xref: /linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision e91c37f1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	(2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 			       GRAPHICS_VER(gt->i915), cxt_size * 64,
321 			       cxt_size - 1);
322 			return round_up(cxt_size * 64, PAGE_SIZE);
323 		case 3:
324 		case 2:
325 		/* For the special day when i810 gets merged. */
326 		case 1:
327 			return 0;
328 		}
329 		break;
330 	default:
331 		MISSING_CASE(class);
332 		fallthrough;
333 	case VIDEO_DECODE_CLASS:
334 	case VIDEO_ENHANCEMENT_CLASS:
335 	case COPY_ENGINE_CLASS:
336 	case OTHER_CLASS:
337 		if (GRAPHICS_VER(gt->i915) < 8)
338 			return 0;
339 		return GEN8_LR_CONTEXT_OTHER_SIZE;
340 	}
341 }
342 
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 			      const struct engine_mmio_base *bases)
345 {
346 	int i;
347 
348 	for (i = 0; i < MAX_MMIO_BASES; i++)
349 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 			break;
351 
352 	GEM_BUG_ON(i == MAX_MMIO_BASES);
353 	GEM_BUG_ON(!bases[i].base);
354 
355 	return bases[i].base;
356 }
357 
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 	/*
361 	 * Before we know what the uABI name for this engine will be,
362 	 * we still would like to keep track of this engine in the debug logs.
363 	 * We throw in a ' here as a reminder that this isn't its final name.
364 	 */
365 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 			     intel_engine_class_repr(engine->class),
367 			     engine->instance) >= sizeof(engine->name));
368 }
369 
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 	/*
373 	 * Though they added more rings on g4x/ilk, they did not add
374 	 * per-engine HWSTAM until gen6.
375 	 */
376 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 		return;
378 
379 	if (GRAPHICS_VER(engine->i915) >= 3)
380 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 	else
382 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384 
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 	/* Mask off all writes into the unknown HWSP */
388 	intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390 
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 	GEM_DEBUG_WARN_ON(iir);
394 }
395 
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 	u32 reset_domain;
399 
400 	if (ver >= 11) {
401 		static const u32 engine_reset_domains[] = {
402 			[RCS0]  = GEN11_GRDOM_RENDER,
403 			[BCS0]  = GEN11_GRDOM_BLT,
404 			[BCS1]  = XEHPC_GRDOM_BLT1,
405 			[BCS2]  = XEHPC_GRDOM_BLT2,
406 			[BCS3]  = XEHPC_GRDOM_BLT3,
407 			[BCS4]  = XEHPC_GRDOM_BLT4,
408 			[BCS5]  = XEHPC_GRDOM_BLT5,
409 			[BCS6]  = XEHPC_GRDOM_BLT6,
410 			[BCS7]  = XEHPC_GRDOM_BLT7,
411 			[BCS8]  = XEHPC_GRDOM_BLT8,
412 			[VCS0]  = GEN11_GRDOM_MEDIA,
413 			[VCS1]  = GEN11_GRDOM_MEDIA2,
414 			[VCS2]  = GEN11_GRDOM_MEDIA3,
415 			[VCS3]  = GEN11_GRDOM_MEDIA4,
416 			[VCS4]  = GEN11_GRDOM_MEDIA5,
417 			[VCS5]  = GEN11_GRDOM_MEDIA6,
418 			[VCS6]  = GEN11_GRDOM_MEDIA7,
419 			[VCS7]  = GEN11_GRDOM_MEDIA8,
420 			[VECS0] = GEN11_GRDOM_VECS,
421 			[VECS1] = GEN11_GRDOM_VECS2,
422 			[VECS2] = GEN11_GRDOM_VECS3,
423 			[VECS3] = GEN11_GRDOM_VECS4,
424 			[CCS0]  = GEN11_GRDOM_RENDER,
425 			[CCS1]  = GEN11_GRDOM_RENDER,
426 			[CCS2]  = GEN11_GRDOM_RENDER,
427 			[CCS3]  = GEN11_GRDOM_RENDER,
428 			[GSC0]  = GEN12_GRDOM_GSC,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	} else {
434 		static const u32 engine_reset_domains[] = {
435 			[RCS0]  = GEN6_GRDOM_RENDER,
436 			[BCS0]  = GEN6_GRDOM_BLT,
437 			[VCS0]  = GEN6_GRDOM_MEDIA,
438 			[VCS1]  = GEN8_GRDOM_MEDIA2,
439 			[VECS0] = GEN6_GRDOM_VECS,
440 		};
441 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 			   !engine_reset_domains[id]);
443 		reset_domain = engine_reset_domains[id];
444 	}
445 
446 	return reset_domain;
447 }
448 
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 			      u8 logical_instance)
451 {
452 	const struct engine_info *info = &intel_engines[id];
453 	struct drm_i915_private *i915 = gt->i915;
454 	struct intel_engine_cs *engine;
455 	u8 guc_class;
456 
457 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461 
462 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 		return -EINVAL;
464 
465 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 		return -EINVAL;
467 
468 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 		return -EINVAL;
470 
471 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 		return -EINVAL;
473 
474 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 	if (!engine)
476 		return -ENOMEM;
477 
478 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479 
480 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 	engine->id = id;
482 	engine->legacy_idx = INVALID_ENGINE;
483 	engine->mask = BIT(id);
484 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 						id);
486 	engine->i915 = i915;
487 	engine->gt = gt;
488 	engine->uncore = gt->uncore;
489 	guc_class = engine_class_to_guc_class(info->class);
490 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492 
493 	engine->irq_handler = nop_irq_handler;
494 
495 	engine->class = info->class;
496 	engine->instance = info->instance;
497 	engine->logical_mask = BIT(logical_instance);
498 	__sprint_engine_name(engine);
499 
500 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 	     engine->class == RENDER_CLASS)
503 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504 
505 	/* features common between engines sharing EUs */
506 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509 	}
510 
511 	engine->props.heartbeat_interval_ms =
512 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 	engine->props.max_busywait_duration_ns =
514 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 	engine->props.preempt_timeout_ms =
516 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 	engine->props.stop_timeout_ms =
518 		CONFIG_DRM_I915_STOP_TIMEOUT;
519 	engine->props.timeslice_duration_ms =
520 		CONFIG_DRM_I915_TIMESLICE_DURATION;
521 
522 	/*
523 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 	 * some compute workloads run quite long threads. That means they get
525 	 * reset due to not pre-empting in a timely manner. So, bump the
526 	 * pre-emption timeout value to be much higher for compute engines.
527 	 */
528 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530 
531 	/* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533 	do { \
534 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 		if (clamp != engine->props.field) { \
536 			drm_notice(&engine->i915->drm, \
537 				   "Warning, clamping %s to %lld to prevent overflow\n", \
538 				   #field, clamp); \
539 			engine->props.field = clamp; \
540 		} \
541 	} while (0)
542 
543 	CLAMP_PROP(heartbeat_interval_ms);
544 	CLAMP_PROP(max_busywait_duration_ns);
545 	CLAMP_PROP(preempt_timeout_ms);
546 	CLAMP_PROP(stop_timeout_ms);
547 	CLAMP_PROP(timeslice_duration_ms);
548 
549 #undef CLAMP_PROP
550 
551 	engine->defaults = engine->props; /* never to change again */
552 
553 	engine->context_size = intel_engine_context_size(gt, engine->class);
554 	if (WARN_ON(engine->context_size > BIT(20)))
555 		engine->context_size = 0;
556 	if (engine->context_size)
557 		DRIVER_CAPS(i915)->has_logical_contexts = true;
558 
559 	ewma__engine_latency_init(&engine->latency);
560 
561 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562 
563 	/* Scrub mmio state on takeover */
564 	intel_engine_sanitize_mmio(engine);
565 
566 	gt->engine_class[info->class][info->instance] = engine;
567 	gt->engine[id] = engine;
568 
569 	return 0;
570 }
571 
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 {
574 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575 
576 	return value;
577 }
578 
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 {
581 	value = min(value, jiffies_to_nsecs(2));
582 
583 	return value;
584 }
585 
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587 {
588 	/*
589 	 * NB: The GuC API only supports 32bit values. However, the limit is further
590 	 * reduced due to internal calculations which would otherwise overflow.
591 	 */
592 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
593 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594 
595 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596 
597 	return value;
598 }
599 
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 {
602 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603 
604 	return value;
605 }
606 
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608 {
609 	/*
610 	 * NB: The GuC API only supports 32bit values. However, the limit is further
611 	 * reduced due to internal calculations which would otherwise overflow.
612 	 */
613 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
614 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615 
616 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617 
618 	return value;
619 }
620 
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 {
623 	struct drm_i915_private *i915 = engine->i915;
624 
625 	if (engine->class == VIDEO_DECODE_CLASS) {
626 		/*
627 		 * HEVC support is present on first engine instance
628 		 * before Gen11 and on all instances afterwards.
629 		 */
630 		if (GRAPHICS_VER(i915) >= 11 ||
631 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632 			engine->uabi_capabilities |=
633 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
634 
635 		/*
636 		 * SFC block is present only on even logical engine
637 		 * instances.
638 		 */
639 		if ((GRAPHICS_VER(i915) >= 11 &&
640 		     (engine->gt->info.vdbox_sfc_access &
641 		      BIT(engine->instance))) ||
642 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643 			engine->uabi_capabilities |=
644 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646 		if (GRAPHICS_VER(i915) >= 9 &&
647 		    engine->gt->info.sfc_mask & BIT(engine->instance))
648 			engine->uabi_capabilities |=
649 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650 	}
651 }
652 
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 {
655 	struct intel_engine_cs *engine;
656 	enum intel_engine_id id;
657 
658 	for_each_engine(engine, gt, id)
659 		__setup_engine_capabilities(engine);
660 }
661 
662 /**
663  * intel_engines_release() - free the resources allocated for Command Streamers
664  * @gt: pointer to struct intel_gt
665  */
666 void intel_engines_release(struct intel_gt *gt)
667 {
668 	struct intel_engine_cs *engine;
669 	enum intel_engine_id id;
670 
671 	/*
672 	 * Before we release the resources held by engine, we must be certain
673 	 * that the HW is no longer accessing them -- having the GPU scribble
674 	 * to or read from a page being used for something else causes no end
675 	 * of fun.
676 	 *
677 	 * The GPU should be reset by this point, but assume the worst just
678 	 * in case we aborted before completely initialising the engines.
679 	 */
680 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682 		__intel_gt_reset(gt, ALL_ENGINES);
683 
684 	/* Decouple the backend; but keep the layout for late GPU resets */
685 	for_each_engine(engine, gt, id) {
686 		if (!engine->release)
687 			continue;
688 
689 		intel_wakeref_wait_for_idle(&engine->wakeref);
690 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691 
692 		engine->release(engine);
693 		engine->release = NULL;
694 
695 		memset(&engine->reset, 0, sizeof(engine->reset));
696 	}
697 }
698 
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 {
701 	if (!engine->request_pool)
702 		return;
703 
704 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
705 }
706 
707 void intel_engines_free(struct intel_gt *gt)
708 {
709 	struct intel_engine_cs *engine;
710 	enum intel_engine_id id;
711 
712 	/* Free the requests! dma-resv keeps fences around for an eternity */
713 	rcu_barrier();
714 
715 	for_each_engine(engine, gt, id) {
716 		intel_engine_free_request_pool(engine);
717 		kfree(engine);
718 		gt->engine[id] = NULL;
719 	}
720 }
721 
722 static
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724 			 unsigned int physical_vdbox,
725 			 unsigned int logical_vdbox, u16 vdbox_mask)
726 {
727 	struct drm_i915_private *i915 = gt->i915;
728 
729 	/*
730 	 * In Gen11, only even numbered logical VDBOXes are hooked
731 	 * up to an SFC (Scaler & Format Converter) unit.
732 	 * In Gen12, Even numbered physical instance always are connected
733 	 * to an SFC. Odd numbered physical instances have SFC only if
734 	 * previous even instance is fused off.
735 	 *
736 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737 	 * in the fuse register that tells us whether a specific SFC is present.
738 	 */
739 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740 		return false;
741 	else if (MEDIA_VER(i915) >= 12)
742 		return (physical_vdbox % 2 == 0) ||
743 			!(BIT(physical_vdbox - 1) & vdbox_mask);
744 	else if (MEDIA_VER(i915) == 11)
745 		return logical_vdbox % 2 == 0;
746 
747 	return false;
748 }
749 
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 {
752 	struct drm_i915_private *i915 = gt->i915;
753 	unsigned int logical_vdbox = 0;
754 	unsigned int i;
755 	u32 media_fuse, fuse1;
756 	u16 vdbox_mask;
757 	u16 vebox_mask;
758 
759 	if (MEDIA_VER(gt->i915) < 11)
760 		return;
761 
762 	/*
763 	 * On newer platforms the fusing register is called 'enable' and has
764 	 * enable semantics, while on older platforms it is called 'disable'
765 	 * and bits have disable semantices.
766 	 */
767 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769 		media_fuse = ~media_fuse;
770 
771 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
774 
775 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778 	} else {
779 		gt->info.sfc_mask = ~0;
780 	}
781 
782 	for (i = 0; i < I915_MAX_VCS; i++) {
783 		if (!HAS_ENGINE(gt, _VCS(i))) {
784 			vdbox_mask &= ~BIT(i);
785 			continue;
786 		}
787 
788 		if (!(BIT(i) & vdbox_mask)) {
789 			gt->info.engine_mask &= ~BIT(_VCS(i));
790 			gt_dbg(gt, "vcs%u fused off\n", i);
791 			continue;
792 		}
793 
794 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795 			gt->info.vdbox_sfc_access |= BIT(i);
796 		logical_vdbox++;
797 	}
798 	gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800 
801 	for (i = 0; i < I915_MAX_VECS; i++) {
802 		if (!HAS_ENGINE(gt, _VECS(i))) {
803 			vebox_mask &= ~BIT(i);
804 			continue;
805 		}
806 
807 		if (!(BIT(i) & vebox_mask)) {
808 			gt->info.engine_mask &= ~BIT(_VECS(i));
809 			gt_dbg(gt, "vecs%u fused off\n", i);
810 		}
811 	}
812 	gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814 }
815 
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 {
818 	struct drm_i915_private *i915 = gt->i915;
819 	struct intel_gt_info *info = &gt->info;
820 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821 	unsigned long ccs_mask;
822 	unsigned int i;
823 
824 	if (GRAPHICS_VER(i915) < 11)
825 		return;
826 
827 	if (hweight32(CCS_MASK(gt)) <= 1)
828 		return;
829 
830 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
831 						     ss_per_ccs);
832 	/*
833 	 * If all DSS in a quadrant are fused off, the corresponding CCS
834 	 * engine is not available for use.
835 	 */
836 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837 		info->engine_mask &= ~BIT(_CCS(i));
838 		gt_dbg(gt, "ccs%u fused off\n", i);
839 	}
840 }
841 
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843 {
844 	struct drm_i915_private *i915 = gt->i915;
845 	struct intel_gt_info *info = &gt->info;
846 	unsigned long meml3_mask;
847 	unsigned long quad;
848 
849 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851 		return;
852 
853 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855 
856 	/*
857 	 * Link Copy engines may be fused off according to meml3_mask. Each
858 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859 	 */
860 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861 		unsigned int instance = quad * 2 + 1;
862 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863 						   _BCS(instance));
864 
865 		if (mask & info->engine_mask) {
866 			gt_dbg(gt, "bcs%u fused off\n", instance);
867 			gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868 
869 			info->engine_mask &= ~mask;
870 		}
871 	}
872 }
873 
874 /*
875  * Determine which engines are fused off in our particular hardware.
876  * Note that we have a catch-22 situation where we need to be able to access
877  * the blitter forcewake domain to read the engine fuses, but at the same time
878  * we need to know which engines are available on the system to know which
879  * forcewake domains are present. We solve this by intializing the forcewake
880  * domains based on the full engine mask in the platform capabilities before
881  * calling this function and pruning the domains for fused-off engines
882  * afterwards.
883  */
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885 {
886 	struct intel_gt_info *info = &gt->info;
887 
888 	GEM_BUG_ON(!info->engine_mask);
889 
890 	engine_mask_apply_media_fuses(gt);
891 	engine_mask_apply_compute_fuses(gt);
892 	engine_mask_apply_copy_fuses(gt);
893 
894 	/*
895 	 * The only use of the GSC CS is to load and communicate with the GSC
896 	 * FW, so we have no use for it if we don't have the FW.
897 	 *
898 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
899 	 * catch-22 situation that breaks media C6 due to 2 requirements:
900 	 * 1) once turned on, the GSC power well will not go to sleep unless the
901 	 *    GSC FW is loaded.
902 	 * 2) to enable idling (which is required for media C6) we need to
903 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
904 	 *    submission, which will wake up the GSC power well.
905 	 */
906 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
907 		gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908 		info->engine_mask &= ~BIT(GSC0);
909 	}
910 
911 	return info->engine_mask;
912 }
913 
914 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
915 				 u8 class, const u8 *map, u8 num_instances)
916 {
917 	int i, j;
918 	u8 current_logical_id = 0;
919 
920 	for (j = 0; j < num_instances; ++j) {
921 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
922 			if (!HAS_ENGINE(gt, i) ||
923 			    intel_engines[i].class != class)
924 				continue;
925 
926 			if (intel_engines[i].instance == map[j]) {
927 				logical_ids[intel_engines[i].instance] =
928 					current_logical_id++;
929 				break;
930 			}
931 		}
932 	}
933 }
934 
935 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
936 {
937 	/*
938 	 * Logical to physical mapping is needed for proper support
939 	 * to split-frame feature.
940 	 */
941 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
942 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
943 
944 		populate_logical_ids(gt, logical_ids, class,
945 				     map, ARRAY_SIZE(map));
946 	} else {
947 		int i;
948 		u8 map[MAX_ENGINE_INSTANCE + 1];
949 
950 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
951 			map[i] = i;
952 		populate_logical_ids(gt, logical_ids, class,
953 				     map, ARRAY_SIZE(map));
954 	}
955 }
956 
957 /**
958  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
959  * @gt: pointer to struct intel_gt
960  *
961  * Return: non-zero if the initialization failed.
962  */
963 int intel_engines_init_mmio(struct intel_gt *gt)
964 {
965 	struct drm_i915_private *i915 = gt->i915;
966 	const unsigned int engine_mask = init_engine_mask(gt);
967 	unsigned int mask = 0;
968 	unsigned int i, class;
969 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
970 	int err;
971 
972 	drm_WARN_ON(&i915->drm, engine_mask == 0);
973 	drm_WARN_ON(&i915->drm, engine_mask &
974 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
975 
976 	if (i915_inject_probe_failure(i915))
977 		return -ENODEV;
978 
979 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
980 		setup_logical_ids(gt, logical_ids, class);
981 
982 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
983 			u8 instance = intel_engines[i].instance;
984 
985 			if (intel_engines[i].class != class ||
986 			    !HAS_ENGINE(gt, i))
987 				continue;
988 
989 			err = intel_engine_setup(gt, i,
990 						 logical_ids[instance]);
991 			if (err)
992 				goto cleanup;
993 
994 			mask |= BIT(i);
995 		}
996 	}
997 
998 	/*
999 	 * Catch failures to update intel_engines table when the new engines
1000 	 * are added to the driver by a warning and disabling the forgotten
1001 	 * engines.
1002 	 */
1003 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1004 		gt->info.engine_mask = mask;
1005 
1006 	gt->info.num_engines = hweight32(mask);
1007 
1008 	intel_gt_check_and_clear_faults(gt);
1009 
1010 	intel_setup_engine_capabilities(gt);
1011 
1012 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1013 
1014 	return 0;
1015 
1016 cleanup:
1017 	intel_engines_free(gt);
1018 	return err;
1019 }
1020 
1021 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1022 {
1023 	struct intel_engine_execlists * const execlists = &engine->execlists;
1024 
1025 	execlists->port_mask = 1;
1026 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1027 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1028 
1029 	memset(execlists->pending, 0, sizeof(execlists->pending));
1030 	execlists->active =
1031 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1032 }
1033 
1034 static void cleanup_status_page(struct intel_engine_cs *engine)
1035 {
1036 	struct i915_vma *vma;
1037 
1038 	/* Prevent writes into HWSP after returning the page to the system */
1039 	intel_engine_set_hwsp_writemask(engine, ~0u);
1040 
1041 	vma = fetch_and_zero(&engine->status_page.vma);
1042 	if (!vma)
1043 		return;
1044 
1045 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1046 		i915_vma_unpin(vma);
1047 
1048 	i915_gem_object_unpin_map(vma->obj);
1049 	i915_gem_object_put(vma->obj);
1050 }
1051 
1052 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1053 				struct i915_gem_ww_ctx *ww,
1054 				struct i915_vma *vma)
1055 {
1056 	unsigned int flags;
1057 
1058 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1059 		/*
1060 		 * On g33, we cannot place HWS above 256MiB, so
1061 		 * restrict its pinning to the low mappable arena.
1062 		 * Though this restriction is not documented for
1063 		 * gen4, gen5, or byt, they also behave similarly
1064 		 * and hang if the HWS is placed at the top of the
1065 		 * GTT. To generalise, it appears that all !llc
1066 		 * platforms have issues with us placing the HWS
1067 		 * above the mappable region (even though we never
1068 		 * actually map it).
1069 		 */
1070 		flags = PIN_MAPPABLE;
1071 	else
1072 		flags = PIN_HIGH;
1073 
1074 	return i915_ggtt_pin(vma, ww, 0, flags);
1075 }
1076 
1077 static int init_status_page(struct intel_engine_cs *engine)
1078 {
1079 	struct drm_i915_gem_object *obj;
1080 	struct i915_gem_ww_ctx ww;
1081 	struct i915_vma *vma;
1082 	void *vaddr;
1083 	int ret;
1084 
1085 	INIT_LIST_HEAD(&engine->status_page.timelines);
1086 
1087 	/*
1088 	 * Though the HWS register does support 36bit addresses, historically
1089 	 * we have had hangs and corruption reported due to wild writes if
1090 	 * the HWS is placed above 4G. We only allow objects to be allocated
1091 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1092 	 * access to more than 4G.
1093 	 */
1094 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1095 	if (IS_ERR(obj)) {
1096 		gt_err(engine->gt, "Failed to allocate status page\n");
1097 		return PTR_ERR(obj);
1098 	}
1099 
1100 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1101 
1102 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1103 	if (IS_ERR(vma)) {
1104 		ret = PTR_ERR(vma);
1105 		goto err_put;
1106 	}
1107 
1108 	i915_gem_ww_ctx_init(&ww, true);
1109 retry:
1110 	ret = i915_gem_object_lock(obj, &ww);
1111 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1112 		ret = pin_ggtt_status_page(engine, &ww, vma);
1113 	if (ret)
1114 		goto err;
1115 
1116 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1117 	if (IS_ERR(vaddr)) {
1118 		ret = PTR_ERR(vaddr);
1119 		goto err_unpin;
1120 	}
1121 
1122 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1123 	engine->status_page.vma = vma;
1124 
1125 err_unpin:
1126 	if (ret)
1127 		i915_vma_unpin(vma);
1128 err:
1129 	if (ret == -EDEADLK) {
1130 		ret = i915_gem_ww_ctx_backoff(&ww);
1131 		if (!ret)
1132 			goto retry;
1133 	}
1134 	i915_gem_ww_ctx_fini(&ww);
1135 err_put:
1136 	if (ret)
1137 		i915_gem_object_put(obj);
1138 	return ret;
1139 }
1140 
1141 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1142 {
1143 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1144 		[RENDER_CLASS].reg		= GEN8_RTCR,
1145 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1146 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1147 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1148 	};
1149 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1150 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1151 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1152 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1153 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1154 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1155 	};
1156 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1157 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1158 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1159 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1160 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1161 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1162 	};
1163 	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1164 		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1165 		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1166 		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1167 	};
1168 	struct drm_i915_private *i915 = engine->i915;
1169 	const unsigned int instance = engine->instance;
1170 	const unsigned int class = engine->class;
1171 	const union intel_engine_tlb_inv_reg *regs;
1172 	union intel_engine_tlb_inv_reg reg;
1173 	unsigned int num = 0;
1174 	u32 val;
1175 
1176 	/*
1177 	 * New platforms should not be added with catch-all-newer (>=)
1178 	 * condition so that any later platform added triggers the below warning
1179 	 * and in turn mandates a human cross-check of whether the invalidation
1180 	 * flows have compatible semantics.
1181 	 *
1182 	 * For instance with the 11.00 -> 12.00 transition three out of five
1183 	 * respective engine registers were moved to masked type. Then after the
1184 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1185 	 */
1186 
1187 	if (engine->gt->type == GT_MEDIA) {
1188 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1189 			regs = xelpmp_regs;
1190 			num = ARRAY_SIZE(xelpmp_regs);
1191 		}
1192 	} else {
1193 		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1194 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1195 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1196 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1197 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1198 			regs = xehp_regs;
1199 			num = ARRAY_SIZE(xehp_regs);
1200 		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1201 			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1202 			regs = gen12_regs;
1203 			num = ARRAY_SIZE(gen12_regs);
1204 		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1205 			regs = gen8_regs;
1206 			num = ARRAY_SIZE(gen8_regs);
1207 		} else if (GRAPHICS_VER(i915) < 8) {
1208 			return 0;
1209 		}
1210 	}
1211 
1212 	if (gt_WARN_ONCE(engine->gt, !num,
1213 			 "Platform does not implement TLB invalidation!"))
1214 		return -ENODEV;
1215 
1216 	if (gt_WARN_ON_ONCE(engine->gt,
1217 			    class >= num ||
1218 			    (!regs[class].reg.reg &&
1219 			     !regs[class].mcr_reg.reg)))
1220 		return -ERANGE;
1221 
1222 	reg = regs[class];
1223 
1224 	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1225 		/*
1226 		 * There's only a single GSC instance, but it uses register bit
1227 		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1228 		 */
1229 		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1230 		val = 1;
1231 	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1232 		reg.reg = GEN8_M2TCR;
1233 		val = 0;
1234 	} else {
1235 		val = instance;
1236 	}
1237 
1238 	val = BIT(val);
1239 
1240 	engine->tlb_inv.mcr = regs == xehp_regs;
1241 	engine->tlb_inv.reg = reg;
1242 	engine->tlb_inv.done = val;
1243 
1244 	if (GRAPHICS_VER(i915) >= 12 &&
1245 	    (engine->class == VIDEO_DECODE_CLASS ||
1246 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1247 	     engine->class == COMPUTE_CLASS ||
1248 	     engine->class == OTHER_CLASS))
1249 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1250 	else
1251 		engine->tlb_inv.request = val;
1252 
1253 	return 0;
1254 }
1255 
1256 static int engine_setup_common(struct intel_engine_cs *engine)
1257 {
1258 	int err;
1259 
1260 	init_llist_head(&engine->barrier_tasks);
1261 
1262 	err = intel_engine_init_tlb_invalidation(engine);
1263 	if (err)
1264 		return err;
1265 
1266 	err = init_status_page(engine);
1267 	if (err)
1268 		return err;
1269 
1270 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1271 	if (!engine->breadcrumbs) {
1272 		err = -ENOMEM;
1273 		goto err_status;
1274 	}
1275 
1276 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1277 	if (!engine->sched_engine) {
1278 		err = -ENOMEM;
1279 		goto err_sched_engine;
1280 	}
1281 	engine->sched_engine->private_data = engine;
1282 
1283 	err = intel_engine_init_cmd_parser(engine);
1284 	if (err)
1285 		goto err_cmd_parser;
1286 
1287 	intel_engine_init_execlists(engine);
1288 	intel_engine_init__pm(engine);
1289 	intel_engine_init_retire(engine);
1290 
1291 	/* Use the whole device by default */
1292 	engine->sseu =
1293 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1294 
1295 	intel_engine_init_workarounds(engine);
1296 	intel_engine_init_whitelist(engine);
1297 	intel_engine_init_ctx_wa(engine);
1298 
1299 	if (GRAPHICS_VER(engine->i915) >= 12)
1300 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1301 
1302 	return 0;
1303 
1304 err_cmd_parser:
1305 	i915_sched_engine_put(engine->sched_engine);
1306 err_sched_engine:
1307 	intel_breadcrumbs_put(engine->breadcrumbs);
1308 err_status:
1309 	cleanup_status_page(engine);
1310 	return err;
1311 }
1312 
1313 struct measure_breadcrumb {
1314 	struct i915_request rq;
1315 	struct intel_ring ring;
1316 	u32 cs[2048];
1317 };
1318 
1319 static int measure_breadcrumb_dw(struct intel_context *ce)
1320 {
1321 	struct intel_engine_cs *engine = ce->engine;
1322 	struct measure_breadcrumb *frame;
1323 	int dw;
1324 
1325 	GEM_BUG_ON(!engine->gt->scratch);
1326 
1327 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1328 	if (!frame)
1329 		return -ENOMEM;
1330 
1331 	frame->rq.i915 = engine->i915;
1332 	frame->rq.engine = engine;
1333 	frame->rq.context = ce;
1334 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1335 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1336 
1337 	frame->ring.vaddr = frame->cs;
1338 	frame->ring.size = sizeof(frame->cs);
1339 	frame->ring.wrap =
1340 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1341 	frame->ring.effective_size = frame->ring.size;
1342 	intel_ring_update_space(&frame->ring);
1343 	frame->rq.ring = &frame->ring;
1344 
1345 	mutex_lock(&ce->timeline->mutex);
1346 	spin_lock_irq(&engine->sched_engine->lock);
1347 
1348 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1349 
1350 	spin_unlock_irq(&engine->sched_engine->lock);
1351 	mutex_unlock(&ce->timeline->mutex);
1352 
1353 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1354 
1355 	kfree(frame);
1356 	return dw;
1357 }
1358 
1359 struct intel_context *
1360 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1361 				   struct i915_address_space *vm,
1362 				   unsigned int ring_size,
1363 				   unsigned int hwsp,
1364 				   struct lock_class_key *key,
1365 				   const char *name)
1366 {
1367 	struct intel_context *ce;
1368 	int err;
1369 
1370 	ce = intel_context_create(engine);
1371 	if (IS_ERR(ce))
1372 		return ce;
1373 
1374 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1375 	ce->timeline = page_pack_bits(NULL, hwsp);
1376 	ce->ring = NULL;
1377 	ce->ring_size = ring_size;
1378 
1379 	i915_vm_put(ce->vm);
1380 	ce->vm = i915_vm_get(vm);
1381 
1382 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1383 	if (err) {
1384 		intel_context_put(ce);
1385 		return ERR_PTR(err);
1386 	}
1387 
1388 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1389 
1390 	/*
1391 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1392 	 * so that we can use them from within the normal user timelines
1393 	 * should we need to inject GPU operations during their request
1394 	 * construction.
1395 	 */
1396 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1397 
1398 	return ce;
1399 }
1400 
1401 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1402 {
1403 	struct intel_engine_cs *engine = ce->engine;
1404 	struct i915_vma *hwsp = engine->status_page.vma;
1405 
1406 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1407 
1408 	mutex_lock(&hwsp->vm->mutex);
1409 	list_del(&ce->timeline->engine_link);
1410 	mutex_unlock(&hwsp->vm->mutex);
1411 
1412 	list_del(&ce->pinned_contexts_link);
1413 	intel_context_unpin(ce);
1414 	intel_context_put(ce);
1415 }
1416 
1417 static struct intel_context *
1418 create_ggtt_bind_context(struct intel_engine_cs *engine)
1419 {
1420 	static struct lock_class_key kernel;
1421 
1422 	/*
1423 	 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1424 	 * bind requets at a time so get a bigger ring.
1425 	 */
1426 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1427 						  I915_GEM_HWS_GGTT_BIND_ADDR,
1428 						  &kernel, "ggtt_bind_context");
1429 }
1430 
1431 static struct intel_context *
1432 create_kernel_context(struct intel_engine_cs *engine)
1433 {
1434 	static struct lock_class_key kernel;
1435 
1436 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1437 						  I915_GEM_HWS_SEQNO_ADDR,
1438 						  &kernel, "kernel_context");
1439 }
1440 
1441 /*
1442  * engine_init_common - initialize engine state which might require hw access
1443  * @engine: Engine to initialize.
1444  *
1445  * Initializes @engine@ structure members shared between legacy and execlists
1446  * submission modes which do require hardware access.
1447  *
1448  * Typcally done at later stages of submission mode specific engine setup.
1449  *
1450  * Returns zero on success or an error code on failure.
1451  */
1452 static int engine_init_common(struct intel_engine_cs *engine)
1453 {
1454 	struct intel_context *ce, *bce = NULL;
1455 	int ret;
1456 
1457 	engine->set_default_submission(engine);
1458 
1459 	/*
1460 	 * We may need to do things with the shrinker which
1461 	 * require us to immediately switch back to the default
1462 	 * context. This can cause a problem as pinning the
1463 	 * default context also requires GTT space which may not
1464 	 * be available. To avoid this we always pin the default
1465 	 * context.
1466 	 */
1467 	ce = create_kernel_context(engine);
1468 	if (IS_ERR(ce))
1469 		return PTR_ERR(ce);
1470 	/*
1471 	 * Create a separate pinned context for GGTT update with blitter engine
1472 	 * if a platform require such service. MI_UPDATE_GTT works on other
1473 	 * engines as well but BCS should be less busy engine so pick that for
1474 	 * GGTT updates.
1475 	 */
1476 	if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1477 		bce = create_ggtt_bind_context(engine);
1478 		if (IS_ERR(bce)) {
1479 			ret = PTR_ERR(bce);
1480 			goto err_ce_context;
1481 		}
1482 	}
1483 
1484 	ret = measure_breadcrumb_dw(ce);
1485 	if (ret < 0)
1486 		goto err_bce_context;
1487 
1488 	engine->emit_fini_breadcrumb_dw = ret;
1489 	engine->kernel_context = ce;
1490 	engine->bind_context = bce;
1491 
1492 	return 0;
1493 
1494 err_bce_context:
1495 	if (bce)
1496 		intel_engine_destroy_pinned_context(bce);
1497 err_ce_context:
1498 	intel_engine_destroy_pinned_context(ce);
1499 	return ret;
1500 }
1501 
1502 int intel_engines_init(struct intel_gt *gt)
1503 {
1504 	int (*setup)(struct intel_engine_cs *engine);
1505 	struct intel_engine_cs *engine;
1506 	enum intel_engine_id id;
1507 	int err;
1508 
1509 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1510 		gt->submission_method = INTEL_SUBMISSION_GUC;
1511 		setup = intel_guc_submission_setup;
1512 	} else if (HAS_EXECLISTS(gt->i915)) {
1513 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1514 		setup = intel_execlists_submission_setup;
1515 	} else {
1516 		gt->submission_method = INTEL_SUBMISSION_RING;
1517 		setup = intel_ring_submission_setup;
1518 	}
1519 
1520 	for_each_engine(engine, gt, id) {
1521 		err = engine_setup_common(engine);
1522 		if (err)
1523 			return err;
1524 
1525 		err = setup(engine);
1526 		if (err) {
1527 			intel_engine_cleanup_common(engine);
1528 			return err;
1529 		}
1530 
1531 		/* The backend should now be responsible for cleanup */
1532 		GEM_BUG_ON(engine->release == NULL);
1533 
1534 		err = engine_init_common(engine);
1535 		if (err)
1536 			return err;
1537 
1538 		intel_engine_add_user(engine);
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /**
1545  * intel_engine_cleanup_common - cleans up the engine state created by
1546  *                                the common initiailizers.
1547  * @engine: Engine to cleanup.
1548  *
1549  * This cleans up everything created by the common helpers.
1550  */
1551 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1552 {
1553 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1554 
1555 	i915_sched_engine_put(engine->sched_engine);
1556 	intel_breadcrumbs_put(engine->breadcrumbs);
1557 
1558 	intel_engine_fini_retire(engine);
1559 	intel_engine_cleanup_cmd_parser(engine);
1560 
1561 	if (engine->default_state)
1562 		fput(engine->default_state);
1563 
1564 	if (engine->kernel_context)
1565 		intel_engine_destroy_pinned_context(engine->kernel_context);
1566 
1567 	if (engine->bind_context)
1568 		intel_engine_destroy_pinned_context(engine->bind_context);
1569 
1570 
1571 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1572 	cleanup_status_page(engine);
1573 
1574 	intel_wa_list_free(&engine->ctx_wa_list);
1575 	intel_wa_list_free(&engine->wa_list);
1576 	intel_wa_list_free(&engine->whitelist);
1577 }
1578 
1579 /**
1580  * intel_engine_resume - re-initializes the HW state of the engine
1581  * @engine: Engine to resume.
1582  *
1583  * Returns zero on success or an error code on failure.
1584  */
1585 int intel_engine_resume(struct intel_engine_cs *engine)
1586 {
1587 	intel_engine_apply_workarounds(engine);
1588 	intel_engine_apply_whitelist(engine);
1589 
1590 	return engine->resume(engine);
1591 }
1592 
1593 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1594 {
1595 	struct drm_i915_private *i915 = engine->i915;
1596 
1597 	u64 acthd;
1598 
1599 	if (GRAPHICS_VER(i915) >= 8)
1600 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1601 	else if (GRAPHICS_VER(i915) >= 4)
1602 		acthd = ENGINE_READ(engine, RING_ACTHD);
1603 	else
1604 		acthd = ENGINE_READ(engine, ACTHD);
1605 
1606 	return acthd;
1607 }
1608 
1609 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1610 {
1611 	u64 bbaddr;
1612 
1613 	if (GRAPHICS_VER(engine->i915) >= 8)
1614 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1615 	else
1616 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1617 
1618 	return bbaddr;
1619 }
1620 
1621 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1622 {
1623 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1624 		return 0;
1625 
1626 	/*
1627 	 * If we are doing a normal GPU reset, we can take our time and allow
1628 	 * the engine to quiesce. We've stopped submission to the engine, and
1629 	 * if we wait long enough an innocent context should complete and
1630 	 * leave the engine idle. So they should not be caught unaware by
1631 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1632 	 */
1633 	return READ_ONCE(engine->props.stop_timeout_ms);
1634 }
1635 
1636 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1637 				  int fast_timeout_us,
1638 				  int slow_timeout_ms)
1639 {
1640 	struct intel_uncore *uncore = engine->uncore;
1641 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1642 	int err;
1643 
1644 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1645 
1646 	/*
1647 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1648 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1649 	 */
1650 	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1651 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1652 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1653 
1654 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1655 					   MODE_IDLE, MODE_IDLE,
1656 					   fast_timeout_us,
1657 					   slow_timeout_ms,
1658 					   NULL);
1659 
1660 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1661 	intel_uncore_posting_read_fw(uncore, mode);
1662 	return err;
1663 }
1664 
1665 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1666 {
1667 	int err = 0;
1668 
1669 	if (GRAPHICS_VER(engine->i915) < 3)
1670 		return -ENODEV;
1671 
1672 	ENGINE_TRACE(engine, "\n");
1673 	/*
1674 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1675 	 * especially with gem_eio tests.
1676 	 *
1677 	 * Occasionally trying to stop the cs times out, but does not adversely
1678 	 * affect functionality. The timeout is set as a config parameter that
1679 	 * defaults to 100ms. In most cases the follow up operation is to wait
1680 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1681 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1682 	 * caused, the caller must check and handle the return from this
1683 	 * function.
1684 	 */
1685 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1686 		ENGINE_TRACE(engine,
1687 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1688 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1689 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1690 
1691 		/*
1692 		 * Sometimes we observe that the idle flag is not
1693 		 * set even though the ring is empty. So double
1694 		 * check before giving up.
1695 		 */
1696 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1697 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1698 			err = -ETIMEDOUT;
1699 	}
1700 
1701 	return err;
1702 }
1703 
1704 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1705 {
1706 	ENGINE_TRACE(engine, "\n");
1707 
1708 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1709 }
1710 
1711 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1712 {
1713 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1714 		[RCS0] = MSG_IDLE_CS,
1715 		[BCS0] = MSG_IDLE_BCS,
1716 		[VCS0] = MSG_IDLE_VCS0,
1717 		[VCS1] = MSG_IDLE_VCS1,
1718 		[VCS2] = MSG_IDLE_VCS2,
1719 		[VCS3] = MSG_IDLE_VCS3,
1720 		[VCS4] = MSG_IDLE_VCS4,
1721 		[VCS5] = MSG_IDLE_VCS5,
1722 		[VCS6] = MSG_IDLE_VCS6,
1723 		[VCS7] = MSG_IDLE_VCS7,
1724 		[VECS0] = MSG_IDLE_VECS0,
1725 		[VECS1] = MSG_IDLE_VECS1,
1726 		[VECS2] = MSG_IDLE_VECS2,
1727 		[VECS3] = MSG_IDLE_VECS3,
1728 		[CCS0] = MSG_IDLE_CS,
1729 		[CCS1] = MSG_IDLE_CS,
1730 		[CCS2] = MSG_IDLE_CS,
1731 		[CCS3] = MSG_IDLE_CS,
1732 	};
1733 	u32 val;
1734 
1735 	if (!_reg[engine->id].reg)
1736 		return 0;
1737 
1738 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1739 
1740 	/* bits[29:25] & bits[13:9] >> shift */
1741 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1742 }
1743 
1744 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1745 {
1746 	int ret;
1747 
1748 	/* Ensure GPM receives fw up/down after CS is stopped */
1749 	udelay(1);
1750 
1751 	/* Wait for forcewake request to complete in GPM */
1752 	ret =  __intel_wait_for_register_fw(gt->uncore,
1753 					    GEN9_PWRGT_DOMAIN_STATUS,
1754 					    fw_mask, fw_mask, 5000, 0, NULL);
1755 
1756 	/* Ensure CS receives fw ack from GPM */
1757 	udelay(1);
1758 
1759 	if (ret)
1760 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1761 }
1762 
1763 /*
1764  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1765  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1766  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1767  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1768  * are concerned only with the gt reset here, we use a logical OR of pending
1769  * forcewakeups from all reset domains and then wait for them to complete by
1770  * querying PWRGT_DOMAIN_STATUS.
1771  */
1772 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1773 {
1774 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1775 
1776 	if (fw_pending)
1777 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1778 }
1779 
1780 /* NB: please notice the memset */
1781 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1782 			       struct intel_instdone *instdone)
1783 {
1784 	struct drm_i915_private *i915 = engine->i915;
1785 	struct intel_uncore *uncore = engine->uncore;
1786 	u32 mmio_base = engine->mmio_base;
1787 	int slice;
1788 	int subslice;
1789 	int iter;
1790 
1791 	memset(instdone, 0, sizeof(*instdone));
1792 
1793 	if (GRAPHICS_VER(i915) >= 8) {
1794 		instdone->instdone =
1795 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1796 
1797 		if (engine->id != RCS0)
1798 			return;
1799 
1800 		instdone->slice_common =
1801 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1802 		if (GRAPHICS_VER(i915) >= 12) {
1803 			instdone->slice_common_extra[0] =
1804 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1805 			instdone->slice_common_extra[1] =
1806 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1807 		}
1808 
1809 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1810 			instdone->sampler[slice][subslice] =
1811 				intel_gt_mcr_read(engine->gt,
1812 						  GEN8_SAMPLER_INSTDONE,
1813 						  slice, subslice);
1814 			instdone->row[slice][subslice] =
1815 				intel_gt_mcr_read(engine->gt,
1816 						  GEN8_ROW_INSTDONE,
1817 						  slice, subslice);
1818 		}
1819 
1820 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1821 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1822 				instdone->geom_svg[slice][subslice] =
1823 					intel_gt_mcr_read(engine->gt,
1824 							  XEHPG_INSTDONE_GEOM_SVG,
1825 							  slice, subslice);
1826 		}
1827 	} else if (GRAPHICS_VER(i915) >= 7) {
1828 		instdone->instdone =
1829 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1830 
1831 		if (engine->id != RCS0)
1832 			return;
1833 
1834 		instdone->slice_common =
1835 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1836 		instdone->sampler[0][0] =
1837 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1838 		instdone->row[0][0] =
1839 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1840 	} else if (GRAPHICS_VER(i915) >= 4) {
1841 		instdone->instdone =
1842 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1843 		if (engine->id == RCS0)
1844 			/* HACK: Using the wrong struct member */
1845 			instdone->slice_common =
1846 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1847 	} else {
1848 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1849 	}
1850 }
1851 
1852 static bool ring_is_idle(struct intel_engine_cs *engine)
1853 {
1854 	bool idle = true;
1855 
1856 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1857 		return true;
1858 
1859 	if (!intel_engine_pm_get_if_awake(engine))
1860 		return true;
1861 
1862 	/* First check that no commands are left in the ring */
1863 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1864 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1865 		idle = false;
1866 
1867 	/* No bit for gen2, so assume the CS parser is idle */
1868 	if (GRAPHICS_VER(engine->i915) > 2 &&
1869 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1870 		idle = false;
1871 
1872 	intel_engine_pm_put(engine);
1873 
1874 	return idle;
1875 }
1876 
1877 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1878 {
1879 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1880 
1881 	if (!t->callback)
1882 		return;
1883 
1884 	local_bh_disable();
1885 	if (tasklet_trylock(t)) {
1886 		/* Must wait for any GPU reset in progress. */
1887 		if (__tasklet_is_enabled(t))
1888 			t->callback(t);
1889 		tasklet_unlock(t);
1890 	}
1891 	local_bh_enable();
1892 
1893 	/* Synchronise and wait for the tasklet on another CPU */
1894 	if (sync)
1895 		tasklet_unlock_wait(t);
1896 }
1897 
1898 /**
1899  * intel_engine_is_idle() - Report if the engine has finished process all work
1900  * @engine: the intel_engine_cs
1901  *
1902  * Return true if there are no requests pending, nothing left to be submitted
1903  * to hardware, and that the engine is idle.
1904  */
1905 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1906 {
1907 	/* More white lies, if wedged, hw state is inconsistent */
1908 	if (intel_gt_is_wedged(engine->gt))
1909 		return true;
1910 
1911 	if (!intel_engine_pm_is_awake(engine))
1912 		return true;
1913 
1914 	/* Waiting to drain ELSP? */
1915 	intel_synchronize_hardirq(engine->i915);
1916 	intel_engine_flush_submission(engine);
1917 
1918 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1919 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1920 		return false;
1921 
1922 	/* Ring stopped? */
1923 	return ring_is_idle(engine);
1924 }
1925 
1926 bool intel_engines_are_idle(struct intel_gt *gt)
1927 {
1928 	struct intel_engine_cs *engine;
1929 	enum intel_engine_id id;
1930 
1931 	/*
1932 	 * If the driver is wedged, HW state may be very inconsistent and
1933 	 * report that it is still busy, even though we have stopped using it.
1934 	 */
1935 	if (intel_gt_is_wedged(gt))
1936 		return true;
1937 
1938 	/* Already parked (and passed an idleness test); must still be idle */
1939 	if (!READ_ONCE(gt->awake))
1940 		return true;
1941 
1942 	for_each_engine(engine, gt, id) {
1943 		if (!intel_engine_is_idle(engine))
1944 			return false;
1945 	}
1946 
1947 	return true;
1948 }
1949 
1950 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1951 {
1952 	if (!engine->irq_enable)
1953 		return false;
1954 
1955 	/* Caller disables interrupts */
1956 	spin_lock(engine->gt->irq_lock);
1957 	engine->irq_enable(engine);
1958 	spin_unlock(engine->gt->irq_lock);
1959 
1960 	return true;
1961 }
1962 
1963 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1964 {
1965 	if (!engine->irq_disable)
1966 		return;
1967 
1968 	/* Caller disables interrupts */
1969 	spin_lock(engine->gt->irq_lock);
1970 	engine->irq_disable(engine);
1971 	spin_unlock(engine->gt->irq_lock);
1972 }
1973 
1974 void intel_engines_reset_default_submission(struct intel_gt *gt)
1975 {
1976 	struct intel_engine_cs *engine;
1977 	enum intel_engine_id id;
1978 
1979 	for_each_engine(engine, gt, id) {
1980 		if (engine->sanitize)
1981 			engine->sanitize(engine);
1982 
1983 		engine->set_default_submission(engine);
1984 	}
1985 }
1986 
1987 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1988 {
1989 	switch (GRAPHICS_VER(engine->i915)) {
1990 	case 2:
1991 		return false; /* uses physical not virtual addresses */
1992 	case 3:
1993 		/* maybe only uses physical not virtual addresses */
1994 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1995 	case 4:
1996 		return !IS_I965G(engine->i915); /* who knows! */
1997 	case 6:
1998 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1999 	default:
2000 		return true;
2001 	}
2002 }
2003 
2004 static struct intel_timeline *get_timeline(struct i915_request *rq)
2005 {
2006 	struct intel_timeline *tl;
2007 
2008 	/*
2009 	 * Even though we are holding the engine->sched_engine->lock here, there
2010 	 * is no control over the submission queue per-se and we are
2011 	 * inspecting the active state at a random point in time, with an
2012 	 * unknown queue. Play safe and make sure the timeline remains valid.
2013 	 * (Only being used for pretty printing, one extra kref shouldn't
2014 	 * cause a camel stampede!)
2015 	 */
2016 	rcu_read_lock();
2017 	tl = rcu_dereference(rq->timeline);
2018 	if (!kref_get_unless_zero(&tl->kref))
2019 		tl = NULL;
2020 	rcu_read_unlock();
2021 
2022 	return tl;
2023 }
2024 
2025 static int print_ring(char *buf, int sz, struct i915_request *rq)
2026 {
2027 	int len = 0;
2028 
2029 	if (!i915_request_signaled(rq)) {
2030 		struct intel_timeline *tl = get_timeline(rq);
2031 
2032 		len = scnprintf(buf, sz,
2033 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2034 				i915_ggtt_offset(rq->ring->vma),
2035 				tl ? tl->hwsp_offset : 0,
2036 				hwsp_seqno(rq),
2037 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2038 						      1000 * 1000));
2039 
2040 		if (tl)
2041 			intel_timeline_put(tl);
2042 	}
2043 
2044 	return len;
2045 }
2046 
2047 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2048 {
2049 	const size_t rowsize = 8 * sizeof(u32);
2050 	const void *prev = NULL;
2051 	bool skip = false;
2052 	size_t pos;
2053 
2054 	for (pos = 0; pos < len; pos += rowsize) {
2055 		char line[128];
2056 
2057 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2058 			if (!skip) {
2059 				drm_printf(m, "*\n");
2060 				skip = true;
2061 			}
2062 			continue;
2063 		}
2064 
2065 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2066 						rowsize, sizeof(u32),
2067 						line, sizeof(line),
2068 						false) >= sizeof(line));
2069 		drm_printf(m, "[%04zx] %s\n", pos, line);
2070 
2071 		prev = buf + pos;
2072 		skip = false;
2073 	}
2074 }
2075 
2076 static const char *repr_timer(const struct timer_list *t)
2077 {
2078 	if (!READ_ONCE(t->expires))
2079 		return "inactive";
2080 
2081 	if (timer_pending(t))
2082 		return "active";
2083 
2084 	return "expired";
2085 }
2086 
2087 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2088 					 struct drm_printer *m)
2089 {
2090 	struct drm_i915_private *i915 = engine->i915;
2091 	struct intel_engine_execlists * const execlists = &engine->execlists;
2092 	u64 addr;
2093 
2094 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2095 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2096 	if (HAS_EXECLISTS(i915)) {
2097 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2098 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2099 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2100 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2101 	}
2102 	drm_printf(m, "\tRING_START: 0x%08x\n",
2103 		   ENGINE_READ(engine, RING_START));
2104 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2105 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2106 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2107 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2108 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2109 		   ENGINE_READ(engine, RING_CTL),
2110 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2111 	if (GRAPHICS_VER(engine->i915) > 2) {
2112 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2113 			   ENGINE_READ(engine, RING_MI_MODE),
2114 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2115 	}
2116 
2117 	if (GRAPHICS_VER(i915) >= 6) {
2118 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2119 			   ENGINE_READ(engine, RING_IMR));
2120 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2121 			   ENGINE_READ(engine, RING_ESR));
2122 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2123 			   ENGINE_READ(engine, RING_EMR));
2124 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2125 			   ENGINE_READ(engine, RING_EIR));
2126 	}
2127 
2128 	addr = intel_engine_get_active_head(engine);
2129 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2130 		   upper_32_bits(addr), lower_32_bits(addr));
2131 	addr = intel_engine_get_last_batch_head(engine);
2132 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2133 		   upper_32_bits(addr), lower_32_bits(addr));
2134 	if (GRAPHICS_VER(i915) >= 8)
2135 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2136 	else if (GRAPHICS_VER(i915) >= 4)
2137 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2138 	else
2139 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2140 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2141 		   upper_32_bits(addr), lower_32_bits(addr));
2142 	if (GRAPHICS_VER(i915) >= 4) {
2143 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2144 			   ENGINE_READ(engine, RING_IPEIR));
2145 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2146 			   ENGINE_READ(engine, RING_IPEHR));
2147 	} else {
2148 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2149 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2150 	}
2151 
2152 	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2153 		struct i915_request * const *port, *rq;
2154 		const u32 *hws =
2155 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2156 		const u8 num_entries = execlists->csb_size;
2157 		unsigned int idx;
2158 		u8 read, write;
2159 
2160 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2161 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2162 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2163 			   repr_timer(&engine->execlists.preempt),
2164 			   repr_timer(&engine->execlists.timer));
2165 
2166 		read = execlists->csb_head;
2167 		write = READ_ONCE(*execlists->csb_write);
2168 
2169 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2170 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2171 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2172 			   read, write, num_entries);
2173 
2174 		if (read >= num_entries)
2175 			read = 0;
2176 		if (write >= num_entries)
2177 			write = 0;
2178 		if (read > write)
2179 			write += num_entries;
2180 		while (read < write) {
2181 			idx = ++read % num_entries;
2182 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2183 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2184 		}
2185 
2186 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2187 		rcu_read_lock();
2188 		for (port = execlists->active; (rq = *port); port++) {
2189 			char hdr[160];
2190 			int len;
2191 
2192 			len = scnprintf(hdr, sizeof(hdr),
2193 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2194 					(int)(port - execlists->active),
2195 					rq->context->lrc.ccid,
2196 					intel_context_is_closed(rq->context) ? "!" : "",
2197 					intel_context_is_banned(rq->context) ? "*" : "");
2198 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2199 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2200 			i915_request_show(m, rq, hdr, 0);
2201 		}
2202 		for (port = execlists->pending; (rq = *port); port++) {
2203 			char hdr[160];
2204 			int len;
2205 
2206 			len = scnprintf(hdr, sizeof(hdr),
2207 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2208 					(int)(port - execlists->pending),
2209 					rq->context->lrc.ccid,
2210 					intel_context_is_closed(rq->context) ? "!" : "",
2211 					intel_context_is_banned(rq->context) ? "*" : "");
2212 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2213 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2214 			i915_request_show(m, rq, hdr, 0);
2215 		}
2216 		rcu_read_unlock();
2217 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2218 	} else if (GRAPHICS_VER(i915) > 6) {
2219 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2220 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2221 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2222 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2223 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2224 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2225 	}
2226 }
2227 
2228 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2229 {
2230 	struct i915_vma_resource *vma_res = rq->batch_res;
2231 	void *ring;
2232 	int size;
2233 
2234 	drm_printf(m,
2235 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2236 		   rq->head, rq->postfix, rq->tail,
2237 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2238 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2239 
2240 	size = rq->tail - rq->head;
2241 	if (rq->tail < rq->head)
2242 		size += rq->ring->size;
2243 
2244 	ring = kmalloc(size, GFP_ATOMIC);
2245 	if (ring) {
2246 		const void *vaddr = rq->ring->vaddr;
2247 		unsigned int head = rq->head;
2248 		unsigned int len = 0;
2249 
2250 		if (rq->tail < head) {
2251 			len = rq->ring->size - head;
2252 			memcpy(ring, vaddr + head, len);
2253 			head = 0;
2254 		}
2255 		memcpy(ring + len, vaddr + head, size - len);
2256 
2257 		hexdump(m, ring, size);
2258 		kfree(ring);
2259 	}
2260 }
2261 
2262 static unsigned long read_ul(void *p, size_t x)
2263 {
2264 	return *(unsigned long *)(p + x);
2265 }
2266 
2267 static void print_properties(struct intel_engine_cs *engine,
2268 			     struct drm_printer *m)
2269 {
2270 	static const struct pmap {
2271 		size_t offset;
2272 		const char *name;
2273 	} props[] = {
2274 #define P(x) { \
2275 	.offset = offsetof(typeof(engine->props), x), \
2276 	.name = #x \
2277 }
2278 		P(heartbeat_interval_ms),
2279 		P(max_busywait_duration_ns),
2280 		P(preempt_timeout_ms),
2281 		P(stop_timeout_ms),
2282 		P(timeslice_duration_ms),
2283 
2284 		{},
2285 #undef P
2286 	};
2287 	const struct pmap *p;
2288 
2289 	drm_printf(m, "\tProperties:\n");
2290 	for (p = props; p->name; p++)
2291 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2292 			   p->name,
2293 			   read_ul(&engine->props, p->offset),
2294 			   read_ul(&engine->defaults, p->offset));
2295 }
2296 
2297 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2298 {
2299 	struct intel_timeline *tl = get_timeline(rq);
2300 
2301 	i915_request_show(m, rq, msg, 0);
2302 
2303 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2304 		   i915_ggtt_offset(rq->ring->vma));
2305 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2306 		   rq->ring->head);
2307 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2308 		   rq->ring->tail);
2309 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2310 		   rq->ring->emit);
2311 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2312 		   rq->ring->space);
2313 
2314 	if (tl) {
2315 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2316 			   tl->hwsp_offset);
2317 		intel_timeline_put(tl);
2318 	}
2319 
2320 	print_request_ring(m, rq);
2321 
2322 	if (rq->context->lrc_reg_state) {
2323 		drm_printf(m, "Logical Ring Context:\n");
2324 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2325 	}
2326 }
2327 
2328 void intel_engine_dump_active_requests(struct list_head *requests,
2329 				       struct i915_request *hung_rq,
2330 				       struct drm_printer *m)
2331 {
2332 	struct i915_request *rq;
2333 	const char *msg;
2334 	enum i915_request_state state;
2335 
2336 	list_for_each_entry(rq, requests, sched.link) {
2337 		if (rq == hung_rq)
2338 			continue;
2339 
2340 		state = i915_test_request_state(rq);
2341 		if (state < I915_REQUEST_QUEUED)
2342 			continue;
2343 
2344 		if (state == I915_REQUEST_ACTIVE)
2345 			msg = "\t\tactive on engine";
2346 		else
2347 			msg = "\t\tactive in queue";
2348 
2349 		engine_dump_request(rq, m, msg);
2350 	}
2351 }
2352 
2353 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2354 					struct drm_printer *m)
2355 {
2356 	struct intel_context *hung_ce = NULL;
2357 	struct i915_request *hung_rq = NULL;
2358 
2359 	/*
2360 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2361 	 * The GPU is still running so requests are still executing and any
2362 	 * hardware reads will be out of date by the time they are reported.
2363 	 * But the intention here is just to report an instantaneous snapshot
2364 	 * so that's fine.
2365 	 */
2366 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2367 
2368 	drm_printf(m, "\tRequests:\n");
2369 
2370 	if (hung_rq)
2371 		engine_dump_request(hung_rq, m, "\t\thung");
2372 	else if (hung_ce)
2373 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2374 
2375 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2376 		intel_guc_dump_active_requests(engine, hung_rq, m);
2377 	else
2378 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2379 
2380 	if (hung_rq)
2381 		i915_request_put(hung_rq);
2382 }
2383 
2384 void intel_engine_dump(struct intel_engine_cs *engine,
2385 		       struct drm_printer *m,
2386 		       const char *header, ...)
2387 {
2388 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2389 	struct i915_request *rq;
2390 	intel_wakeref_t wakeref;
2391 	ktime_t dummy;
2392 
2393 	if (header) {
2394 		va_list ap;
2395 
2396 		va_start(ap, header);
2397 		drm_vprintf(m, header, &ap);
2398 		va_end(ap);
2399 	}
2400 
2401 	if (intel_gt_is_wedged(engine->gt))
2402 		drm_printf(m, "*** WEDGED ***\n");
2403 
2404 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2405 	drm_printf(m, "\tBarriers?: %s\n",
2406 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2407 	drm_printf(m, "\tLatency: %luus\n",
2408 		   ewma__engine_latency_read(&engine->latency));
2409 	if (intel_engine_supports_stats(engine))
2410 		drm_printf(m, "\tRuntime: %llums\n",
2411 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2412 								  &dummy)));
2413 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2414 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2415 
2416 	rcu_read_lock();
2417 	rq = READ_ONCE(engine->heartbeat.systole);
2418 	if (rq)
2419 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2420 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2421 	rcu_read_unlock();
2422 	drm_printf(m, "\tReset count: %d (global %d)\n",
2423 		   i915_reset_engine_count(error, engine),
2424 		   i915_reset_count(error));
2425 	print_properties(engine, m);
2426 
2427 	engine_dump_active_requests(engine, m);
2428 
2429 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2430 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2431 	if (wakeref) {
2432 		intel_engine_print_registers(engine, m);
2433 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2434 	} else {
2435 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2436 	}
2437 
2438 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2439 
2440 	drm_printf(m, "HWSP:\n");
2441 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2442 
2443 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2444 
2445 	intel_engine_print_breadcrumbs(engine, m);
2446 }
2447 
2448 /**
2449  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2450  * @engine: engine to report on
2451  * @now: monotonic timestamp of sampling
2452  *
2453  * Returns accumulated time @engine was busy since engine stats were enabled.
2454  */
2455 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2456 {
2457 	return engine->busyness(engine, now);
2458 }
2459 
2460 struct intel_context *
2461 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2462 			    unsigned int count, unsigned long flags)
2463 {
2464 	if (count == 0)
2465 		return ERR_PTR(-EINVAL);
2466 
2467 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2468 		return intel_context_create(siblings[0]);
2469 
2470 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2471 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2472 }
2473 
2474 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2475 {
2476 	struct i915_request *request, *active = NULL;
2477 
2478 	/*
2479 	 * This search does not work in GuC submission mode. However, the GuC
2480 	 * will report the hanging context directly to the driver itself. So
2481 	 * the driver should never get here when in GuC mode.
2482 	 */
2483 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2484 
2485 	/*
2486 	 * We are called by the error capture, reset and to dump engine
2487 	 * state at random points in time. In particular, note that neither is
2488 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2489 	 * and we assume that no more writes can happen (we waited long enough
2490 	 * for all writes that were in transaction to be flushed) - adding an
2491 	 * extra delay for a recent interrupt is pointless. Hence, we do
2492 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2493 	 * At all other times, we must assume the GPU is still running, but
2494 	 * we only care about the snapshot of this moment.
2495 	 */
2496 	lockdep_assert_held(&engine->sched_engine->lock);
2497 
2498 	rcu_read_lock();
2499 	request = execlists_active(&engine->execlists);
2500 	if (request) {
2501 		struct intel_timeline *tl = request->context->timeline;
2502 
2503 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2504 			if (__i915_request_is_complete(request))
2505 				break;
2506 
2507 			active = request;
2508 		}
2509 	}
2510 	rcu_read_unlock();
2511 	if (active)
2512 		return active;
2513 
2514 	list_for_each_entry(request, &engine->sched_engine->requests,
2515 			    sched.link) {
2516 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2517 			continue;
2518 
2519 		active = request;
2520 		break;
2521 	}
2522 
2523 	return active;
2524 }
2525 
2526 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2527 				  struct intel_context **ce, struct i915_request **rq)
2528 {
2529 	unsigned long flags;
2530 
2531 	*ce = intel_engine_get_hung_context(engine);
2532 	if (*ce) {
2533 		intel_engine_clear_hung_context(engine);
2534 
2535 		*rq = intel_context_get_active_request(*ce);
2536 		return;
2537 	}
2538 
2539 	/*
2540 	 * Getting here with GuC enabled means it is a forced error capture
2541 	 * with no actual hang. So, no need to attempt the execlist search.
2542 	 */
2543 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2544 		return;
2545 
2546 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2547 	*rq = engine_execlist_find_hung_request(engine);
2548 	if (*rq)
2549 		*rq = i915_request_get_rcu(*rq);
2550 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2551 }
2552 
2553 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2554 {
2555 	/*
2556 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2557 	 * support in the RCU_MODE register.  This only needs to be done once,
2558 	 * so for simplicity we'll take care of this in the RCS engine's
2559 	 * resume handler; since the RCS and all CCS engines belong to the
2560 	 * same reset domain and are reset together, this will also take care
2561 	 * of re-applying the setting after i915-triggered resets.
2562 	 */
2563 	if (!CCS_MASK(engine->gt))
2564 		return;
2565 
2566 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2567 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2568 }
2569 
2570 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2571 #include "mock_engine.c"
2572 #include "selftest_engine.c"
2573 #include "selftest_engine_cs.c"
2574 #endif
2575