xref: /linux/drivers/gpu/drm/i915/gt/gen8_engine_cs.c (revision 1e525507)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gen8_engine_cs.h"
7 #include "intel_engine_regs.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_lrc.h"
11 #include "intel_ring.h"
12 
13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
14 {
15 	bool vf_flush_wa = false, dc_flush_wa = false;
16 	u32 *cs, flags = 0;
17 	int len;
18 
19 	flags |= PIPE_CONTROL_CS_STALL;
20 
21 	if (mode & EMIT_FLUSH) {
22 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
23 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
24 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
25 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
26 	}
27 
28 	if (mode & EMIT_INVALIDATE) {
29 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
30 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
31 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
32 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
33 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
34 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
35 		flags |= PIPE_CONTROL_QW_WRITE;
36 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
37 
38 		/*
39 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
40 		 * pipe control.
41 		 */
42 		if (GRAPHICS_VER(rq->i915) == 9)
43 			vf_flush_wa = true;
44 
45 		/* WaForGAMHang:kbl */
46 		if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0))
47 			dc_flush_wa = true;
48 	}
49 
50 	len = 6;
51 
52 	if (vf_flush_wa)
53 		len += 6;
54 
55 	if (dc_flush_wa)
56 		len += 12;
57 
58 	cs = intel_ring_begin(rq, len);
59 	if (IS_ERR(cs))
60 		return PTR_ERR(cs);
61 
62 	if (vf_flush_wa)
63 		cs = gen8_emit_pipe_control(cs, 0, 0);
64 
65 	if (dc_flush_wa)
66 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
67 					    0);
68 
69 	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
70 
71 	if (dc_flush_wa)
72 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
73 
74 	intel_ring_advance(rq, cs);
75 
76 	return 0;
77 }
78 
79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
80 {
81 	u32 cmd, *cs;
82 
83 	cs = intel_ring_begin(rq, 4);
84 	if (IS_ERR(cs))
85 		return PTR_ERR(cs);
86 
87 	cmd = MI_FLUSH_DW + 1;
88 
89 	/*
90 	 * We always require a command barrier so that subsequent
91 	 * commands, such as breadcrumb interrupts, are strictly ordered
92 	 * wrt the contents of the write cache being flushed to memory
93 	 * (and thus being coherent from the CPU).
94 	 */
95 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
96 
97 	if (mode & EMIT_INVALIDATE) {
98 		cmd |= MI_INVALIDATE_TLB;
99 		if (rq->engine->class == VIDEO_DECODE_CLASS)
100 			cmd |= MI_INVALIDATE_BSD;
101 	}
102 
103 	*cs++ = cmd;
104 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
105 	*cs++ = 0; /* upper addr */
106 	*cs++ = 0; /* value */
107 	intel_ring_advance(rq, cs);
108 
109 	return 0;
110 }
111 
112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
113 {
114 	if (mode & EMIT_FLUSH) {
115 		u32 *cs;
116 		u32 flags = 0;
117 
118 		flags |= PIPE_CONTROL_CS_STALL;
119 
120 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
121 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
122 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
123 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
124 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
125 		flags |= PIPE_CONTROL_QW_WRITE;
126 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
127 
128 		cs = intel_ring_begin(rq, 6);
129 		if (IS_ERR(cs))
130 			return PTR_ERR(cs);
131 
132 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
133 		intel_ring_advance(rq, cs);
134 	}
135 
136 	if (mode & EMIT_INVALIDATE) {
137 		u32 *cs;
138 		u32 flags = 0;
139 
140 		flags |= PIPE_CONTROL_CS_STALL;
141 
142 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
143 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
144 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
145 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
146 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
147 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
148 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
149 		flags |= PIPE_CONTROL_QW_WRITE;
150 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
151 
152 		cs = intel_ring_begin(rq, 6);
153 		if (IS_ERR(cs))
154 			return PTR_ERR(cs);
155 
156 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
157 		intel_ring_advance(rq, cs);
158 	}
159 
160 	return 0;
161 }
162 
163 static u32 preparser_disable(bool state)
164 {
165 	return MI_ARB_CHECK | 1 << 8 | state;
166 }
167 
168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine)
169 {
170 	switch (engine->id) {
171 	case RCS0:
172 		return GEN12_CCS_AUX_INV;
173 	case BCS0:
174 		return GEN12_BCS0_AUX_INV;
175 	case VCS0:
176 		return GEN12_VD0_AUX_INV;
177 	case VCS2:
178 		return GEN12_VD2_AUX_INV;
179 	case VECS0:
180 		return GEN12_VE0_AUX_INV;
181 	case CCS0:
182 		return GEN12_CCS0_AUX_INV;
183 	default:
184 		return INVALID_MMIO_REG;
185 	}
186 }
187 
188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine)
189 {
190 	i915_reg_t reg = gen12_get_aux_inv_reg(engine);
191 
192 	if (IS_PONTEVECCHIO(engine->i915))
193 		return false;
194 
195 	/*
196 	 * So far platforms supported by i915 having flat ccs do not require
197 	 * AUX invalidation. Check also whether the engine requires it.
198 	 */
199 	return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915);
200 }
201 
202 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs)
203 {
204 	i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine);
205 	u32 gsi_offset = engine->gt->uncore->gsi_offset;
206 
207 	if (!gen12_needs_ccs_aux_inv(engine))
208 		return cs;
209 
210 	*cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN;
211 	*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
212 	*cs++ = AUX_INV;
213 
214 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
215 		MI_SEMAPHORE_REGISTER_POLL |
216 		MI_SEMAPHORE_POLL |
217 		MI_SEMAPHORE_SAD_EQ_SDD;
218 	*cs++ = 0;
219 	*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
220 	*cs++ = 0;
221 	*cs++ = 0;
222 
223 	return cs;
224 }
225 
226 static int mtl_dummy_pipe_control(struct i915_request *rq)
227 {
228 	/* Wa_14016712196 */
229 	if (IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
230 	    IS_DG2(rq->i915)) {
231 		u32 *cs;
232 
233 		/* dummy PIPE_CONTROL + depth flush */
234 		cs = intel_ring_begin(rq, 6);
235 		if (IS_ERR(cs))
236 			return PTR_ERR(cs);
237 		cs = gen12_emit_pipe_control(cs,
238 					     0,
239 					     PIPE_CONTROL_DEPTH_CACHE_FLUSH,
240 					     LRC_PPHWSP_SCRATCH_ADDR);
241 		intel_ring_advance(rq, cs);
242 	}
243 
244 	return 0;
245 }
246 
247 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
248 {
249 	struct intel_engine_cs *engine = rq->engine;
250 
251 	/*
252 	 * On Aux CCS platforms the invalidation of the Aux
253 	 * table requires quiescing memory traffic beforehand
254 	 */
255 	if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) {
256 		u32 bit_group_0 = 0;
257 		u32 bit_group_1 = 0;
258 		int err;
259 		u32 *cs;
260 
261 		err = mtl_dummy_pipe_control(rq);
262 		if (err)
263 			return err;
264 
265 		bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH;
266 
267 		/*
268 		 * When required, in MTL and beyond platforms we
269 		 * need to set the CCS_FLUSH bit in the pipe control
270 		 */
271 		if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70))
272 			bit_group_0 |= PIPE_CONTROL_CCS_FLUSH;
273 
274 		/*
275 		 * L3 fabric flush is needed for AUX CCS invalidation
276 		 * which happens as part of pipe-control so we can
277 		 * ignore PIPE_CONTROL_FLUSH_L3. Also PIPE_CONTROL_FLUSH_L3
278 		 * deals with Protected Memory which is not needed for
279 		 * AUX CCS invalidation and lead to unwanted side effects.
280 		 */
281 		if ((mode & EMIT_FLUSH) &&
282 		    GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70))
283 			bit_group_1 |= PIPE_CONTROL_FLUSH_L3;
284 
285 		bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH;
286 		bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
287 		bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
288 		/* Wa_1409600907:tgl,adl-p */
289 		bit_group_1 |= PIPE_CONTROL_DEPTH_STALL;
290 		bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE;
291 		bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE;
292 
293 		bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX;
294 		bit_group_1 |= PIPE_CONTROL_QW_WRITE;
295 
296 		bit_group_1 |= PIPE_CONTROL_CS_STALL;
297 
298 		if (!HAS_3D_PIPELINE(engine->i915))
299 			bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
300 		else if (engine->class == COMPUTE_CLASS)
301 			bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
302 
303 		cs = intel_ring_begin(rq, 6);
304 		if (IS_ERR(cs))
305 			return PTR_ERR(cs);
306 
307 		cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1,
308 					     LRC_PPHWSP_SCRATCH_ADDR);
309 		intel_ring_advance(rq, cs);
310 	}
311 
312 	if (mode & EMIT_INVALIDATE) {
313 		u32 flags = 0;
314 		u32 *cs, count;
315 		int err;
316 
317 		err = mtl_dummy_pipe_control(rq);
318 		if (err)
319 			return err;
320 
321 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
322 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
323 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
324 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
325 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
326 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
327 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
328 
329 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
330 		flags |= PIPE_CONTROL_QW_WRITE;
331 
332 		flags |= PIPE_CONTROL_CS_STALL;
333 
334 		if (!HAS_3D_PIPELINE(engine->i915))
335 			flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
336 		else if (engine->class == COMPUTE_CLASS)
337 			flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
338 
339 		count = 8;
340 		if (gen12_needs_ccs_aux_inv(rq->engine))
341 			count += 8;
342 
343 		cs = intel_ring_begin(rq, count);
344 		if (IS_ERR(cs))
345 			return PTR_ERR(cs);
346 
347 		/*
348 		 * Prevent the pre-parser from skipping past the TLB
349 		 * invalidate and loading a stale page for the batch
350 		 * buffer / request payload.
351 		 */
352 		*cs++ = preparser_disable(true);
353 
354 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
355 
356 		cs = gen12_emit_aux_table_inv(engine, cs);
357 
358 		*cs++ = preparser_disable(false);
359 		intel_ring_advance(rq, cs);
360 	}
361 
362 	return 0;
363 }
364 
365 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
366 {
367 	u32 cmd = 4;
368 	u32 *cs;
369 
370 	if (mode & EMIT_INVALIDATE) {
371 		cmd += 2;
372 
373 		if (gen12_needs_ccs_aux_inv(rq->engine))
374 			cmd += 8;
375 	}
376 
377 	cs = intel_ring_begin(rq, cmd);
378 	if (IS_ERR(cs))
379 		return PTR_ERR(cs);
380 
381 	if (mode & EMIT_INVALIDATE)
382 		*cs++ = preparser_disable(true);
383 
384 	cmd = MI_FLUSH_DW + 1;
385 
386 	/*
387 	 * We always require a command barrier so that subsequent
388 	 * commands, such as breadcrumb interrupts, are strictly ordered
389 	 * wrt the contents of the write cache being flushed to memory
390 	 * (and thus being coherent from the CPU).
391 	 */
392 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
393 
394 	if (mode & EMIT_INVALIDATE) {
395 		cmd |= MI_INVALIDATE_TLB;
396 		if (rq->engine->class == VIDEO_DECODE_CLASS)
397 			cmd |= MI_INVALIDATE_BSD;
398 
399 		if (gen12_needs_ccs_aux_inv(rq->engine) &&
400 		    rq->engine->class == COPY_ENGINE_CLASS)
401 			cmd |= MI_FLUSH_DW_CCS;
402 	}
403 
404 	*cs++ = cmd;
405 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
406 	*cs++ = 0; /* upper addr */
407 	*cs++ = 0; /* value */
408 
409 	cs = gen12_emit_aux_table_inv(rq->engine, cs);
410 
411 	if (mode & EMIT_INVALIDATE)
412 		*cs++ = preparser_disable(false);
413 
414 	intel_ring_advance(rq, cs);
415 
416 	return 0;
417 }
418 
419 static u32 preempt_address(struct intel_engine_cs *engine)
420 {
421 	return (i915_ggtt_offset(engine->status_page.vma) +
422 		I915_GEM_HWS_PREEMPT_ADDR);
423 }
424 
425 static u32 hwsp_offset(const struct i915_request *rq)
426 {
427 	const struct intel_timeline *tl;
428 
429 	/* Before the request is executed, the timeline is fixed */
430 	tl = rcu_dereference_protected(rq->timeline,
431 				       !i915_request_signaled(rq));
432 
433 	/* See the comment in i915_request_active_seqno(). */
434 	return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
435 }
436 
437 int gen8_emit_init_breadcrumb(struct i915_request *rq)
438 {
439 	u32 *cs;
440 
441 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
442 	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
443 		return 0;
444 
445 	cs = intel_ring_begin(rq, 6);
446 	if (IS_ERR(cs))
447 		return PTR_ERR(cs);
448 
449 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
450 	*cs++ = hwsp_offset(rq);
451 	*cs++ = 0;
452 	*cs++ = rq->fence.seqno - 1;
453 
454 	/*
455 	 * Check if we have been preempted before we even get started.
456 	 *
457 	 * After this point i915_request_started() reports true, even if
458 	 * we get preempted and so are no longer running.
459 	 *
460 	 * i915_request_started() is used during preemption processing
461 	 * to decide if the request is currently inside the user payload
462 	 * or spinning on a kernel semaphore (or earlier). For no-preemption
463 	 * requests, we do allow preemption on the semaphore before the user
464 	 * payload, but do not allow preemption once the request is started.
465 	 *
466 	 * i915_request_started() is similarly used during GPU hangs to
467 	 * determine if the user's payload was guilty, and if so, the
468 	 * request is banned. Before the request is started, it is assumed
469 	 * to be unharmed and an innocent victim of another's hang.
470 	 */
471 	*cs++ = MI_NOOP;
472 	*cs++ = MI_ARB_CHECK;
473 
474 	intel_ring_advance(rq, cs);
475 
476 	/* Record the updated position of the request's payload */
477 	rq->infix = intel_ring_offset(rq, cs);
478 
479 	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
480 
481 	return 0;
482 }
483 
484 static int __xehp_emit_bb_start(struct i915_request *rq,
485 				u64 offset, u32 len,
486 				const unsigned int flags,
487 				u32 arb)
488 {
489 	struct intel_context *ce = rq->context;
490 	u32 wa_offset = lrc_indirect_bb(ce);
491 	u32 *cs;
492 
493 	GEM_BUG_ON(!ce->wa_bb_page);
494 
495 	cs = intel_ring_begin(rq, 12);
496 	if (IS_ERR(cs))
497 		return PTR_ERR(cs);
498 
499 	*cs++ = MI_ARB_ON_OFF | arb;
500 
501 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
502 		MI_SRM_LRM_GLOBAL_GTT |
503 		MI_LRI_LRM_CS_MMIO;
504 	*cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0));
505 	*cs++ = wa_offset + DG2_PREDICATE_RESULT_WA;
506 	*cs++ = 0;
507 
508 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
509 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
510 	*cs++ = lower_32_bits(offset);
511 	*cs++ = upper_32_bits(offset);
512 
513 	/* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */
514 	*cs++ = MI_BATCH_BUFFER_START_GEN8;
515 	*cs++ = wa_offset + DG2_PREDICATE_RESULT_BB;
516 	*cs++ = 0;
517 
518 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
519 
520 	intel_ring_advance(rq, cs);
521 
522 	return 0;
523 }
524 
525 int xehp_emit_bb_start_noarb(struct i915_request *rq,
526 			     u64 offset, u32 len,
527 			     const unsigned int flags)
528 {
529 	return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE);
530 }
531 
532 int xehp_emit_bb_start(struct i915_request *rq,
533 		       u64 offset, u32 len,
534 		       const unsigned int flags)
535 {
536 	return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE);
537 }
538 
539 int gen8_emit_bb_start_noarb(struct i915_request *rq,
540 			     u64 offset, u32 len,
541 			     const unsigned int flags)
542 {
543 	u32 *cs;
544 
545 	cs = intel_ring_begin(rq, 4);
546 	if (IS_ERR(cs))
547 		return PTR_ERR(cs);
548 
549 	/*
550 	 * WaDisableCtxRestoreArbitration:bdw,chv
551 	 *
552 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
553 	 * particular all the gen that do not need the w/a at all!), if we
554 	 * took care to make sure that on every switch into this context
555 	 * (both ordinary and for preemption) that arbitrartion was enabled
556 	 * we would be fine.  However, for gen8 there is another w/a that
557 	 * requires us to not preempt inside GPGPU execution, so we keep
558 	 * arbitration disabled for gen8 batches. Arbitration will be
559 	 * re-enabled before we close the request
560 	 * (engine->emit_fini_breadcrumb).
561 	 */
562 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
563 
564 	/* FIXME(BDW+): Address space and security selectors. */
565 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
566 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
567 	*cs++ = lower_32_bits(offset);
568 	*cs++ = upper_32_bits(offset);
569 
570 	intel_ring_advance(rq, cs);
571 
572 	return 0;
573 }
574 
575 int gen8_emit_bb_start(struct i915_request *rq,
576 		       u64 offset, u32 len,
577 		       const unsigned int flags)
578 {
579 	u32 *cs;
580 
581 	if (unlikely(i915_request_has_nopreempt(rq)))
582 		return gen8_emit_bb_start_noarb(rq, offset, len, flags);
583 
584 	cs = intel_ring_begin(rq, 6);
585 	if (IS_ERR(cs))
586 		return PTR_ERR(cs);
587 
588 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
589 
590 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
591 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
592 	*cs++ = lower_32_bits(offset);
593 	*cs++ = upper_32_bits(offset);
594 
595 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
596 	*cs++ = MI_NOOP;
597 
598 	intel_ring_advance(rq, cs);
599 
600 	return 0;
601 }
602 
603 static void assert_request_valid(struct i915_request *rq)
604 {
605 	struct intel_ring *ring __maybe_unused = rq->ring;
606 
607 	/* Can we unwind this request without appearing to go forwards? */
608 	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
609 }
610 
611 /*
612  * Reserve space for 2 NOOPs at the end of each request to be
613  * used as a workaround for not being allowed to do lite
614  * restore with HEAD==TAIL (WaIdleLiteRestore).
615  */
616 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
617 {
618 	/* Ensure there's always at least one preemption point per-request. */
619 	*cs++ = MI_ARB_CHECK;
620 	*cs++ = MI_NOOP;
621 	rq->wa_tail = intel_ring_offset(rq, cs);
622 
623 	/* Check that entire request is less than half the ring */
624 	assert_request_valid(rq);
625 
626 	return cs;
627 }
628 
629 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
630 {
631 	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
632 	*cs++ = MI_SEMAPHORE_WAIT |
633 		MI_SEMAPHORE_GLOBAL_GTT |
634 		MI_SEMAPHORE_POLL |
635 		MI_SEMAPHORE_SAD_EQ_SDD;
636 	*cs++ = 0;
637 	*cs++ = preempt_address(rq->engine);
638 	*cs++ = 0;
639 	*cs++ = MI_NOOP;
640 
641 	return cs;
642 }
643 
644 static __always_inline u32*
645 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
646 {
647 	*cs++ = MI_USER_INTERRUPT;
648 
649 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
650 	if (intel_engine_has_semaphores(rq->engine) &&
651 	    !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
652 		cs = emit_preempt_busywait(rq, cs);
653 
654 	rq->tail = intel_ring_offset(rq, cs);
655 	assert_ring_tail_valid(rq->ring, rq->tail);
656 
657 	return gen8_emit_wa_tail(rq, cs);
658 }
659 
660 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
661 {
662 	return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
663 }
664 
665 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
666 {
667 	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
668 }
669 
670 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
671 {
672 	cs = gen8_emit_pipe_control(cs,
673 				    PIPE_CONTROL_CS_STALL |
674 				    PIPE_CONTROL_TLB_INVALIDATE |
675 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
676 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
677 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
678 				    0);
679 
680 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
681 	cs = gen8_emit_ggtt_write_rcs(cs,
682 				      rq->fence.seqno,
683 				      hwsp_offset(rq),
684 				      PIPE_CONTROL_FLUSH_ENABLE |
685 				      PIPE_CONTROL_CS_STALL);
686 
687 	return gen8_emit_fini_breadcrumb_tail(rq, cs);
688 }
689 
690 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
691 {
692 	cs = gen8_emit_pipe_control(cs,
693 				    PIPE_CONTROL_CS_STALL |
694 				    PIPE_CONTROL_TLB_INVALIDATE |
695 				    PIPE_CONTROL_TILE_CACHE_FLUSH |
696 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
697 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
698 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
699 				    0);
700 
701 	/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
702 	cs = gen8_emit_ggtt_write_rcs(cs,
703 				      rq->fence.seqno,
704 				      hwsp_offset(rq),
705 				      PIPE_CONTROL_FLUSH_ENABLE |
706 				      PIPE_CONTROL_CS_STALL);
707 
708 	return gen8_emit_fini_breadcrumb_tail(rq, cs);
709 }
710 
711 /*
712  * Note that the CS instruction pre-parser will not stall on the breadcrumb
713  * flush and will continue pre-fetching the instructions after it before the
714  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
715  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
716  * of the next request before the memory has been flushed, we're guaranteed that
717  * we won't access the batch itself too early.
718  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
719  * so, if the current request is modifying an instruction in the next request on
720  * the same intel_context, we might pre-fetch and then execute the pre-update
721  * instruction. To avoid this, the users of self-modifying code should either
722  * disable the parser around the code emitting the memory writes, via a new flag
723  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
724  * the in-kernel use-cases we've opted to use a separate context, see
725  * reloc_gpu() as an example.
726  * All the above applies only to the instructions themselves. Non-inline data
727  * used by the instructions is not pre-fetched.
728  */
729 
730 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
731 {
732 	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
733 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
734 		MI_SEMAPHORE_GLOBAL_GTT |
735 		MI_SEMAPHORE_POLL |
736 		MI_SEMAPHORE_SAD_EQ_SDD;
737 	*cs++ = 0;
738 	*cs++ = preempt_address(rq->engine);
739 	*cs++ = 0;
740 	*cs++ = 0;
741 
742 	return cs;
743 }
744 
745 /* Wa_14014475959:dg2 */
746 #define CCS_SEMAPHORE_PPHWSP_OFFSET	0x540
747 static u32 ccs_semaphore_offset(struct i915_request *rq)
748 {
749 	return i915_ggtt_offset(rq->context->state) +
750 		(LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET;
751 }
752 
753 /* Wa_14014475959:dg2 */
754 static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs)
755 {
756 	int i;
757 
758 	*cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL |
759 		MI_ATOMIC_MOVE;
760 	*cs++ = ccs_semaphore_offset(rq);
761 	*cs++ = 0;
762 	*cs++ = 1;
763 
764 	/*
765 	 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP)
766 	 * to align. 4 DWs above + 8 filler DWs here.
767 	 */
768 	for (i = 0; i < 8; ++i)
769 		*cs++ = 0;
770 
771 	*cs++ = MI_SEMAPHORE_WAIT |
772 		MI_SEMAPHORE_GLOBAL_GTT |
773 		MI_SEMAPHORE_POLL |
774 		MI_SEMAPHORE_SAD_EQ_SDD;
775 	*cs++ = 0;
776 	*cs++ = ccs_semaphore_offset(rq);
777 	*cs++ = 0;
778 
779 	return cs;
780 }
781 
782 static __always_inline u32*
783 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
784 {
785 	*cs++ = MI_USER_INTERRUPT;
786 
787 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
788 	if (intel_engine_has_semaphores(rq->engine) &&
789 	    !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
790 		cs = gen12_emit_preempt_busywait(rq, cs);
791 
792 	/* Wa_14014475959:dg2 */
793 	if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine))
794 		cs = ccs_emit_wa_busywait(rq, cs);
795 
796 	rq->tail = intel_ring_offset(rq, cs);
797 	assert_ring_tail_valid(rq->ring, rq->tail);
798 
799 	return gen8_emit_wa_tail(rq, cs);
800 }
801 
802 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
803 {
804 	/* XXX Stalling flush before seqno write; post-sync not */
805 	cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
806 	return gen12_emit_fini_breadcrumb_tail(rq, cs);
807 }
808 
809 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
810 {
811 	struct drm_i915_private *i915 = rq->i915;
812 	struct intel_gt *gt = rq->engine->gt;
813 	u32 flags = (PIPE_CONTROL_CS_STALL |
814 		     PIPE_CONTROL_TLB_INVALIDATE |
815 		     PIPE_CONTROL_TILE_CACHE_FLUSH |
816 		     PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
817 		     PIPE_CONTROL_DEPTH_CACHE_FLUSH |
818 		     PIPE_CONTROL_DC_FLUSH_ENABLE |
819 		     PIPE_CONTROL_FLUSH_ENABLE);
820 
821 	if (GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70))
822 		flags |= PIPE_CONTROL_FLUSH_L3;
823 
824 	/* Wa_14016712196 */
825 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
826 		/* dummy PIPE_CONTROL + depth flush */
827 		cs = gen12_emit_pipe_control(cs, 0,
828 					     PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0);
829 
830 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
831 		/* Wa_1409600907 */
832 		flags |= PIPE_CONTROL_DEPTH_STALL;
833 
834 	if (!HAS_3D_PIPELINE(rq->i915))
835 		flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
836 	else if (rq->engine->class == COMPUTE_CLASS)
837 		flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
838 
839 	cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0);
840 
841 	/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
842 	cs = gen12_emit_ggtt_write_rcs(cs,
843 				       rq->fence.seqno,
844 				       hwsp_offset(rq),
845 				       0,
846 				       PIPE_CONTROL_FLUSH_ENABLE |
847 				       PIPE_CONTROL_CS_STALL);
848 
849 	return gen12_emit_fini_breadcrumb_tail(rq, cs);
850 }
851