xref: /linux/drivers/gpu/drm/i915/display/intel_psr.c (revision 9a6b55ac)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_display_types.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32 
33 /**
34  * DOC: Panel Self Refresh (PSR/SRD)
35  *
36  * Since Haswell Display controller supports Panel Self-Refresh on display
37  * panels witch have a remote frame buffer (RFB) implemented according to PSR
38  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
39  * when system is idle but display is on as it eliminates display refresh
40  * request to DDR memory completely as long as the frame buffer for that
41  * display is unchanged.
42  *
43  * Panel Self Refresh must be supported by both Hardware (source) and
44  * Panel (sink).
45  *
46  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
47  * to power down the link and memory controller. For DSI panels the same idea
48  * is called "manual mode".
49  *
50  * The implementation uses the hardware-based PSR support which automatically
51  * enters/exits self-refresh mode. The hardware takes care of sending the
52  * required DP aux message and could even retrain the link (that part isn't
53  * enabled yet though). The hardware also keeps track of any frontbuffer
54  * changes to know when to exit self-refresh mode again. Unfortunately that
55  * part doesn't work too well, hence why the i915 PSR support uses the
56  * software frontbuffer tracking to make sure it doesn't miss a screen
57  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
58  * get called by the frontbuffer tracking code. Note that because of locking
59  * issues the self-refresh re-enable code is done from a work queue, which
60  * must be correctly synchronized/cancelled when shutting down the pipe."
61  */
62 
63 static bool psr_global_enabled(u32 debug)
64 {
65 	switch (debug & I915_PSR_DEBUG_MODE_MASK) {
66 	case I915_PSR_DEBUG_DEFAULT:
67 		return i915_modparams.enable_psr;
68 	case I915_PSR_DEBUG_DISABLE:
69 		return false;
70 	default:
71 		return true;
72 	}
73 }
74 
75 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
76 			       const struct intel_crtc_state *crtc_state)
77 {
78 	/* Cannot enable DSC and PSR2 simultaneously */
79 	WARN_ON(crtc_state->dsc.compression_enable &&
80 		crtc_state->has_psr2);
81 
82 	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
83 	case I915_PSR_DEBUG_DISABLE:
84 	case I915_PSR_DEBUG_FORCE_PSR1:
85 		return false;
86 	default:
87 		return crtc_state->has_psr2;
88 	}
89 }
90 
91 static void psr_irq_control(struct drm_i915_private *dev_priv)
92 {
93 	enum transcoder trans_shift;
94 	u32 mask, val;
95 	i915_reg_t imr_reg;
96 
97 	/*
98 	 * gen12+ has registers relative to transcoder and one per transcoder
99 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
100 	 * 0 shift in bit definition
101 	 */
102 	if (INTEL_GEN(dev_priv) >= 12) {
103 		trans_shift = 0;
104 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
105 	} else {
106 		trans_shift = dev_priv->psr.transcoder;
107 		imr_reg = EDP_PSR_IMR;
108 	}
109 
110 	mask = EDP_PSR_ERROR(trans_shift);
111 	if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
112 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
113 			EDP_PSR_PRE_ENTRY(trans_shift);
114 
115 	/* Warning: it is masking/setting reserved bits too */
116 	val = I915_READ(imr_reg);
117 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
118 	val |= ~mask;
119 	I915_WRITE(imr_reg, val);
120 }
121 
122 static void psr_event_print(u32 val, bool psr2_enabled)
123 {
124 	DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
125 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
126 		DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
127 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
128 		DRM_DEBUG_KMS("\tPSR2 disabled\n");
129 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
130 		DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
131 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
132 		DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
133 	if (val & PSR_EVENT_GRAPHICS_RESET)
134 		DRM_DEBUG_KMS("\tGraphics reset\n");
135 	if (val & PSR_EVENT_PCH_INTERRUPT)
136 		DRM_DEBUG_KMS("\tPCH interrupt\n");
137 	if (val & PSR_EVENT_MEMORY_UP)
138 		DRM_DEBUG_KMS("\tMemory up\n");
139 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
140 		DRM_DEBUG_KMS("\tFront buffer modification\n");
141 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
142 		DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
143 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
144 		DRM_DEBUG_KMS("\tPIPE registers updated\n");
145 	if (val & PSR_EVENT_REGISTER_UPDATE)
146 		DRM_DEBUG_KMS("\tRegister updated\n");
147 	if (val & PSR_EVENT_HDCP_ENABLE)
148 		DRM_DEBUG_KMS("\tHDCP enabled\n");
149 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
150 		DRM_DEBUG_KMS("\tKVMR session enabled\n");
151 	if (val & PSR_EVENT_VBI_ENABLE)
152 		DRM_DEBUG_KMS("\tVBI enabled\n");
153 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
154 		DRM_DEBUG_KMS("\tLPSP mode exited\n");
155 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
156 		DRM_DEBUG_KMS("\tPSR disabled\n");
157 }
158 
159 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
160 {
161 	enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
162 	enum transcoder trans_shift;
163 	i915_reg_t imr_reg;
164 	ktime_t time_ns =  ktime_get();
165 
166 	if (INTEL_GEN(dev_priv) >= 12) {
167 		trans_shift = 0;
168 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
169 	} else {
170 		trans_shift = dev_priv->psr.transcoder;
171 		imr_reg = EDP_PSR_IMR;
172 	}
173 
174 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
175 		dev_priv->psr.last_entry_attempt = time_ns;
176 		DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
177 			      transcoder_name(cpu_transcoder));
178 	}
179 
180 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
181 		dev_priv->psr.last_exit = time_ns;
182 		DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
183 			      transcoder_name(cpu_transcoder));
184 
185 		if (INTEL_GEN(dev_priv) >= 9) {
186 			u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
187 			bool psr2_enabled = dev_priv->psr.psr2_enabled;
188 
189 			I915_WRITE(PSR_EVENT(cpu_transcoder), val);
190 			psr_event_print(val, psr2_enabled);
191 		}
192 	}
193 
194 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
195 		u32 val;
196 
197 		DRM_WARN("[transcoder %s] PSR aux error\n",
198 			 transcoder_name(cpu_transcoder));
199 
200 		dev_priv->psr.irq_aux_error = true;
201 
202 		/*
203 		 * If this interruption is not masked it will keep
204 		 * interrupting so fast that it prevents the scheduled
205 		 * work to run.
206 		 * Also after a PSR error, we don't want to arm PSR
207 		 * again so we don't care about unmask the interruption
208 		 * or unset irq_aux_error.
209 		 */
210 		val = I915_READ(imr_reg);
211 		val |= EDP_PSR_ERROR(trans_shift);
212 		I915_WRITE(imr_reg, val);
213 
214 		schedule_work(&dev_priv->psr.work);
215 	}
216 }
217 
218 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
219 {
220 	u8 alpm_caps = 0;
221 
222 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
223 			      &alpm_caps) != 1)
224 		return false;
225 	return alpm_caps & DP_ALPM_CAP;
226 }
227 
228 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
229 {
230 	u8 val = 8; /* assume the worst if we can't read the value */
231 
232 	if (drm_dp_dpcd_readb(&intel_dp->aux,
233 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
234 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
235 	else
236 		DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
237 	return val;
238 }
239 
240 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
241 {
242 	u16 val;
243 	ssize_t r;
244 
245 	/*
246 	 * Returning the default X granularity if granularity not required or
247 	 * if DPCD read fails
248 	 */
249 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
250 		return 4;
251 
252 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
253 	if (r != 2)
254 		DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
255 
256 	/*
257 	 * Spec says that if the value read is 0 the default granularity should
258 	 * be used instead.
259 	 */
260 	if (r != 2 || val == 0)
261 		val = 4;
262 
263 	return val;
264 }
265 
266 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
267 {
268 	struct drm_i915_private *dev_priv =
269 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
270 
271 	if (dev_priv->psr.dp) {
272 		DRM_WARN("More than one eDP panel found, PSR support should be extended\n");
273 		return;
274 	}
275 
276 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
277 			 sizeof(intel_dp->psr_dpcd));
278 
279 	if (!intel_dp->psr_dpcd[0])
280 		return;
281 	DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
282 		      intel_dp->psr_dpcd[0]);
283 
284 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
285 		DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
286 		return;
287 	}
288 
289 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
290 		DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
291 		return;
292 	}
293 
294 	dev_priv->psr.sink_support = true;
295 	dev_priv->psr.sink_sync_latency =
296 		intel_dp_get_sink_sync_latency(intel_dp);
297 
298 	dev_priv->psr.dp = intel_dp;
299 
300 	if (INTEL_GEN(dev_priv) >= 9 &&
301 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
302 		bool y_req = intel_dp->psr_dpcd[1] &
303 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
304 		bool alpm = intel_dp_get_alpm_status(intel_dp);
305 
306 		/*
307 		 * All panels that supports PSR version 03h (PSR2 +
308 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
309 		 * only sure that it is going to be used when required by the
310 		 * panel. This way panel is capable to do selective update
311 		 * without a aux frame sync.
312 		 *
313 		 * To support PSR version 02h and PSR version 03h without
314 		 * Y-coordinate requirement panels we would need to enable
315 		 * GTC first.
316 		 */
317 		dev_priv->psr.sink_psr2_support = y_req && alpm;
318 		DRM_DEBUG_KMS("PSR2 %ssupported\n",
319 			      dev_priv->psr.sink_psr2_support ? "" : "not ");
320 
321 		if (dev_priv->psr.sink_psr2_support) {
322 			dev_priv->psr.colorimetry_support =
323 				intel_dp_get_colorimetry_status(intel_dp);
324 			dev_priv->psr.su_x_granularity =
325 				intel_dp_get_su_x_granulartiy(intel_dp);
326 		}
327 	}
328 }
329 
330 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
331 				const struct intel_crtc_state *crtc_state)
332 {
333 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
335 	struct dp_sdp psr_vsc;
336 
337 	if (dev_priv->psr.psr2_enabled) {
338 		/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
339 		memset(&psr_vsc, 0, sizeof(psr_vsc));
340 		psr_vsc.sdp_header.HB0 = 0;
341 		psr_vsc.sdp_header.HB1 = 0x7;
342 		if (dev_priv->psr.colorimetry_support) {
343 			psr_vsc.sdp_header.HB2 = 0x5;
344 			psr_vsc.sdp_header.HB3 = 0x13;
345 		} else {
346 			psr_vsc.sdp_header.HB2 = 0x4;
347 			psr_vsc.sdp_header.HB3 = 0xe;
348 		}
349 	} else {
350 		/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
351 		memset(&psr_vsc, 0, sizeof(psr_vsc));
352 		psr_vsc.sdp_header.HB0 = 0;
353 		psr_vsc.sdp_header.HB1 = 0x7;
354 		psr_vsc.sdp_header.HB2 = 0x2;
355 		psr_vsc.sdp_header.HB3 = 0x8;
356 	}
357 
358 	intel_dig_port->write_infoframe(&intel_dig_port->base,
359 					crtc_state,
360 					DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
361 }
362 
363 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
364 {
365 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
366 	u32 aux_clock_divider, aux_ctl;
367 	int i;
368 	static const u8 aux_msg[] = {
369 		[0] = DP_AUX_NATIVE_WRITE << 4,
370 		[1] = DP_SET_POWER >> 8,
371 		[2] = DP_SET_POWER & 0xff,
372 		[3] = 1 - 1,
373 		[4] = DP_SET_POWER_D0,
374 	};
375 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
376 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
377 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
378 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
379 
380 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
381 	for (i = 0; i < sizeof(aux_msg); i += 4)
382 		I915_WRITE(EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
383 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
384 
385 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
386 
387 	/* Start with bits set for DDI_AUX_CTL register */
388 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
389 					     aux_clock_divider);
390 
391 	/* Select only valid bits for SRD_AUX_CTL */
392 	aux_ctl &= psr_aux_mask;
393 	I915_WRITE(EDP_PSR_AUX_CTL(dev_priv->psr.transcoder), aux_ctl);
394 }
395 
396 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
397 {
398 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
399 	u8 dpcd_val = DP_PSR_ENABLE;
400 
401 	/* Enable ALPM at sink for psr2 */
402 	if (dev_priv->psr.psr2_enabled) {
403 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
404 				   DP_ALPM_ENABLE);
405 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
406 	} else {
407 		if (dev_priv->psr.link_standby)
408 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
409 
410 		if (INTEL_GEN(dev_priv) >= 8)
411 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
412 	}
413 
414 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
415 
416 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
417 }
418 
419 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
420 {
421 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
422 	u32 val = 0;
423 
424 	if (INTEL_GEN(dev_priv) >= 11)
425 		val |= EDP_PSR_TP4_TIME_0US;
426 
427 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
428 		val |= EDP_PSR_TP1_TIME_0us;
429 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
430 		val |= EDP_PSR_TP1_TIME_100us;
431 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
432 		val |= EDP_PSR_TP1_TIME_500us;
433 	else
434 		val |= EDP_PSR_TP1_TIME_2500us;
435 
436 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
437 		val |= EDP_PSR_TP2_TP3_TIME_0us;
438 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
439 		val |= EDP_PSR_TP2_TP3_TIME_100us;
440 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
441 		val |= EDP_PSR_TP2_TP3_TIME_500us;
442 	else
443 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
444 
445 	if (intel_dp_source_supports_hbr2(intel_dp) &&
446 	    drm_dp_tps3_supported(intel_dp->dpcd))
447 		val |= EDP_PSR_TP1_TP3_SEL;
448 	else
449 		val |= EDP_PSR_TP1_TP2_SEL;
450 
451 	return val;
452 }
453 
454 static void hsw_activate_psr1(struct intel_dp *intel_dp)
455 {
456 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
457 	u32 max_sleep_time = 0x1f;
458 	u32 val = EDP_PSR_ENABLE;
459 
460 	/* Let's use 6 as the minimum to cover all known cases including the
461 	 * off-by-one issue that HW has in some cases.
462 	 */
463 	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
464 
465 	/* sink_sync_latency of 8 means source has to wait for more than 8
466 	 * frames, we'll go with 9 frames for now
467 	 */
468 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
469 	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
470 
471 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
472 	if (IS_HASWELL(dev_priv))
473 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
474 
475 	if (dev_priv->psr.link_standby)
476 		val |= EDP_PSR_LINK_STANDBY;
477 
478 	val |= intel_psr1_get_tp_time(intel_dp);
479 
480 	if (INTEL_GEN(dev_priv) >= 8)
481 		val |= EDP_PSR_CRC_ENABLE;
482 
483 	val |= (I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder)) &
484 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
485 	I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), val);
486 }
487 
488 static void hsw_activate_psr2(struct intel_dp *intel_dp)
489 {
490 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
491 	u32 val;
492 
493 	/* Let's use 6 as the minimum to cover all known cases including the
494 	 * off-by-one issue that HW has in some cases.
495 	 */
496 	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
497 
498 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
499 	val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
500 
501 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
502 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
503 		val |= EDP_Y_COORDINATE_ENABLE;
504 
505 	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
506 
507 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
508 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
509 		val |= EDP_PSR2_TP2_TIME_50us;
510 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
511 		val |= EDP_PSR2_TP2_TIME_100us;
512 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
513 		val |= EDP_PSR2_TP2_TIME_500us;
514 	else
515 		val |= EDP_PSR2_TP2_TIME_2500us;
516 
517 	/*
518 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
519 	 * recommending keep this bit unset while PSR2 is enabled.
520 	 */
521 	I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
522 
523 	I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
524 }
525 
526 static bool
527 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
528 {
529 	if (INTEL_GEN(dev_priv) < 9)
530 		return false;
531 	else if (INTEL_GEN(dev_priv) >= 12)
532 		return trans == TRANSCODER_A;
533 	else
534 		return trans == TRANSCODER_EDP;
535 }
536 
537 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
538 {
539 	if (!cstate || !cstate->base.active)
540 		return 0;
541 
542 	return DIV_ROUND_UP(1000 * 1000,
543 			    drm_mode_vrefresh(&cstate->base.adjusted_mode));
544 }
545 
546 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
547 				     u32 idle_frames)
548 {
549 	u32 val;
550 
551 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
552 	val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
553 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
554 	val |= idle_frames;
555 	I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
556 }
557 
558 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
559 {
560 	psr2_program_idle_frames(dev_priv, 0);
561 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
562 }
563 
564 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
565 {
566 	int idle_frames;
567 
568 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
569 	/*
570 	 * Restore PSR2 idle frame let's use 6 as the minimum to cover all known
571 	 * cases including the off-by-one issue that HW has in some cases.
572 	 */
573 	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
574 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
575 	psr2_program_idle_frames(dev_priv, idle_frames);
576 }
577 
578 static void tgl_dc5_idle_thread(struct work_struct *work)
579 {
580 	struct drm_i915_private *dev_priv =
581 		container_of(work, typeof(*dev_priv), psr.idle_work.work);
582 
583 	mutex_lock(&dev_priv->psr.lock);
584 	/* If delayed work is pending, it is not idle */
585 	if (delayed_work_pending(&dev_priv->psr.idle_work))
586 		goto unlock;
587 
588 	DRM_DEBUG_KMS("DC5/6 idle thread\n");
589 	tgl_psr2_disable_dc3co(dev_priv);
590 unlock:
591 	mutex_unlock(&dev_priv->psr.lock);
592 }
593 
594 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
595 {
596 	if (!dev_priv->psr.dc3co_enabled)
597 		return;
598 
599 	cancel_delayed_work(&dev_priv->psr.idle_work);
600 	/* Before PSR2 exit disallow dc3co*/
601 	tgl_psr2_disable_dc3co(dev_priv);
602 }
603 
604 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
605 				    struct intel_crtc_state *crtc_state)
606 {
607 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
608 	int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
609 	int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
610 	int psr_max_h = 0, psr_max_v = 0;
611 
612 	if (!dev_priv->psr.sink_psr2_support)
613 		return false;
614 
615 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
616 		DRM_DEBUG_KMS("PSR2 not supported in transcoder %s\n",
617 			      transcoder_name(crtc_state->cpu_transcoder));
618 		return false;
619 	}
620 
621 	/*
622 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
623 	 * resolution requires DSC to be enabled, priority is given to DSC
624 	 * over PSR2.
625 	 */
626 	if (crtc_state->dsc.compression_enable) {
627 		DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
628 		return false;
629 	}
630 
631 	if (INTEL_GEN(dev_priv) >= 12) {
632 		psr_max_h = 5120;
633 		psr_max_v = 3200;
634 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
635 		psr_max_h = 4096;
636 		psr_max_v = 2304;
637 	} else if (IS_GEN(dev_priv, 9)) {
638 		psr_max_h = 3640;
639 		psr_max_v = 2304;
640 	}
641 
642 	if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
643 		DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
644 			      crtc_hdisplay, crtc_vdisplay,
645 			      psr_max_h, psr_max_v);
646 		return false;
647 	}
648 
649 	/*
650 	 * HW sends SU blocks of size four scan lines, which means the starting
651 	 * X coordinate and Y granularity requirements will always be met. We
652 	 * only need to validate the SU block width is a multiple of
653 	 * x granularity.
654 	 */
655 	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
656 		DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
657 			      crtc_hdisplay, dev_priv->psr.su_x_granularity);
658 		return false;
659 	}
660 
661 	if (crtc_state->crc_enabled) {
662 		DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
663 		return false;
664 	}
665 
666 	return true;
667 }
668 
669 void intel_psr_compute_config(struct intel_dp *intel_dp,
670 			      struct intel_crtc_state *crtc_state)
671 {
672 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
673 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
674 	const struct drm_display_mode *adjusted_mode =
675 		&crtc_state->base.adjusted_mode;
676 	int psr_setup_time;
677 
678 	if (!CAN_PSR(dev_priv))
679 		return;
680 
681 	if (intel_dp != dev_priv->psr.dp)
682 		return;
683 
684 	/*
685 	 * HSW spec explicitly says PSR is tied to port A.
686 	 * BDW+ platforms have a instance of PSR registers per transcoder but
687 	 * for now it only supports one instance of PSR, so lets keep it
688 	 * hardcoded to PORT_A
689 	 */
690 	if (dig_port->base.port != PORT_A) {
691 		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
692 		return;
693 	}
694 
695 	if (dev_priv->psr.sink_not_reliable) {
696 		DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
697 		return;
698 	}
699 
700 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
701 		DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
702 		return;
703 	}
704 
705 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
706 	if (psr_setup_time < 0) {
707 		DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
708 			      intel_dp->psr_dpcd[1]);
709 		return;
710 	}
711 
712 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
713 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
714 		DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
715 			      psr_setup_time);
716 		return;
717 	}
718 
719 	crtc_state->has_psr = true;
720 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
721 }
722 
723 static void intel_psr_activate(struct intel_dp *intel_dp)
724 {
725 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
726 
727 	if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
728 		WARN_ON(I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
729 
730 	WARN_ON(I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
731 	WARN_ON(dev_priv->psr.active);
732 	lockdep_assert_held(&dev_priv->psr.lock);
733 
734 	/* psr1 and psr2 are mutually exclusive.*/
735 	if (dev_priv->psr.psr2_enabled)
736 		hsw_activate_psr2(intel_dp);
737 	else
738 		hsw_activate_psr1(intel_dp);
739 
740 	dev_priv->psr.active = true;
741 }
742 
743 static void intel_psr_enable_source(struct intel_dp *intel_dp,
744 				    const struct intel_crtc_state *crtc_state)
745 {
746 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
747 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
748 	u32 mask;
749 
750 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
751 	 * use hardcoded values PSR AUX transactions
752 	 */
753 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
754 		hsw_psr_setup_aux(intel_dp);
755 
756 	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
757 					   !IS_GEMINILAKE(dev_priv))) {
758 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
759 		u32 chicken = I915_READ(reg);
760 
761 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
762 			   PSR2_ADD_VERTICAL_LINE_COUNT;
763 		I915_WRITE(reg, chicken);
764 	}
765 
766 	/*
767 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
768 	 * mask LPSP to avoid dependency on other drivers that might block
769 	 * runtime_pm besides preventing  other hw tracking issues now we
770 	 * can rely on frontbuffer tracking.
771 	 */
772 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
773 	       EDP_PSR_DEBUG_MASK_HPD |
774 	       EDP_PSR_DEBUG_MASK_LPSP |
775 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
776 
777 	if (INTEL_GEN(dev_priv) < 11)
778 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
779 
780 	I915_WRITE(EDP_PSR_DEBUG(dev_priv->psr.transcoder), mask);
781 
782 	psr_irq_control(dev_priv);
783 }
784 
785 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
786 				    const struct intel_crtc_state *crtc_state)
787 {
788 	struct intel_dp *intel_dp = dev_priv->psr.dp;
789 	u32 val;
790 
791 	WARN_ON(dev_priv->psr.enabled);
792 
793 	dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
794 	dev_priv->psr.busy_frontbuffer_bits = 0;
795 	dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
796 	dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
797 	dev_priv->psr.dc3co_exit_delay = intel_get_frame_time_us(crtc_state);
798 	dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
799 
800 	/*
801 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
802 	 * will still keep the error set even after the reset done in the
803 	 * irq_preinstall and irq_uninstall hooks.
804 	 * And enabling in this situation cause the screen to freeze in the
805 	 * first time that PSR HW tries to activate so lets keep PSR disabled
806 	 * to avoid any rendering problems.
807 	 */
808 	if (INTEL_GEN(dev_priv) >= 12) {
809 		val = I915_READ(TRANS_PSR_IIR(dev_priv->psr.transcoder));
810 		val &= EDP_PSR_ERROR(0);
811 	} else {
812 		val = I915_READ(EDP_PSR_IIR);
813 		val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
814 	}
815 	if (val) {
816 		dev_priv->psr.sink_not_reliable = true;
817 		DRM_DEBUG_KMS("PSR interruption error set, not enabling PSR\n");
818 		return;
819 	}
820 
821 	DRM_DEBUG_KMS("Enabling PSR%s\n",
822 		      dev_priv->psr.psr2_enabled ? "2" : "1");
823 	intel_psr_setup_vsc(intel_dp, crtc_state);
824 	intel_psr_enable_sink(intel_dp);
825 	intel_psr_enable_source(intel_dp, crtc_state);
826 	dev_priv->psr.enabled = true;
827 
828 	intel_psr_activate(intel_dp);
829 }
830 
831 /**
832  * intel_psr_enable - Enable PSR
833  * @intel_dp: Intel DP
834  * @crtc_state: new CRTC state
835  *
836  * This function can only be called after the pipe is fully trained and enabled.
837  */
838 void intel_psr_enable(struct intel_dp *intel_dp,
839 		      const struct intel_crtc_state *crtc_state)
840 {
841 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
842 
843 	if (!crtc_state->has_psr)
844 		return;
845 
846 	if (WARN_ON(!CAN_PSR(dev_priv)))
847 		return;
848 
849 	WARN_ON(dev_priv->drrs.dp);
850 
851 	mutex_lock(&dev_priv->psr.lock);
852 
853 	if (!psr_global_enabled(dev_priv->psr.debug)) {
854 		DRM_DEBUG_KMS("PSR disabled by flag\n");
855 		goto unlock;
856 	}
857 
858 	intel_psr_enable_locked(dev_priv, crtc_state);
859 
860 unlock:
861 	mutex_unlock(&dev_priv->psr.lock);
862 }
863 
864 static void intel_psr_exit(struct drm_i915_private *dev_priv)
865 {
866 	u32 val;
867 
868 	if (!dev_priv->psr.active) {
869 		if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
870 			val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
871 			WARN_ON(val & EDP_PSR2_ENABLE);
872 		}
873 
874 		val = I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder));
875 		WARN_ON(val & EDP_PSR_ENABLE);
876 
877 		return;
878 	}
879 
880 	if (dev_priv->psr.psr2_enabled) {
881 		tgl_disallow_dc3co_on_psr2_exit(dev_priv);
882 		val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
883 		WARN_ON(!(val & EDP_PSR2_ENABLE));
884 		val &= ~EDP_PSR2_ENABLE;
885 		I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
886 	} else {
887 		val = I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder));
888 		WARN_ON(!(val & EDP_PSR_ENABLE));
889 		val &= ~EDP_PSR_ENABLE;
890 		I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), val);
891 	}
892 	dev_priv->psr.active = false;
893 }
894 
895 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
896 {
897 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
898 	i915_reg_t psr_status;
899 	u32 psr_status_mask;
900 
901 	lockdep_assert_held(&dev_priv->psr.lock);
902 
903 	if (!dev_priv->psr.enabled)
904 		return;
905 
906 	DRM_DEBUG_KMS("Disabling PSR%s\n",
907 		      dev_priv->psr.psr2_enabled ? "2" : "1");
908 
909 	intel_psr_exit(dev_priv);
910 
911 	if (dev_priv->psr.psr2_enabled) {
912 		psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
913 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
914 	} else {
915 		psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
916 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
917 	}
918 
919 	/* Wait till PSR is idle */
920 	if (intel_de_wait_for_clear(dev_priv, psr_status,
921 				    psr_status_mask, 2000))
922 		DRM_ERROR("Timed out waiting PSR idle state\n");
923 
924 	/* Disable PSR on Sink */
925 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
926 
927 	dev_priv->psr.enabled = false;
928 }
929 
930 /**
931  * intel_psr_disable - Disable PSR
932  * @intel_dp: Intel DP
933  * @old_crtc_state: old CRTC state
934  *
935  * This function needs to be called before disabling pipe.
936  */
937 void intel_psr_disable(struct intel_dp *intel_dp,
938 		       const struct intel_crtc_state *old_crtc_state)
939 {
940 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
941 
942 	if (!old_crtc_state->has_psr)
943 		return;
944 
945 	if (WARN_ON(!CAN_PSR(dev_priv)))
946 		return;
947 
948 	mutex_lock(&dev_priv->psr.lock);
949 
950 	intel_psr_disable_locked(intel_dp);
951 
952 	mutex_unlock(&dev_priv->psr.lock);
953 	cancel_work_sync(&dev_priv->psr.work);
954 	cancel_delayed_work_sync(&dev_priv->psr.idle_work);
955 }
956 
957 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
958 {
959 	if (INTEL_GEN(dev_priv) >= 9)
960 		/*
961 		 * Display WA #0884: skl+
962 		 * This documented WA for bxt can be safely applied
963 		 * broadly so we can force HW tracking to exit PSR
964 		 * instead of disabling and re-enabling.
965 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
966 		 * but it makes more sense write to the current active
967 		 * pipe.
968 		 */
969 		I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
970 	else
971 		/*
972 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
973 		 * on older gens so doing the manual exit instead.
974 		 */
975 		intel_psr_exit(dev_priv);
976 }
977 
978 /**
979  * intel_psr_update - Update PSR state
980  * @intel_dp: Intel DP
981  * @crtc_state: new CRTC state
982  *
983  * This functions will update PSR states, disabling, enabling or switching PSR
984  * version when executing fastsets. For full modeset, intel_psr_disable() and
985  * intel_psr_enable() should be called instead.
986  */
987 void intel_psr_update(struct intel_dp *intel_dp,
988 		      const struct intel_crtc_state *crtc_state)
989 {
990 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
991 	struct i915_psr *psr = &dev_priv->psr;
992 	bool enable, psr2_enable;
993 
994 	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
995 		return;
996 
997 	mutex_lock(&dev_priv->psr.lock);
998 
999 	enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
1000 	psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
1001 
1002 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1003 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1004 		if (crtc_state->crc_enabled && psr->enabled)
1005 			psr_force_hw_tracking_exit(dev_priv);
1006 		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1007 			/*
1008 			 * Activate PSR again after a force exit when enabling
1009 			 * CRC in older gens
1010 			 */
1011 			if (!dev_priv->psr.active &&
1012 			    !dev_priv->psr.busy_frontbuffer_bits)
1013 				schedule_work(&dev_priv->psr.work);
1014 		}
1015 
1016 		goto unlock;
1017 	}
1018 
1019 	if (psr->enabled)
1020 		intel_psr_disable_locked(intel_dp);
1021 
1022 	if (enable)
1023 		intel_psr_enable_locked(dev_priv, crtc_state);
1024 
1025 unlock:
1026 	mutex_unlock(&dev_priv->psr.lock);
1027 }
1028 
1029 /**
1030  * intel_psr_wait_for_idle - wait for PSR1 to idle
1031  * @new_crtc_state: new CRTC state
1032  * @out_value: PSR status in case of failure
1033  *
1034  * This function is expected to be called from pipe_update_start() where it is
1035  * not expected to race with PSR enable or disable.
1036  *
1037  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1038  */
1039 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1040 			    u32 *out_value)
1041 {
1042 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1043 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1044 
1045 	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1046 		return 0;
1047 
1048 	/* FIXME: Update this for PSR2 if we need to wait for idle */
1049 	if (READ_ONCE(dev_priv->psr.psr2_enabled))
1050 		return 0;
1051 
1052 	/*
1053 	 * From bspec: Panel Self Refresh (BDW+)
1054 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1055 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1056 	 * defensive enough to cover everything.
1057 	 */
1058 
1059 	return __intel_wait_for_register(&dev_priv->uncore,
1060 					 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1061 					 EDP_PSR_STATUS_STATE_MASK,
1062 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1063 					 out_value);
1064 }
1065 
1066 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1067 {
1068 	i915_reg_t reg;
1069 	u32 mask;
1070 	int err;
1071 
1072 	if (!dev_priv->psr.enabled)
1073 		return false;
1074 
1075 	if (dev_priv->psr.psr2_enabled) {
1076 		reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1077 		mask = EDP_PSR2_STATUS_STATE_MASK;
1078 	} else {
1079 		reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1080 		mask = EDP_PSR_STATUS_STATE_MASK;
1081 	}
1082 
1083 	mutex_unlock(&dev_priv->psr.lock);
1084 
1085 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1086 	if (err)
1087 		DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
1088 
1089 	/* After the unlocked wait, verify that PSR is still wanted! */
1090 	mutex_lock(&dev_priv->psr.lock);
1091 	return err == 0 && dev_priv->psr.enabled;
1092 }
1093 
1094 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1095 {
1096 	struct drm_device *dev = &dev_priv->drm;
1097 	struct drm_modeset_acquire_ctx ctx;
1098 	struct drm_atomic_state *state;
1099 	struct drm_crtc *crtc;
1100 	int err;
1101 
1102 	state = drm_atomic_state_alloc(dev);
1103 	if (!state)
1104 		return -ENOMEM;
1105 
1106 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1107 	state->acquire_ctx = &ctx;
1108 
1109 retry:
1110 	drm_for_each_crtc(crtc, dev) {
1111 		struct drm_crtc_state *crtc_state;
1112 		struct intel_crtc_state *intel_crtc_state;
1113 
1114 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
1115 		if (IS_ERR(crtc_state)) {
1116 			err = PTR_ERR(crtc_state);
1117 			goto error;
1118 		}
1119 
1120 		intel_crtc_state = to_intel_crtc_state(crtc_state);
1121 
1122 		if (crtc_state->active && intel_crtc_state->has_psr) {
1123 			/* Mark mode as changed to trigger a pipe->update() */
1124 			crtc_state->mode_changed = true;
1125 			break;
1126 		}
1127 	}
1128 
1129 	err = drm_atomic_commit(state);
1130 
1131 error:
1132 	if (err == -EDEADLK) {
1133 		drm_atomic_state_clear(state);
1134 		err = drm_modeset_backoff(&ctx);
1135 		if (!err)
1136 			goto retry;
1137 	}
1138 
1139 	drm_modeset_drop_locks(&ctx);
1140 	drm_modeset_acquire_fini(&ctx);
1141 	drm_atomic_state_put(state);
1142 
1143 	return err;
1144 }
1145 
1146 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1147 {
1148 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1149 	u32 old_mode;
1150 	int ret;
1151 
1152 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1153 	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1154 		DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1155 		return -EINVAL;
1156 	}
1157 
1158 	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1159 	if (ret)
1160 		return ret;
1161 
1162 	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1163 	dev_priv->psr.debug = val;
1164 
1165 	/*
1166 	 * Do it right away if it's already enabled, otherwise it will be done
1167 	 * when enabling the source.
1168 	 */
1169 	if (dev_priv->psr.enabled)
1170 		psr_irq_control(dev_priv);
1171 
1172 	mutex_unlock(&dev_priv->psr.lock);
1173 
1174 	if (old_mode != mode)
1175 		ret = intel_psr_fastset_force(dev_priv);
1176 
1177 	return ret;
1178 }
1179 
1180 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1181 {
1182 	struct i915_psr *psr = &dev_priv->psr;
1183 
1184 	intel_psr_disable_locked(psr->dp);
1185 	psr->sink_not_reliable = true;
1186 	/* let's make sure that sink is awaken */
1187 	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1188 }
1189 
1190 static void intel_psr_work(struct work_struct *work)
1191 {
1192 	struct drm_i915_private *dev_priv =
1193 		container_of(work, typeof(*dev_priv), psr.work);
1194 
1195 	mutex_lock(&dev_priv->psr.lock);
1196 
1197 	if (!dev_priv->psr.enabled)
1198 		goto unlock;
1199 
1200 	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1201 		intel_psr_handle_irq(dev_priv);
1202 
1203 	/*
1204 	 * We have to make sure PSR is ready for re-enable
1205 	 * otherwise it keeps disabled until next full enable/disable cycle.
1206 	 * PSR might take some time to get fully disabled
1207 	 * and be ready for re-enable.
1208 	 */
1209 	if (!__psr_wait_for_idle_locked(dev_priv))
1210 		goto unlock;
1211 
1212 	/*
1213 	 * The delayed work can race with an invalidate hence we need to
1214 	 * recheck. Since psr_flush first clears this and then reschedules we
1215 	 * won't ever miss a flush when bailing out here.
1216 	 */
1217 	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1218 		goto unlock;
1219 
1220 	intel_psr_activate(dev_priv->psr.dp);
1221 unlock:
1222 	mutex_unlock(&dev_priv->psr.lock);
1223 }
1224 
1225 /**
1226  * intel_psr_invalidate - Invalidade PSR
1227  * @dev_priv: i915 device
1228  * @frontbuffer_bits: frontbuffer plane tracking bits
1229  * @origin: which operation caused the invalidate
1230  *
1231  * Since the hardware frontbuffer tracking has gaps we need to integrate
1232  * with the software frontbuffer tracking. This function gets called every
1233  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1234  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1235  *
1236  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1237  */
1238 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1239 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1240 {
1241 	if (!CAN_PSR(dev_priv))
1242 		return;
1243 
1244 	if (origin == ORIGIN_FLIP)
1245 		return;
1246 
1247 	mutex_lock(&dev_priv->psr.lock);
1248 	if (!dev_priv->psr.enabled) {
1249 		mutex_unlock(&dev_priv->psr.lock);
1250 		return;
1251 	}
1252 
1253 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1254 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1255 
1256 	if (frontbuffer_bits)
1257 		intel_psr_exit(dev_priv);
1258 
1259 	mutex_unlock(&dev_priv->psr.lock);
1260 }
1261 
1262 /*
1263  * When we will be completely rely on PSR2 S/W tracking in future,
1264  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1265  * event also therefore tgl_dc3co_flush() require to be changed
1266  * accrodingly in future.
1267  */
1268 static void
1269 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1270 		unsigned int frontbuffer_bits, enum fb_op_origin origin)
1271 {
1272 	u32 delay;
1273 
1274 	mutex_lock(&dev_priv->psr.lock);
1275 
1276 	if (!dev_priv->psr.dc3co_enabled)
1277 		goto unlock;
1278 
1279 	if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1280 		goto unlock;
1281 
1282 	/*
1283 	 * At every frontbuffer flush flip event modified delay of delayed work,
1284 	 * when delayed work schedules that means display has been idle.
1285 	 */
1286 	if (!(frontbuffer_bits &
1287 	    INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1288 		goto unlock;
1289 
1290 	tgl_psr2_enable_dc3co(dev_priv);
1291 	/* DC5/DC6 required idle frames = 6 */
1292 	delay = 6 * dev_priv->psr.dc3co_exit_delay;
1293 	mod_delayed_work(system_wq, &dev_priv->psr.idle_work,
1294 			 usecs_to_jiffies(delay));
1295 
1296 unlock:
1297 	mutex_unlock(&dev_priv->psr.lock);
1298 }
1299 
1300 /**
1301  * intel_psr_flush - Flush PSR
1302  * @dev_priv: i915 device
1303  * @frontbuffer_bits: frontbuffer plane tracking bits
1304  * @origin: which operation caused the flush
1305  *
1306  * Since the hardware frontbuffer tracking has gaps we need to integrate
1307  * with the software frontbuffer tracking. This function gets called every
1308  * time frontbuffer rendering has completed and flushed out to memory. PSR
1309  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1310  *
1311  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1312  */
1313 void intel_psr_flush(struct drm_i915_private *dev_priv,
1314 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1315 {
1316 	if (!CAN_PSR(dev_priv))
1317 		return;
1318 
1319 	if (origin == ORIGIN_FLIP) {
1320 		tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1321 		return;
1322 	}
1323 
1324 	mutex_lock(&dev_priv->psr.lock);
1325 	if (!dev_priv->psr.enabled) {
1326 		mutex_unlock(&dev_priv->psr.lock);
1327 		return;
1328 	}
1329 
1330 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1331 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1332 
1333 	/* By definition flush = invalidate + flush */
1334 	if (frontbuffer_bits)
1335 		psr_force_hw_tracking_exit(dev_priv);
1336 
1337 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1338 		schedule_work(&dev_priv->psr.work);
1339 	mutex_unlock(&dev_priv->psr.lock);
1340 }
1341 
1342 /**
1343  * intel_psr_init - Init basic PSR work and mutex.
1344  * @dev_priv: i915 device private
1345  *
1346  * This function is  called only once at driver load to initialize basic
1347  * PSR stuff.
1348  */
1349 void intel_psr_init(struct drm_i915_private *dev_priv)
1350 {
1351 	if (!HAS_PSR(dev_priv))
1352 		return;
1353 
1354 	if (!dev_priv->psr.sink_support)
1355 		return;
1356 
1357 	if (IS_HASWELL(dev_priv))
1358 		/*
1359 		 * HSW don't have PSR registers on the same space as transcoder
1360 		 * so set this to a value that when subtract to the register
1361 		 * in transcoder space results in the right offset for HSW
1362 		 */
1363 		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1364 
1365 	if (i915_modparams.enable_psr == -1)
1366 		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1367 			i915_modparams.enable_psr = 0;
1368 
1369 	/* Set link_standby x link_off defaults */
1370 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1371 		/* HSW and BDW require workarounds that we don't implement. */
1372 		dev_priv->psr.link_standby = false;
1373 	else if (INTEL_GEN(dev_priv) < 12)
1374 		/* For new platforms up to TGL let's respect VBT back again */
1375 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1376 
1377 	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1378 	INIT_DELAYED_WORK(&dev_priv->psr.idle_work, tgl_dc5_idle_thread);
1379 	mutex_init(&dev_priv->psr.lock);
1380 }
1381 
1382 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1383 {
1384 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1385 	struct i915_psr *psr = &dev_priv->psr;
1386 	u8 val;
1387 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1388 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1389 			  DP_PSR_LINK_CRC_ERROR;
1390 
1391 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1392 		return;
1393 
1394 	mutex_lock(&psr->lock);
1395 
1396 	if (!psr->enabled || psr->dp != intel_dp)
1397 		goto exit;
1398 
1399 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1400 		DRM_ERROR("PSR_STATUS dpcd read failed\n");
1401 		goto exit;
1402 	}
1403 
1404 	if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1405 		DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1406 		intel_psr_disable_locked(intel_dp);
1407 		psr->sink_not_reliable = true;
1408 	}
1409 
1410 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1411 		DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1412 		goto exit;
1413 	}
1414 
1415 	if (val & DP_PSR_RFB_STORAGE_ERROR)
1416 		DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1417 	if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1418 		DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1419 	if (val & DP_PSR_LINK_CRC_ERROR)
1420 		DRM_DEBUG_KMS("PSR Link CRC error, disabling PSR\n");
1421 
1422 	if (val & ~errors)
1423 		DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1424 			  val & ~errors);
1425 	if (val & errors) {
1426 		intel_psr_disable_locked(intel_dp);
1427 		psr->sink_not_reliable = true;
1428 	}
1429 	/* clear status register */
1430 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1431 exit:
1432 	mutex_unlock(&psr->lock);
1433 }
1434 
1435 bool intel_psr_enabled(struct intel_dp *intel_dp)
1436 {
1437 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1438 	bool ret;
1439 
1440 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1441 		return false;
1442 
1443 	mutex_lock(&dev_priv->psr.lock);
1444 	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1445 	mutex_unlock(&dev_priv->psr.lock);
1446 
1447 	return ret;
1448 }
1449