xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_pages.c (revision 0be3ff0c)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <drm/drm_cache.h>
8 
9 #include "i915_drv.h"
10 #include "i915_gem_object.h"
11 #include "i915_scatterlist.h"
12 #include "i915_gem_lmem.h"
13 #include "i915_gem_mman.h"
14 
15 #include "gt/intel_gt.h"
16 
17 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
18 				 struct sg_table *pages,
19 				 unsigned int sg_page_sizes)
20 {
21 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
22 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
23 	bool shrinkable;
24 	int i;
25 
26 	assert_object_held_shared(obj);
27 
28 	if (i915_gem_object_is_volatile(obj))
29 		obj->mm.madv = I915_MADV_DONTNEED;
30 
31 	/* Make the pages coherent with the GPU (flushing any swapin). */
32 	if (obj->cache_dirty) {
33 		WARN_ON_ONCE(IS_DGFX(i915));
34 		obj->write_domain = 0;
35 		if (i915_gem_object_has_struct_page(obj))
36 			drm_clflush_sg(pages);
37 		obj->cache_dirty = false;
38 	}
39 
40 	obj->mm.get_page.sg_pos = pages->sgl;
41 	obj->mm.get_page.sg_idx = 0;
42 	obj->mm.get_dma_page.sg_pos = pages->sgl;
43 	obj->mm.get_dma_page.sg_idx = 0;
44 
45 	obj->mm.pages = pages;
46 
47 	GEM_BUG_ON(!sg_page_sizes);
48 	obj->mm.page_sizes.phys = sg_page_sizes;
49 
50 	/*
51 	 * Calculate the supported page-sizes which fit into the given
52 	 * sg_page_sizes. This will give us the page-sizes which we may be able
53 	 * to use opportunistically when later inserting into the GTT. For
54 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
55 	 * 64K or 4K pages, although in practice this will depend on a number of
56 	 * other factors.
57 	 */
58 	obj->mm.page_sizes.sg = 0;
59 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
60 		if (obj->mm.page_sizes.phys & ~0u << i)
61 			obj->mm.page_sizes.sg |= BIT(i);
62 	}
63 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
64 
65 	shrinkable = i915_gem_object_is_shrinkable(obj);
66 
67 	if (i915_gem_object_is_tiled(obj) &&
68 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
69 		GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
70 		i915_gem_object_set_tiling_quirk(obj);
71 		GEM_BUG_ON(!list_empty(&obj->mm.link));
72 		atomic_inc(&obj->mm.shrink_pin);
73 		shrinkable = false;
74 	}
75 
76 	if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
77 		struct list_head *list;
78 		unsigned long flags;
79 
80 		assert_object_held(obj);
81 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
82 
83 		i915->mm.shrink_count++;
84 		i915->mm.shrink_memory += obj->base.size;
85 
86 		if (obj->mm.madv != I915_MADV_WILLNEED)
87 			list = &i915->mm.purge_list;
88 		else
89 			list = &i915->mm.shrink_list;
90 		list_add_tail(&obj->mm.link, list);
91 
92 		atomic_set(&obj->mm.shrink_pin, 0);
93 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
94 	}
95 }
96 
97 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
98 {
99 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
100 	int err;
101 
102 	assert_object_held_shared(obj);
103 
104 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
105 		drm_dbg(&i915->drm,
106 			"Attempting to obtain a purgeable object\n");
107 		return -EFAULT;
108 	}
109 
110 	err = obj->ops->get_pages(obj);
111 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
112 
113 	return err;
114 }
115 
116 /* Ensure that the associated pages are gathered from the backing storage
117  * and pinned into our object. i915_gem_object_pin_pages() may be called
118  * multiple times before they are released by a single call to
119  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
120  * either as a result of memory pressure (reaping pages under the shrinker)
121  * or as the object is itself released.
122  */
123 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
124 {
125 	int err;
126 
127 	assert_object_held(obj);
128 
129 	assert_object_held_shared(obj);
130 
131 	if (unlikely(!i915_gem_object_has_pages(obj))) {
132 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
133 
134 		err = ____i915_gem_object_get_pages(obj);
135 		if (err)
136 			return err;
137 
138 		smp_mb__before_atomic();
139 	}
140 	atomic_inc(&obj->mm.pages_pin_count);
141 
142 	return 0;
143 }
144 
145 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
146 {
147 	struct i915_gem_ww_ctx ww;
148 	int err;
149 
150 	i915_gem_ww_ctx_init(&ww, true);
151 retry:
152 	err = i915_gem_object_lock(obj, &ww);
153 	if (!err)
154 		err = i915_gem_object_pin_pages(obj);
155 
156 	if (err == -EDEADLK) {
157 		err = i915_gem_ww_ctx_backoff(&ww);
158 		if (!err)
159 			goto retry;
160 	}
161 	i915_gem_ww_ctx_fini(&ww);
162 	return err;
163 }
164 
165 /* Immediately discard the backing storage */
166 int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
167 {
168 	if (obj->ops->truncate)
169 		return obj->ops->truncate(obj);
170 
171 	return 0;
172 }
173 
174 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
175 {
176 	struct radix_tree_iter iter;
177 	void __rcu **slot;
178 
179 	rcu_read_lock();
180 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
181 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
182 	radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
183 		radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
184 	rcu_read_unlock();
185 }
186 
187 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
188 {
189 	if (is_vmalloc_addr(ptr))
190 		vunmap(ptr);
191 }
192 
193 struct sg_table *
194 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
195 {
196 	struct sg_table *pages;
197 
198 	assert_object_held_shared(obj);
199 
200 	pages = fetch_and_zero(&obj->mm.pages);
201 	if (IS_ERR_OR_NULL(pages))
202 		return pages;
203 
204 	if (i915_gem_object_is_volatile(obj))
205 		obj->mm.madv = I915_MADV_WILLNEED;
206 
207 	if (!i915_gem_object_has_self_managed_shrink_list(obj))
208 		i915_gem_object_make_unshrinkable(obj);
209 
210 	if (obj->mm.mapping) {
211 		unmap_object(obj, page_mask_bits(obj->mm.mapping));
212 		obj->mm.mapping = NULL;
213 	}
214 
215 	__i915_gem_object_reset_page_iter(obj);
216 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
217 
218 	if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) {
219 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
220 		intel_wakeref_t wakeref;
221 
222 		with_intel_runtime_pm_if_active(&i915->runtime_pm, wakeref)
223 			intel_gt_invalidate_tlbs(to_gt(i915));
224 	}
225 
226 	return pages;
227 }
228 
229 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
230 {
231 	struct sg_table *pages;
232 
233 	if (i915_gem_object_has_pinned_pages(obj))
234 		return -EBUSY;
235 
236 	/* May be called by shrinker from within get_pages() (on another bo) */
237 	assert_object_held_shared(obj);
238 
239 	i915_gem_object_release_mmap_offset(obj);
240 
241 	/*
242 	 * ->put_pages might need to allocate memory for the bit17 swizzle
243 	 * array, hence protect them from being reaped by removing them from gtt
244 	 * lists early.
245 	 */
246 	pages = __i915_gem_object_unset_pages(obj);
247 
248 	/*
249 	 * XXX Temporary hijinx to avoid updating all backends to handle
250 	 * NULL pages. In the future, when we have more asynchronous
251 	 * get_pages backends we should be better able to handle the
252 	 * cancellation of the async task in a more uniform manner.
253 	 */
254 	if (!IS_ERR_OR_NULL(pages))
255 		obj->ops->put_pages(obj, pages);
256 
257 	return 0;
258 }
259 
260 /* The 'mapping' part of i915_gem_object_pin_map() below */
261 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
262 				      enum i915_map_type type)
263 {
264 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
265 	struct page *stack[32], **pages = stack, *page;
266 	struct sgt_iter iter;
267 	pgprot_t pgprot;
268 	void *vaddr;
269 
270 	switch (type) {
271 	default:
272 		MISSING_CASE(type);
273 		fallthrough;	/* to use PAGE_KERNEL anyway */
274 	case I915_MAP_WB:
275 		/*
276 		 * On 32b, highmem using a finite set of indirect PTE (i.e.
277 		 * vmap) to provide virtual mappings of the high pages.
278 		 * As these are finite, map_new_virtual() must wait for some
279 		 * other kmap() to finish when it runs out. If we map a large
280 		 * number of objects, there is no method for it to tell us
281 		 * to release the mappings, and we deadlock.
282 		 *
283 		 * However, if we make an explicit vmap of the page, that
284 		 * uses a larger vmalloc arena, and also has the ability
285 		 * to tell us to release unwanted mappings. Most importantly,
286 		 * it will fail and propagate an error instead of waiting
287 		 * forever.
288 		 *
289 		 * So if the page is beyond the 32b boundary, make an explicit
290 		 * vmap.
291 		 */
292 		if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
293 			return page_address(sg_page(obj->mm.pages->sgl));
294 		pgprot = PAGE_KERNEL;
295 		break;
296 	case I915_MAP_WC:
297 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
298 		break;
299 	}
300 
301 	if (n_pages > ARRAY_SIZE(stack)) {
302 		/* Too big for stack -- allocate temporary array instead */
303 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
304 		if (!pages)
305 			return ERR_PTR(-ENOMEM);
306 	}
307 
308 	i = 0;
309 	for_each_sgt_page(page, iter, obj->mm.pages)
310 		pages[i++] = page;
311 	vaddr = vmap(pages, n_pages, 0, pgprot);
312 	if (pages != stack)
313 		kvfree(pages);
314 
315 	return vaddr ?: ERR_PTR(-ENOMEM);
316 }
317 
318 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
319 				     enum i915_map_type type)
320 {
321 	resource_size_t iomap = obj->mm.region->iomap.base -
322 		obj->mm.region->region.start;
323 	unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
324 	unsigned long stack[32], *pfns = stack, i;
325 	struct sgt_iter iter;
326 	dma_addr_t addr;
327 	void *vaddr;
328 
329 	GEM_BUG_ON(type != I915_MAP_WC);
330 
331 	if (n_pfn > ARRAY_SIZE(stack)) {
332 		/* Too big for stack -- allocate temporary array instead */
333 		pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
334 		if (!pfns)
335 			return ERR_PTR(-ENOMEM);
336 	}
337 
338 	i = 0;
339 	for_each_sgt_daddr(addr, iter, obj->mm.pages)
340 		pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
341 	vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
342 	if (pfns != stack)
343 		kvfree(pfns);
344 
345 	return vaddr ?: ERR_PTR(-ENOMEM);
346 }
347 
348 /* get, pin, and map the pages of the object into kernel space */
349 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
350 			      enum i915_map_type type)
351 {
352 	enum i915_map_type has_type;
353 	bool pinned;
354 	void *ptr;
355 	int err;
356 
357 	if (!i915_gem_object_has_struct_page(obj) &&
358 	    !i915_gem_object_has_iomem(obj))
359 		return ERR_PTR(-ENXIO);
360 
361 	if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
362 		return ERR_PTR(-EINVAL);
363 
364 	assert_object_held(obj);
365 
366 	pinned = !(type & I915_MAP_OVERRIDE);
367 	type &= ~I915_MAP_OVERRIDE;
368 
369 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
370 		if (unlikely(!i915_gem_object_has_pages(obj))) {
371 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
372 
373 			err = ____i915_gem_object_get_pages(obj);
374 			if (err)
375 				return ERR_PTR(err);
376 
377 			smp_mb__before_atomic();
378 		}
379 		atomic_inc(&obj->mm.pages_pin_count);
380 		pinned = false;
381 	}
382 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
383 
384 	/*
385 	 * For discrete our CPU mappings needs to be consistent in order to
386 	 * function correctly on !x86. When mapping things through TTM, we use
387 	 * the same rules to determine the caching type.
388 	 *
389 	 * The caching rules, starting from DG1:
390 	 *
391 	 *	- If the object can be placed in device local-memory, then the
392 	 *	  pages should be allocated and mapped as write-combined only.
393 	 *
394 	 *	- Everything else is always allocated and mapped as write-back,
395 	 *	  with the guarantee that everything is also coherent with the
396 	 *	  GPU.
397 	 *
398 	 * Internal users of lmem are already expected to get this right, so no
399 	 * fudging needed there.
400 	 */
401 	if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
402 		if (type != I915_MAP_WC && !obj->mm.n_placements) {
403 			ptr = ERR_PTR(-ENODEV);
404 			goto err_unpin;
405 		}
406 
407 		type = I915_MAP_WC;
408 	} else if (IS_DGFX(to_i915(obj->base.dev))) {
409 		type = I915_MAP_WB;
410 	}
411 
412 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
413 	if (ptr && has_type != type) {
414 		if (pinned) {
415 			ptr = ERR_PTR(-EBUSY);
416 			goto err_unpin;
417 		}
418 
419 		unmap_object(obj, ptr);
420 
421 		ptr = obj->mm.mapping = NULL;
422 	}
423 
424 	if (!ptr) {
425 		err = i915_gem_object_wait_moving_fence(obj, true);
426 		if (err) {
427 			ptr = ERR_PTR(err);
428 			goto err_unpin;
429 		}
430 
431 		if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
432 			ptr = ERR_PTR(-ENODEV);
433 		else if (i915_gem_object_has_struct_page(obj))
434 			ptr = i915_gem_object_map_page(obj, type);
435 		else
436 			ptr = i915_gem_object_map_pfn(obj, type);
437 		if (IS_ERR(ptr))
438 			goto err_unpin;
439 
440 		obj->mm.mapping = page_pack_bits(ptr, type);
441 	}
442 
443 	return ptr;
444 
445 err_unpin:
446 	atomic_dec(&obj->mm.pages_pin_count);
447 	return ptr;
448 }
449 
450 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
451 				       enum i915_map_type type)
452 {
453 	void *ret;
454 
455 	i915_gem_object_lock(obj, NULL);
456 	ret = i915_gem_object_pin_map(obj, type);
457 	i915_gem_object_unlock(obj);
458 
459 	return ret;
460 }
461 
462 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
463 				 unsigned long offset,
464 				 unsigned long size)
465 {
466 	enum i915_map_type has_type;
467 	void *ptr;
468 
469 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
470 	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
471 				     offset, size, obj->base.size));
472 
473 	wmb(); /* let all previous writes be visible to coherent partners */
474 	obj->mm.dirty = true;
475 
476 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
477 		return;
478 
479 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
480 	if (has_type == I915_MAP_WC)
481 		return;
482 
483 	drm_clflush_virt_range(ptr + offset, size);
484 	if (size == obj->base.size) {
485 		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
486 		obj->cache_dirty = false;
487 	}
488 }
489 
490 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
491 {
492 	GEM_BUG_ON(!obj->mm.mapping);
493 
494 	/*
495 	 * We allow removing the mapping from underneath pinned pages!
496 	 *
497 	 * Furthermore, since this is an unsafe operation reserved only
498 	 * for construction time manipulation, we ignore locking prudence.
499 	 */
500 	unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
501 
502 	i915_gem_object_unpin_map(obj);
503 }
504 
505 struct scatterlist *
506 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
507 			 struct i915_gem_object_page_iter *iter,
508 			 unsigned int n,
509 			 unsigned int *offset,
510 			 bool dma)
511 {
512 	struct scatterlist *sg;
513 	unsigned int idx, count;
514 
515 	might_sleep();
516 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
517 	if (!i915_gem_object_has_pinned_pages(obj))
518 		assert_object_held(obj);
519 
520 	/* As we iterate forward through the sg, we record each entry in a
521 	 * radixtree for quick repeated (backwards) lookups. If we have seen
522 	 * this index previously, we will have an entry for it.
523 	 *
524 	 * Initial lookup is O(N), but this is amortized to O(1) for
525 	 * sequential page access (where each new request is consecutive
526 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
527 	 * i.e. O(1) with a large constant!
528 	 */
529 	if (n < READ_ONCE(iter->sg_idx))
530 		goto lookup;
531 
532 	mutex_lock(&iter->lock);
533 
534 	/* We prefer to reuse the last sg so that repeated lookup of this
535 	 * (or the subsequent) sg are fast - comparing against the last
536 	 * sg is faster than going through the radixtree.
537 	 */
538 
539 	sg = iter->sg_pos;
540 	idx = iter->sg_idx;
541 	count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
542 
543 	while (idx + count <= n) {
544 		void *entry;
545 		unsigned long i;
546 		int ret;
547 
548 		/* If we cannot allocate and insert this entry, or the
549 		 * individual pages from this range, cancel updating the
550 		 * sg_idx so that on this lookup we are forced to linearly
551 		 * scan onwards, but on future lookups we will try the
552 		 * insertion again (in which case we need to be careful of
553 		 * the error return reporting that we have already inserted
554 		 * this index).
555 		 */
556 		ret = radix_tree_insert(&iter->radix, idx, sg);
557 		if (ret && ret != -EEXIST)
558 			goto scan;
559 
560 		entry = xa_mk_value(idx);
561 		for (i = 1; i < count; i++) {
562 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
563 			if (ret && ret != -EEXIST)
564 				goto scan;
565 		}
566 
567 		idx += count;
568 		sg = ____sg_next(sg);
569 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
570 	}
571 
572 scan:
573 	iter->sg_pos = sg;
574 	iter->sg_idx = idx;
575 
576 	mutex_unlock(&iter->lock);
577 
578 	if (unlikely(n < idx)) /* insertion completed by another thread */
579 		goto lookup;
580 
581 	/* In case we failed to insert the entry into the radixtree, we need
582 	 * to look beyond the current sg.
583 	 */
584 	while (idx + count <= n) {
585 		idx += count;
586 		sg = ____sg_next(sg);
587 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
588 	}
589 
590 	*offset = n - idx;
591 	return sg;
592 
593 lookup:
594 	rcu_read_lock();
595 
596 	sg = radix_tree_lookup(&iter->radix, n);
597 	GEM_BUG_ON(!sg);
598 
599 	/* If this index is in the middle of multi-page sg entry,
600 	 * the radix tree will contain a value entry that points
601 	 * to the start of that range. We will return the pointer to
602 	 * the base page and the offset of this page within the
603 	 * sg entry's range.
604 	 */
605 	*offset = 0;
606 	if (unlikely(xa_is_value(sg))) {
607 		unsigned long base = xa_to_value(sg);
608 
609 		sg = radix_tree_lookup(&iter->radix, base);
610 		GEM_BUG_ON(!sg);
611 
612 		*offset = n - base;
613 	}
614 
615 	rcu_read_unlock();
616 
617 	return sg;
618 }
619 
620 struct page *
621 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
622 {
623 	struct scatterlist *sg;
624 	unsigned int offset;
625 
626 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
627 
628 	sg = i915_gem_object_get_sg(obj, n, &offset);
629 	return nth_page(sg_page(sg), offset);
630 }
631 
632 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
633 struct page *
634 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
635 			       unsigned int n)
636 {
637 	struct page *page;
638 
639 	page = i915_gem_object_get_page(obj, n);
640 	if (!obj->mm.dirty)
641 		set_page_dirty(page);
642 
643 	return page;
644 }
645 
646 dma_addr_t
647 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
648 				    unsigned long n,
649 				    unsigned int *len)
650 {
651 	struct scatterlist *sg;
652 	unsigned int offset;
653 
654 	sg = i915_gem_object_get_sg_dma(obj, n, &offset);
655 
656 	if (len)
657 		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
658 
659 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
660 }
661 
662 dma_addr_t
663 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
664 				unsigned long n)
665 {
666 	return i915_gem_object_get_dma_address_len(obj, n, NULL);
667 }
668