xref: /linux/drivers/gpu/drm/i915/display/intel_bios.c (revision 52338415)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 #include <drm/i915_drm.h>
30 
31 #include "display/intel_display.h"
32 #include "display/intel_gmbus.h"
33 
34 #include "i915_drv.h"
35 
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38 
39 /**
40  * DOC: Video BIOS Table (VBT)
41  *
42  * The Video BIOS Table, or VBT, provides platform and board specific
43  * configuration information to the driver that is not discoverable or available
44  * through other means. The configuration is mostly related to display
45  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46  * the PCI ROM.
47  *
48  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50  * contain the actual configuration information. The VBT Header, and thus the
51  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52  * BDB Header. The data blocks are concatenated after the BDB Header. The data
53  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54  * data. (Block 53, the MIPI Sequence Block is an exception.)
55  *
56  * The driver parses the VBT during load. The relevant information is stored in
57  * driver private data for ease of use, and the actual VBT is not read after
58  * that.
59  */
60 
61 #define	SLAVE_ADDR1	0x70
62 #define	SLAVE_ADDR2	0x72
63 
64 /* Get BDB block size given a pointer to Block ID. */
65 static u32 _get_blocksize(const u8 *block_base)
66 {
67 	/* The MIPI Sequence Block v3+ has a separate size field. */
68 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
69 		return *((const u32 *)(block_base + 4));
70 	else
71 		return *((const u16 *)(block_base + 1));
72 }
73 
74 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
75 static u32 get_blocksize(const void *block_data)
76 {
77 	return _get_blocksize(block_data - 3);
78 }
79 
80 static const void *
81 find_section(const void *_bdb, enum bdb_block_id section_id)
82 {
83 	const struct bdb_header *bdb = _bdb;
84 	const u8 *base = _bdb;
85 	int index = 0;
86 	u32 total, current_size;
87 	enum bdb_block_id current_id;
88 
89 	/* skip to first section */
90 	index += bdb->header_size;
91 	total = bdb->bdb_size;
92 
93 	/* walk the sections looking for section_id */
94 	while (index + 3 < total) {
95 		current_id = *(base + index);
96 		current_size = _get_blocksize(base + index);
97 		index += 3;
98 
99 		if (index + current_size > total)
100 			return NULL;
101 
102 		if (current_id == section_id)
103 			return base + index;
104 
105 		index += current_size;
106 	}
107 
108 	return NULL;
109 }
110 
111 static void
112 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
113 			const struct lvds_dvo_timing *dvo_timing)
114 {
115 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
116 		dvo_timing->hactive_lo;
117 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
118 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
119 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
120 		((dvo_timing->hsync_pulse_width_hi << 8) |
121 			dvo_timing->hsync_pulse_width_lo);
122 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
123 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
124 
125 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
126 		dvo_timing->vactive_lo;
127 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
128 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
129 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
130 		((dvo_timing->vsync_pulse_width_hi << 4) |
131 			dvo_timing->vsync_pulse_width_lo);
132 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
133 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
134 	panel_fixed_mode->clock = dvo_timing->clock * 10;
135 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
136 
137 	if (dvo_timing->hsync_positive)
138 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
139 	else
140 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
141 
142 	if (dvo_timing->vsync_positive)
143 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
144 	else
145 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
146 
147 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
148 		dvo_timing->himage_lo;
149 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
150 		dvo_timing->vimage_lo;
151 
152 	/* Some VBTs have bogus h/vtotal values */
153 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
154 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
155 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
156 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
157 
158 	drm_mode_set_name(panel_fixed_mode);
159 }
160 
161 static const struct lvds_dvo_timing *
162 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
163 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
164 		    int index)
165 {
166 	/*
167 	 * the size of fp_timing varies on the different platform.
168 	 * So calculate the DVO timing relative offset in LVDS data
169 	 * entry to get the DVO timing entry
170 	 */
171 
172 	int lfp_data_size =
173 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
174 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
175 	int dvo_timing_offset =
176 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
177 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
178 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
179 
180 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
181 }
182 
183 /* get lvds_fp_timing entry
184  * this function may return NULL if the corresponding entry is invalid
185  */
186 static const struct lvds_fp_timing *
187 get_lvds_fp_timing(const struct bdb_header *bdb,
188 		   const struct bdb_lvds_lfp_data *data,
189 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
190 		   int index)
191 {
192 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
193 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
194 	size_t ofs;
195 
196 	if (index >= ARRAY_SIZE(ptrs->ptr))
197 		return NULL;
198 	ofs = ptrs->ptr[index].fp_timing_offset;
199 	if (ofs < data_ofs ||
200 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
201 		return NULL;
202 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
203 }
204 
205 /* Try to find integrated panel data */
206 static void
207 parse_lfp_panel_data(struct drm_i915_private *dev_priv,
208 		     const struct bdb_header *bdb)
209 {
210 	const struct bdb_lvds_options *lvds_options;
211 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
212 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
213 	const struct lvds_dvo_timing *panel_dvo_timing;
214 	const struct lvds_fp_timing *fp_timing;
215 	struct drm_display_mode *panel_fixed_mode;
216 	int panel_type;
217 	int drrs_mode;
218 	int ret;
219 
220 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
221 	if (!lvds_options)
222 		return;
223 
224 	dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
225 
226 	ret = intel_opregion_get_panel_type(dev_priv);
227 	if (ret >= 0) {
228 		WARN_ON(ret > 0xf);
229 		panel_type = ret;
230 		DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
231 	} else {
232 		if (lvds_options->panel_type > 0xf) {
233 			DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
234 				      lvds_options->panel_type);
235 			return;
236 		}
237 		panel_type = lvds_options->panel_type;
238 		DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
239 	}
240 
241 	dev_priv->vbt.panel_type = panel_type;
242 
243 	drrs_mode = (lvds_options->dps_panel_type_bits
244 				>> (panel_type * 2)) & MODE_MASK;
245 	/*
246 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
247 	 * The below piece of code is required to adjust vbt.drrs_type
248 	 * to match the enum drrs_support_type.
249 	 */
250 	switch (drrs_mode) {
251 	case 0:
252 		dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
253 		DRM_DEBUG_KMS("DRRS supported mode is static\n");
254 		break;
255 	case 2:
256 		dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
257 		DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
258 		break;
259 	default:
260 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
261 		DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
262 		break;
263 	}
264 
265 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
266 	if (!lvds_lfp_data)
267 		return;
268 
269 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
270 	if (!lvds_lfp_data_ptrs)
271 		return;
272 
273 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
274 					       lvds_lfp_data_ptrs,
275 					       panel_type);
276 
277 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
278 	if (!panel_fixed_mode)
279 		return;
280 
281 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
282 
283 	dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
284 
285 	DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
286 	drm_mode_debug_printmodeline(panel_fixed_mode);
287 
288 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
289 				       lvds_lfp_data_ptrs,
290 				       panel_type);
291 	if (fp_timing) {
292 		/* check the resolution, just to be sure */
293 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
294 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
295 			dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
296 			DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
297 				      dev_priv->vbt.bios_lvds_val);
298 		}
299 	}
300 }
301 
302 static void
303 parse_lfp_backlight(struct drm_i915_private *dev_priv,
304 		    const struct bdb_header *bdb)
305 {
306 	const struct bdb_lfp_backlight_data *backlight_data;
307 	const struct lfp_backlight_data_entry *entry;
308 	int panel_type = dev_priv->vbt.panel_type;
309 
310 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
311 	if (!backlight_data)
312 		return;
313 
314 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
315 		DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
316 			      backlight_data->entry_size);
317 		return;
318 	}
319 
320 	entry = &backlight_data->data[panel_type];
321 
322 	dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
323 	if (!dev_priv->vbt.backlight.present) {
324 		DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
325 			      entry->type);
326 		return;
327 	}
328 
329 	dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
330 	if (bdb->version >= 191 &&
331 	    get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
332 		const struct lfp_backlight_control_method *method;
333 
334 		method = &backlight_data->backlight_control[panel_type];
335 		dev_priv->vbt.backlight.type = method->type;
336 		dev_priv->vbt.backlight.controller = method->controller;
337 	}
338 
339 	dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
340 	dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
341 	dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
342 	DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
343 		      "active %s, min brightness %u, level %u, controller %u\n",
344 		      dev_priv->vbt.backlight.pwm_freq_hz,
345 		      dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
346 		      dev_priv->vbt.backlight.min_brightness,
347 		      backlight_data->level[panel_type],
348 		      dev_priv->vbt.backlight.controller);
349 }
350 
351 /* Try to find sdvo panel data */
352 static void
353 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
354 		      const struct bdb_header *bdb)
355 {
356 	const struct bdb_sdvo_panel_dtds *dtds;
357 	struct drm_display_mode *panel_fixed_mode;
358 	int index;
359 
360 	index = i915_modparams.vbt_sdvo_panel_type;
361 	if (index == -2) {
362 		DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
363 		return;
364 	}
365 
366 	if (index == -1) {
367 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
368 
369 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
370 		if (!sdvo_lvds_options)
371 			return;
372 
373 		index = sdvo_lvds_options->panel_type;
374 	}
375 
376 	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
377 	if (!dtds)
378 		return;
379 
380 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
381 	if (!panel_fixed_mode)
382 		return;
383 
384 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
385 
386 	dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
387 
388 	DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
389 	drm_mode_debug_printmodeline(panel_fixed_mode);
390 }
391 
392 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
393 				    bool alternate)
394 {
395 	switch (INTEL_GEN(dev_priv)) {
396 	case 2:
397 		return alternate ? 66667 : 48000;
398 	case 3:
399 	case 4:
400 		return alternate ? 100000 : 96000;
401 	default:
402 		return alternate ? 100000 : 120000;
403 	}
404 }
405 
406 static void
407 parse_general_features(struct drm_i915_private *dev_priv,
408 		       const struct bdb_header *bdb)
409 {
410 	const struct bdb_general_features *general;
411 
412 	general = find_section(bdb, BDB_GENERAL_FEATURES);
413 	if (!general)
414 		return;
415 
416 	dev_priv->vbt.int_tv_support = general->int_tv_support;
417 	/* int_crt_support can't be trusted on earlier platforms */
418 	if (bdb->version >= 155 &&
419 	    (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
420 		dev_priv->vbt.int_crt_support = general->int_crt_support;
421 	dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
422 	dev_priv->vbt.lvds_ssc_freq =
423 		intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
424 	dev_priv->vbt.display_clock_mode = general->display_clock_mode;
425 	dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
426 	if (bdb->version >= 181) {
427 		dev_priv->vbt.orientation = general->rotate_180 ?
428 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
429 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
430 	} else {
431 		dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
432 	}
433 	DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
434 		      dev_priv->vbt.int_tv_support,
435 		      dev_priv->vbt.int_crt_support,
436 		      dev_priv->vbt.lvds_use_ssc,
437 		      dev_priv->vbt.lvds_ssc_freq,
438 		      dev_priv->vbt.display_clock_mode,
439 		      dev_priv->vbt.fdi_rx_polarity_inverted);
440 }
441 
442 static const struct child_device_config *
443 child_device_ptr(const struct bdb_general_definitions *defs, int i)
444 {
445 	return (const void *) &defs->devices[i * defs->child_dev_size];
446 }
447 
448 static void
449 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
450 {
451 	struct sdvo_device_mapping *mapping;
452 	const struct child_device_config *child;
453 	int i, count = 0;
454 
455 	/*
456 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
457 	 * accurate and doesn't have to be, as long as it's not too strict.
458 	 */
459 	if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
460 		DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
461 		return;
462 	}
463 
464 	for (i = 0, count = 0; i < dev_priv->vbt.child_dev_num; i++) {
465 		child = dev_priv->vbt.child_dev + i;
466 
467 		if (child->slave_addr != SLAVE_ADDR1 &&
468 		    child->slave_addr != SLAVE_ADDR2) {
469 			/*
470 			 * If the slave address is neither 0x70 nor 0x72,
471 			 * it is not a SDVO device. Skip it.
472 			 */
473 			continue;
474 		}
475 		if (child->dvo_port != DEVICE_PORT_DVOB &&
476 		    child->dvo_port != DEVICE_PORT_DVOC) {
477 			/* skip the incorrect SDVO port */
478 			DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
479 			continue;
480 		}
481 		DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
482 			      " %s port\n",
483 			      child->slave_addr,
484 			      (child->dvo_port == DEVICE_PORT_DVOB) ?
485 			      "SDVOB" : "SDVOC");
486 		mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
487 		if (!mapping->initialized) {
488 			mapping->dvo_port = child->dvo_port;
489 			mapping->slave_addr = child->slave_addr;
490 			mapping->dvo_wiring = child->dvo_wiring;
491 			mapping->ddc_pin = child->ddc_pin;
492 			mapping->i2c_pin = child->i2c_pin;
493 			mapping->initialized = 1;
494 			DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
495 				      mapping->dvo_port,
496 				      mapping->slave_addr,
497 				      mapping->dvo_wiring,
498 				      mapping->ddc_pin,
499 				      mapping->i2c_pin);
500 		} else {
501 			DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
502 					 "two SDVO device.\n");
503 		}
504 		if (child->slave2_addr) {
505 			/* Maybe this is a SDVO device with multiple inputs */
506 			/* And the mapping info is not added */
507 			DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
508 				" is a SDVO device with multiple inputs.\n");
509 		}
510 		count++;
511 	}
512 
513 	if (!count) {
514 		/* No SDVO device info is found */
515 		DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
516 	}
517 }
518 
519 static void
520 parse_driver_features(struct drm_i915_private *dev_priv,
521 		      const struct bdb_header *bdb)
522 {
523 	const struct bdb_driver_features *driver;
524 
525 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
526 	if (!driver)
527 		return;
528 
529 	if (INTEL_GEN(dev_priv) >= 5) {
530 		/*
531 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
532 		 * to mean "eDP". The VBT spec doesn't agree with that
533 		 * interpretation, but real world VBTs seem to.
534 		 */
535 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
536 			dev_priv->vbt.int_lvds_support = 0;
537 	} else {
538 		/*
539 		 * FIXME it's not clear which BDB version has the LVDS config
540 		 * bits defined. Revision history in the VBT spec says:
541 		 * "0.92 | Add two definitions for VBT value of LVDS Active
542 		 *  Config (00b and 11b values defined) | 06/13/2005"
543 		 * but does not the specify the BDB version.
544 		 *
545 		 * So far version 134 (on i945gm) is the oldest VBT observed
546 		 * in the wild with the bits correctly populated. Version
547 		 * 108 (on i85x) does not have the bits correctly populated.
548 		 */
549 		if (bdb->version >= 134 &&
550 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
551 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
552 			dev_priv->vbt.int_lvds_support = 0;
553 	}
554 
555 	DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
556 	/*
557 	 * If DRRS is not supported, drrs_type has to be set to 0.
558 	 * This is because, VBT is configured in such a way that
559 	 * static DRRS is 0 and DRRS not supported is represented by
560 	 * driver->drrs_enabled=false
561 	 */
562 	if (!driver->drrs_enabled)
563 		dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
564 	dev_priv->vbt.psr.enable = driver->psr_enabled;
565 }
566 
567 static void
568 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
569 {
570 	const struct bdb_edp *edp;
571 	const struct edp_power_seq *edp_pps;
572 	const struct edp_fast_link_params *edp_link_params;
573 	int panel_type = dev_priv->vbt.panel_type;
574 
575 	edp = find_section(bdb, BDB_EDP);
576 	if (!edp)
577 		return;
578 
579 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
580 	case EDP_18BPP:
581 		dev_priv->vbt.edp.bpp = 18;
582 		break;
583 	case EDP_24BPP:
584 		dev_priv->vbt.edp.bpp = 24;
585 		break;
586 	case EDP_30BPP:
587 		dev_priv->vbt.edp.bpp = 30;
588 		break;
589 	}
590 
591 	/* Get the eDP sequencing and link info */
592 	edp_pps = &edp->power_seqs[panel_type];
593 	edp_link_params = &edp->fast_link_params[panel_type];
594 
595 	dev_priv->vbt.edp.pps = *edp_pps;
596 
597 	switch (edp_link_params->rate) {
598 	case EDP_RATE_1_62:
599 		dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
600 		break;
601 	case EDP_RATE_2_7:
602 		dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
603 		break;
604 	default:
605 		DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
606 			      edp_link_params->rate);
607 		break;
608 	}
609 
610 	switch (edp_link_params->lanes) {
611 	case EDP_LANE_1:
612 		dev_priv->vbt.edp.lanes = 1;
613 		break;
614 	case EDP_LANE_2:
615 		dev_priv->vbt.edp.lanes = 2;
616 		break;
617 	case EDP_LANE_4:
618 		dev_priv->vbt.edp.lanes = 4;
619 		break;
620 	default:
621 		DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
622 			      edp_link_params->lanes);
623 		break;
624 	}
625 
626 	switch (edp_link_params->preemphasis) {
627 	case EDP_PREEMPHASIS_NONE:
628 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
629 		break;
630 	case EDP_PREEMPHASIS_3_5dB:
631 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
632 		break;
633 	case EDP_PREEMPHASIS_6dB:
634 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
635 		break;
636 	case EDP_PREEMPHASIS_9_5dB:
637 		dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
638 		break;
639 	default:
640 		DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
641 			      edp_link_params->preemphasis);
642 		break;
643 	}
644 
645 	switch (edp_link_params->vswing) {
646 	case EDP_VSWING_0_4V:
647 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
648 		break;
649 	case EDP_VSWING_0_6V:
650 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
651 		break;
652 	case EDP_VSWING_0_8V:
653 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
654 		break;
655 	case EDP_VSWING_1_2V:
656 		dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
657 		break;
658 	default:
659 		DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
660 			      edp_link_params->vswing);
661 		break;
662 	}
663 
664 	if (bdb->version >= 173) {
665 		u8 vswing;
666 
667 		/* Don't read from VBT if module parameter has valid value*/
668 		if (i915_modparams.edp_vswing) {
669 			dev_priv->vbt.edp.low_vswing =
670 				i915_modparams.edp_vswing == 1;
671 		} else {
672 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
673 			dev_priv->vbt.edp.low_vswing = vswing == 0;
674 		}
675 	}
676 }
677 
678 static void
679 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
680 {
681 	const struct bdb_psr *psr;
682 	const struct psr_table *psr_table;
683 	int panel_type = dev_priv->vbt.panel_type;
684 
685 	psr = find_section(bdb, BDB_PSR);
686 	if (!psr) {
687 		DRM_DEBUG_KMS("No PSR BDB found.\n");
688 		return;
689 	}
690 
691 	psr_table = &psr->psr_table[panel_type];
692 
693 	dev_priv->vbt.psr.full_link = psr_table->full_link;
694 	dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
695 
696 	/* Allowed VBT values goes from 0 to 15 */
697 	dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
698 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
699 
700 	switch (psr_table->lines_to_wait) {
701 	case 0:
702 		dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
703 		break;
704 	case 1:
705 		dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
706 		break;
707 	case 2:
708 		dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
709 		break;
710 	case 3:
711 		dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
712 		break;
713 	default:
714 		DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
715 			      psr_table->lines_to_wait);
716 		break;
717 	}
718 
719 	/*
720 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
721 	 * Old decimal value is wake up time in multiples of 100 us.
722 	 */
723 	if (bdb->version >= 205 &&
724 	    (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
725 	     INTEL_GEN(dev_priv) >= 10)) {
726 		switch (psr_table->tp1_wakeup_time) {
727 		case 0:
728 			dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
729 			break;
730 		case 1:
731 			dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
732 			break;
733 		case 3:
734 			dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
735 			break;
736 		default:
737 			DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
738 					psr_table->tp1_wakeup_time);
739 			/* fallthrough */
740 		case 2:
741 			dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
742 			break;
743 		}
744 
745 		switch (psr_table->tp2_tp3_wakeup_time) {
746 		case 0:
747 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
748 			break;
749 		case 1:
750 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
751 			break;
752 		case 3:
753 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
754 			break;
755 		default:
756 			DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
757 					psr_table->tp2_tp3_wakeup_time);
758 			/* fallthrough */
759 		case 2:
760 			dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
761 		break;
762 		}
763 	} else {
764 		dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
765 		dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
766 	}
767 
768 	if (bdb->version >= 226) {
769 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
770 
771 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
772 		switch (wakeup_time) {
773 		case 0:
774 			wakeup_time = 500;
775 			break;
776 		case 1:
777 			wakeup_time = 100;
778 			break;
779 		case 3:
780 			wakeup_time = 50;
781 			break;
782 		default:
783 		case 2:
784 			wakeup_time = 2500;
785 			break;
786 		}
787 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
788 	} else {
789 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
790 		dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
791 	}
792 }
793 
794 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
795 				      u16 version, enum port port)
796 {
797 	if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
798 		dev_priv->vbt.dsi.bl_ports = BIT(port);
799 		if (dev_priv->vbt.dsi.config->cabc_supported)
800 			dev_priv->vbt.dsi.cabc_ports = BIT(port);
801 
802 		return;
803 	}
804 
805 	switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
806 	case DL_DCS_PORT_A:
807 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
808 		break;
809 	case DL_DCS_PORT_C:
810 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
811 		break;
812 	default:
813 	case DL_DCS_PORT_A_AND_C:
814 		dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
815 		break;
816 	}
817 
818 	if (!dev_priv->vbt.dsi.config->cabc_supported)
819 		return;
820 
821 	switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
822 	case DL_DCS_PORT_A:
823 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
824 		break;
825 	case DL_DCS_PORT_C:
826 		dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
827 		break;
828 	default:
829 	case DL_DCS_PORT_A_AND_C:
830 		dev_priv->vbt.dsi.cabc_ports =
831 					BIT(PORT_A) | BIT(PORT_C);
832 		break;
833 	}
834 }
835 
836 static void
837 parse_mipi_config(struct drm_i915_private *dev_priv,
838 		  const struct bdb_header *bdb)
839 {
840 	const struct bdb_mipi_config *start;
841 	const struct mipi_config *config;
842 	const struct mipi_pps_data *pps;
843 	int panel_type = dev_priv->vbt.panel_type;
844 	enum port port;
845 
846 	/* parse MIPI blocks only if LFP type is MIPI */
847 	if (!intel_bios_is_dsi_present(dev_priv, &port))
848 		return;
849 
850 	/* Initialize this to undefined indicating no generic MIPI support */
851 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
852 
853 	/* Block #40 is already parsed and panel_fixed_mode is
854 	 * stored in dev_priv->lfp_lvds_vbt_mode
855 	 * resuse this when needed
856 	 */
857 
858 	/* Parse #52 for panel index used from panel_type already
859 	 * parsed
860 	 */
861 	start = find_section(bdb, BDB_MIPI_CONFIG);
862 	if (!start) {
863 		DRM_DEBUG_KMS("No MIPI config BDB found");
864 		return;
865 	}
866 
867 	DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
868 								panel_type);
869 
870 	/*
871 	 * get hold of the correct configuration block and pps data as per
872 	 * the panel_type as index
873 	 */
874 	config = &start->config[panel_type];
875 	pps = &start->pps[panel_type];
876 
877 	/* store as of now full data. Trim when we realise all is not needed */
878 	dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
879 	if (!dev_priv->vbt.dsi.config)
880 		return;
881 
882 	dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
883 	if (!dev_priv->vbt.dsi.pps) {
884 		kfree(dev_priv->vbt.dsi.config);
885 		return;
886 	}
887 
888 	parse_dsi_backlight_ports(dev_priv, bdb->version, port);
889 
890 	/* FIXME is the 90 vs. 270 correct? */
891 	switch (config->rotation) {
892 	case ENABLE_ROTATION_0:
893 		/*
894 		 * Most (all?) VBTs claim 0 degrees despite having
895 		 * an upside down panel, thus we do not trust this.
896 		 */
897 		dev_priv->vbt.dsi.orientation =
898 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
899 		break;
900 	case ENABLE_ROTATION_90:
901 		dev_priv->vbt.dsi.orientation =
902 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
903 		break;
904 	case ENABLE_ROTATION_180:
905 		dev_priv->vbt.dsi.orientation =
906 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
907 		break;
908 	case ENABLE_ROTATION_270:
909 		dev_priv->vbt.dsi.orientation =
910 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
911 		break;
912 	}
913 
914 	/* We have mandatory mipi config blocks. Initialize as generic panel */
915 	dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
916 }
917 
918 /* Find the sequence block and size for the given panel. */
919 static const u8 *
920 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
921 			  u16 panel_id, u32 *seq_size)
922 {
923 	u32 total = get_blocksize(sequence);
924 	const u8 *data = &sequence->data[0];
925 	u8 current_id;
926 	u32 current_size;
927 	int header_size = sequence->version >= 3 ? 5 : 3;
928 	int index = 0;
929 	int i;
930 
931 	/* skip new block size */
932 	if (sequence->version >= 3)
933 		data += 4;
934 
935 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
936 		if (index + header_size > total) {
937 			DRM_ERROR("Invalid sequence block (header)\n");
938 			return NULL;
939 		}
940 
941 		current_id = *(data + index);
942 		if (sequence->version >= 3)
943 			current_size = *((const u32 *)(data + index + 1));
944 		else
945 			current_size = *((const u16 *)(data + index + 1));
946 
947 		index += header_size;
948 
949 		if (index + current_size > total) {
950 			DRM_ERROR("Invalid sequence block\n");
951 			return NULL;
952 		}
953 
954 		if (current_id == panel_id) {
955 			*seq_size = current_size;
956 			return data + index;
957 		}
958 
959 		index += current_size;
960 	}
961 
962 	DRM_ERROR("Sequence block detected but no valid configuration\n");
963 
964 	return NULL;
965 }
966 
967 static int goto_next_sequence(const u8 *data, int index, int total)
968 {
969 	u16 len;
970 
971 	/* Skip Sequence Byte. */
972 	for (index = index + 1; index < total; index += len) {
973 		u8 operation_byte = *(data + index);
974 		index++;
975 
976 		switch (operation_byte) {
977 		case MIPI_SEQ_ELEM_END:
978 			return index;
979 		case MIPI_SEQ_ELEM_SEND_PKT:
980 			if (index + 4 > total)
981 				return 0;
982 
983 			len = *((const u16 *)(data + index + 2)) + 4;
984 			break;
985 		case MIPI_SEQ_ELEM_DELAY:
986 			len = 4;
987 			break;
988 		case MIPI_SEQ_ELEM_GPIO:
989 			len = 2;
990 			break;
991 		case MIPI_SEQ_ELEM_I2C:
992 			if (index + 7 > total)
993 				return 0;
994 			len = *(data + index + 6) + 7;
995 			break;
996 		default:
997 			DRM_ERROR("Unknown operation byte\n");
998 			return 0;
999 		}
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1006 {
1007 	int seq_end;
1008 	u16 len;
1009 	u32 size_of_sequence;
1010 
1011 	/*
1012 	 * Could skip sequence based on Size of Sequence alone, but also do some
1013 	 * checking on the structure.
1014 	 */
1015 	if (total < 5) {
1016 		DRM_ERROR("Too small sequence size\n");
1017 		return 0;
1018 	}
1019 
1020 	/* Skip Sequence Byte. */
1021 	index++;
1022 
1023 	/*
1024 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1025 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1026 	 * byte.
1027 	 */
1028 	size_of_sequence = *((const u32 *)(data + index));
1029 	index += 4;
1030 
1031 	seq_end = index + size_of_sequence;
1032 	if (seq_end > total) {
1033 		DRM_ERROR("Invalid sequence size\n");
1034 		return 0;
1035 	}
1036 
1037 	for (; index < total; index += len) {
1038 		u8 operation_byte = *(data + index);
1039 		index++;
1040 
1041 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1042 			if (index != seq_end) {
1043 				DRM_ERROR("Invalid element structure\n");
1044 				return 0;
1045 			}
1046 			return index;
1047 		}
1048 
1049 		len = *(data + index);
1050 		index++;
1051 
1052 		/*
1053 		 * FIXME: Would be nice to check elements like for v1/v2 in
1054 		 * goto_next_sequence() above.
1055 		 */
1056 		switch (operation_byte) {
1057 		case MIPI_SEQ_ELEM_SEND_PKT:
1058 		case MIPI_SEQ_ELEM_DELAY:
1059 		case MIPI_SEQ_ELEM_GPIO:
1060 		case MIPI_SEQ_ELEM_I2C:
1061 		case MIPI_SEQ_ELEM_SPI:
1062 		case MIPI_SEQ_ELEM_PMIC:
1063 			break;
1064 		default:
1065 			DRM_ERROR("Unknown operation byte %u\n",
1066 				  operation_byte);
1067 			break;
1068 		}
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1076  * skip all delay + gpio operands and stop at the first DSI packet op.
1077  */
1078 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1079 {
1080 	const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1081 	int index, len;
1082 
1083 	if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
1084 		return 0;
1085 
1086 	/* index = 1 to skip sequence byte */
1087 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1088 		switch (data[index]) {
1089 		case MIPI_SEQ_ELEM_SEND_PKT:
1090 			return index == 1 ? 0 : index;
1091 		case MIPI_SEQ_ELEM_DELAY:
1092 			len = 5; /* 1 byte for operand + uint32 */
1093 			break;
1094 		case MIPI_SEQ_ELEM_GPIO:
1095 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1096 			break;
1097 		default:
1098 			return 0;
1099 		}
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1107  * The deassert must be done before calling intel_dsi_device_ready, so for
1108  * these devices we split the init OTP sequence into a deassert sequence and
1109  * the actual init OTP part.
1110  */
1111 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1112 {
1113 	u8 *init_otp;
1114 	int len;
1115 
1116 	/* Limit this to VLV for now. */
1117 	if (!IS_VALLEYVIEW(dev_priv))
1118 		return;
1119 
1120 	/* Limit this to v1 vid-mode sequences */
1121 	if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1122 	    dev_priv->vbt.dsi.seq_version != 1)
1123 		return;
1124 
1125 	/* Only do this if there are otp and assert seqs and no deassert seq */
1126 	if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1127 	    !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1128 	    dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1129 		return;
1130 
1131 	/* The deassert-sequence ends at the first DSI packet */
1132 	len = get_init_otp_deassert_fragment_len(dev_priv);
1133 	if (!len)
1134 		return;
1135 
1136 	DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
1137 
1138 	/* Copy the fragment, update seq byte and terminate it */
1139 	init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1140 	dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1141 	if (!dev_priv->vbt.dsi.deassert_seq)
1142 		return;
1143 	dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1144 	dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1145 	/* Use the copy for deassert */
1146 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1147 		dev_priv->vbt.dsi.deassert_seq;
1148 	/* Replace the last byte of the fragment with init OTP seq byte */
1149 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1150 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1151 	dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1152 }
1153 
1154 static void
1155 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1156 		    const struct bdb_header *bdb)
1157 {
1158 	int panel_type = dev_priv->vbt.panel_type;
1159 	const struct bdb_mipi_sequence *sequence;
1160 	const u8 *seq_data;
1161 	u32 seq_size;
1162 	u8 *data;
1163 	int index = 0;
1164 
1165 	/* Only our generic panel driver uses the sequence block. */
1166 	if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1167 		return;
1168 
1169 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1170 	if (!sequence) {
1171 		DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
1172 		return;
1173 	}
1174 
1175 	/* Fail gracefully for forward incompatible sequence block. */
1176 	if (sequence->version >= 4) {
1177 		DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
1178 			  sequence->version);
1179 		return;
1180 	}
1181 
1182 	DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
1183 
1184 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1185 	if (!seq_data)
1186 		return;
1187 
1188 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1189 	if (!data)
1190 		return;
1191 
1192 	/* Parse the sequences, store pointers to each sequence. */
1193 	for (;;) {
1194 		u8 seq_id = *(data + index);
1195 		if (seq_id == MIPI_SEQ_END)
1196 			break;
1197 
1198 		if (seq_id >= MIPI_SEQ_MAX) {
1199 			DRM_ERROR("Unknown sequence %u\n", seq_id);
1200 			goto err;
1201 		}
1202 
1203 		/* Log about presence of sequences we won't run. */
1204 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1205 			DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
1206 
1207 		dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1208 
1209 		if (sequence->version >= 3)
1210 			index = goto_next_sequence_v3(data, index, seq_size);
1211 		else
1212 			index = goto_next_sequence(data, index, seq_size);
1213 		if (!index) {
1214 			DRM_ERROR("Invalid sequence %u\n", seq_id);
1215 			goto err;
1216 		}
1217 	}
1218 
1219 	dev_priv->vbt.dsi.data = data;
1220 	dev_priv->vbt.dsi.size = seq_size;
1221 	dev_priv->vbt.dsi.seq_version = sequence->version;
1222 
1223 	fixup_mipi_sequences(dev_priv);
1224 
1225 	DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
1226 	return;
1227 
1228 err:
1229 	kfree(data);
1230 	memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1231 }
1232 
1233 static u8 translate_iboost(u8 val)
1234 {
1235 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1236 
1237 	if (val >= ARRAY_SIZE(mapping)) {
1238 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1239 		return 0;
1240 	}
1241 	return mapping[val];
1242 }
1243 
1244 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1245 {
1246 	const struct ddi_vbt_port_info *info;
1247 	enum port port;
1248 
1249 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1250 		info = &i915->vbt.ddi_port_info[port];
1251 
1252 		if (info->child && ddc_pin == info->alternate_ddc_pin)
1253 			return port;
1254 	}
1255 
1256 	return PORT_NONE;
1257 }
1258 
1259 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1260 			     enum port port)
1261 {
1262 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1263 	enum port p;
1264 
1265 	if (!info->alternate_ddc_pin)
1266 		return;
1267 
1268 	p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin);
1269 	if (p != PORT_NONE) {
1270 		DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
1271 			      "disabling port %c DVI/HDMI support\n",
1272 			      port_name(port), info->alternate_ddc_pin,
1273 			      port_name(p), port_name(p));
1274 
1275 		/*
1276 		 * If we have multiple ports supposedly sharing the
1277 		 * pin, then dvi/hdmi couldn't exist on the shared
1278 		 * port. Otherwise they share the same ddc bin and
1279 		 * system couldn't communicate with them separately.
1280 		 *
1281 		 * Give inverse child device order the priority,
1282 		 * last one wins. Yes, there are real machines
1283 		 * (eg. Asrock B250M-HDV) where VBT has both
1284 		 * port A and port E with the same AUX ch and
1285 		 * we must pick port E :(
1286 		 */
1287 		info = &dev_priv->vbt.ddi_port_info[p];
1288 
1289 		info->supports_dvi = false;
1290 		info->supports_hdmi = false;
1291 		info->alternate_ddc_pin = 0;
1292 	}
1293 }
1294 
1295 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1296 {
1297 	const struct ddi_vbt_port_info *info;
1298 	enum port port;
1299 
1300 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1301 		info = &i915->vbt.ddi_port_info[port];
1302 
1303 		if (info->child && aux_ch == info->alternate_aux_channel)
1304 			return port;
1305 	}
1306 
1307 	return PORT_NONE;
1308 }
1309 
1310 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1311 			    enum port port)
1312 {
1313 	struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1314 	enum port p;
1315 
1316 	if (!info->alternate_aux_channel)
1317 		return;
1318 
1319 	p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel);
1320 	if (p != PORT_NONE) {
1321 		DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
1322 			      "disabling port %c DP support\n",
1323 			      port_name(port), info->alternate_aux_channel,
1324 			      port_name(p), port_name(p));
1325 
1326 		/*
1327 		 * If we have multiple ports supposedlt sharing the
1328 		 * aux channel, then DP couldn't exist on the shared
1329 		 * port. Otherwise they share the same aux channel
1330 		 * and system couldn't communicate with them separately.
1331 		 *
1332 		 * Give inverse child device order the priority,
1333 		 * last one wins. Yes, there are real machines
1334 		 * (eg. Asrock B250M-HDV) where VBT has both
1335 		 * port A and port E with the same AUX ch and
1336 		 * we must pick port E :(
1337 		 */
1338 		info = &dev_priv->vbt.ddi_port_info[p];
1339 
1340 		info->supports_dp = false;
1341 		info->alternate_aux_channel = 0;
1342 	}
1343 }
1344 
1345 static const u8 cnp_ddc_pin_map[] = {
1346 	[0] = 0, /* N/A */
1347 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1348 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1349 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1350 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1351 };
1352 
1353 static const u8 icp_ddc_pin_map[] = {
1354 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1355 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1356 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1357 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1358 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1359 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1360 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1361 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1362 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1363 };
1364 
1365 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1366 {
1367 	const u8 *ddc_pin_map;
1368 	int n_entries;
1369 
1370 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
1371 		ddc_pin_map = icp_ddc_pin_map;
1372 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1373 	} else if (HAS_PCH_CNP(dev_priv)) {
1374 		ddc_pin_map = cnp_ddc_pin_map;
1375 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1376 	} else {
1377 		/* Assuming direct map */
1378 		return vbt_pin;
1379 	}
1380 
1381 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1382 		return ddc_pin_map[vbt_pin];
1383 
1384 	DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1385 		      vbt_pin);
1386 	return 0;
1387 }
1388 
1389 static enum port dvo_port_to_port(u8 dvo_port)
1390 {
1391 	/*
1392 	 * Each DDI port can have more than one value on the "DVO Port" field,
1393 	 * so look for all the possible values for each port.
1394 	 */
1395 	static const int dvo_ports[][3] = {
1396 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1397 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1398 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1399 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1400 		[PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1401 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1402 	};
1403 	enum port port;
1404 	int i;
1405 
1406 	for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1407 		for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1408 			if (dvo_ports[port][i] == -1)
1409 				break;
1410 
1411 			if (dvo_port == dvo_ports[port][i])
1412 				return port;
1413 		}
1414 	}
1415 
1416 	return PORT_NONE;
1417 }
1418 
1419 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1420 			   const struct child_device_config *child,
1421 			   u8 bdb_version)
1422 {
1423 	struct ddi_vbt_port_info *info;
1424 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1425 	enum port port;
1426 
1427 	port = dvo_port_to_port(child->dvo_port);
1428 	if (port == PORT_NONE)
1429 		return;
1430 
1431 	info = &dev_priv->vbt.ddi_port_info[port];
1432 
1433 	if (info->child) {
1434 		DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
1435 			      port_name(port));
1436 		return;
1437 	}
1438 
1439 	is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1440 	is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1441 	is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1442 	is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1443 	is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1444 
1445 	if (port == PORT_A && is_dvi) {
1446 		DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
1447 			      is_hdmi ? "/HDMI" : "");
1448 		is_dvi = false;
1449 		is_hdmi = false;
1450 	}
1451 
1452 	info->supports_dvi = is_dvi;
1453 	info->supports_hdmi = is_hdmi;
1454 	info->supports_dp = is_dp;
1455 	info->supports_edp = is_edp;
1456 
1457 	if (bdb_version >= 195)
1458 		info->supports_typec_usb = child->dp_usb_type_c;
1459 
1460 	if (bdb_version >= 209)
1461 		info->supports_tbt = child->tbt;
1462 
1463 	DRM_DEBUG_KMS("Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d\n",
1464 		      port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1465 		      HAS_LSPCON(dev_priv) && child->lspcon,
1466 		      info->supports_typec_usb, info->supports_tbt);
1467 
1468 	if (is_edp && is_dvi)
1469 		DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
1470 			      port_name(port));
1471 	if (is_crt && port != PORT_E)
1472 		DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
1473 	if (is_crt && (is_dvi || is_dp))
1474 		DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
1475 			      port_name(port));
1476 	if (is_dvi && (port == PORT_A || port == PORT_E))
1477 		DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
1478 	if (!is_dvi && !is_dp && !is_crt)
1479 		DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
1480 			      port_name(port));
1481 	if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
1482 		DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
1483 
1484 	if (is_dvi) {
1485 		u8 ddc_pin;
1486 
1487 		ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1488 		if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1489 			info->alternate_ddc_pin = ddc_pin;
1490 			sanitize_ddc_pin(dev_priv, port);
1491 		} else {
1492 			DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
1493 				      "sticking to defaults\n",
1494 				      port_name(port), ddc_pin);
1495 		}
1496 	}
1497 
1498 	if (is_dp) {
1499 		info->alternate_aux_channel = child->aux_channel;
1500 
1501 		sanitize_aux_ch(dev_priv, port);
1502 	}
1503 
1504 	if (bdb_version >= 158) {
1505 		/* The VBT HDMI level shift values match the table we have. */
1506 		u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1507 		DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1508 			      port_name(port),
1509 			      hdmi_level_shift);
1510 		info->hdmi_level_shift = hdmi_level_shift;
1511 	}
1512 
1513 	if (bdb_version >= 204) {
1514 		int max_tmds_clock;
1515 
1516 		switch (child->hdmi_max_data_rate) {
1517 		default:
1518 			MISSING_CASE(child->hdmi_max_data_rate);
1519 			/* fall through */
1520 		case HDMI_MAX_DATA_RATE_PLATFORM:
1521 			max_tmds_clock = 0;
1522 			break;
1523 		case HDMI_MAX_DATA_RATE_297:
1524 			max_tmds_clock = 297000;
1525 			break;
1526 		case HDMI_MAX_DATA_RATE_165:
1527 			max_tmds_clock = 165000;
1528 			break;
1529 		}
1530 
1531 		if (max_tmds_clock)
1532 			DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
1533 				      port_name(port), max_tmds_clock);
1534 		info->max_tmds_clock = max_tmds_clock;
1535 	}
1536 
1537 	/* Parse the I_boost config for SKL and above */
1538 	if (bdb_version >= 196 && child->iboost) {
1539 		info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1540 		DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1541 			      port_name(port), info->dp_boost_level);
1542 		info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1543 		DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1544 			      port_name(port), info->hdmi_boost_level);
1545 	}
1546 
1547 	/* DP max link rate for CNL+ */
1548 	if (bdb_version >= 216) {
1549 		switch (child->dp_max_link_rate) {
1550 		default:
1551 		case VBT_DP_MAX_LINK_RATE_HBR3:
1552 			info->dp_max_link_rate = 810000;
1553 			break;
1554 		case VBT_DP_MAX_LINK_RATE_HBR2:
1555 			info->dp_max_link_rate = 540000;
1556 			break;
1557 		case VBT_DP_MAX_LINK_RATE_HBR:
1558 			info->dp_max_link_rate = 270000;
1559 			break;
1560 		case VBT_DP_MAX_LINK_RATE_LBR:
1561 			info->dp_max_link_rate = 162000;
1562 			break;
1563 		}
1564 		DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
1565 			      port_name(port), info->dp_max_link_rate);
1566 	}
1567 
1568 	info->child = child;
1569 }
1570 
1571 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1572 {
1573 	const struct child_device_config *child;
1574 	int i;
1575 
1576 	if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1577 		return;
1578 
1579 	if (bdb_version < 155)
1580 		return;
1581 
1582 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1583 		child = dev_priv->vbt.child_dev + i;
1584 
1585 		parse_ddi_port(dev_priv, child, bdb_version);
1586 	}
1587 }
1588 
1589 static void
1590 parse_general_definitions(struct drm_i915_private *dev_priv,
1591 			  const struct bdb_header *bdb)
1592 {
1593 	const struct bdb_general_definitions *defs;
1594 	const struct child_device_config *child;
1595 	int i, child_device_num, count;
1596 	u8 expected_size;
1597 	u16 block_size;
1598 	int bus_pin;
1599 
1600 	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1601 	if (!defs) {
1602 		DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1603 		return;
1604 	}
1605 
1606 	block_size = get_blocksize(defs);
1607 	if (block_size < sizeof(*defs)) {
1608 		DRM_DEBUG_KMS("General definitions block too small (%u)\n",
1609 			      block_size);
1610 		return;
1611 	}
1612 
1613 	bus_pin = defs->crt_ddc_gmbus_pin;
1614 	DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
1615 	if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1616 		dev_priv->vbt.crt_ddc_pin = bus_pin;
1617 
1618 	if (bdb->version < 106) {
1619 		expected_size = 22;
1620 	} else if (bdb->version < 111) {
1621 		expected_size = 27;
1622 	} else if (bdb->version < 195) {
1623 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1624 	} else if (bdb->version == 195) {
1625 		expected_size = 37;
1626 	} else if (bdb->version <= 215) {
1627 		expected_size = 38;
1628 	} else if (bdb->version <= 216) {
1629 		expected_size = 39;
1630 	} else {
1631 		expected_size = sizeof(*child);
1632 		BUILD_BUG_ON(sizeof(*child) < 39);
1633 		DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1634 				 bdb->version, expected_size);
1635 	}
1636 
1637 	/* Flag an error for unexpected size, but continue anyway. */
1638 	if (defs->child_dev_size != expected_size)
1639 		DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1640 			  defs->child_dev_size, expected_size, bdb->version);
1641 
1642 	/* The legacy sized child device config is the minimum we need. */
1643 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1644 		DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1645 			      defs->child_dev_size);
1646 		return;
1647 	}
1648 
1649 	/* get the number of child device */
1650 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1651 	count = 0;
1652 	/* get the number of child device that is present */
1653 	for (i = 0; i < child_device_num; i++) {
1654 		child = child_device_ptr(defs, i);
1655 		if (!child->device_type)
1656 			continue;
1657 		count++;
1658 	}
1659 	if (!count) {
1660 		DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1661 		return;
1662 	}
1663 	dev_priv->vbt.child_dev = kcalloc(count, sizeof(*child), GFP_KERNEL);
1664 	if (!dev_priv->vbt.child_dev) {
1665 		DRM_DEBUG_KMS("No memory space for child device\n");
1666 		return;
1667 	}
1668 
1669 	dev_priv->vbt.child_dev_num = count;
1670 	count = 0;
1671 	for (i = 0; i < child_device_num; i++) {
1672 		child = child_device_ptr(defs, i);
1673 		if (!child->device_type)
1674 			continue;
1675 
1676 		DRM_DEBUG_KMS("Found VBT child device with type 0x%x\n",
1677 			      child->device_type);
1678 
1679 		/*
1680 		 * Copy as much as we know (sizeof) and is available
1681 		 * (child_dev_size) of the child device. Accessing the data must
1682 		 * depend on VBT version.
1683 		 */
1684 		memcpy(dev_priv->vbt.child_dev + count, child,
1685 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
1686 		count++;
1687 	}
1688 }
1689 
1690 /* Common defaults which may be overridden by VBT. */
1691 static void
1692 init_vbt_defaults(struct drm_i915_private *dev_priv)
1693 {
1694 	enum port port;
1695 
1696 	dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1697 
1698 	/* Default to having backlight */
1699 	dev_priv->vbt.backlight.present = true;
1700 
1701 	/* LFP panel data */
1702 	dev_priv->vbt.lvds_dither = 1;
1703 
1704 	/* SDVO panel data */
1705 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1706 
1707 	/* general features */
1708 	dev_priv->vbt.int_tv_support = 1;
1709 	dev_priv->vbt.int_crt_support = 1;
1710 
1711 	/* driver features */
1712 	dev_priv->vbt.int_lvds_support = 1;
1713 
1714 	/* Default to using SSC */
1715 	dev_priv->vbt.lvds_use_ssc = 1;
1716 	/*
1717 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1718 	 * clock for LVDS.
1719 	 */
1720 	dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1721 			!HAS_PCH_SPLIT(dev_priv));
1722 	DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1723 
1724 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1725 		struct ddi_vbt_port_info *info =
1726 			&dev_priv->vbt.ddi_port_info[port];
1727 
1728 		info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
1729 	}
1730 }
1731 
1732 /* Defaults to initialize only if there is no VBT. */
1733 static void
1734 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1735 {
1736 	enum port port;
1737 
1738 	for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1739 		struct ddi_vbt_port_info *info =
1740 			&dev_priv->vbt.ddi_port_info[port];
1741 		enum phy phy = intel_port_to_phy(dev_priv, port);
1742 
1743 		/*
1744 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1745 		 * to detect it.
1746 		 */
1747 		if (intel_phy_is_tc(dev_priv, phy))
1748 			continue;
1749 
1750 		info->supports_dvi = (port != PORT_A && port != PORT_E);
1751 		info->supports_hdmi = info->supports_dvi;
1752 		info->supports_dp = (port != PORT_E);
1753 		info->supports_edp = (port == PORT_A);
1754 	}
1755 }
1756 
1757 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1758 {
1759 	const void *_vbt = vbt;
1760 
1761 	return _vbt + vbt->bdb_offset;
1762 }
1763 
1764 /**
1765  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1766  * @buf:	pointer to a buffer to validate
1767  * @size:	size of the buffer
1768  *
1769  * Returns true on valid VBT.
1770  */
1771 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1772 {
1773 	const struct vbt_header *vbt = buf;
1774 	const struct bdb_header *bdb;
1775 
1776 	if (!vbt)
1777 		return false;
1778 
1779 	if (sizeof(struct vbt_header) > size) {
1780 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
1781 		return false;
1782 	}
1783 
1784 	if (memcmp(vbt->signature, "$VBT", 4)) {
1785 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
1786 		return false;
1787 	}
1788 
1789 	if (range_overflows_t(size_t,
1790 			      vbt->bdb_offset,
1791 			      sizeof(struct bdb_header),
1792 			      size)) {
1793 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
1794 		return false;
1795 	}
1796 
1797 	bdb = get_bdb_header(vbt);
1798 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
1799 		DRM_DEBUG_DRIVER("BDB incomplete\n");
1800 		return false;
1801 	}
1802 
1803 	return vbt;
1804 }
1805 
1806 static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
1807 {
1808 	size_t i;
1809 
1810 	/* Scour memory looking for the VBT signature. */
1811 	for (i = 0; i + 4 < size; i++) {
1812 		void *vbt;
1813 
1814 		if (ioread32(bios + i) != *((const u32 *) "$VBT"))
1815 			continue;
1816 
1817 		/*
1818 		 * This is the one place where we explicitly discard the address
1819 		 * space (__iomem) of the BIOS/VBT.
1820 		 */
1821 		vbt = (void __force *) bios + i;
1822 		if (intel_bios_is_valid_vbt(vbt, size - i))
1823 			return vbt;
1824 
1825 		break;
1826 	}
1827 
1828 	return NULL;
1829 }
1830 
1831 /**
1832  * intel_bios_init - find VBT and initialize settings from the BIOS
1833  * @dev_priv: i915 device instance
1834  *
1835  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
1836  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
1837  * initialize some defaults if the VBT is not present at all.
1838  */
1839 void intel_bios_init(struct drm_i915_private *dev_priv)
1840 {
1841 	struct pci_dev *pdev = dev_priv->drm.pdev;
1842 	const struct vbt_header *vbt = dev_priv->opregion.vbt;
1843 	const struct bdb_header *bdb;
1844 	u8 __iomem *bios = NULL;
1845 
1846 	if (!HAS_DISPLAY(dev_priv)) {
1847 		DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
1848 		return;
1849 	}
1850 
1851 	init_vbt_defaults(dev_priv);
1852 
1853 	/* If the OpRegion does not have VBT, look in PCI ROM. */
1854 	if (!vbt) {
1855 		size_t size;
1856 
1857 		bios = pci_map_rom(pdev, &size);
1858 		if (!bios)
1859 			goto out;
1860 
1861 		vbt = find_vbt(bios, size);
1862 		if (!vbt)
1863 			goto out;
1864 
1865 		DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
1866 	}
1867 
1868 	bdb = get_bdb_header(vbt);
1869 
1870 	DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
1871 		      (int)sizeof(vbt->signature), vbt->signature, bdb->version);
1872 
1873 	/* Grab useful general definitions */
1874 	parse_general_features(dev_priv, bdb);
1875 	parse_general_definitions(dev_priv, bdb);
1876 	parse_lfp_panel_data(dev_priv, bdb);
1877 	parse_lfp_backlight(dev_priv, bdb);
1878 	parse_sdvo_panel_data(dev_priv, bdb);
1879 	parse_driver_features(dev_priv, bdb);
1880 	parse_edp(dev_priv, bdb);
1881 	parse_psr(dev_priv, bdb);
1882 	parse_mipi_config(dev_priv, bdb);
1883 	parse_mipi_sequence(dev_priv, bdb);
1884 
1885 	/* Further processing on pre-parsed data */
1886 	parse_sdvo_device_mapping(dev_priv, bdb->version);
1887 	parse_ddi_ports(dev_priv, bdb->version);
1888 
1889 out:
1890 	if (!vbt) {
1891 		DRM_INFO("Failed to find VBIOS tables (VBT)\n");
1892 		init_vbt_missing_defaults(dev_priv);
1893 	}
1894 
1895 	if (bios)
1896 		pci_unmap_rom(pdev, bios);
1897 }
1898 
1899 /**
1900  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
1901  * @dev_priv: i915 device instance
1902  */
1903 void intel_bios_driver_remove(struct drm_i915_private *dev_priv)
1904 {
1905 	kfree(dev_priv->vbt.child_dev);
1906 	dev_priv->vbt.child_dev = NULL;
1907 	dev_priv->vbt.child_dev_num = 0;
1908 	kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1909 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1910 	kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1911 	dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1912 	kfree(dev_priv->vbt.dsi.data);
1913 	dev_priv->vbt.dsi.data = NULL;
1914 	kfree(dev_priv->vbt.dsi.pps);
1915 	dev_priv->vbt.dsi.pps = NULL;
1916 	kfree(dev_priv->vbt.dsi.config);
1917 	dev_priv->vbt.dsi.config = NULL;
1918 	kfree(dev_priv->vbt.dsi.deassert_seq);
1919 	dev_priv->vbt.dsi.deassert_seq = NULL;
1920 }
1921 
1922 /**
1923  * intel_bios_is_tv_present - is integrated TV present in VBT
1924  * @dev_priv:	i915 device instance
1925  *
1926  * Return true if TV is present. If no child devices were parsed from VBT,
1927  * assume TV is present.
1928  */
1929 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
1930 {
1931 	const struct child_device_config *child;
1932 	int i;
1933 
1934 	if (!dev_priv->vbt.int_tv_support)
1935 		return false;
1936 
1937 	if (!dev_priv->vbt.child_dev_num)
1938 		return true;
1939 
1940 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1941 		child = dev_priv->vbt.child_dev + i;
1942 		/*
1943 		 * If the device type is not TV, continue.
1944 		 */
1945 		switch (child->device_type) {
1946 		case DEVICE_TYPE_INT_TV:
1947 		case DEVICE_TYPE_TV:
1948 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
1949 			break;
1950 		default:
1951 			continue;
1952 		}
1953 		/* Only when the addin_offset is non-zero, it is regarded
1954 		 * as present.
1955 		 */
1956 		if (child->addin_offset)
1957 			return true;
1958 	}
1959 
1960 	return false;
1961 }
1962 
1963 /**
1964  * intel_bios_is_lvds_present - is LVDS present in VBT
1965  * @dev_priv:	i915 device instance
1966  * @i2c_pin:	i2c pin for LVDS if present
1967  *
1968  * Return true if LVDS is present. If no child devices were parsed from VBT,
1969  * assume LVDS is present.
1970  */
1971 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
1972 {
1973 	const struct child_device_config *child;
1974 	int i;
1975 
1976 	if (!dev_priv->vbt.child_dev_num)
1977 		return true;
1978 
1979 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1980 		child = dev_priv->vbt.child_dev + i;
1981 
1982 		/* If the device type is not LFP, continue.
1983 		 * We have to check both the new identifiers as well as the
1984 		 * old for compatibility with some BIOSes.
1985 		 */
1986 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
1987 		    child->device_type != DEVICE_TYPE_LFP)
1988 			continue;
1989 
1990 		if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
1991 			*i2c_pin = child->i2c_pin;
1992 
1993 		/* However, we cannot trust the BIOS writers to populate
1994 		 * the VBT correctly.  Since LVDS requires additional
1995 		 * information from AIM blocks, a non-zero addin offset is
1996 		 * a good indicator that the LVDS is actually present.
1997 		 */
1998 		if (child->addin_offset)
1999 			return true;
2000 
2001 		/* But even then some BIOS writers perform some black magic
2002 		 * and instantiate the device without reference to any
2003 		 * additional data.  Trust that if the VBT was written into
2004 		 * the OpRegion then they have validated the LVDS's existence.
2005 		 */
2006 		if (dev_priv->opregion.vbt)
2007 			return true;
2008 	}
2009 
2010 	return false;
2011 }
2012 
2013 /**
2014  * intel_bios_is_port_present - is the specified digital port present
2015  * @dev_priv:	i915 device instance
2016  * @port:	port to check
2017  *
2018  * Return true if the device in %port is present.
2019  */
2020 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
2021 {
2022 	const struct child_device_config *child;
2023 	static const struct {
2024 		u16 dp, hdmi;
2025 	} port_mapping[] = {
2026 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2027 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2028 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2029 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2030 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2031 	};
2032 	int i;
2033 
2034 	if (HAS_DDI(dev_priv)) {
2035 		const struct ddi_vbt_port_info *port_info =
2036 			&dev_priv->vbt.ddi_port_info[port];
2037 
2038 		return port_info->supports_dp ||
2039 		       port_info->supports_dvi ||
2040 		       port_info->supports_hdmi;
2041 	}
2042 
2043 	/* FIXME maybe deal with port A as well? */
2044 	if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2045 		return false;
2046 
2047 	if (!dev_priv->vbt.child_dev_num)
2048 		return false;
2049 
2050 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2051 		child = dev_priv->vbt.child_dev + i;
2052 
2053 		if ((child->dvo_port == port_mapping[port].dp ||
2054 		     child->dvo_port == port_mapping[port].hdmi) &&
2055 		    (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2056 					   DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2057 			return true;
2058 	}
2059 
2060 	return false;
2061 }
2062 
2063 /**
2064  * intel_bios_is_port_edp - is the device in given port eDP
2065  * @dev_priv:	i915 device instance
2066  * @port:	port to check
2067  *
2068  * Return true if the device in %port is eDP.
2069  */
2070 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2071 {
2072 	const struct child_device_config *child;
2073 	static const short port_mapping[] = {
2074 		[PORT_B] = DVO_PORT_DPB,
2075 		[PORT_C] = DVO_PORT_DPC,
2076 		[PORT_D] = DVO_PORT_DPD,
2077 		[PORT_E] = DVO_PORT_DPE,
2078 		[PORT_F] = DVO_PORT_DPF,
2079 	};
2080 	int i;
2081 
2082 	if (HAS_DDI(dev_priv))
2083 		return dev_priv->vbt.ddi_port_info[port].supports_edp;
2084 
2085 	if (!dev_priv->vbt.child_dev_num)
2086 		return false;
2087 
2088 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2089 		child = dev_priv->vbt.child_dev + i;
2090 
2091 		if (child->dvo_port == port_mapping[port] &&
2092 		    (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2093 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2094 			return true;
2095 	}
2096 
2097 	return false;
2098 }
2099 
2100 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2101 				      enum port port)
2102 {
2103 	static const struct {
2104 		u16 dp, hdmi;
2105 	} port_mapping[] = {
2106 		/*
2107 		 * Buggy VBTs may declare DP ports as having
2108 		 * HDMI type dvo_port :( So let's check both.
2109 		 */
2110 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2111 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2112 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2113 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2114 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2115 	};
2116 
2117 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2118 		return false;
2119 
2120 	if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2121 	    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2122 		return false;
2123 
2124 	if (child->dvo_port == port_mapping[port].dp)
2125 		return true;
2126 
2127 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2128 	if (child->dvo_port == port_mapping[port].hdmi &&
2129 	    child->aux_channel != 0)
2130 		return true;
2131 
2132 	return false;
2133 }
2134 
2135 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2136 				     enum port port)
2137 {
2138 	const struct child_device_config *child;
2139 	int i;
2140 
2141 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2142 		child = dev_priv->vbt.child_dev + i;
2143 
2144 		if (child_dev_is_dp_dual_mode(child, port))
2145 			return true;
2146 	}
2147 
2148 	return false;
2149 }
2150 
2151 /**
2152  * intel_bios_is_dsi_present - is DSI present in VBT
2153  * @dev_priv:	i915 device instance
2154  * @port:	port for DSI if present
2155  *
2156  * Return true if DSI is present, and return the port in %port.
2157  */
2158 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2159 			       enum port *port)
2160 {
2161 	const struct child_device_config *child;
2162 	u8 dvo_port;
2163 	int i;
2164 
2165 	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2166 		child = dev_priv->vbt.child_dev + i;
2167 
2168 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2169 			continue;
2170 
2171 		dvo_port = child->dvo_port;
2172 
2173 		if (dvo_port == DVO_PORT_MIPIA ||
2174 		    (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2175 		    (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2176 			if (port)
2177 				*port = dvo_port - DVO_PORT_MIPIA;
2178 			return true;
2179 		} else if (dvo_port == DVO_PORT_MIPIB ||
2180 			   dvo_port == DVO_PORT_MIPIC ||
2181 			   dvo_port == DVO_PORT_MIPID) {
2182 			DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
2183 				      port_name(dvo_port - DVO_PORT_MIPIA));
2184 		}
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 /**
2191  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2192  * @i915:	i915 device instance
2193  * @port:	port to check
2194  *
2195  * Return true if HPD should be inverted for %port.
2196  */
2197 bool
2198 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2199 				enum port port)
2200 {
2201 	const struct child_device_config *child =
2202 		i915->vbt.ddi_port_info[port].child;
2203 
2204 	if (WARN_ON_ONCE(!IS_GEN9_LP(i915)))
2205 		return false;
2206 
2207 	return child && child->hpd_invert;
2208 }
2209 
2210 /**
2211  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2212  * @i915:	i915 device instance
2213  * @port:	port to check
2214  *
2215  * Return true if LSPCON is present on this port
2216  */
2217 bool
2218 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2219 			     enum port port)
2220 {
2221 	const struct child_device_config *child =
2222 		i915->vbt.ddi_port_info[port].child;
2223 
2224 	return HAS_LSPCON(i915) && child && child->lspcon;
2225 }
2226 
2227 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2228 				   enum port port)
2229 {
2230 	const struct ddi_vbt_port_info *info =
2231 		&dev_priv->vbt.ddi_port_info[port];
2232 	enum aux_ch aux_ch;
2233 
2234 	if (!info->alternate_aux_channel) {
2235 		aux_ch = (enum aux_ch)port;
2236 
2237 		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
2238 			      aux_ch_name(aux_ch), port_name(port));
2239 		return aux_ch;
2240 	}
2241 
2242 	switch (info->alternate_aux_channel) {
2243 	case DP_AUX_A:
2244 		aux_ch = AUX_CH_A;
2245 		break;
2246 	case DP_AUX_B:
2247 		aux_ch = AUX_CH_B;
2248 		break;
2249 	case DP_AUX_C:
2250 		aux_ch = AUX_CH_C;
2251 		break;
2252 	case DP_AUX_D:
2253 		aux_ch = AUX_CH_D;
2254 		break;
2255 	case DP_AUX_E:
2256 		aux_ch = AUX_CH_E;
2257 		break;
2258 	case DP_AUX_F:
2259 		aux_ch = AUX_CH_F;
2260 		break;
2261 	default:
2262 		MISSING_CASE(info->alternate_aux_channel);
2263 		aux_ch = AUX_CH_A;
2264 		break;
2265 	}
2266 
2267 	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
2268 		      aux_ch_name(aux_ch), port_name(port));
2269 
2270 	return aux_ch;
2271 }
2272