 				phy->pll_pre_p =
219 					(m_pll / (2 * r_pll)) / 2;
220 				phy->pll_fbd_s =
221 					(m_pll / (2 * r_pll)) % 2;
222 			}
223 			phy->pll_fbd_div1f = 0;
224 			phy->pll_fbd_div5f = 0;
225 		} else {
226 			phy->pll_pre_p = 0;
227 			phy->pll_fbd_s = 0;
228 			phy->pll_fbd_div1f = 0;
229 			phy->pll_fbd_div5f = 1;
230 		}
231 
232 		f_kHz = (u64)1000000000 * (u64)m_pll /
233 			((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
234 
235 		if (f_kHz >= req_kHz)
236 			break;
237 
238 		tmp_kHz += 10;
239 
240 	} while (true);
241 
242 	return f_kHz;
243 }
244 
245 static void dsi_get_phy_params(u32 phy_req_kHz,
246 			       struct mipi_phy_params *phy)
247 {
248 	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
249 	u32 phy_rate_kHz;
250 	u32 ui;
251 
252 	memset(phy, 0, sizeof(*phy));
253 
254 	phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
255 	if (!phy_rate_kHz)
256 		return;
257 
258 	ui = 1000000 / phy_rate_kHz;
259 
260 	phy->clk_t_lpx = ROUND(50, 8 * ui);
261 	phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;
262 
263 	phy->clk_t_hs_zero = ROUND(262, 8 * ui);
264 	phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
265 	phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
266 	if (phy->clk_t_wakeup > 0xff)
267 		phy->clk_t_wakeup = 0xff;
268 	phy->data_t_wakeup = phy->clk_t_wakeup;
269 	phy->data_t_lpx = phy->clk_t_lpx;
270 	phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
271 	phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
272 	phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
273 	phy->data_t_ta_go = 3;
274 	phy->data_t_ta_get = 4;
275 
276 	phy->pll_enbwt = 1;
277 	phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
278 	phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
279 	phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
280 	phy->hs2lp_time = phy->clkhs2lp_time;
281 	phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
282 	phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
283 				phy->clkhs2lp_time;
284 
285 	phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
286 	phy->clk_division =
287 		DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
288 }
289 
290 static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
291 {
292 	u32 val;
293 
294 	/*
295 	 * TODO: only support RGB888 now, to support more
296 	 */
297 	switch (format) {
298 	case MIPI_DSI_FMT_RGB888:
299 		val = DSI_24BITS_1;
300 		break;
301 	default:
302 		val = DSI_24BITS_1;
303 		break;
304 	}
305 
306 	return val;
307 }
308 
309 /*
310  * dsi phy reg write function
311  */
312 static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
313 {
314 	u32 reg_write = 0x10000 + reg;
315 
316 	/*
317 	 * latch reg first
318 	 */
319 	writel(reg_write, base + PHY_TST_CTRL1);
320 	writel(0x02, base + PHY_TST_CTRL0);
321 	writel(0x00, base + PHY_TST_CTRL0);
322 
323 	/*
324 	 * then latch value
325 	 */
326 	writel(val, base + PHY_TST_CTRL1);
327 	writel(0x02, base + PHY_TST_CTRL0);
328 	writel(0x00, base + PHY_TST_CTRL0);
329 }
330 
331 static void dsi_set_phy_timer(void __iomem *base,
332 			      struct mipi_phy_params *phy,
333 			      u32 lanes)
334 {
335 	u32 val;
336 
337 	/*
338 	 * Set lane value and phy stop wait time.
339 	 */
340 	val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
341 	writel(val, base + PHY_IF_CFG);
342 
343 	/*
344 	 * Set phy clk division.
345 	 */
346 	val = readl(base + CLKMGR_CFG) | phy->clk_division;
347 	writel(val, base + CLKMGR_CFG);
348 
349 	/*
350 	 * Set lp and hs switching params.
351 	 */
352 	dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
353 	dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
354 	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
355 		       phy->clkhs2lp_time);
356 	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
357 		       phy->clklp2hs_time);
358 	dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
359 		       phy->data_to_clk_delay);
360 	dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
361 		       phy->clk_to_data_delay);
362 }
363 
364 static void dsi_set_mipi_phy(void __iomem *base,
365 			     struct mipi_phy_params *phy,
366 			     u32 lanes)
367 {
368 	u32 delay_count;
369 	u32 val;
370 	u32 i;
371 
372 	/* phy timer setting */
373 	dsi_set_phy_timer(base, phy, lanes);
374 
375 	/*
376 	 * Reset to clean up phy tst params.
377 	 */
378 	writel(0, base + PHY_RSTZ);
379 	writel(0, base + PHY_TST_CTRL0);
380 	writel(1, base + PHY_TST_CTRL0);
381 	writel(0, base + PHY_TST_CTRL0);
382 
383 	/*
384 	 * Clock lane timing control setting: TLPX, THS-PREPARE,
385 	 * THS-ZERO, THS-TRAIL, TWAKEUP.
386 	 */
387 	dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
388 	dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
389 	dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
390 	dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
391 	dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);
392 
393 	/*
394 	 * Data lane timing control setting: TLPX, THS-PREPARE,
395 	 * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
396 	 */
397 	for (i = 0; i < lanes; i++) {
398 		dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
399 		dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
400 				phy->data_t_hs_prepare);
401 		dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
402 		dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
403 		dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
404 		dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
405 		dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
406 	}
407 
408 	/*
409 	 * physical configuration: I, pll I, pll II, pll III,
410 	 * pll IV, pll V.
411 	 */
412 	dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
413 	val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
414 				(phy->pll_fbd_2p << 1) + phy->pll_enbwt;
415 	dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
416 	dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
417 	dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
418 	val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
419 	dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
420 	val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
421 		phy->pll_lpf_cs;
422 	dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);
423 
424 	writel(PHY_ENABLECLK, base + PHY_RSTZ);
425 	udelay(1);
426 	writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
427 	udelay(1);
428 	writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
429 	usleep_range(1000, 1500);
430 
431 	/*
432 	 * wait for phy's clock ready
433 	 */
434 	delay_count = 100;
435 	while (delay_count) {
436 		val = readl(base +  PHY_STATUS);
437 		if ((BIT(0) | BIT(2)) & val)
438 			break;
439 
440 		udelay(1);
441 		delay_count--;
442 	}
443 
444 	if (!delay_count)
445 		DRM_INFO("phylock and phystopstateclklane is not ready.\n");
446 }
447 
448 static void dsi_set_mode_timing(void __iomem *base,
449 				u32 lane_byte_clk_kHz,
450 				struct drm_display_mode *mode,
451 				enum mipi_dsi_pixel_format format)
452 {
453 	u32 hfp, hbp, hsw, vfp, vbp, vsw;
454 	u32 hline_time;
455 	u32 hsa_time;
456 	u32 hbp_time;
457 	u32 pixel_clk_kHz;
458 	int htot, vtot;
459 	u32 val;
460 	u64 tmp;
461 
462 	val = dsi_get_dpi_color_coding(format);
463 	writel(val, base + DPI_COLOR_CODING);
464 
465 	val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
466 	val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
467 	writel(val, base +  DPI_CFG_POL);
468 
469 	/*
470 	 * The DSI IP accepts vertical timing using lines as normal,
471 	 * but horizontal timing is a mixture of pixel-clocks for the
472 	 * active region and byte-lane clocks for the blanking-related
473 	 * timings.  hfp is specified as the total hline_time in byte-
474 	 * lane clocks minus hsa, hbp and active.
475 	 */
476 	pixel_clk_kHz = mode->clock;
477 	htot = mode->htotal;
478 	vtot = mode->vtotal;
479 	hfp = mode->hsync_start - mode->hdisplay;
480 	hbp = mode->htotal - mode->hsync_end;
481 	hsw = mode->hsync_end - mode->hsync_start;
482 	vfp = mode->vsync_start - mode->vdisplay;
483 	vbp = mode->vtotal - mode->vsync_end;
484 	vsw = mode->vsync_end - mode->vsync_start;
485 	if (vsw > 15) {
486 		DRM_DEBUG_DRIVER("vsw exceeded 15\n");
487 		vsw = 15;
488 	}
489 
490 	hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
491 	hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
492 	tmp = (u64)htot * (u64)lane_byte_clk_kHz;
493 	hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz);
494 
495 	/* all specified in byte-lane clocks */
496 	writel(hsa_time, base + VID_HSA_TIME);
497 	writel(hbp_time, base + VID_HBP_TIME);
498 	writel(hline_time, base + VID_HLINE_TIME);
499 
500 	writel(vsw, base + VID_VSA_LINES);
501 	writel(vbp, base + VID_VBP_LINES);
502 	writel(vfp, base + VID_VFP_LINES);
503 	writel(mode->vdisplay, base + VID_VACTIVE_LINES);
504 	writel(mode->hdisplay, base + VID_PKT_SIZE);
505 
506 	DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
507 			 htot, hfp, hbp, hsw);
508 	DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
509 			 vtot, vfp, vbp, vsw);
510 	DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
511 			 hsa_time, hbp_time, hline_time);
512 }
513 
514 static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
515 {
516 	u32 val;
517 	u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
518 		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
519 	u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
520 		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
521 	u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;
522 
523 	/*
524 	 * choose video mode type
525 	 */
526 	if ((flags & mode_mask) == non_burst_sync_pulse)
527 		val = DSI_NON_BURST_SYNC_PULSES;
528 	else if ((flags & mode_mask) == non_burst_sync_event)
529 		val = DSI_NON_BURST_SYNC_EVENTS;
530 	else
531 		val = DSI_BURST_SYNC_PULSES_1;
532 	writel(val, base + VID_MODE_CFG);
533 
534 	writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
535 	writel(DSI_VIDEO_MODE, base + MODE_CFG);
536 }
537 
538 static void dsi_mipi_init(struct dw_dsi *dsi)
539 {
540 	struct dsi_hw_ctx *ctx = dsi->ctx;
541 	struct mipi_phy_params *phy = &dsi->phy;
542 	struct drm_display_mode *mode = &dsi->cur_mode;
543 	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
544 	void __iomem *base = ctx->base;
545 	u32 dphy_req_kHz;
546 
547 	/*
548 	 * count phy params
549 	 */
550 	dphy_req_kHz = mode->clock * bpp / dsi->lanes;
551 	dsi_get_phy_params(dphy_req_kHz, phy);
552 
553 	/* reset Core */
554 	writel(RESET, base + PWR_UP);
555 
556 	/* set dsi phy params */
557 	dsi_set_mipi_phy(base, phy, dsi->lanes);
558 
559 	/* set dsi mode timing */
560 	dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);
561 
562 	/* set dsi video mode */
563 	dsi_set_video_mode(base, dsi->mode_flags);
564 
565 	/* dsi wake up */
566 	writel(POWERUP, base + PWR_UP);
567 
568 	DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
569 			 dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
570 }
571 
572 static void dsi_encoder_disable(struct drm_encoder *encoder)
573 {
574 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
575 	struct dsi_hw_ctx *ctx = dsi->ctx;
576 	void __iomem *base = ctx->base;
577 
578 	if (!dsi->enable)
579 		return;
580 
581 	writel(0, base + PWR_UP);
582 	writel(0, base + LPCLK_CTRL);
583 	writel(0, base + PHY_RSTZ);
584 	clk_disable_unprepare(ctx->pclk);
585 
586 	dsi->enable = false;
587 }
588 
589 static void dsi_encoder_enable(struct drm_encoder *encoder)
590 {
591 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
592 	struct dsi_hw_ctx *ctx = dsi->ctx;
593 	int ret;
594 
595 	if (dsi->enable)
596 		return;
597 
598 	ret = clk_prepare_enable(ctx->pclk);
599 	if (ret) {
600 		DRM_ERROR("fail to enable pclk: %d\n", ret);
601 		return;
602 	}
603 
604 	dsi_mipi_init(dsi);
605 
606 	dsi->enable = true;
607 }
608 
609 static enum drm_mode_status dsi_encoder_phy_mode_valid(
610 					struct drm_encoder *encoder,
611 					const struct drm_display_mode *mode)
612 {
613 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
614 	struct mipi_phy_params phy;
615 	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
616 	u32 req_kHz, act_kHz, lane_byte_clk_kHz;
617 
618 	/* Calculate the lane byte clk using the adjusted mode clk */
619 	memset(&phy, 0, sizeof(phy));
620 	req_kHz = mode->clock * bpp / dsi->lanes;
621 	act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
622 	lane_byte_clk_kHz = act_kHz / 8;
623 
624 	DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
625 			mode->hdisplay, mode->vdisplay, bpp,
626 			drm_mode_vrefresh(mode), mode->clock);
627 
628 	/*
629 	 * Make sure the adjusted mode clock and the lane byte clk
630 	 * have a common denominator base frequency
631 	 */
632 	if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
633 		DRM_DEBUG_DRIVER("OK!\n");
634 		return MODE_OK;
635 	}
636 
637 	DRM_DEBUG_DRIVER("BAD!\n");
638 	return MODE_BAD;
639 }
640 
641 static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
642 					const struct drm_display_mode *mode)
643 
644 {
645 	const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
646 	struct drm_crtc *crtc = NULL;
647 	struct drm_display_mode adj_mode;
648 	enum drm_mode_status ret;
649 
650 	/*
651 	 * The crtc might adjust the mode, so go through the
652 	 * possible crtcs (technically just one) and call
653 	 * mode_fixup to figure out the adjusted mode before we
654 	 * validate it.
655 	 */
656 	drm_for_each_crtc(crtc, encoder->dev) {
657 		/*
658 		 * reset adj_mode to the mode value each time,
659 		 * so we don't adjust the mode twice
660 		 */
661 		drm_mode_init(&adj_mode, mode);
662 
663 		crtc_funcs = crtc->helper_private;
664 		if (crtc_funcs && crtc_funcs->mode_fixup)
665 			if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
666 				return MODE_BAD;
667 
668 		ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
669 		if (ret != MODE_OK)
670 			return ret;
671 	}
672 	return MODE_OK;
673 }
674 
675 static void dsi_encoder_mode_set(struct drm_encoder *encoder,
676 				 struct drm_display_mode *mode,
677 				 struct drm_display_mode *adj_mode)
678 {
679 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
680 
681 	drm_mode_copy(&dsi->cur_mode, adj_mode);
682 }
683 
684 static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
685 				    struct drm_crtc_state *crtc_state,
686 				    struct drm_connector_state *conn_state)
687 {
688 	/* do nothing */
689 	return 0;
690 }
691 
692 static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
693 	.atomic_check	= dsi_encoder_atomic_check,
694 	.mode_valid	= dsi_encoder_mode_valid,
695 	.mode_set	= dsi_encoder_mode_set,
696 	.enable		= dsi_encoder_enable,
697 	.disable	= dsi_encoder_disable
698 };
699 
700 static int dw_drm_encoder_init(struct device *dev,
701 			       struct drm_device *drm_dev,
702 			       struct drm_encoder *encoder)
703 {
704 	int ret;
705 	u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);
706 
707 	if (!crtc_mask) {
708 		DRM_ERROR("failed to find crtc mask\n");
709 		return -EINVAL;
710 	}
711 
712 	encoder->possible_crtcs = crtc_mask;
713 	ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI);
714 	if (ret) {
715 		DRM_ERROR("failed to init dsi encoder\n");
716 		return ret;
717 	}
718 
719 	drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);
720 
721 	return 0;
722 }
723 
724 static const struct component_ops dsi_ops;
725 static int dsi_host_attach(struct mipi_dsi_host *host,
726 			   struct mipi_dsi_device *mdsi)
727 {
728 	struct dw_dsi *dsi = host_to_dsi(host);
729 	struct device *dev = host->dev;
730 	int ret;
731 
732 	if (mdsi->lanes < 1 || mdsi->lanes > 4) {
733 		DRM_ERROR("dsi device params invalid\n");
734 		return -EINVAL;
735 	}
736 
737 	dsi->lanes = mdsi->lanes;
738 	dsi->format = mdsi->format;
739 	dsi->mode_flags = mdsi->mode_flags;
740 
741 	ret = component_add(dev, &dsi_ops);
742 	if (ret)
743 		return ret;
744 
745 	return 0;
746 }
747 
748 static int dsi_host_detach(struct mipi_dsi_host *host,
749 			   struct mipi_dsi_device *mdsi)
750 {
751 	struct device *dev = host->dev;
752 
753 	component_del(dev, &dsi_ops);
754 
755 	return 0;
756 }
757 
758 static const struct mipi_dsi_host_ops dsi_host_ops = {
759 	.attach = dsi_host_attach,
760 	.detach = dsi_host_detach,
761 };
762 
763 static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
764 {
765 	struct mipi_dsi_host *host = &dsi->host;
766 	int ret;
767 
768 	host->dev = dev;
769 	host->ops = &dsi_host_ops;
770 	ret = mipi_dsi_host_register(host);
771 	if (ret) {
772 		DRM_ERROR("failed to register dsi host\n");
773 		return ret;
774 	}
775 
776 	return 0;
777 }
778 
779 static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
780 {
781 	struct drm_encoder *encoder = &dsi->encoder;
782 	struct drm_bridge *bridge;
783 	struct device_node *np = dsi->dev->of_node;
784 	int ret;
785 
786 	/*
787 	 * Get the endpoint node. In our case, dsi has one output port1
788 	 * to which the external HDMI bridge is connected.
789 	 */
790 	ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &bridge);
791 	if (ret)
792 		return ret;
793 
794 	/* associate the bridge to dsi encoder */
795 	return drm_bridge_attach(encoder, bridge, NULL, 0);
796 }
797 
798 static int dsi_bind(struct device *dev, struct device *master, void *data)
799 {
800 	struct dsi_data *ddata = dev_get_drvdata(dev);
801 	struct dw_dsi *dsi = &ddata->dsi;
802 	struct drm_device *drm_dev = data;
803 	int ret;
804 
805 	ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
806 	if (ret)
807 		return ret;
808 
809 	ret = dsi_bridge_init(drm_dev, dsi);
810 	if (ret)
811 		return ret;
812 
813 	return 0;
814 }
815 
816 static void dsi_unbind(struct device *dev, struct device *master, void *data)
817 {
818 	/* do nothing */
819 }
820 
821 static const struct component_ops dsi_ops = {
822 	.bind	= dsi_bind,
823 	.unbind	= dsi_unbind,
824 };
825 
826 static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
827 {
828 	struct dsi_hw_ctx *ctx = dsi->ctx;
829 	struct resource *res;
830 
831 	ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
832 	if (IS_ERR(ctx->pclk)) {
833 		DRM_ERROR("failed to get pclk clock\n");
834 		return PTR_ERR(ctx->pclk);
835 	}
836 
837 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838 	ctx->base = devm_ioremap_resource(&pdev->dev, res);
839 	if (IS_ERR(ctx->base)) {
840 		DRM_ERROR("failed to remap dsi io region\n");
841 		return PTR_ERR(ctx->base);
842 	}
843 
844 	return 0;
845 }
846 
847 static int dsi_probe(struct platform_device *pdev)
848 {
849 	struct dsi_data *data;
850 	struct dw_dsi *dsi;
851 	struct dsi_hw_ctx *ctx;
852 	int ret;
853 
854 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
855 	if (!data) {
856 		DRM_ERROR("failed to allocate dsi data.\n");
857 		return -ENOMEM;
858 	}
859 	dsi = &data->dsi;
860 	ctx = &data->ctx;
861 	dsi->ctx = ctx;
862 	dsi->dev = &pdev->dev;
863 
864 	ret = dsi_parse_dt(pdev, dsi);
865 	if (ret)
866 		return ret;
867 
868 	platform_set_drvdata(pdev, data);
869 
870 	ret = dsi_host_init(&pdev->dev, dsi);
871 	if (ret)
872 		return ret;
873 
874 	return 0;
875 }
876 
877 static void dsi_remove(struct platform_device *pdev)
878 {
879 	struct dsi_data *data = platform_get_drvdata(pdev);
880 	struct dw_dsi *dsi = &data->dsi;
881 
882 	mipi_dsi_host_unregister(&dsi->host);
883 }
884 
885 static const struct of_device_id dsi_of_match[] = {
886 	{.compatible = "hisilicon,hi6220-dsi"},
887 	{ }
888 };
889 MODULE_DEVICE_TABLE(of, dsi_of_match);
890 
891 static struct platform_driver dsi_driver = {
892 	.probe = dsi_probe,
893 	.remove_new = dsi_remove,
894 	.driver = {
895 		.name = "dw-dsi",
896 		.of_match_table = dsi_of_match,
897 	},
898 };
899 
900 module_platform_driver(dsi_driver);
901 
902 MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
903 MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
904 MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
905 MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
906 MODULE_LICENSE("GPL v2");
907