xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_domain.c (revision 9a6b55ac)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_frontbuffer.h"
8 
9 #include "i915_drv.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 
16 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
17 {
18 	/*
19 	 * We manually flush the CPU domain so that we can override and
20 	 * force the flush for the display, and perform it asyncrhonously.
21 	 */
22 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
23 	if (obj->cache_dirty)
24 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
25 	obj->write_domain = 0;
26 }
27 
28 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
29 {
30 	if (!i915_gem_object_is_framebuffer(obj))
31 		return;
32 
33 	i915_gem_object_lock(obj);
34 	__i915_gem_object_flush_for_display(obj);
35 	i915_gem_object_unlock(obj);
36 }
37 
38 /**
39  * Moves a single object to the WC read, and possibly write domain.
40  * @obj: object to act on
41  * @write: ask for write access or read only
42  *
43  * This function returns when the move is complete, including waiting on
44  * flushes to occur.
45  */
46 int
47 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
48 {
49 	int ret;
50 
51 	assert_object_held(obj);
52 
53 	ret = i915_gem_object_wait(obj,
54 				   I915_WAIT_INTERRUPTIBLE |
55 				   (write ? I915_WAIT_ALL : 0),
56 				   MAX_SCHEDULE_TIMEOUT);
57 	if (ret)
58 		return ret;
59 
60 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
61 		return 0;
62 
63 	/* Flush and acquire obj->pages so that we are coherent through
64 	 * direct access in memory with previous cached writes through
65 	 * shmemfs and that our cache domain tracking remains valid.
66 	 * For example, if the obj->filp was moved to swap without us
67 	 * being notified and releasing the pages, we would mistakenly
68 	 * continue to assume that the obj remained out of the CPU cached
69 	 * domain.
70 	 */
71 	ret = i915_gem_object_pin_pages(obj);
72 	if (ret)
73 		return ret;
74 
75 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
76 
77 	/* Serialise direct access to this object with the barriers for
78 	 * coherent writes from the GPU, by effectively invalidating the
79 	 * WC domain upon first access.
80 	 */
81 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
82 		mb();
83 
84 	/* It should now be out of any other write domains, and we can update
85 	 * the domain values for our changes.
86 	 */
87 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
88 	obj->read_domains |= I915_GEM_DOMAIN_WC;
89 	if (write) {
90 		obj->read_domains = I915_GEM_DOMAIN_WC;
91 		obj->write_domain = I915_GEM_DOMAIN_WC;
92 		obj->mm.dirty = true;
93 	}
94 
95 	i915_gem_object_unpin_pages(obj);
96 	return 0;
97 }
98 
99 /**
100  * Moves a single object to the GTT read, and possibly write domain.
101  * @obj: object to act on
102  * @write: ask for write access or read only
103  *
104  * This function returns when the move is complete, including waiting on
105  * flushes to occur.
106  */
107 int
108 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
109 {
110 	int ret;
111 
112 	assert_object_held(obj);
113 
114 	ret = i915_gem_object_wait(obj,
115 				   I915_WAIT_INTERRUPTIBLE |
116 				   (write ? I915_WAIT_ALL : 0),
117 				   MAX_SCHEDULE_TIMEOUT);
118 	if (ret)
119 		return ret;
120 
121 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
122 		return 0;
123 
124 	/* Flush and acquire obj->pages so that we are coherent through
125 	 * direct access in memory with previous cached writes through
126 	 * shmemfs and that our cache domain tracking remains valid.
127 	 * For example, if the obj->filp was moved to swap without us
128 	 * being notified and releasing the pages, we would mistakenly
129 	 * continue to assume that the obj remained out of the CPU cached
130 	 * domain.
131 	 */
132 	ret = i915_gem_object_pin_pages(obj);
133 	if (ret)
134 		return ret;
135 
136 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
137 
138 	/* Serialise direct access to this object with the barriers for
139 	 * coherent writes from the GPU, by effectively invalidating the
140 	 * GTT domain upon first access.
141 	 */
142 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
143 		mb();
144 
145 	/* It should now be out of any other write domains, and we can update
146 	 * the domain values for our changes.
147 	 */
148 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
149 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
150 	if (write) {
151 		obj->read_domains = I915_GEM_DOMAIN_GTT;
152 		obj->write_domain = I915_GEM_DOMAIN_GTT;
153 		obj->mm.dirty = true;
154 	}
155 
156 	i915_gem_object_unpin_pages(obj);
157 	return 0;
158 }
159 
160 /**
161  * Changes the cache-level of an object across all VMA.
162  * @obj: object to act on
163  * @cache_level: new cache level to set for the object
164  *
165  * After this function returns, the object will be in the new cache-level
166  * across all GTT and the contents of the backing storage will be coherent,
167  * with respect to the new cache-level. In order to keep the backing storage
168  * coherent for all users, we only allow a single cache level to be set
169  * globally on the object and prevent it from being changed whilst the
170  * hardware is reading from the object. That is if the object is currently
171  * on the scanout it will be set to uncached (or equivalent display
172  * cache coherency) and all non-MOCS GPU access will also be uncached so
173  * that all direct access to the scanout remains coherent.
174  */
175 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
176 				    enum i915_cache_level cache_level)
177 {
178 	struct i915_vma *vma;
179 	int ret;
180 
181 	assert_object_held(obj);
182 
183 	if (obj->cache_level == cache_level)
184 		return 0;
185 
186 	/* Inspect the list of currently bound VMA and unbind any that would
187 	 * be invalid given the new cache-level. This is principally to
188 	 * catch the issue of the CS prefetch crossing page boundaries and
189 	 * reading an invalid PTE on older architectures.
190 	 */
191 restart:
192 	list_for_each_entry(vma, &obj->vma.list, obj_link) {
193 		if (!drm_mm_node_allocated(&vma->node))
194 			continue;
195 
196 		if (i915_vma_is_pinned(vma)) {
197 			DRM_DEBUG("can not change the cache level of pinned objects\n");
198 			return -EBUSY;
199 		}
200 
201 		if (!i915_vma_is_closed(vma) &&
202 		    i915_gem_valid_gtt_space(vma, cache_level))
203 			continue;
204 
205 		ret = i915_vma_unbind(vma);
206 		if (ret)
207 			return ret;
208 
209 		/* As unbinding may affect other elements in the
210 		 * obj->vma_list (due to side-effects from retiring
211 		 * an active vma), play safe and restart the iterator.
212 		 */
213 		goto restart;
214 	}
215 
216 	/* We can reuse the existing drm_mm nodes but need to change the
217 	 * cache-level on the PTE. We could simply unbind them all and
218 	 * rebind with the correct cache-level on next use. However since
219 	 * we already have a valid slot, dma mapping, pages etc, we may as
220 	 * rewrite the PTE in the belief that doing so tramples upon less
221 	 * state and so involves less work.
222 	 */
223 	if (atomic_read(&obj->bind_count)) {
224 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
225 
226 		/* Before we change the PTE, the GPU must not be accessing it.
227 		 * If we wait upon the object, we know that all the bound
228 		 * VMA are no longer active.
229 		 */
230 		ret = i915_gem_object_wait(obj,
231 					   I915_WAIT_INTERRUPTIBLE |
232 					   I915_WAIT_ALL,
233 					   MAX_SCHEDULE_TIMEOUT);
234 		if (ret)
235 			return ret;
236 
237 		if (!HAS_LLC(i915) && cache_level != I915_CACHE_NONE) {
238 			intel_wakeref_t wakeref =
239 				intel_runtime_pm_get(&i915->runtime_pm);
240 
241 			/*
242 			 * Access to snoopable pages through the GTT is
243 			 * incoherent and on some machines causes a hard
244 			 * lockup. Relinquish the CPU mmaping to force
245 			 * userspace to refault in the pages and we can
246 			 * then double check if the GTT mapping is still
247 			 * valid for that pointer access.
248 			 */
249 			ret = mutex_lock_interruptible(&i915->ggtt.vm.mutex);
250 			if (ret) {
251 				intel_runtime_pm_put(&i915->runtime_pm,
252 						     wakeref);
253 				return ret;
254 			}
255 
256 			if (obj->userfault_count)
257 				__i915_gem_object_release_mmap(obj);
258 
259 			/*
260 			 * As we no longer need a fence for GTT access,
261 			 * we can relinquish it now (and so prevent having
262 			 * to steal a fence from someone else on the next
263 			 * fence request). Note GPU activity would have
264 			 * dropped the fence as all snoopable access is
265 			 * supposed to be linear.
266 			 */
267 			for_each_ggtt_vma(vma, obj) {
268 				ret = i915_vma_revoke_fence(vma);
269 				if (ret)
270 					break;
271 			}
272 			mutex_unlock(&i915->ggtt.vm.mutex);
273 			intel_runtime_pm_put(&i915->runtime_pm, wakeref);
274 			if (ret)
275 				return ret;
276 		} else {
277 			/*
278 			 * We either have incoherent backing store and
279 			 * so no GTT access or the architecture is fully
280 			 * coherent. In such cases, existing GTT mmaps
281 			 * ignore the cache bit in the PTE and we can
282 			 * rewrite it without confusing the GPU or having
283 			 * to force userspace to fault back in its mmaps.
284 			 */
285 		}
286 
287 		list_for_each_entry(vma, &obj->vma.list, obj_link) {
288 			if (!drm_mm_node_allocated(&vma->node))
289 				continue;
290 
291 			/* Wait for an earlier async bind, need to rewrite it */
292 			ret = i915_vma_sync(vma);
293 			if (ret)
294 				return ret;
295 
296 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE, NULL);
297 			if (ret)
298 				return ret;
299 		}
300 	}
301 
302 	list_for_each_entry(vma, &obj->vma.list, obj_link) {
303 		if (i915_vm_has_cache_coloring(vma->vm))
304 			vma->node.color = cache_level;
305 	}
306 	i915_gem_object_set_cache_coherency(obj, cache_level);
307 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
308 
309 	return 0;
310 }
311 
312 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
313 			       struct drm_file *file)
314 {
315 	struct drm_i915_gem_caching *args = data;
316 	struct drm_i915_gem_object *obj;
317 	int err = 0;
318 
319 	rcu_read_lock();
320 	obj = i915_gem_object_lookup_rcu(file, args->handle);
321 	if (!obj) {
322 		err = -ENOENT;
323 		goto out;
324 	}
325 
326 	switch (obj->cache_level) {
327 	case I915_CACHE_LLC:
328 	case I915_CACHE_L3_LLC:
329 		args->caching = I915_CACHING_CACHED;
330 		break;
331 
332 	case I915_CACHE_WT:
333 		args->caching = I915_CACHING_DISPLAY;
334 		break;
335 
336 	default:
337 		args->caching = I915_CACHING_NONE;
338 		break;
339 	}
340 out:
341 	rcu_read_unlock();
342 	return err;
343 }
344 
345 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
346 			       struct drm_file *file)
347 {
348 	struct drm_i915_private *i915 = to_i915(dev);
349 	struct drm_i915_gem_caching *args = data;
350 	struct drm_i915_gem_object *obj;
351 	enum i915_cache_level level;
352 	int ret = 0;
353 
354 	switch (args->caching) {
355 	case I915_CACHING_NONE:
356 		level = I915_CACHE_NONE;
357 		break;
358 	case I915_CACHING_CACHED:
359 		/*
360 		 * Due to a HW issue on BXT A stepping, GPU stores via a
361 		 * snooped mapping may leave stale data in a corresponding CPU
362 		 * cacheline, whereas normally such cachelines would get
363 		 * invalidated.
364 		 */
365 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
366 			return -ENODEV;
367 
368 		level = I915_CACHE_LLC;
369 		break;
370 	case I915_CACHING_DISPLAY:
371 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
372 		break;
373 	default:
374 		return -EINVAL;
375 	}
376 
377 	obj = i915_gem_object_lookup(file, args->handle);
378 	if (!obj)
379 		return -ENOENT;
380 
381 	/*
382 	 * The caching mode of proxy object is handled by its generator, and
383 	 * not allowed to be changed by userspace.
384 	 */
385 	if (i915_gem_object_is_proxy(obj)) {
386 		ret = -ENXIO;
387 		goto out;
388 	}
389 
390 	if (obj->cache_level == level)
391 		goto out;
392 
393 	ret = i915_gem_object_wait(obj,
394 				   I915_WAIT_INTERRUPTIBLE,
395 				   MAX_SCHEDULE_TIMEOUT);
396 	if (ret)
397 		goto out;
398 
399 	ret = i915_gem_object_lock_interruptible(obj);
400 	if (ret == 0) {
401 		ret = i915_gem_object_set_cache_level(obj, level);
402 		i915_gem_object_unlock(obj);
403 	}
404 
405 out:
406 	i915_gem_object_put(obj);
407 	return ret;
408 }
409 
410 /*
411  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
412  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
413  * (for pageflips). We only flush the caches while preparing the buffer for
414  * display, the callers are responsible for frontbuffer flush.
415  */
416 struct i915_vma *
417 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
418 				     u32 alignment,
419 				     const struct i915_ggtt_view *view,
420 				     unsigned int flags)
421 {
422 	struct i915_vma *vma;
423 	int ret;
424 
425 	assert_object_held(obj);
426 
427 	/*
428 	 * The display engine is not coherent with the LLC cache on gen6.  As
429 	 * a result, we make sure that the pinning that is about to occur is
430 	 * done with uncached PTEs. This is lowest common denominator for all
431 	 * chipsets.
432 	 *
433 	 * However for gen6+, we could do better by using the GFDT bit instead
434 	 * of uncaching, which would allow us to flush all the LLC-cached data
435 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
436 	 */
437 	ret = i915_gem_object_set_cache_level(obj,
438 					      HAS_WT(to_i915(obj->base.dev)) ?
439 					      I915_CACHE_WT : I915_CACHE_NONE);
440 	if (ret)
441 		return ERR_PTR(ret);
442 
443 	/*
444 	 * As the user may map the buffer once pinned in the display plane
445 	 * (e.g. libkms for the bootup splash), we have to ensure that we
446 	 * always use map_and_fenceable for all scanout buffers. However,
447 	 * it may simply be too big to fit into mappable, in which case
448 	 * put it anyway and hope that userspace can cope (but always first
449 	 * try to preserve the existing ABI).
450 	 */
451 	vma = ERR_PTR(-ENOSPC);
452 	if ((flags & PIN_MAPPABLE) == 0 &&
453 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
454 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
455 					       flags |
456 					       PIN_MAPPABLE |
457 					       PIN_NONBLOCK);
458 	if (IS_ERR(vma))
459 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
460 	if (IS_ERR(vma))
461 		return vma;
462 
463 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
464 
465 	__i915_gem_object_flush_for_display(obj);
466 
467 	/*
468 	 * It should now be out of any other write domains, and we can update
469 	 * the domain values for our changes.
470 	 */
471 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
472 
473 	return vma;
474 }
475 
476 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
477 {
478 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
479 	struct i915_vma *vma;
480 
481 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
482 
483 	mutex_lock(&i915->ggtt.vm.mutex);
484 	for_each_ggtt_vma(vma, obj) {
485 		if (!drm_mm_node_allocated(&vma->node))
486 			continue;
487 
488 		GEM_BUG_ON(vma->vm != &i915->ggtt.vm);
489 		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
490 	}
491 	mutex_unlock(&i915->ggtt.vm.mutex);
492 
493 	if (i915_gem_object_is_shrinkable(obj)) {
494 		unsigned long flags;
495 
496 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
497 
498 		if (obj->mm.madv == I915_MADV_WILLNEED &&
499 		    !atomic_read(&obj->mm.shrink_pin))
500 			list_move_tail(&obj->mm.link, &i915->mm.shrink_list);
501 
502 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
503 	}
504 }
505 
506 void
507 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
508 {
509 	struct drm_i915_gem_object *obj = vma->obj;
510 
511 	assert_object_held(obj);
512 
513 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
514 	i915_gem_object_bump_inactive_ggtt(obj);
515 
516 	i915_vma_unpin(vma);
517 }
518 
519 /**
520  * Moves a single object to the CPU read, and possibly write domain.
521  * @obj: object to act on
522  * @write: requesting write or read-only access
523  *
524  * This function returns when the move is complete, including waiting on
525  * flushes to occur.
526  */
527 int
528 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
529 {
530 	int ret;
531 
532 	assert_object_held(obj);
533 
534 	ret = i915_gem_object_wait(obj,
535 				   I915_WAIT_INTERRUPTIBLE |
536 				   (write ? I915_WAIT_ALL : 0),
537 				   MAX_SCHEDULE_TIMEOUT);
538 	if (ret)
539 		return ret;
540 
541 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
542 
543 	/* Flush the CPU cache if it's still invalid. */
544 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
545 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
546 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
547 	}
548 
549 	/* It should now be out of any other write domains, and we can update
550 	 * the domain values for our changes.
551 	 */
552 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
553 
554 	/* If we're writing through the CPU, then the GPU read domains will
555 	 * need to be invalidated at next use.
556 	 */
557 	if (write)
558 		__start_cpu_write(obj);
559 
560 	return 0;
561 }
562 
563 /**
564  * Called when user space prepares to use an object with the CPU, either
565  * through the mmap ioctl's mapping or a GTT mapping.
566  * @dev: drm device
567  * @data: ioctl data blob
568  * @file: drm file
569  */
570 int
571 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
572 			  struct drm_file *file)
573 {
574 	struct drm_i915_gem_set_domain *args = data;
575 	struct drm_i915_gem_object *obj;
576 	u32 read_domains = args->read_domains;
577 	u32 write_domain = args->write_domain;
578 	int err;
579 
580 	/* Only handle setting domains to types used by the CPU. */
581 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
582 		return -EINVAL;
583 
584 	/*
585 	 * Having something in the write domain implies it's in the read
586 	 * domain, and only that read domain.  Enforce that in the request.
587 	 */
588 	if (write_domain && read_domains != write_domain)
589 		return -EINVAL;
590 
591 	if (!read_domains)
592 		return 0;
593 
594 	obj = i915_gem_object_lookup(file, args->handle);
595 	if (!obj)
596 		return -ENOENT;
597 
598 	/*
599 	 * Already in the desired write domain? Nothing for us to do!
600 	 *
601 	 * We apply a little bit of cunning here to catch a broader set of
602 	 * no-ops. If obj->write_domain is set, we must be in the same
603 	 * obj->read_domains, and only that domain. Therefore, if that
604 	 * obj->write_domain matches the request read_domains, we are
605 	 * already in the same read/write domain and can skip the operation,
606 	 * without having to further check the requested write_domain.
607 	 */
608 	if (READ_ONCE(obj->write_domain) == read_domains) {
609 		err = 0;
610 		goto out;
611 	}
612 
613 	/*
614 	 * Try to flush the object off the GPU without holding the lock.
615 	 * We will repeat the flush holding the lock in the normal manner
616 	 * to catch cases where we are gazumped.
617 	 */
618 	err = i915_gem_object_wait(obj,
619 				   I915_WAIT_INTERRUPTIBLE |
620 				   I915_WAIT_PRIORITY |
621 				   (write_domain ? I915_WAIT_ALL : 0),
622 				   MAX_SCHEDULE_TIMEOUT);
623 	if (err)
624 		goto out;
625 
626 	/*
627 	 * Proxy objects do not control access to the backing storage, ergo
628 	 * they cannot be used as a means to manipulate the cache domain
629 	 * tracking for that backing storage. The proxy object is always
630 	 * considered to be outside of any cache domain.
631 	 */
632 	if (i915_gem_object_is_proxy(obj)) {
633 		err = -ENXIO;
634 		goto out;
635 	}
636 
637 	/*
638 	 * Flush and acquire obj->pages so that we are coherent through
639 	 * direct access in memory with previous cached writes through
640 	 * shmemfs and that our cache domain tracking remains valid.
641 	 * For example, if the obj->filp was moved to swap without us
642 	 * being notified and releasing the pages, we would mistakenly
643 	 * continue to assume that the obj remained out of the CPU cached
644 	 * domain.
645 	 */
646 	err = i915_gem_object_pin_pages(obj);
647 	if (err)
648 		goto out;
649 
650 	err = i915_gem_object_lock_interruptible(obj);
651 	if (err)
652 		goto out_unpin;
653 
654 	if (read_domains & I915_GEM_DOMAIN_WC)
655 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
656 	else if (read_domains & I915_GEM_DOMAIN_GTT)
657 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
658 	else
659 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
660 
661 	/* And bump the LRU for this access */
662 	i915_gem_object_bump_inactive_ggtt(obj);
663 
664 	i915_gem_object_unlock(obj);
665 
666 	if (write_domain)
667 		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
668 
669 out_unpin:
670 	i915_gem_object_unpin_pages(obj);
671 out:
672 	i915_gem_object_put(obj);
673 	return err;
674 }
675 
676 /*
677  * Pins the specified object's pages and synchronizes the object with
678  * GPU accesses. Sets needs_clflush to non-zero if the caller should
679  * flush the object from the CPU cache.
680  */
681 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
682 				 unsigned int *needs_clflush)
683 {
684 	int ret;
685 
686 	*needs_clflush = 0;
687 	if (!i915_gem_object_has_struct_page(obj))
688 		return -ENODEV;
689 
690 	ret = i915_gem_object_lock_interruptible(obj);
691 	if (ret)
692 		return ret;
693 
694 	ret = i915_gem_object_wait(obj,
695 				   I915_WAIT_INTERRUPTIBLE,
696 				   MAX_SCHEDULE_TIMEOUT);
697 	if (ret)
698 		goto err_unlock;
699 
700 	ret = i915_gem_object_pin_pages(obj);
701 	if (ret)
702 		goto err_unlock;
703 
704 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
705 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
706 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
707 		if (ret)
708 			goto err_unpin;
709 		else
710 			goto out;
711 	}
712 
713 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
714 
715 	/* If we're not in the cpu read domain, set ourself into the gtt
716 	 * read domain and manually flush cachelines (if required). This
717 	 * optimizes for the case when the gpu will dirty the data
718 	 * anyway again before the next pread happens.
719 	 */
720 	if (!obj->cache_dirty &&
721 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
722 		*needs_clflush = CLFLUSH_BEFORE;
723 
724 out:
725 	/* return with the pages pinned */
726 	return 0;
727 
728 err_unpin:
729 	i915_gem_object_unpin_pages(obj);
730 err_unlock:
731 	i915_gem_object_unlock(obj);
732 	return ret;
733 }
734 
735 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
736 				  unsigned int *needs_clflush)
737 {
738 	int ret;
739 
740 	*needs_clflush = 0;
741 	if (!i915_gem_object_has_struct_page(obj))
742 		return -ENODEV;
743 
744 	ret = i915_gem_object_lock_interruptible(obj);
745 	if (ret)
746 		return ret;
747 
748 	ret = i915_gem_object_wait(obj,
749 				   I915_WAIT_INTERRUPTIBLE |
750 				   I915_WAIT_ALL,
751 				   MAX_SCHEDULE_TIMEOUT);
752 	if (ret)
753 		goto err_unlock;
754 
755 	ret = i915_gem_object_pin_pages(obj);
756 	if (ret)
757 		goto err_unlock;
758 
759 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
760 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
761 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
762 		if (ret)
763 			goto err_unpin;
764 		else
765 			goto out;
766 	}
767 
768 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
769 
770 	/* If we're not in the cpu write domain, set ourself into the
771 	 * gtt write domain and manually flush cachelines (as required).
772 	 * This optimizes for the case when the gpu will use the data
773 	 * right away and we therefore have to clflush anyway.
774 	 */
775 	if (!obj->cache_dirty) {
776 		*needs_clflush |= CLFLUSH_AFTER;
777 
778 		/*
779 		 * Same trick applies to invalidate partially written
780 		 * cachelines read before writing.
781 		 */
782 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
783 			*needs_clflush |= CLFLUSH_BEFORE;
784 	}
785 
786 out:
787 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
788 	obj->mm.dirty = true;
789 	/* return with the pages pinned */
790 	return 0;
791 
792 err_unpin:
793 	i915_gem_object_unpin_pages(obj);
794 err_unlock:
795 	i915_gem_object_unlock(obj);
796 	return ret;
797 }
798