1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_heartbeat.h"
118 #include "intel_engine_pm.h"
119 #include "intel_engine_regs.h"
120 #include "intel_engine_stats.h"
121 #include "intel_execlists_submission.h"
122 #include "intel_gt.h"
123 #include "intel_gt_irq.h"
124 #include "intel_gt_pm.h"
125 #include "intel_gt_regs.h"
126 #include "intel_gt_requests.h"
127 #include "intel_lrc.h"
128 #include "intel_lrc_reg.h"
129 #include "intel_mocs.h"
130 #include "intel_reset.h"
131 #include "intel_ring.h"
132 #include "intel_workarounds.h"
133 #include "shmem_utils.h"
134 
135 #define RING_EXECLIST_QFULL		(1 << 0x2)
136 #define RING_EXECLIST1_VALID		(1 << 0x3)
137 #define RING_EXECLIST0_VALID		(1 << 0x4)
138 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
139 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
140 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
141 
142 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
143 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
144 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
145 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
146 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
147 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
148 
149 #define GEN8_CTX_STATUS_COMPLETED_MASK \
150 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
151 
152 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
153 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
154 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
155 #define GEN12_IDLE_CTX_ID		0x7FF
156 #define GEN12_CSB_CTX_VALID(csb_dw) \
157 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
158 
159 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
160 #define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
161 #define XEHP_IDLE_CTX_ID			0xFFFF
162 #define XEHP_CSB_CTX_VALID(csb_dw) \
163 	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
164 
165 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
166 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
167 
168 struct virtual_engine {
169 	struct intel_engine_cs base;
170 	struct intel_context context;
171 	struct rcu_work rcu;
172 
173 	/*
174 	 * We allow only a single request through the virtual engine at a time
175 	 * (each request in the timeline waits for the completion fence of
176 	 * the previous before being submitted). By restricting ourselves to
177 	 * only submitting a single request, each request is placed on to a
178 	 * physical to maximise load spreading (by virtue of the late greedy
179 	 * scheduling -- each real engine takes the next available request
180 	 * upon idling).
181 	 */
182 	struct i915_request *request;
183 
184 	/*
185 	 * We keep a rbtree of available virtual engines inside each physical
186 	 * engine, sorted by priority. Here we preallocate the nodes we need
187 	 * for the virtual engine, indexed by physical_engine->id.
188 	 */
189 	struct ve_node {
190 		struct rb_node rb;
191 		int prio;
192 	} nodes[I915_NUM_ENGINES];
193 
194 	/* And finally, which physical engines this virtual engine maps onto. */
195 	unsigned int num_siblings;
196 	struct intel_engine_cs *siblings[];
197 };
198 
199 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
200 {
201 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
202 	return container_of(engine, struct virtual_engine, base);
203 }
204 
205 static struct intel_context *
206 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
207 			 unsigned long flags);
208 
209 static struct i915_request *
210 __active_request(const struct intel_timeline * const tl,
211 		 struct i915_request *rq,
212 		 int error)
213 {
214 	struct i915_request *active = rq;
215 
216 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
217 		if (__i915_request_is_complete(rq))
218 			break;
219 
220 		if (error) {
221 			i915_request_set_error_once(rq, error);
222 			__i915_request_skip(rq);
223 		}
224 		active = rq;
225 	}
226 
227 	return active;
228 }
229 
230 static struct i915_request *
231 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
232 {
233 	return __active_request(tl, rq, 0);
234 }
235 
236 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
237 {
238 	/*
239 	 * We inspect HWS_PREEMPT with a semaphore inside
240 	 * engine->emit_fini_breadcrumb. If the dword is true,
241 	 * the ring is paused as the semaphore will busywait
242 	 * until the dword is false.
243 	 */
244 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
245 	if (state)
246 		wmb();
247 }
248 
249 static struct i915_priolist *to_priolist(struct rb_node *rb)
250 {
251 	return rb_entry(rb, struct i915_priolist, node);
252 }
253 
254 static int rq_prio(const struct i915_request *rq)
255 {
256 	return READ_ONCE(rq->sched.attr.priority);
257 }
258 
259 static int effective_prio(const struct i915_request *rq)
260 {
261 	int prio = rq_prio(rq);
262 
263 	/*
264 	 * If this request is special and must not be interrupted at any
265 	 * cost, so be it. Note we are only checking the most recent request
266 	 * in the context and so may be masking an earlier vip request. It
267 	 * is hoped that under the conditions where nopreempt is used, this
268 	 * will not matter (i.e. all requests to that context will be
269 	 * nopreempt for as long as desired).
270 	 */
271 	if (i915_request_has_nopreempt(rq))
272 		prio = I915_PRIORITY_UNPREEMPTABLE;
273 
274 	return prio;
275 }
276 
277 static int queue_prio(const struct i915_sched_engine *sched_engine)
278 {
279 	struct rb_node *rb;
280 
281 	rb = rb_first_cached(&sched_engine->queue);
282 	if (!rb)
283 		return INT_MIN;
284 
285 	return to_priolist(rb)->priority;
286 }
287 
288 static int virtual_prio(const struct intel_engine_execlists *el)
289 {
290 	struct rb_node *rb = rb_first_cached(&el->virtual);
291 
292 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
293 }
294 
295 static bool need_preempt(const struct intel_engine_cs *engine,
296 			 const struct i915_request *rq)
297 {
298 	int last_prio;
299 
300 	if (!intel_engine_has_semaphores(engine))
301 		return false;
302 
303 	/*
304 	 * Check if the current priority hint merits a preemption attempt.
305 	 *
306 	 * We record the highest value priority we saw during rescheduling
307 	 * prior to this dequeue, therefore we know that if it is strictly
308 	 * less than the current tail of ESLP[0], we do not need to force
309 	 * a preempt-to-idle cycle.
310 	 *
311 	 * However, the priority hint is a mere hint that we may need to
312 	 * preempt. If that hint is stale or we may be trying to preempt
313 	 * ourselves, ignore the request.
314 	 *
315 	 * More naturally we would write
316 	 *      prio >= max(0, last);
317 	 * except that we wish to prevent triggering preemption at the same
318 	 * priority level: the task that is running should remain running
319 	 * to preserve FIFO ordering of dependencies.
320 	 */
321 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
322 	if (engine->sched_engine->queue_priority_hint <= last_prio)
323 		return false;
324 
325 	/*
326 	 * Check against the first request in ELSP[1], it will, thanks to the
327 	 * power of PI, be the highest priority of that context.
328 	 */
329 	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
330 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
331 		return true;
332 
333 	/*
334 	 * If the inflight context did not trigger the preemption, then maybe
335 	 * it was the set of queued requests? Pick the highest priority in
336 	 * the queue (the first active priolist) and see if it deserves to be
337 	 * running instead of ELSP[0].
338 	 *
339 	 * The highest priority request in the queue can not be either
340 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
341 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
342 	 */
343 	return max(virtual_prio(&engine->execlists),
344 		   queue_prio(engine->sched_engine)) > last_prio;
345 }
346 
347 __maybe_unused static bool
348 assert_priority_queue(const struct i915_request *prev,
349 		      const struct i915_request *next)
350 {
351 	/*
352 	 * Without preemption, the prev may refer to the still active element
353 	 * which we refuse to let go.
354 	 *
355 	 * Even with preemption, there are times when we think it is better not
356 	 * to preempt and leave an ostensibly lower priority request in flight.
357 	 */
358 	if (i915_request_is_active(prev))
359 		return true;
360 
361 	return rq_prio(prev) >= rq_prio(next);
362 }
363 
364 static struct i915_request *
365 __unwind_incomplete_requests(struct intel_engine_cs *engine)
366 {
367 	struct i915_request *rq, *rn, *active = NULL;
368 	struct list_head *pl;
369 	int prio = I915_PRIORITY_INVALID;
370 
371 	lockdep_assert_held(&engine->sched_engine->lock);
372 
373 	list_for_each_entry_safe_reverse(rq, rn,
374 					 &engine->sched_engine->requests,
375 					 sched.link) {
376 		if (__i915_request_is_complete(rq)) {
377 			list_del_init(&rq->sched.link);
378 			continue;
379 		}
380 
381 		__i915_request_unsubmit(rq);
382 
383 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
384 		if (rq_prio(rq) != prio) {
385 			prio = rq_prio(rq);
386 			pl = i915_sched_lookup_priolist(engine->sched_engine,
387 							prio);
388 		}
389 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
390 
391 		list_move(&rq->sched.link, pl);
392 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
393 
394 		/* Check in case we rollback so far we wrap [size/2] */
395 		if (intel_ring_direction(rq->ring,
396 					 rq->tail,
397 					 rq->ring->tail + 8) > 0)
398 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
399 
400 		active = rq;
401 	}
402 
403 	return active;
404 }
405 
406 struct i915_request *
407 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
408 {
409 	struct intel_engine_cs *engine =
410 		container_of(execlists, typeof(*engine), execlists);
411 
412 	return __unwind_incomplete_requests(engine);
413 }
414 
415 static void
416 execlists_context_status_change(struct i915_request *rq, unsigned long status)
417 {
418 	/*
419 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
420 	 * The compiler should eliminate this function as dead-code.
421 	 */
422 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
423 		return;
424 
425 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
426 				   status, rq);
427 }
428 
429 static void reset_active(struct i915_request *rq,
430 			 struct intel_engine_cs *engine)
431 {
432 	struct intel_context * const ce = rq->context;
433 	u32 head;
434 
435 	/*
436 	 * The executing context has been cancelled. We want to prevent
437 	 * further execution along this context and propagate the error on
438 	 * to anything depending on its results.
439 	 *
440 	 * In __i915_request_submit(), we apply the -EIO and remove the
441 	 * requests' payloads for any banned requests. But first, we must
442 	 * rewind the context back to the start of the incomplete request so
443 	 * that we do not jump back into the middle of the batch.
444 	 *
445 	 * We preserve the breadcrumbs and semaphores of the incomplete
446 	 * requests so that inter-timeline dependencies (i.e other timelines)
447 	 * remain correctly ordered. And we defer to __i915_request_submit()
448 	 * so that all asynchronous waits are correctly handled.
449 	 */
450 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
451 		     rq->fence.context, rq->fence.seqno);
452 
453 	/* On resubmission of the active request, payload will be scrubbed */
454 	if (__i915_request_is_complete(rq))
455 		head = rq->tail;
456 	else
457 		head = __active_request(ce->timeline, rq, -EIO)->head;
458 	head = intel_ring_wrap(ce->ring, head);
459 
460 	/* Scrub the context image to prevent replaying the previous batch */
461 	lrc_init_regs(ce, engine, true);
462 
463 	/* We've switched away, so this should be a no-op, but intent matters */
464 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
465 }
466 
467 static bool bad_request(const struct i915_request *rq)
468 {
469 	return rq->fence.error && i915_request_started(rq);
470 }
471 
472 static struct intel_engine_cs *
473 __execlists_schedule_in(struct i915_request *rq)
474 {
475 	struct intel_engine_cs * const engine = rq->engine;
476 	struct intel_context * const ce = rq->context;
477 
478 	intel_context_get(ce);
479 
480 	if (unlikely(intel_context_is_closed(ce) &&
481 		     !intel_engine_has_heartbeat(engine)))
482 		intel_context_set_banned(ce);
483 
484 	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
485 		reset_active(rq, engine);
486 
487 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
488 		lrc_check_regs(ce, engine, "before");
489 
490 	if (ce->tag) {
491 		/* Use a fixed tag for OA and friends */
492 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
493 		ce->lrc.ccid = ce->tag;
494 	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
495 		/* We don't need a strict matching tag, just different values */
496 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
497 
498 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
499 		clear_bit(tag - 1, &engine->context_tag);
500 		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
501 
502 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
503 
504 	} else {
505 		/* We don't need a strict matching tag, just different values */
506 		unsigned int tag = __ffs(engine->context_tag);
507 
508 		GEM_BUG_ON(tag >= BITS_PER_LONG);
509 		__clear_bit(tag, &engine->context_tag);
510 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
511 
512 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
513 	}
514 
515 	ce->lrc.ccid |= engine->execlists.ccid;
516 
517 	__intel_gt_pm_get(engine->gt);
518 	if (engine->fw_domain && !engine->fw_active++)
519 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
520 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
521 	intel_engine_context_in(engine);
522 
523 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
524 
525 	return engine;
526 }
527 
528 static void execlists_schedule_in(struct i915_request *rq, int idx)
529 {
530 	struct intel_context * const ce = rq->context;
531 	struct intel_engine_cs *old;
532 
533 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
534 	trace_i915_request_in(rq, idx);
535 
536 	old = ce->inflight;
537 	if (!old)
538 		old = __execlists_schedule_in(rq);
539 	WRITE_ONCE(ce->inflight, ptr_inc(old));
540 
541 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
542 }
543 
544 static void
545 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
546 {
547 	struct intel_engine_cs *engine = rq->engine;
548 
549 	spin_lock_irq(&engine->sched_engine->lock);
550 
551 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
552 	WRITE_ONCE(rq->engine, &ve->base);
553 	ve->base.submit_request(rq);
554 
555 	spin_unlock_irq(&engine->sched_engine->lock);
556 }
557 
558 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
559 {
560 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
561 	struct intel_engine_cs *engine = rq->engine;
562 
563 	/*
564 	 * After this point, the rq may be transferred to a new sibling, so
565 	 * before we clear ce->inflight make sure that the context has been
566 	 * removed from the b->signalers and furthermore we need to make sure
567 	 * that the concurrent iterator in signal_irq_work is no longer
568 	 * following ce->signal_link.
569 	 */
570 	if (!list_empty(&ce->signals))
571 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
572 
573 	/*
574 	 * This engine is now too busy to run this virtual request, so
575 	 * see if we can find an alternative engine for it to execute on.
576 	 * Once a request has become bonded to this engine, we treat it the
577 	 * same as other native request.
578 	 */
579 	if (i915_request_in_priority_queue(rq) &&
580 	    rq->execution_mask != engine->mask)
581 		resubmit_virtual_request(rq, ve);
582 
583 	if (READ_ONCE(ve->request))
584 		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
585 }
586 
587 static void __execlists_schedule_out(struct i915_request * const rq,
588 				     struct intel_context * const ce)
589 {
590 	struct intel_engine_cs * const engine = rq->engine;
591 	unsigned int ccid;
592 
593 	/*
594 	 * NB process_csb() is not under the engine->sched_engine->lock and hence
595 	 * schedule_out can race with schedule_in meaning that we should
596 	 * refrain from doing non-trivial work here.
597 	 */
598 
599 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
600 	GEM_BUG_ON(ce->inflight != engine);
601 
602 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
603 		lrc_check_regs(ce, engine, "after");
604 
605 	/*
606 	 * If we have just completed this context, the engine may now be
607 	 * idle and we want to re-enter powersaving.
608 	 */
609 	if (intel_timeline_is_last(ce->timeline, rq) &&
610 	    __i915_request_is_complete(rq))
611 		intel_engine_add_retire(engine, ce->timeline);
612 
613 	ccid = ce->lrc.ccid;
614 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
615 		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
616 		ccid &= XEHP_MAX_CONTEXT_HW_ID;
617 	} else {
618 		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
619 		ccid &= GEN12_MAX_CONTEXT_HW_ID;
620 	}
621 
622 	if (ccid < BITS_PER_LONG) {
623 		GEM_BUG_ON(ccid == 0);
624 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
625 		__set_bit(ccid - 1, &engine->context_tag);
626 	}
627 
628 	lrc_update_runtime(ce);
629 	intel_engine_context_out(engine);
630 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
631 	if (engine->fw_domain && !--engine->fw_active)
632 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
633 	intel_gt_pm_put_async(engine->gt);
634 
635 	/*
636 	 * If this is part of a virtual engine, its next request may
637 	 * have been blocked waiting for access to the active context.
638 	 * We have to kick all the siblings again in case we need to
639 	 * switch (e.g. the next request is not runnable on this
640 	 * engine). Hopefully, we will already have submitted the next
641 	 * request before the tasklet runs and do not need to rebuild
642 	 * each virtual tree and kick everyone again.
643 	 */
644 	if (ce->engine != engine)
645 		kick_siblings(rq, ce);
646 
647 	WRITE_ONCE(ce->inflight, NULL);
648 	intel_context_put(ce);
649 }
650 
651 static inline void execlists_schedule_out(struct i915_request *rq)
652 {
653 	struct intel_context * const ce = rq->context;
654 
655 	trace_i915_request_out(rq);
656 
657 	GEM_BUG_ON(!ce->inflight);
658 	ce->inflight = ptr_dec(ce->inflight);
659 	if (!__intel_context_inflight_count(ce->inflight))
660 		__execlists_schedule_out(rq, ce);
661 
662 	i915_request_put(rq);
663 }
664 
665 static u64 execlists_update_context(struct i915_request *rq)
666 {
667 	struct intel_context *ce = rq->context;
668 	u64 desc;
669 	u32 tail, prev;
670 
671 	desc = ce->lrc.desc;
672 	if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
673 		desc |= lrc_desc_priority(rq_prio(rq));
674 
675 	/*
676 	 * WaIdleLiteRestore:bdw,skl
677 	 *
678 	 * We should never submit the context with the same RING_TAIL twice
679 	 * just in case we submit an empty ring, which confuses the HW.
680 	 *
681 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
682 	 * the normal request to be able to always advance the RING_TAIL on
683 	 * subsequent resubmissions (for lite restore). Should that fail us,
684 	 * and we try and submit the same tail again, force the context
685 	 * reload.
686 	 *
687 	 * If we need to return to a preempted context, we need to skip the
688 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
689 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
690 	 * an earlier request.
691 	 */
692 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
693 	prev = rq->ring->tail;
694 	tail = intel_ring_set_tail(rq->ring, rq->tail);
695 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
696 		desc |= CTX_DESC_FORCE_RESTORE;
697 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
698 	rq->tail = rq->wa_tail;
699 
700 	/*
701 	 * Make sure the context image is complete before we submit it to HW.
702 	 *
703 	 * Ostensibly, writes (including the WCB) should be flushed prior to
704 	 * an uncached write such as our mmio register access, the empirical
705 	 * evidence (esp. on Braswell) suggests that the WC write into memory
706 	 * may not be visible to the HW prior to the completion of the UC
707 	 * register write and that we may begin execution from the context
708 	 * before its image is complete leading to invalid PD chasing.
709 	 */
710 	wmb();
711 
712 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
713 	return desc;
714 }
715 
716 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
717 {
718 	if (execlists->ctrl_reg) {
719 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
720 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
721 	} else {
722 		writel(upper_32_bits(desc), execlists->submit_reg);
723 		writel(lower_32_bits(desc), execlists->submit_reg);
724 	}
725 }
726 
727 static __maybe_unused char *
728 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
729 {
730 	if (!rq)
731 		return "";
732 
733 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
734 		 prefix,
735 		 rq->context->lrc.ccid,
736 		 rq->fence.context, rq->fence.seqno,
737 		 __i915_request_is_complete(rq) ? "!" :
738 		 __i915_request_has_started(rq) ? "*" :
739 		 "",
740 		 rq_prio(rq));
741 
742 	return buf;
743 }
744 
745 static __maybe_unused noinline void
746 trace_ports(const struct intel_engine_execlists *execlists,
747 	    const char *msg,
748 	    struct i915_request * const *ports)
749 {
750 	const struct intel_engine_cs *engine =
751 		container_of(execlists, typeof(*engine), execlists);
752 	char __maybe_unused p0[40], p1[40];
753 
754 	if (!ports[0])
755 		return;
756 
757 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
758 		     dump_port(p0, sizeof(p0), "", ports[0]),
759 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
760 }
761 
762 static bool
763 reset_in_progress(const struct intel_engine_cs *engine)
764 {
765 	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
766 }
767 
768 static __maybe_unused noinline bool
769 assert_pending_valid(const struct intel_engine_execlists *execlists,
770 		     const char *msg)
771 {
772 	struct intel_engine_cs *engine =
773 		container_of(execlists, typeof(*engine), execlists);
774 	struct i915_request * const *port, *rq, *prev = NULL;
775 	struct intel_context *ce = NULL;
776 	u32 ccid = -1;
777 
778 	trace_ports(execlists, msg, execlists->pending);
779 
780 	/* We may be messing around with the lists during reset, lalala */
781 	if (reset_in_progress(engine))
782 		return true;
783 
784 	if (!execlists->pending[0]) {
785 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
786 			      engine->name);
787 		return false;
788 	}
789 
790 	if (execlists->pending[execlists_num_ports(execlists)]) {
791 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
792 			      engine->name, execlists_num_ports(execlists));
793 		return false;
794 	}
795 
796 	for (port = execlists->pending; (rq = *port); port++) {
797 		unsigned long flags;
798 		bool ok = true;
799 
800 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
801 		GEM_BUG_ON(!i915_request_is_active(rq));
802 
803 		if (ce == rq->context) {
804 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
805 				      engine->name,
806 				      ce->timeline->fence_context,
807 				      port - execlists->pending);
808 			return false;
809 		}
810 		ce = rq->context;
811 
812 		if (ccid == ce->lrc.ccid) {
813 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
814 				      engine->name,
815 				      ccid, ce->timeline->fence_context,
816 				      port - execlists->pending);
817 			return false;
818 		}
819 		ccid = ce->lrc.ccid;
820 
821 		/*
822 		 * Sentinels are supposed to be the last request so they flush
823 		 * the current execution off the HW. Check that they are the only
824 		 * request in the pending submission.
825 		 *
826 		 * NB: Due to the async nature of preempt-to-busy and request
827 		 * cancellation we need to handle the case where request
828 		 * becomes a sentinel in parallel to CSB processing.
829 		 */
830 		if (prev && i915_request_has_sentinel(prev) &&
831 		    !READ_ONCE(prev->fence.error)) {
832 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
833 				      engine->name,
834 				      ce->timeline->fence_context,
835 				      port - execlists->pending);
836 			return false;
837 		}
838 		prev = rq;
839 
840 		/*
841 		 * We want virtual requests to only be in the first slot so
842 		 * that they are never stuck behind a hog and can be immediately
843 		 * transferred onto the next idle engine.
844 		 */
845 		if (rq->execution_mask != engine->mask &&
846 		    port != execlists->pending) {
847 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
848 				      engine->name,
849 				      ce->timeline->fence_context,
850 				      port - execlists->pending);
851 			return false;
852 		}
853 
854 		/* Hold tightly onto the lock to prevent concurrent retires! */
855 		if (!spin_trylock_irqsave(&rq->lock, flags))
856 			continue;
857 
858 		if (__i915_request_is_complete(rq))
859 			goto unlock;
860 
861 		if (i915_active_is_idle(&ce->active) &&
862 		    !intel_context_is_barrier(ce)) {
863 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
864 				      engine->name,
865 				      ce->timeline->fence_context,
866 				      port - execlists->pending);
867 			ok = false;
868 			goto unlock;
869 		}
870 
871 		if (!i915_vma_is_pinned(ce->state)) {
872 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
873 				      engine->name,
874 				      ce->timeline->fence_context,
875 				      port - execlists->pending);
876 			ok = false;
877 			goto unlock;
878 		}
879 
880 		if (!i915_vma_is_pinned(ce->ring->vma)) {
881 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
882 				      engine->name,
883 				      ce->timeline->fence_context,
884 				      port - execlists->pending);
885 			ok = false;
886 			goto unlock;
887 		}
888 
889 unlock:
890 		spin_unlock_irqrestore(&rq->lock, flags);
891 		if (!ok)
892 			return false;
893 	}
894 
895 	return ce;
896 }
897 
898 static void execlists_submit_ports(struct intel_engine_cs *engine)
899 {
900 	struct intel_engine_execlists *execlists = &engine->execlists;
901 	unsigned int n;
902 
903 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
904 
905 	/*
906 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
907 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
908 	 * not be relinquished until the device is idle (see
909 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
910 	 * that all ELSP are drained i.e. we have processed the CSB,
911 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
912 	 */
913 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
914 
915 	/*
916 	 * ELSQ note: the submit queue is not cleared after being submitted
917 	 * to the HW so we need to make sure we always clean it up. This is
918 	 * currently ensured by the fact that we always write the same number
919 	 * of elsq entries, keep this in mind before changing the loop below.
920 	 */
921 	for (n = execlists_num_ports(execlists); n--; ) {
922 		struct i915_request *rq = execlists->pending[n];
923 
924 		write_desc(execlists,
925 			   rq ? execlists_update_context(rq) : 0,
926 			   n);
927 	}
928 
929 	/* we need to manually load the submit queue */
930 	if (execlists->ctrl_reg)
931 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
932 }
933 
934 static bool ctx_single_port_submission(const struct intel_context *ce)
935 {
936 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
937 		intel_context_force_single_submission(ce));
938 }
939 
940 static bool can_merge_ctx(const struct intel_context *prev,
941 			  const struct intel_context *next)
942 {
943 	if (prev != next)
944 		return false;
945 
946 	if (ctx_single_port_submission(prev))
947 		return false;
948 
949 	return true;
950 }
951 
952 static unsigned long i915_request_flags(const struct i915_request *rq)
953 {
954 	return READ_ONCE(rq->fence.flags);
955 }
956 
957 static bool can_merge_rq(const struct i915_request *prev,
958 			 const struct i915_request *next)
959 {
960 	GEM_BUG_ON(prev == next);
961 	GEM_BUG_ON(!assert_priority_queue(prev, next));
962 
963 	/*
964 	 * We do not submit known completed requests. Therefore if the next
965 	 * request is already completed, we can pretend to merge it in
966 	 * with the previous context (and we will skip updating the ELSP
967 	 * and tracking). Thus hopefully keeping the ELSP full with active
968 	 * contexts, despite the best efforts of preempt-to-busy to confuse
969 	 * us.
970 	 */
971 	if (__i915_request_is_complete(next))
972 		return true;
973 
974 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
975 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
976 		      BIT(I915_FENCE_FLAG_SENTINEL))))
977 		return false;
978 
979 	if (!can_merge_ctx(prev->context, next->context))
980 		return false;
981 
982 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
983 	return true;
984 }
985 
986 static bool virtual_matches(const struct virtual_engine *ve,
987 			    const struct i915_request *rq,
988 			    const struct intel_engine_cs *engine)
989 {
990 	const struct intel_engine_cs *inflight;
991 
992 	if (!rq)
993 		return false;
994 
995 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
996 		return false;
997 
998 	/*
999 	 * We track when the HW has completed saving the context image
1000 	 * (i.e. when we have seen the final CS event switching out of
1001 	 * the context) and must not overwrite the context image before
1002 	 * then. This restricts us to only using the active engine
1003 	 * while the previous virtualized request is inflight (so
1004 	 * we reuse the register offsets). This is a very small
1005 	 * hystersis on the greedy seelction algorithm.
1006 	 */
1007 	inflight = intel_context_inflight(&ve->context);
1008 	if (inflight && inflight != engine)
1009 		return false;
1010 
1011 	return true;
1012 }
1013 
1014 static struct virtual_engine *
1015 first_virtual_engine(struct intel_engine_cs *engine)
1016 {
1017 	struct intel_engine_execlists *el = &engine->execlists;
1018 	struct rb_node *rb = rb_first_cached(&el->virtual);
1019 
1020 	while (rb) {
1021 		struct virtual_engine *ve =
1022 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1023 		struct i915_request *rq = READ_ONCE(ve->request);
1024 
1025 		/* lazily cleanup after another engine handled rq */
1026 		if (!rq || !virtual_matches(ve, rq, engine)) {
1027 			rb_erase_cached(rb, &el->virtual);
1028 			RB_CLEAR_NODE(rb);
1029 			rb = rb_first_cached(&el->virtual);
1030 			continue;
1031 		}
1032 
1033 		return ve;
1034 	}
1035 
1036 	return NULL;
1037 }
1038 
1039 static void virtual_xfer_context(struct virtual_engine *ve,
1040 				 struct intel_engine_cs *engine)
1041 {
1042 	unsigned int n;
1043 
1044 	if (likely(engine == ve->siblings[0]))
1045 		return;
1046 
1047 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1048 	if (!intel_engine_has_relative_mmio(engine))
1049 		lrc_update_offsets(&ve->context, engine);
1050 
1051 	/*
1052 	 * Move the bound engine to the top of the list for
1053 	 * future execution. We then kick this tasklet first
1054 	 * before checking others, so that we preferentially
1055 	 * reuse this set of bound registers.
1056 	 */
1057 	for (n = 1; n < ve->num_siblings; n++) {
1058 		if (ve->siblings[n] == engine) {
1059 			swap(ve->siblings[n], ve->siblings[0]);
1060 			break;
1061 		}
1062 	}
1063 }
1064 
1065 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1066 {
1067 	LIST_HEAD(list);
1068 
1069 	/*
1070 	 * We want to move the interrupted request to the back of
1071 	 * the round-robin list (i.e. its priority level), but
1072 	 * in doing so, we must then move all requests that were in
1073 	 * flight and were waiting for the interrupted request to
1074 	 * be run after it again.
1075 	 */
1076 	do {
1077 		struct i915_dependency *p;
1078 
1079 		GEM_BUG_ON(i915_request_is_active(rq));
1080 		list_move_tail(&rq->sched.link, pl);
1081 
1082 		for_each_waiter(p, rq) {
1083 			struct i915_request *w =
1084 				container_of(p->waiter, typeof(*w), sched);
1085 
1086 			if (p->flags & I915_DEPENDENCY_WEAK)
1087 				continue;
1088 
1089 			/* Leave semaphores spinning on the other engines */
1090 			if (w->engine != rq->engine)
1091 				continue;
1092 
1093 			/* No waiter should start before its signaler */
1094 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1095 				   __i915_request_has_started(w) &&
1096 				   !__i915_request_is_complete(rq));
1097 
1098 			if (!i915_request_is_ready(w))
1099 				continue;
1100 
1101 			if (rq_prio(w) < rq_prio(rq))
1102 				continue;
1103 
1104 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1105 			GEM_BUG_ON(i915_request_is_active(w));
1106 			list_move_tail(&w->sched.link, &list);
1107 		}
1108 
1109 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1110 	} while (rq);
1111 }
1112 
1113 static void defer_active(struct intel_engine_cs *engine)
1114 {
1115 	struct i915_request *rq;
1116 
1117 	rq = __unwind_incomplete_requests(engine);
1118 	if (!rq)
1119 		return;
1120 
1121 	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1122 						     rq_prio(rq)));
1123 }
1124 
1125 static bool
1126 timeslice_yield(const struct intel_engine_execlists *el,
1127 		const struct i915_request *rq)
1128 {
1129 	/*
1130 	 * Once bitten, forever smitten!
1131 	 *
1132 	 * If the active context ever busy-waited on a semaphore,
1133 	 * it will be treated as a hog until the end of its timeslice (i.e.
1134 	 * until it is scheduled out and replaced by a new submission,
1135 	 * possibly even its own lite-restore). The HW only sends an interrupt
1136 	 * on the first miss, and we do know if that semaphore has been
1137 	 * signaled, or even if it is now stuck on another semaphore. Play
1138 	 * safe, yield if it might be stuck -- it will be given a fresh
1139 	 * timeslice in the near future.
1140 	 */
1141 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1142 }
1143 
1144 static bool needs_timeslice(const struct intel_engine_cs *engine,
1145 			    const struct i915_request *rq)
1146 {
1147 	if (!intel_engine_has_timeslices(engine))
1148 		return false;
1149 
1150 	/* If not currently active, or about to switch, wait for next event */
1151 	if (!rq || __i915_request_is_complete(rq))
1152 		return false;
1153 
1154 	/* We do not need to start the timeslice until after the ACK */
1155 	if (READ_ONCE(engine->execlists.pending[0]))
1156 		return false;
1157 
1158 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1159 	if (!list_is_last_rcu(&rq->sched.link,
1160 			      &engine->sched_engine->requests)) {
1161 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1162 		return true;
1163 	}
1164 
1165 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1166 	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1167 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1168 		return true;
1169 	}
1170 
1171 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1172 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1173 		return true;
1174 	}
1175 
1176 	return false;
1177 }
1178 
1179 static bool
1180 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1181 {
1182 	const struct intel_engine_execlists *el = &engine->execlists;
1183 
1184 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1185 		return false;
1186 
1187 	if (!needs_timeslice(engine, rq))
1188 		return false;
1189 
1190 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1191 }
1192 
1193 static unsigned long timeslice(const struct intel_engine_cs *engine)
1194 {
1195 	return READ_ONCE(engine->props.timeslice_duration_ms);
1196 }
1197 
1198 static void start_timeslice(struct intel_engine_cs *engine)
1199 {
1200 	struct intel_engine_execlists *el = &engine->execlists;
1201 	unsigned long duration;
1202 
1203 	/* Disable the timer if there is nothing to switch to */
1204 	duration = 0;
1205 	if (needs_timeslice(engine, *el->active)) {
1206 		/* Avoid continually prolonging an active timeslice */
1207 		if (timer_active(&el->timer)) {
1208 			/*
1209 			 * If we just submitted a new ELSP after an old
1210 			 * context, that context may have already consumed
1211 			 * its timeslice, so recheck.
1212 			 */
1213 			if (!timer_pending(&el->timer))
1214 				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1215 			return;
1216 		}
1217 
1218 		duration = timeslice(engine);
1219 	}
1220 
1221 	set_timer_ms(&el->timer, duration);
1222 }
1223 
1224 static void record_preemption(struct intel_engine_execlists *execlists)
1225 {
1226 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1227 }
1228 
1229 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1230 					    const struct i915_request *rq)
1231 {
1232 	if (!rq)
1233 		return 0;
1234 
1235 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1236 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1237 		return 1;
1238 
1239 	return READ_ONCE(engine->props.preempt_timeout_ms);
1240 }
1241 
1242 static void set_preempt_timeout(struct intel_engine_cs *engine,
1243 				const struct i915_request *rq)
1244 {
1245 	if (!intel_engine_has_preempt_reset(engine))
1246 		return;
1247 
1248 	set_timer_ms(&engine->execlists.preempt,
1249 		     active_preempt_timeout(engine, rq));
1250 }
1251 
1252 static bool completed(const struct i915_request *rq)
1253 {
1254 	if (i915_request_has_sentinel(rq))
1255 		return false;
1256 
1257 	return __i915_request_is_complete(rq);
1258 }
1259 
1260 static void execlists_dequeue(struct intel_engine_cs *engine)
1261 {
1262 	struct intel_engine_execlists * const execlists = &engine->execlists;
1263 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1264 	struct i915_request **port = execlists->pending;
1265 	struct i915_request ** const last_port = port + execlists->port_mask;
1266 	struct i915_request *last, * const *active;
1267 	struct virtual_engine *ve;
1268 	struct rb_node *rb;
1269 	bool submit = false;
1270 
1271 	/*
1272 	 * Hardware submission is through 2 ports. Conceptually each port
1273 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1274 	 * static for a context, and unique to each, so we only execute
1275 	 * requests belonging to a single context from each ring. RING_HEAD
1276 	 * is maintained by the CS in the context image, it marks the place
1277 	 * where it got up to last time, and through RING_TAIL we tell the CS
1278 	 * where we want to execute up to this time.
1279 	 *
1280 	 * In this list the requests are in order of execution. Consecutive
1281 	 * requests from the same context are adjacent in the ringbuffer. We
1282 	 * can combine these requests into a single RING_TAIL update:
1283 	 *
1284 	 *              RING_HEAD...req1...req2
1285 	 *                                    ^- RING_TAIL
1286 	 * since to execute req2 the CS must first execute req1.
1287 	 *
1288 	 * Our goal then is to point each port to the end of a consecutive
1289 	 * sequence of requests as being the most optimal (fewest wake ups
1290 	 * and context switches) submission.
1291 	 */
1292 
1293 	spin_lock(&sched_engine->lock);
1294 
1295 	/*
1296 	 * If the queue is higher priority than the last
1297 	 * request in the currently active context, submit afresh.
1298 	 * We will resubmit again afterwards in case we need to split
1299 	 * the active context to interject the preemption request,
1300 	 * i.e. we will retrigger preemption following the ack in case
1301 	 * of trouble.
1302 	 *
1303 	 */
1304 	active = execlists->active;
1305 	while ((last = *active) && completed(last))
1306 		active++;
1307 
1308 	if (last) {
1309 		if (need_preempt(engine, last)) {
1310 			ENGINE_TRACE(engine,
1311 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1312 				     last->fence.context,
1313 				     last->fence.seqno,
1314 				     last->sched.attr.priority,
1315 				     sched_engine->queue_priority_hint);
1316 			record_preemption(execlists);
1317 
1318 			/*
1319 			 * Don't let the RING_HEAD advance past the breadcrumb
1320 			 * as we unwind (and until we resubmit) so that we do
1321 			 * not accidentally tell it to go backwards.
1322 			 */
1323 			ring_set_paused(engine, 1);
1324 
1325 			/*
1326 			 * Note that we have not stopped the GPU at this point,
1327 			 * so we are unwinding the incomplete requests as they
1328 			 * remain inflight and so by the time we do complete
1329 			 * the preemption, some of the unwound requests may
1330 			 * complete!
1331 			 */
1332 			__unwind_incomplete_requests(engine);
1333 
1334 			last = NULL;
1335 		} else if (timeslice_expired(engine, last)) {
1336 			ENGINE_TRACE(engine,
1337 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1338 				     yesno(timer_expired(&execlists->timer)),
1339 				     last->fence.context, last->fence.seqno,
1340 				     rq_prio(last),
1341 				     sched_engine->queue_priority_hint,
1342 				     yesno(timeslice_yield(execlists, last)));
1343 
1344 			/*
1345 			 * Consume this timeslice; ensure we start a new one.
1346 			 *
1347 			 * The timeslice expired, and we will unwind the
1348 			 * running contexts and recompute the next ELSP.
1349 			 * If that submit will be the same pair of contexts
1350 			 * (due to dependency ordering), we will skip the
1351 			 * submission. If we don't cancel the timer now,
1352 			 * we will see that the timer has expired and
1353 			 * reschedule the tasklet; continually until the
1354 			 * next context switch or other preeemption event.
1355 			 *
1356 			 * Since we have decided to reschedule based on
1357 			 * consumption of this timeslice, if we submit the
1358 			 * same context again, grant it a full timeslice.
1359 			 */
1360 			cancel_timer(&execlists->timer);
1361 			ring_set_paused(engine, 1);
1362 			defer_active(engine);
1363 
1364 			/*
1365 			 * Unlike for preemption, if we rewind and continue
1366 			 * executing the same context as previously active,
1367 			 * the order of execution will remain the same and
1368 			 * the tail will only advance. We do not need to
1369 			 * force a full context restore, as a lite-restore
1370 			 * is sufficient to resample the monotonic TAIL.
1371 			 *
1372 			 * If we switch to any other context, similarly we
1373 			 * will not rewind TAIL of current context, and
1374 			 * normal save/restore will preserve state and allow
1375 			 * us to later continue executing the same request.
1376 			 */
1377 			last = NULL;
1378 		} else {
1379 			/*
1380 			 * Otherwise if we already have a request pending
1381 			 * for execution after the current one, we can
1382 			 * just wait until the next CS event before
1383 			 * queuing more. In either case we will force a
1384 			 * lite-restore preemption event, but if we wait
1385 			 * we hopefully coalesce several updates into a single
1386 			 * submission.
1387 			 */
1388 			if (active[1]) {
1389 				/*
1390 				 * Even if ELSP[1] is occupied and not worthy
1391 				 * of timeslices, our queue might be.
1392 				 */
1393 				spin_unlock(&sched_engine->lock);
1394 				return;
1395 			}
1396 		}
1397 	}
1398 
1399 	/* XXX virtual is always taking precedence */
1400 	while ((ve = first_virtual_engine(engine))) {
1401 		struct i915_request *rq;
1402 
1403 		spin_lock(&ve->base.sched_engine->lock);
1404 
1405 		rq = ve->request;
1406 		if (unlikely(!virtual_matches(ve, rq, engine)))
1407 			goto unlock; /* lost the race to a sibling */
1408 
1409 		GEM_BUG_ON(rq->engine != &ve->base);
1410 		GEM_BUG_ON(rq->context != &ve->context);
1411 
1412 		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1413 			spin_unlock(&ve->base.sched_engine->lock);
1414 			break;
1415 		}
1416 
1417 		if (last && !can_merge_rq(last, rq)) {
1418 			spin_unlock(&ve->base.sched_engine->lock);
1419 			spin_unlock(&engine->sched_engine->lock);
1420 			return; /* leave this for another sibling */
1421 		}
1422 
1423 		ENGINE_TRACE(engine,
1424 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1425 			     rq->fence.context,
1426 			     rq->fence.seqno,
1427 			     __i915_request_is_complete(rq) ? "!" :
1428 			     __i915_request_has_started(rq) ? "*" :
1429 			     "",
1430 			     yesno(engine != ve->siblings[0]));
1431 
1432 		WRITE_ONCE(ve->request, NULL);
1433 		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1434 
1435 		rb = &ve->nodes[engine->id].rb;
1436 		rb_erase_cached(rb, &execlists->virtual);
1437 		RB_CLEAR_NODE(rb);
1438 
1439 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1440 		WRITE_ONCE(rq->engine, engine);
1441 
1442 		if (__i915_request_submit(rq)) {
1443 			/*
1444 			 * Only after we confirm that we will submit
1445 			 * this request (i.e. it has not already
1446 			 * completed), do we want to update the context.
1447 			 *
1448 			 * This serves two purposes. It avoids
1449 			 * unnecessary work if we are resubmitting an
1450 			 * already completed request after timeslicing.
1451 			 * But more importantly, it prevents us altering
1452 			 * ve->siblings[] on an idle context, where
1453 			 * we may be using ve->siblings[] in
1454 			 * virtual_context_enter / virtual_context_exit.
1455 			 */
1456 			virtual_xfer_context(ve, engine);
1457 			GEM_BUG_ON(ve->siblings[0] != engine);
1458 
1459 			submit = true;
1460 			last = rq;
1461 		}
1462 
1463 		i915_request_put(rq);
1464 unlock:
1465 		spin_unlock(&ve->base.sched_engine->lock);
1466 
1467 		/*
1468 		 * Hmm, we have a bunch of virtual engine requests,
1469 		 * but the first one was already completed (thanks
1470 		 * preempt-to-busy!). Keep looking at the veng queue
1471 		 * until we have no more relevant requests (i.e.
1472 		 * the normal submit queue has higher priority).
1473 		 */
1474 		if (submit)
1475 			break;
1476 	}
1477 
1478 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1479 		struct i915_priolist *p = to_priolist(rb);
1480 		struct i915_request *rq, *rn;
1481 
1482 		priolist_for_each_request_consume(rq, rn, p) {
1483 			bool merge = true;
1484 
1485 			/*
1486 			 * Can we combine this request with the current port?
1487 			 * It has to be the same context/ringbuffer and not
1488 			 * have any exceptions (e.g. GVT saying never to
1489 			 * combine contexts).
1490 			 *
1491 			 * If we can combine the requests, we can execute both
1492 			 * by updating the RING_TAIL to point to the end of the
1493 			 * second request, and so we never need to tell the
1494 			 * hardware about the first.
1495 			 */
1496 			if (last && !can_merge_rq(last, rq)) {
1497 				/*
1498 				 * If we are on the second port and cannot
1499 				 * combine this request with the last, then we
1500 				 * are done.
1501 				 */
1502 				if (port == last_port)
1503 					goto done;
1504 
1505 				/*
1506 				 * We must not populate both ELSP[] with the
1507 				 * same LRCA, i.e. we must submit 2 different
1508 				 * contexts if we submit 2 ELSP.
1509 				 */
1510 				if (last->context == rq->context)
1511 					goto done;
1512 
1513 				if (i915_request_has_sentinel(last))
1514 					goto done;
1515 
1516 				/*
1517 				 * We avoid submitting virtual requests into
1518 				 * the secondary ports so that we can migrate
1519 				 * the request immediately to another engine
1520 				 * rather than wait for the primary request.
1521 				 */
1522 				if (rq->execution_mask != engine->mask)
1523 					goto done;
1524 
1525 				/*
1526 				 * If GVT overrides us we only ever submit
1527 				 * port[0], leaving port[1] empty. Note that we
1528 				 * also have to be careful that we don't queue
1529 				 * the same context (even though a different
1530 				 * request) to the second port.
1531 				 */
1532 				if (ctx_single_port_submission(last->context) ||
1533 				    ctx_single_port_submission(rq->context))
1534 					goto done;
1535 
1536 				merge = false;
1537 			}
1538 
1539 			if (__i915_request_submit(rq)) {
1540 				if (!merge) {
1541 					*port++ = i915_request_get(last);
1542 					last = NULL;
1543 				}
1544 
1545 				GEM_BUG_ON(last &&
1546 					   !can_merge_ctx(last->context,
1547 							  rq->context));
1548 				GEM_BUG_ON(last &&
1549 					   i915_seqno_passed(last->fence.seqno,
1550 							     rq->fence.seqno));
1551 
1552 				submit = true;
1553 				last = rq;
1554 			}
1555 		}
1556 
1557 		rb_erase_cached(&p->node, &sched_engine->queue);
1558 		i915_priolist_free(p);
1559 	}
1560 done:
1561 	*port++ = i915_request_get(last);
1562 
1563 	/*
1564 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1565 	 *
1566 	 * We choose the priority hint such that if we add a request of greater
1567 	 * priority than this, we kick the submission tasklet to decide on
1568 	 * the right order of submitting the requests to hardware. We must
1569 	 * also be prepared to reorder requests as they are in-flight on the
1570 	 * HW. We derive the priority hint then as the first "hole" in
1571 	 * the HW submission ports and if there are no available slots,
1572 	 * the priority of the lowest executing request, i.e. last.
1573 	 *
1574 	 * When we do receive a higher priority request ready to run from the
1575 	 * user, see queue_request(), the priority hint is bumped to that
1576 	 * request triggering preemption on the next dequeue (or subsequent
1577 	 * interrupt for secondary ports).
1578 	 */
1579 	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1580 	i915_sched_engine_reset_on_empty(sched_engine);
1581 	spin_unlock(&sched_engine->lock);
1582 
1583 	/*
1584 	 * We can skip poking the HW if we ended up with exactly the same set
1585 	 * of requests as currently running, e.g. trying to timeslice a pair
1586 	 * of ordered contexts.
1587 	 */
1588 	if (submit &&
1589 	    memcmp(active,
1590 		   execlists->pending,
1591 		   (port - execlists->pending) * sizeof(*port))) {
1592 		*port = NULL;
1593 		while (port-- != execlists->pending)
1594 			execlists_schedule_in(*port, port - execlists->pending);
1595 
1596 		WRITE_ONCE(execlists->yield, -1);
1597 		set_preempt_timeout(engine, *active);
1598 		execlists_submit_ports(engine);
1599 	} else {
1600 		ring_set_paused(engine, 0);
1601 		while (port-- != execlists->pending)
1602 			i915_request_put(*port);
1603 		*execlists->pending = NULL;
1604 	}
1605 }
1606 
1607 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1608 {
1609 	local_irq_disable(); /* Suspend interrupts across request submission */
1610 	execlists_dequeue(engine);
1611 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1612 }
1613 
1614 static void clear_ports(struct i915_request **ports, int count)
1615 {
1616 	memset_p((void **)ports, NULL, count);
1617 }
1618 
1619 static void
1620 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1621 {
1622 	/* A memcpy_p() would be very useful here! */
1623 	while (count--)
1624 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1625 }
1626 
1627 static struct i915_request **
1628 cancel_port_requests(struct intel_engine_execlists * const execlists,
1629 		     struct i915_request **inactive)
1630 {
1631 	struct i915_request * const *port;
1632 
1633 	for (port = execlists->pending; *port; port++)
1634 		*inactive++ = *port;
1635 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1636 
1637 	/* Mark the end of active before we overwrite *active */
1638 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1639 		*inactive++ = *port;
1640 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1641 
1642 	smp_wmb(); /* complete the seqlock for execlists_active() */
1643 	WRITE_ONCE(execlists->active, execlists->inflight);
1644 
1645 	/* Having cancelled all outstanding process_csb(), stop their timers */
1646 	GEM_BUG_ON(execlists->pending[0]);
1647 	cancel_timer(&execlists->timer);
1648 	cancel_timer(&execlists->preempt);
1649 
1650 	return inactive;
1651 }
1652 
1653 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1654 {
1655 	clflush((void *)first);
1656 	clflush((void *)last);
1657 }
1658 
1659 /*
1660  * Starting with Gen12, the status has a new format:
1661  *
1662  *     bit  0:     switched to new queue
1663  *     bit  1:     reserved
1664  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1665  *                 switch detail is set to "wait on semaphore"
1666  *     bits 3-5:   engine class
1667  *     bits 6-11:  engine instance
1668  *     bits 12-14: reserved
1669  *     bits 15-25: sw context id of the lrc the GT switched to
1670  *     bits 26-31: sw counter of the lrc the GT switched to
1671  *     bits 32-35: context switch detail
1672  *                  - 0: ctx complete
1673  *                  - 1: wait on sync flip
1674  *                  - 2: wait on vblank
1675  *                  - 3: wait on scanline
1676  *                  - 4: wait on semaphore
1677  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1678  *                       WAIT_FOR_EVENT)
1679  *     bit  36:    reserved
1680  *     bits 37-43: wait detail (for switch detail 1 to 4)
1681  *     bits 44-46: reserved
1682  *     bits 47-57: sw context id of the lrc the GT switched away from
1683  *     bits 58-63: sw counter of the lrc the GT switched away from
1684  *
1685  * Xe_HP csb shuffles things around compared to TGL:
1686  *
1687  *     bits 0-3:   context switch detail (same possible values as TGL)
1688  *     bits 4-9:   engine instance
1689  *     bits 10-25: sw context id of the lrc the GT switched to
1690  *     bits 26-31: sw counter of the lrc the GT switched to
1691  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1692  *                 switch detail is set to "wait on semaphore"
1693  *     bit  33:    switched to new queue
1694  *     bits 34-41: wait detail (for switch detail 1 to 4)
1695  *     bits 42-57: sw context id of the lrc the GT switched away from
1696  *     bits 58-63: sw counter of the lrc the GT switched away from
1697  */
1698 static inline bool
1699 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1700 		  u8 switch_detail)
1701 {
1702 	/*
1703 	 * The context switch detail is not guaranteed to be 5 when a preemption
1704 	 * occurs, so we can't just check for that. The check below works for
1705 	 * all the cases we care about, including preemptions of WAIT
1706 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1707 	 * would require some extra handling, but we don't support that.
1708 	 */
1709 	if (!ctx_away_valid || new_queue) {
1710 		GEM_BUG_ON(!ctx_to_valid);
1711 		return true;
1712 	}
1713 
1714 	/*
1715 	 * switch detail = 5 is covered by the case above and we do not expect a
1716 	 * context switch on an unsuccessful wait instruction since we always
1717 	 * use polling mode.
1718 	 */
1719 	GEM_BUG_ON(switch_detail);
1720 	return false;
1721 }
1722 
1723 static bool xehp_csb_parse(const u64 csb)
1724 {
1725 	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1726 				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1727 				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1728 				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1729 }
1730 
1731 static bool gen12_csb_parse(const u64 csb)
1732 {
1733 	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1734 				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1735 				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1736 				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1737 }
1738 
1739 static bool gen8_csb_parse(const u64 csb)
1740 {
1741 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1742 }
1743 
1744 static noinline u64
1745 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1746 {
1747 	u64 entry;
1748 
1749 	/*
1750 	 * Reading from the HWSP has one particular advantage: we can detect
1751 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1752 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1753 	 * we prefer the path that is self-checking and as a last resort,
1754 	 * return the mmio value.
1755 	 *
1756 	 * tgl,dg1:HSDES#22011327657
1757 	 */
1758 	preempt_disable();
1759 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1760 		int idx = csb - engine->execlists.csb_status;
1761 		int status;
1762 
1763 		status = GEN8_EXECLISTS_STATUS_BUF;
1764 		if (idx >= 6) {
1765 			status = GEN11_EXECLISTS_STATUS_BUF2;
1766 			idx -= 6;
1767 		}
1768 		status += sizeof(u64) * idx;
1769 
1770 		entry = intel_uncore_read64(engine->uncore,
1771 					    _MMIO(engine->mmio_base + status));
1772 	}
1773 	preempt_enable();
1774 
1775 	return entry;
1776 }
1777 
1778 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1779 {
1780 	u64 entry = READ_ONCE(*csb);
1781 
1782 	/*
1783 	 * Unfortunately, the GPU does not always serialise its write
1784 	 * of the CSB entries before its write of the CSB pointer, at least
1785 	 * from the perspective of the CPU, using what is known as a Global
1786 	 * Observation Point. We may read a new CSB tail pointer, but then
1787 	 * read the stale CSB entries, causing us to misinterpret the
1788 	 * context-switch events, and eventually declare the GPU hung.
1789 	 *
1790 	 * icl:HSDES#1806554093
1791 	 * tgl:HSDES#22011248461
1792 	 */
1793 	if (unlikely(entry == -1))
1794 		entry = wa_csb_read(engine, csb);
1795 
1796 	/* Consume this entry so that we can spot its future reuse. */
1797 	WRITE_ONCE(*csb, -1);
1798 
1799 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1800 	return entry;
1801 }
1802 
1803 static void new_timeslice(struct intel_engine_execlists *el)
1804 {
1805 	/* By cancelling, we will start afresh in start_timeslice() */
1806 	cancel_timer(&el->timer);
1807 }
1808 
1809 static struct i915_request **
1810 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1811 {
1812 	struct intel_engine_execlists * const execlists = &engine->execlists;
1813 	u64 * const buf = execlists->csb_status;
1814 	const u8 num_entries = execlists->csb_size;
1815 	struct i915_request **prev;
1816 	u8 head, tail;
1817 
1818 	/*
1819 	 * As we modify our execlists state tracking we require exclusive
1820 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1821 	 * and we assume that is only inside the reset paths and so serialised.
1822 	 */
1823 	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1824 		   !reset_in_progress(engine));
1825 
1826 	/*
1827 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1828 	 * When reading from the csb_write mmio register, we have to be
1829 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1830 	 * the low 4bits. As it happens we know the next 4bits are always
1831 	 * zero and so we can simply masked off the low u8 of the register
1832 	 * and treat it identically to reading from the HWSP (without having
1833 	 * to use explicit shifting and masking, and probably bifurcating
1834 	 * the code to handle the legacy mmio read).
1835 	 */
1836 	head = execlists->csb_head;
1837 	tail = READ_ONCE(*execlists->csb_write);
1838 	if (unlikely(head == tail))
1839 		return inactive;
1840 
1841 	/*
1842 	 * We will consume all events from HW, or at least pretend to.
1843 	 *
1844 	 * The sequence of events from the HW is deterministic, and derived
1845 	 * from our writes to the ELSP, with a smidgen of variability for
1846 	 * the arrival of the asynchronous requests wrt to the inflight
1847 	 * execution. If the HW sends an event that does not correspond with
1848 	 * the one we are expecting, we have to abandon all hope as we lose
1849 	 * all tracking of what the engine is actually executing. We will
1850 	 * only detect we are out of sequence with the HW when we get an
1851 	 * 'impossible' event because we have already drained our own
1852 	 * preemption/promotion queue. If this occurs, we know that we likely
1853 	 * lost track of execution earlier and must unwind and restart, the
1854 	 * simplest way is by stop processing the event queue and force the
1855 	 * engine to reset.
1856 	 */
1857 	execlists->csb_head = tail;
1858 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1859 
1860 	/*
1861 	 * Hopefully paired with a wmb() in HW!
1862 	 *
1863 	 * We must complete the read of the write pointer before any reads
1864 	 * from the CSB, so that we do not see stale values. Without an rmb
1865 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1866 	 * we perform the READ_ONCE(*csb_write).
1867 	 */
1868 	rmb();
1869 
1870 	/* Remember who was last running under the timer */
1871 	prev = inactive;
1872 	*prev = NULL;
1873 
1874 	do {
1875 		bool promote;
1876 		u64 csb;
1877 
1878 		if (++head == num_entries)
1879 			head = 0;
1880 
1881 		/*
1882 		 * We are flying near dragons again.
1883 		 *
1884 		 * We hold a reference to the request in execlist_port[]
1885 		 * but no more than that. We are operating in softirq
1886 		 * context and so cannot hold any mutex or sleep. That
1887 		 * prevents us stopping the requests we are processing
1888 		 * in port[] from being retired simultaneously (the
1889 		 * breadcrumb will be complete before we see the
1890 		 * context-switch). As we only hold the reference to the
1891 		 * request, any pointer chasing underneath the request
1892 		 * is subject to a potential use-after-free. Thus we
1893 		 * store all of the bookkeeping within port[] as
1894 		 * required, and avoid using unguarded pointers beneath
1895 		 * request itself. The same applies to the atomic
1896 		 * status notifier.
1897 		 */
1898 
1899 		csb = csb_read(engine, buf + head);
1900 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1901 			     head, upper_32_bits(csb), lower_32_bits(csb));
1902 
1903 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1904 			promote = xehp_csb_parse(csb);
1905 		else if (GRAPHICS_VER(engine->i915) >= 12)
1906 			promote = gen12_csb_parse(csb);
1907 		else
1908 			promote = gen8_csb_parse(csb);
1909 		if (promote) {
1910 			struct i915_request * const *old = execlists->active;
1911 
1912 			if (GEM_WARN_ON(!*execlists->pending)) {
1913 				execlists->error_interrupt |= ERROR_CSB;
1914 				break;
1915 			}
1916 
1917 			ring_set_paused(engine, 0);
1918 
1919 			/* Point active to the new ELSP; prevent overwriting */
1920 			WRITE_ONCE(execlists->active, execlists->pending);
1921 			smp_wmb(); /* notify execlists_active() */
1922 
1923 			/* cancel old inflight, prepare for switch */
1924 			trace_ports(execlists, "preempted", old);
1925 			while (*old)
1926 				*inactive++ = *old++;
1927 
1928 			/* switch pending to inflight */
1929 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1930 			copy_ports(execlists->inflight,
1931 				   execlists->pending,
1932 				   execlists_num_ports(execlists));
1933 			smp_wmb(); /* complete the seqlock */
1934 			WRITE_ONCE(execlists->active, execlists->inflight);
1935 
1936 			/* XXX Magic delay for tgl */
1937 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1938 
1939 			WRITE_ONCE(execlists->pending[0], NULL);
1940 		} else {
1941 			if (GEM_WARN_ON(!*execlists->active)) {
1942 				execlists->error_interrupt |= ERROR_CSB;
1943 				break;
1944 			}
1945 
1946 			/* port0 completed, advanced to port1 */
1947 			trace_ports(execlists, "completed", execlists->active);
1948 
1949 			/*
1950 			 * We rely on the hardware being strongly
1951 			 * ordered, that the breadcrumb write is
1952 			 * coherent (visible from the CPU) before the
1953 			 * user interrupt is processed. One might assume
1954 			 * that the breadcrumb write being before the
1955 			 * user interrupt and the CS event for the context
1956 			 * switch would therefore be before the CS event
1957 			 * itself...
1958 			 */
1959 			if (GEM_SHOW_DEBUG() &&
1960 			    !__i915_request_is_complete(*execlists->active)) {
1961 				struct i915_request *rq = *execlists->active;
1962 				const u32 *regs __maybe_unused =
1963 					rq->context->lrc_reg_state;
1964 
1965 				ENGINE_TRACE(engine,
1966 					     "context completed before request!\n");
1967 				ENGINE_TRACE(engine,
1968 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1969 					     ENGINE_READ(engine, RING_START),
1970 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1971 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1972 					     ENGINE_READ(engine, RING_CTL),
1973 					     ENGINE_READ(engine, RING_MI_MODE));
1974 				ENGINE_TRACE(engine,
1975 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1976 					     i915_ggtt_offset(rq->ring->vma),
1977 					     rq->head, rq->tail,
1978 					     rq->fence.context,
1979 					     lower_32_bits(rq->fence.seqno),
1980 					     hwsp_seqno(rq));
1981 				ENGINE_TRACE(engine,
1982 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1983 					     regs[CTX_RING_START],
1984 					     regs[CTX_RING_HEAD],
1985 					     regs[CTX_RING_TAIL]);
1986 			}
1987 
1988 			*inactive++ = *execlists->active++;
1989 
1990 			GEM_BUG_ON(execlists->active - execlists->inflight >
1991 				   execlists_num_ports(execlists));
1992 		}
1993 	} while (head != tail);
1994 
1995 	/*
1996 	 * Gen11 has proven to fail wrt global observation point between
1997 	 * entry and tail update, failing on the ordering and thus
1998 	 * we see an old entry in the context status buffer.
1999 	 *
2000 	 * Forcibly evict out entries for the next gpu csb update,
2001 	 * to increase the odds that we get a fresh entries with non
2002 	 * working hardware. The cost for doing so comes out mostly with
2003 	 * the wash as hardware, working or not, will need to do the
2004 	 * invalidation before.
2005 	 */
2006 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2007 
2008 	/*
2009 	 * We assume that any event reflects a change in context flow
2010 	 * and merits a fresh timeslice. We reinstall the timer after
2011 	 * inspecting the queue to see if we need to resumbit.
2012 	 */
2013 	if (*prev != *execlists->active) /* elide lite-restores */
2014 		new_timeslice(execlists);
2015 
2016 	return inactive;
2017 }
2018 
2019 static void post_process_csb(struct i915_request **port,
2020 			     struct i915_request **last)
2021 {
2022 	while (port != last)
2023 		execlists_schedule_out(*port++);
2024 }
2025 
2026 static void __execlists_hold(struct i915_request *rq)
2027 {
2028 	LIST_HEAD(list);
2029 
2030 	do {
2031 		struct i915_dependency *p;
2032 
2033 		if (i915_request_is_active(rq))
2034 			__i915_request_unsubmit(rq);
2035 
2036 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2037 		list_move_tail(&rq->sched.link,
2038 			       &rq->engine->sched_engine->hold);
2039 		i915_request_set_hold(rq);
2040 		RQ_TRACE(rq, "on hold\n");
2041 
2042 		for_each_waiter(p, rq) {
2043 			struct i915_request *w =
2044 				container_of(p->waiter, typeof(*w), sched);
2045 
2046 			if (p->flags & I915_DEPENDENCY_WEAK)
2047 				continue;
2048 
2049 			/* Leave semaphores spinning on the other engines */
2050 			if (w->engine != rq->engine)
2051 				continue;
2052 
2053 			if (!i915_request_is_ready(w))
2054 				continue;
2055 
2056 			if (__i915_request_is_complete(w))
2057 				continue;
2058 
2059 			if (i915_request_on_hold(w))
2060 				continue;
2061 
2062 			list_move_tail(&w->sched.link, &list);
2063 		}
2064 
2065 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2066 	} while (rq);
2067 }
2068 
2069 static bool execlists_hold(struct intel_engine_cs *engine,
2070 			   struct i915_request *rq)
2071 {
2072 	if (i915_request_on_hold(rq))
2073 		return false;
2074 
2075 	spin_lock_irq(&engine->sched_engine->lock);
2076 
2077 	if (__i915_request_is_complete(rq)) { /* too late! */
2078 		rq = NULL;
2079 		goto unlock;
2080 	}
2081 
2082 	/*
2083 	 * Transfer this request onto the hold queue to prevent it
2084 	 * being resumbitted to HW (and potentially completed) before we have
2085 	 * released it. Since we may have already submitted following
2086 	 * requests, we need to remove those as well.
2087 	 */
2088 	GEM_BUG_ON(i915_request_on_hold(rq));
2089 	GEM_BUG_ON(rq->engine != engine);
2090 	__execlists_hold(rq);
2091 	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2092 
2093 unlock:
2094 	spin_unlock_irq(&engine->sched_engine->lock);
2095 	return rq;
2096 }
2097 
2098 static bool hold_request(const struct i915_request *rq)
2099 {
2100 	struct i915_dependency *p;
2101 	bool result = false;
2102 
2103 	/*
2104 	 * If one of our ancestors is on hold, we must also be on hold,
2105 	 * otherwise we will bypass it and execute before it.
2106 	 */
2107 	rcu_read_lock();
2108 	for_each_signaler(p, rq) {
2109 		const struct i915_request *s =
2110 			container_of(p->signaler, typeof(*s), sched);
2111 
2112 		if (s->engine != rq->engine)
2113 			continue;
2114 
2115 		result = i915_request_on_hold(s);
2116 		if (result)
2117 			break;
2118 	}
2119 	rcu_read_unlock();
2120 
2121 	return result;
2122 }
2123 
2124 static void __execlists_unhold(struct i915_request *rq)
2125 {
2126 	LIST_HEAD(list);
2127 
2128 	do {
2129 		struct i915_dependency *p;
2130 
2131 		RQ_TRACE(rq, "hold release\n");
2132 
2133 		GEM_BUG_ON(!i915_request_on_hold(rq));
2134 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2135 
2136 		i915_request_clear_hold(rq);
2137 		list_move_tail(&rq->sched.link,
2138 			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2139 							  rq_prio(rq)));
2140 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2141 
2142 		/* Also release any children on this engine that are ready */
2143 		for_each_waiter(p, rq) {
2144 			struct i915_request *w =
2145 				container_of(p->waiter, typeof(*w), sched);
2146 
2147 			if (p->flags & I915_DEPENDENCY_WEAK)
2148 				continue;
2149 
2150 			if (w->engine != rq->engine)
2151 				continue;
2152 
2153 			if (!i915_request_on_hold(w))
2154 				continue;
2155 
2156 			/* Check that no other parents are also on hold */
2157 			if (hold_request(w))
2158 				continue;
2159 
2160 			list_move_tail(&w->sched.link, &list);
2161 		}
2162 
2163 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2164 	} while (rq);
2165 }
2166 
2167 static void execlists_unhold(struct intel_engine_cs *engine,
2168 			     struct i915_request *rq)
2169 {
2170 	spin_lock_irq(&engine->sched_engine->lock);
2171 
2172 	/*
2173 	 * Move this request back to the priority queue, and all of its
2174 	 * children and grandchildren that were suspended along with it.
2175 	 */
2176 	__execlists_unhold(rq);
2177 
2178 	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2179 		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2180 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2181 	}
2182 
2183 	spin_unlock_irq(&engine->sched_engine->lock);
2184 }
2185 
2186 struct execlists_capture {
2187 	struct work_struct work;
2188 	struct i915_request *rq;
2189 	struct i915_gpu_coredump *error;
2190 };
2191 
2192 static void execlists_capture_work(struct work_struct *work)
2193 {
2194 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2195 	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2196 		__GFP_NOWARN;
2197 	struct intel_engine_cs *engine = cap->rq->engine;
2198 	struct intel_gt_coredump *gt = cap->error->gt;
2199 	struct intel_engine_capture_vma *vma;
2200 
2201 	/* Compress all the objects attached to the request, slow! */
2202 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2203 	if (vma) {
2204 		struct i915_vma_compress *compress =
2205 			i915_vma_capture_prepare(gt);
2206 
2207 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2208 		i915_vma_capture_finish(gt, compress);
2209 	}
2210 
2211 	gt->simulated = gt->engine->simulated;
2212 	cap->error->simulated = gt->simulated;
2213 
2214 	/* Publish the error state, and announce it to the world */
2215 	i915_error_state_store(cap->error);
2216 	i915_gpu_coredump_put(cap->error);
2217 
2218 	/* Return this request and all that depend upon it for signaling */
2219 	execlists_unhold(engine, cap->rq);
2220 	i915_request_put(cap->rq);
2221 
2222 	kfree(cap);
2223 }
2224 
2225 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2226 {
2227 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2228 	struct execlists_capture *cap;
2229 
2230 	cap = kmalloc(sizeof(*cap), gfp);
2231 	if (!cap)
2232 		return NULL;
2233 
2234 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2235 	if (!cap->error)
2236 		goto err_cap;
2237 
2238 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2239 	if (!cap->error->gt)
2240 		goto err_gpu;
2241 
2242 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2243 	if (!cap->error->gt->engine)
2244 		goto err_gt;
2245 
2246 	cap->error->gt->engine->hung = true;
2247 
2248 	return cap;
2249 
2250 err_gt:
2251 	kfree(cap->error->gt);
2252 err_gpu:
2253 	kfree(cap->error);
2254 err_cap:
2255 	kfree(cap);
2256 	return NULL;
2257 }
2258 
2259 static struct i915_request *
2260 active_context(struct intel_engine_cs *engine, u32 ccid)
2261 {
2262 	const struct intel_engine_execlists * const el = &engine->execlists;
2263 	struct i915_request * const *port, *rq;
2264 
2265 	/*
2266 	 * Use the most recent result from process_csb(), but just in case
2267 	 * we trigger an error (via interrupt) before the first CS event has
2268 	 * been written, peek at the next submission.
2269 	 */
2270 
2271 	for (port = el->active; (rq = *port); port++) {
2272 		if (rq->context->lrc.ccid == ccid) {
2273 			ENGINE_TRACE(engine,
2274 				     "ccid:%x found at active:%zd\n",
2275 				     ccid, port - el->active);
2276 			return rq;
2277 		}
2278 	}
2279 
2280 	for (port = el->pending; (rq = *port); port++) {
2281 		if (rq->context->lrc.ccid == ccid) {
2282 			ENGINE_TRACE(engine,
2283 				     "ccid:%x found at pending:%zd\n",
2284 				     ccid, port - el->pending);
2285 			return rq;
2286 		}
2287 	}
2288 
2289 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2290 	return NULL;
2291 }
2292 
2293 static u32 active_ccid(struct intel_engine_cs *engine)
2294 {
2295 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2296 }
2297 
2298 static void execlists_capture(struct intel_engine_cs *engine)
2299 {
2300 	struct execlists_capture *cap;
2301 
2302 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2303 		return;
2304 
2305 	/*
2306 	 * We need to _quickly_ capture the engine state before we reset.
2307 	 * We are inside an atomic section (softirq) here and we are delaying
2308 	 * the forced preemption event.
2309 	 */
2310 	cap = capture_regs(engine);
2311 	if (!cap)
2312 		return;
2313 
2314 	spin_lock_irq(&engine->sched_engine->lock);
2315 	cap->rq = active_context(engine, active_ccid(engine));
2316 	if (cap->rq) {
2317 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2318 		cap->rq = i915_request_get_rcu(cap->rq);
2319 	}
2320 	spin_unlock_irq(&engine->sched_engine->lock);
2321 	if (!cap->rq)
2322 		goto err_free;
2323 
2324 	/*
2325 	 * Remove the request from the execlists queue, and take ownership
2326 	 * of the request. We pass it to our worker who will _slowly_ compress
2327 	 * all the pages the _user_ requested for debugging their batch, after
2328 	 * which we return it to the queue for signaling.
2329 	 *
2330 	 * By removing them from the execlists queue, we also remove the
2331 	 * requests from being processed by __unwind_incomplete_requests()
2332 	 * during the intel_engine_reset(), and so they will *not* be replayed
2333 	 * afterwards.
2334 	 *
2335 	 * Note that because we have not yet reset the engine at this point,
2336 	 * it is possible for the request that we have identified as being
2337 	 * guilty, did in fact complete and we will then hit an arbitration
2338 	 * point allowing the outstanding preemption to succeed. The likelihood
2339 	 * of that is very low (as capturing of the engine registers should be
2340 	 * fast enough to run inside an irq-off atomic section!), so we will
2341 	 * simply hold that request accountable for being non-preemptible
2342 	 * long enough to force the reset.
2343 	 */
2344 	if (!execlists_hold(engine, cap->rq))
2345 		goto err_rq;
2346 
2347 	INIT_WORK(&cap->work, execlists_capture_work);
2348 	schedule_work(&cap->work);
2349 	return;
2350 
2351 err_rq:
2352 	i915_request_put(cap->rq);
2353 err_free:
2354 	i915_gpu_coredump_put(cap->error);
2355 	kfree(cap);
2356 }
2357 
2358 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2359 {
2360 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2361 	unsigned long *lock = &engine->gt->reset.flags;
2362 
2363 	if (!intel_has_reset_engine(engine->gt))
2364 		return;
2365 
2366 	if (test_and_set_bit(bit, lock))
2367 		return;
2368 
2369 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2370 
2371 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2372 	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2373 
2374 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2375 	execlists_capture(engine);
2376 	intel_engine_reset(engine, msg);
2377 
2378 	tasklet_enable(&engine->sched_engine->tasklet);
2379 	clear_and_wake_up_bit(bit, lock);
2380 }
2381 
2382 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2383 {
2384 	const struct timer_list *t = &engine->execlists.preempt;
2385 
2386 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2387 		return false;
2388 
2389 	if (!timer_expired(t))
2390 		return false;
2391 
2392 	return engine->execlists.pending[0];
2393 }
2394 
2395 /*
2396  * Check the unread Context Status Buffers and manage the submission of new
2397  * contexts to the ELSP accordingly.
2398  */
2399 static void execlists_submission_tasklet(struct tasklet_struct *t)
2400 {
2401 	struct i915_sched_engine *sched_engine =
2402 		from_tasklet(sched_engine, t, tasklet);
2403 	struct intel_engine_cs * const engine = sched_engine->private_data;
2404 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2405 	struct i915_request **inactive;
2406 
2407 	rcu_read_lock();
2408 	inactive = process_csb(engine, post);
2409 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2410 
2411 	if (unlikely(preempt_timeout(engine))) {
2412 		cancel_timer(&engine->execlists.preempt);
2413 		engine->execlists.error_interrupt |= ERROR_PREEMPT;
2414 	}
2415 
2416 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2417 		const char *msg;
2418 
2419 		/* Generate the error message in priority wrt to the user! */
2420 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2421 			msg = "CS error"; /* thrown by a user payload */
2422 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2423 			msg = "invalid CSB event";
2424 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2425 			msg = "preemption time out";
2426 		else
2427 			msg = "internal error";
2428 
2429 		engine->execlists.error_interrupt = 0;
2430 		execlists_reset(engine, msg);
2431 	}
2432 
2433 	if (!engine->execlists.pending[0]) {
2434 		execlists_dequeue_irq(engine);
2435 		start_timeslice(engine);
2436 	}
2437 
2438 	post_process_csb(post, inactive);
2439 	rcu_read_unlock();
2440 }
2441 
2442 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2443 {
2444 	bool tasklet = false;
2445 
2446 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2447 		u32 eir;
2448 
2449 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2450 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2451 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2452 
2453 		/* Disable the error interrupt until after the reset */
2454 		if (likely(eir)) {
2455 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2456 			ENGINE_WRITE(engine, RING_EIR, eir);
2457 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2458 			tasklet = true;
2459 		}
2460 	}
2461 
2462 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2463 		WRITE_ONCE(engine->execlists.yield,
2464 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2465 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2466 			     engine->execlists.yield);
2467 		if (del_timer(&engine->execlists.timer))
2468 			tasklet = true;
2469 	}
2470 
2471 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2472 		tasklet = true;
2473 
2474 	if (iir & GT_RENDER_USER_INTERRUPT)
2475 		intel_engine_signal_breadcrumbs(engine);
2476 
2477 	if (tasklet)
2478 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2479 }
2480 
2481 static void __execlists_kick(struct intel_engine_execlists *execlists)
2482 {
2483 	struct intel_engine_cs *engine =
2484 		container_of(execlists, typeof(*engine), execlists);
2485 
2486 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2487 	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2488 }
2489 
2490 #define execlists_kick(t, member) \
2491 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2492 
2493 static void execlists_timeslice(struct timer_list *timer)
2494 {
2495 	execlists_kick(timer, timer);
2496 }
2497 
2498 static void execlists_preempt(struct timer_list *timer)
2499 {
2500 	execlists_kick(timer, preempt);
2501 }
2502 
2503 static void queue_request(struct intel_engine_cs *engine,
2504 			  struct i915_request *rq)
2505 {
2506 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2507 	list_add_tail(&rq->sched.link,
2508 		      i915_sched_lookup_priolist(engine->sched_engine,
2509 						 rq_prio(rq)));
2510 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2511 }
2512 
2513 static bool submit_queue(struct intel_engine_cs *engine,
2514 			 const struct i915_request *rq)
2515 {
2516 	struct i915_sched_engine *sched_engine = engine->sched_engine;
2517 
2518 	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2519 		return false;
2520 
2521 	sched_engine->queue_priority_hint = rq_prio(rq);
2522 	return true;
2523 }
2524 
2525 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2526 			     const struct i915_request *rq)
2527 {
2528 	GEM_BUG_ON(i915_request_on_hold(rq));
2529 	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2530 }
2531 
2532 static void execlists_submit_request(struct i915_request *request)
2533 {
2534 	struct intel_engine_cs *engine = request->engine;
2535 	unsigned long flags;
2536 
2537 	/* Will be called from irq-context when using foreign fences. */
2538 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2539 
2540 	if (unlikely(ancestor_on_hold(engine, request))) {
2541 		RQ_TRACE(request, "ancestor on hold\n");
2542 		list_add_tail(&request->sched.link,
2543 			      &engine->sched_engine->hold);
2544 		i915_request_set_hold(request);
2545 	} else {
2546 		queue_request(engine, request);
2547 
2548 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2549 		GEM_BUG_ON(list_empty(&request->sched.link));
2550 
2551 		if (submit_queue(engine, request))
2552 			__execlists_kick(&engine->execlists);
2553 	}
2554 
2555 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2556 }
2557 
2558 static int
2559 __execlists_context_pre_pin(struct intel_context *ce,
2560 			    struct intel_engine_cs *engine,
2561 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2562 {
2563 	int err;
2564 
2565 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2566 	if (err)
2567 		return err;
2568 
2569 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2570 		lrc_init_state(ce, engine, *vaddr);
2571 
2572 		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 static int execlists_context_pre_pin(struct intel_context *ce,
2579 				     struct i915_gem_ww_ctx *ww,
2580 				     void **vaddr)
2581 {
2582 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2583 }
2584 
2585 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2586 {
2587 	return lrc_pin(ce, ce->engine, vaddr);
2588 }
2589 
2590 static int execlists_context_alloc(struct intel_context *ce)
2591 {
2592 	return lrc_alloc(ce, ce->engine);
2593 }
2594 
2595 static void execlists_context_cancel_request(struct intel_context *ce,
2596 					     struct i915_request *rq)
2597 {
2598 	struct intel_engine_cs *engine = NULL;
2599 
2600 	i915_request_active_engine(rq, &engine);
2601 
2602 	if (engine && intel_engine_pulse(engine))
2603 		intel_gt_handle_error(engine->gt, engine->mask, 0,
2604 				      "request cancellation by %s",
2605 				      current->comm);
2606 }
2607 
2608 static struct intel_context *
2609 execlists_create_parallel(struct intel_engine_cs **engines,
2610 			  unsigned int num_siblings,
2611 			  unsigned int width)
2612 {
2613 	struct intel_context *parent = NULL, *ce, *err;
2614 	int i;
2615 
2616 	GEM_BUG_ON(num_siblings != 1);
2617 
2618 	for (i = 0; i < width; ++i) {
2619 		ce = intel_context_create(engines[i]);
2620 		if (IS_ERR(ce)) {
2621 			err = ce;
2622 			goto unwind;
2623 		}
2624 
2625 		if (i == 0)
2626 			parent = ce;
2627 		else
2628 			intel_context_bind_parent_child(parent, ce);
2629 	}
2630 
2631 	parent->parallel.fence_context = dma_fence_context_alloc(1);
2632 
2633 	intel_context_set_nopreempt(parent);
2634 	for_each_child(parent, ce)
2635 		intel_context_set_nopreempt(ce);
2636 
2637 	return parent;
2638 
2639 unwind:
2640 	if (parent)
2641 		intel_context_put(parent);
2642 	return err;
2643 }
2644 
2645 static const struct intel_context_ops execlists_context_ops = {
2646 	.flags = COPS_HAS_INFLIGHT,
2647 
2648 	.alloc = execlists_context_alloc,
2649 
2650 	.cancel_request = execlists_context_cancel_request,
2651 
2652 	.pre_pin = execlists_context_pre_pin,
2653 	.pin = execlists_context_pin,
2654 	.unpin = lrc_unpin,
2655 	.post_unpin = lrc_post_unpin,
2656 
2657 	.enter = intel_context_enter_engine,
2658 	.exit = intel_context_exit_engine,
2659 
2660 	.reset = lrc_reset,
2661 	.destroy = lrc_destroy,
2662 
2663 	.create_parallel = execlists_create_parallel,
2664 	.create_virtual = execlists_create_virtual,
2665 };
2666 
2667 static int emit_pdps(struct i915_request *rq)
2668 {
2669 	const struct intel_engine_cs * const engine = rq->engine;
2670 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2671 	int err, i;
2672 	u32 *cs;
2673 
2674 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2675 
2676 	/*
2677 	 * Beware ye of the dragons, this sequence is magic!
2678 	 *
2679 	 * Small changes to this sequence can cause anything from
2680 	 * GPU hangs to forcewake errors and machine lockups!
2681 	 */
2682 
2683 	cs = intel_ring_begin(rq, 2);
2684 	if (IS_ERR(cs))
2685 		return PTR_ERR(cs);
2686 
2687 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2688 	*cs++ = MI_NOOP;
2689 	intel_ring_advance(rq, cs);
2690 
2691 	/* Flush any residual operations from the context load */
2692 	err = engine->emit_flush(rq, EMIT_FLUSH);
2693 	if (err)
2694 		return err;
2695 
2696 	/* Magic required to prevent forcewake errors! */
2697 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2698 	if (err)
2699 		return err;
2700 
2701 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2702 	if (IS_ERR(cs))
2703 		return PTR_ERR(cs);
2704 
2705 	/* Ensure the LRI have landed before we invalidate & continue */
2706 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2707 	for (i = GEN8_3LVL_PDPES; i--; ) {
2708 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2709 		u32 base = engine->mmio_base;
2710 
2711 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2712 		*cs++ = upper_32_bits(pd_daddr);
2713 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2714 		*cs++ = lower_32_bits(pd_daddr);
2715 	}
2716 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2717 	intel_ring_advance(rq, cs);
2718 
2719 	intel_ring_advance(rq, cs);
2720 
2721 	return 0;
2722 }
2723 
2724 static int execlists_request_alloc(struct i915_request *request)
2725 {
2726 	int ret;
2727 
2728 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2729 
2730 	/*
2731 	 * Flush enough space to reduce the likelihood of waiting after
2732 	 * we start building the request - in which case we will just
2733 	 * have to repeat work.
2734 	 */
2735 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2736 
2737 	/*
2738 	 * Note that after this point, we have committed to using
2739 	 * this request as it is being used to both track the
2740 	 * state of engine initialisation and liveness of the
2741 	 * golden renderstate above. Think twice before you try
2742 	 * to cancel/unwind this request now.
2743 	 */
2744 
2745 	if (!i915_vm_is_4lvl(request->context->vm)) {
2746 		ret = emit_pdps(request);
2747 		if (ret)
2748 			return ret;
2749 	}
2750 
2751 	/* Unconditionally invalidate GPU caches and TLBs. */
2752 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2753 	if (ret)
2754 		return ret;
2755 
2756 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2757 	return 0;
2758 }
2759 
2760 static void reset_csb_pointers(struct intel_engine_cs *engine)
2761 {
2762 	struct intel_engine_execlists * const execlists = &engine->execlists;
2763 	const unsigned int reset_value = execlists->csb_size - 1;
2764 
2765 	ring_set_paused(engine, 0);
2766 
2767 	/*
2768 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2769 	 * Bludgeon them with a mmio update to be sure.
2770 	 */
2771 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2772 		     0xffff << 16 | reset_value << 8 | reset_value);
2773 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2774 
2775 	/*
2776 	 * After a reset, the HW starts writing into CSB entry [0]. We
2777 	 * therefore have to set our HEAD pointer back one entry so that
2778 	 * the *first* entry we check is entry 0. To complicate this further,
2779 	 * as we don't wait for the first interrupt after reset, we have to
2780 	 * fake the HW write to point back to the last entry so that our
2781 	 * inline comparison of our cached head position against the last HW
2782 	 * write works even before the first interrupt.
2783 	 */
2784 	execlists->csb_head = reset_value;
2785 	WRITE_ONCE(*execlists->csb_write, reset_value);
2786 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2787 
2788 	/* Check that the GPU does indeed update the CSB entries! */
2789 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2790 	invalidate_csb_entries(&execlists->csb_status[0],
2791 			       &execlists->csb_status[reset_value]);
2792 
2793 	/* Once more for luck and our trusty paranoia */
2794 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2795 		     0xffff << 16 | reset_value << 8 | reset_value);
2796 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2797 
2798 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2799 }
2800 
2801 static void sanitize_hwsp(struct intel_engine_cs *engine)
2802 {
2803 	struct intel_timeline *tl;
2804 
2805 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2806 		intel_timeline_reset_seqno(tl);
2807 }
2808 
2809 static void execlists_sanitize(struct intel_engine_cs *engine)
2810 {
2811 	GEM_BUG_ON(execlists_active(&engine->execlists));
2812 
2813 	/*
2814 	 * Poison residual state on resume, in case the suspend didn't!
2815 	 *
2816 	 * We have to assume that across suspend/resume (or other loss
2817 	 * of control) that the contents of our pinned buffers has been
2818 	 * lost, replaced by garbage. Since this doesn't always happen,
2819 	 * let's poison such state so that we more quickly spot when
2820 	 * we falsely assume it has been preserved.
2821 	 */
2822 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2823 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2824 
2825 	reset_csb_pointers(engine);
2826 
2827 	/*
2828 	 * The kernel_context HWSP is stored in the status_page. As above,
2829 	 * that may be lost on resume/initialisation, and so we need to
2830 	 * reset the value in the HWSP.
2831 	 */
2832 	sanitize_hwsp(engine);
2833 
2834 	/* And scrub the dirty cachelines for the HWSP */
2835 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2836 
2837 	intel_engine_reset_pinned_contexts(engine);
2838 }
2839 
2840 static void enable_error_interrupt(struct intel_engine_cs *engine)
2841 {
2842 	u32 status;
2843 
2844 	engine->execlists.error_interrupt = 0;
2845 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2846 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2847 
2848 	status = ENGINE_READ(engine, RING_ESR);
2849 	if (unlikely(status)) {
2850 		drm_err(&engine->i915->drm,
2851 			"engine '%s' resumed still in error: %08x\n",
2852 			engine->name, status);
2853 		__intel_gt_reset(engine->gt, engine->mask);
2854 	}
2855 
2856 	/*
2857 	 * On current gen8+, we have 2 signals to play with
2858 	 *
2859 	 * - I915_ERROR_INSTUCTION (bit 0)
2860 	 *
2861 	 *    Generate an error if the command parser encounters an invalid
2862 	 *    instruction
2863 	 *
2864 	 *    This is a fatal error.
2865 	 *
2866 	 * - CP_PRIV (bit 2)
2867 	 *
2868 	 *    Generate an error on privilege violation (where the CP replaces
2869 	 *    the instruction with a no-op). This also fires for writes into
2870 	 *    read-only scratch pages.
2871 	 *
2872 	 *    This is a non-fatal error, parsing continues.
2873 	 *
2874 	 * * there are a few others defined for odd HW that we do not use
2875 	 *
2876 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2877 	 * error (as the HW is validating and suppressing the mistakes), we
2878 	 * only unmask the instruction error bit.
2879 	 */
2880 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2881 }
2882 
2883 static void enable_execlists(struct intel_engine_cs *engine)
2884 {
2885 	u32 mode;
2886 
2887 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2888 
2889 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2890 
2891 	if (GRAPHICS_VER(engine->i915) >= 11)
2892 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2893 	else
2894 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2895 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2896 
2897 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2898 
2899 	ENGINE_WRITE_FW(engine,
2900 			RING_HWS_PGA,
2901 			i915_ggtt_offset(engine->status_page.vma));
2902 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2903 
2904 	enable_error_interrupt(engine);
2905 }
2906 
2907 static int execlists_resume(struct intel_engine_cs *engine)
2908 {
2909 	intel_mocs_init_engine(engine);
2910 	intel_breadcrumbs_reset(engine->breadcrumbs);
2911 
2912 	enable_execlists(engine);
2913 
2914 	if (engine->class == RENDER_CLASS)
2915 		xehp_enable_ccs_engines(engine);
2916 
2917 	return 0;
2918 }
2919 
2920 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2921 {
2922 	ENGINE_TRACE(engine, "depth<-%d\n",
2923 		     atomic_read(&engine->sched_engine->tasklet.count));
2924 
2925 	/*
2926 	 * Prevent request submission to the hardware until we have
2927 	 * completed the reset in i915_gem_reset_finish(). If a request
2928 	 * is completed by one engine, it may then queue a request
2929 	 * to a second via its execlists->tasklet *just* as we are
2930 	 * calling engine->resume() and also writing the ELSP.
2931 	 * Turning off the execlists->tasklet until the reset is over
2932 	 * prevents the race.
2933 	 */
2934 	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2935 	GEM_BUG_ON(!reset_in_progress(engine));
2936 
2937 	/*
2938 	 * We stop engines, otherwise we might get failed reset and a
2939 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2940 	 * from system hang if batchbuffer is progressing when
2941 	 * the reset is issued, regardless of READY_TO_RESET ack.
2942 	 * Thus assume it is best to stop engines on all gens
2943 	 * where we have a gpu reset.
2944 	 *
2945 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2946 	 *
2947 	 * FIXME: Wa for more modern gens needs to be validated
2948 	 */
2949 	ring_set_paused(engine, 1);
2950 	intel_engine_stop_cs(engine);
2951 
2952 	engine->execlists.reset_ccid = active_ccid(engine);
2953 }
2954 
2955 static struct i915_request **
2956 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2957 {
2958 	struct intel_engine_execlists * const execlists = &engine->execlists;
2959 
2960 	mb(); /* paranoia: read the CSB pointers from after the reset */
2961 	clflush(execlists->csb_write);
2962 	mb();
2963 
2964 	inactive = process_csb(engine, inactive); /* drain preemption events */
2965 
2966 	/* Following the reset, we need to reload the CSB read/write pointers */
2967 	reset_csb_pointers(engine);
2968 
2969 	return inactive;
2970 }
2971 
2972 static void
2973 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2974 {
2975 	struct intel_context *ce;
2976 	struct i915_request *rq;
2977 	u32 head;
2978 
2979 	/*
2980 	 * Save the currently executing context, even if we completed
2981 	 * its request, it was still running at the time of the
2982 	 * reset and will have been clobbered.
2983 	 */
2984 	rq = active_context(engine, engine->execlists.reset_ccid);
2985 	if (!rq)
2986 		return;
2987 
2988 	ce = rq->context;
2989 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2990 
2991 	if (__i915_request_is_complete(rq)) {
2992 		/* Idle context; tidy up the ring so we can restart afresh */
2993 		head = intel_ring_wrap(ce->ring, rq->tail);
2994 		goto out_replay;
2995 	}
2996 
2997 	/* We still have requests in-flight; the engine should be active */
2998 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2999 
3000 	/* Context has requests still in-flight; it should not be idle! */
3001 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3002 
3003 	rq = active_request(ce->timeline, rq);
3004 	head = intel_ring_wrap(ce->ring, rq->head);
3005 	GEM_BUG_ON(head == ce->ring->tail);
3006 
3007 	/*
3008 	 * If this request hasn't started yet, e.g. it is waiting on a
3009 	 * semaphore, we need to avoid skipping the request or else we
3010 	 * break the signaling chain. However, if the context is corrupt
3011 	 * the request will not restart and we will be stuck with a wedged
3012 	 * device. It is quite often the case that if we issue a reset
3013 	 * while the GPU is loading the context image, that the context
3014 	 * image becomes corrupt.
3015 	 *
3016 	 * Otherwise, if we have not started yet, the request should replay
3017 	 * perfectly and we do not need to flag the result as being erroneous.
3018 	 */
3019 	if (!__i915_request_has_started(rq))
3020 		goto out_replay;
3021 
3022 	/*
3023 	 * If the request was innocent, we leave the request in the ELSP
3024 	 * and will try to replay it on restarting. The context image may
3025 	 * have been corrupted by the reset, in which case we may have
3026 	 * to service a new GPU hang, but more likely we can continue on
3027 	 * without impact.
3028 	 *
3029 	 * If the request was guilty, we presume the context is corrupt
3030 	 * and have to at least restore the RING register in the context
3031 	 * image back to the expected values to skip over the guilty request.
3032 	 */
3033 	__i915_request_reset(rq, stalled);
3034 
3035 	/*
3036 	 * We want a simple context + ring to execute the breadcrumb update.
3037 	 * We cannot rely on the context being intact across the GPU hang,
3038 	 * so clear it and rebuild just what we need for the breadcrumb.
3039 	 * All pending requests for this context will be zapped, and any
3040 	 * future request will be after userspace has had the opportunity
3041 	 * to recreate its own state.
3042 	 */
3043 out_replay:
3044 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3045 		     head, ce->ring->tail);
3046 	lrc_reset_regs(ce, engine);
3047 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3048 }
3049 
3050 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3051 {
3052 	struct intel_engine_execlists * const execlists = &engine->execlists;
3053 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3054 	struct i915_request **inactive;
3055 
3056 	rcu_read_lock();
3057 	inactive = reset_csb(engine, post);
3058 
3059 	execlists_reset_active(engine, true);
3060 
3061 	inactive = cancel_port_requests(execlists, inactive);
3062 	post_process_csb(post, inactive);
3063 	rcu_read_unlock();
3064 }
3065 
3066 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3067 {
3068 	unsigned long flags;
3069 
3070 	ENGINE_TRACE(engine, "\n");
3071 
3072 	/* Process the csb, find the guilty context and throw away */
3073 	execlists_reset_csb(engine, stalled);
3074 
3075 	/* Push back any incomplete requests for replay after the reset. */
3076 	rcu_read_lock();
3077 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3078 	__unwind_incomplete_requests(engine);
3079 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3080 	rcu_read_unlock();
3081 }
3082 
3083 static void nop_submission_tasklet(struct tasklet_struct *t)
3084 {
3085 	struct i915_sched_engine *sched_engine =
3086 		from_tasklet(sched_engine, t, tasklet);
3087 	struct intel_engine_cs * const engine = sched_engine->private_data;
3088 
3089 	/* The driver is wedged; don't process any more events. */
3090 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3091 }
3092 
3093 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3094 {
3095 	struct intel_engine_execlists * const execlists = &engine->execlists;
3096 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3097 	struct i915_request *rq, *rn;
3098 	struct rb_node *rb;
3099 	unsigned long flags;
3100 
3101 	ENGINE_TRACE(engine, "\n");
3102 
3103 	/*
3104 	 * Before we call engine->cancel_requests(), we should have exclusive
3105 	 * access to the submission state. This is arranged for us by the
3106 	 * caller disabling the interrupt generation, the tasklet and other
3107 	 * threads that may then access the same state, giving us a free hand
3108 	 * to reset state. However, we still need to let lockdep be aware that
3109 	 * we know this state may be accessed in hardirq context, so we
3110 	 * disable the irq around this manipulation and we want to keep
3111 	 * the spinlock focused on its duties and not accidentally conflate
3112 	 * coverage to the submission's irq state. (Similarly, although we
3113 	 * shouldn't need to disable irq around the manipulation of the
3114 	 * submission's irq state, we also wish to remind ourselves that
3115 	 * it is irq state.)
3116 	 */
3117 	execlists_reset_csb(engine, true);
3118 
3119 	rcu_read_lock();
3120 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3121 
3122 	/* Mark all executing requests as skipped. */
3123 	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3124 		i915_request_put(i915_request_mark_eio(rq));
3125 	intel_engine_signal_breadcrumbs(engine);
3126 
3127 	/* Flush the queued requests to the timeline list (for retiring). */
3128 	while ((rb = rb_first_cached(&sched_engine->queue))) {
3129 		struct i915_priolist *p = to_priolist(rb);
3130 
3131 		priolist_for_each_request_consume(rq, rn, p) {
3132 			if (i915_request_mark_eio(rq)) {
3133 				__i915_request_submit(rq);
3134 				i915_request_put(rq);
3135 			}
3136 		}
3137 
3138 		rb_erase_cached(&p->node, &sched_engine->queue);
3139 		i915_priolist_free(p);
3140 	}
3141 
3142 	/* On-hold requests will be flushed to timeline upon their release */
3143 	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3144 		i915_request_put(i915_request_mark_eio(rq));
3145 
3146 	/* Cancel all attached virtual engines */
3147 	while ((rb = rb_first_cached(&execlists->virtual))) {
3148 		struct virtual_engine *ve =
3149 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3150 
3151 		rb_erase_cached(rb, &execlists->virtual);
3152 		RB_CLEAR_NODE(rb);
3153 
3154 		spin_lock(&ve->base.sched_engine->lock);
3155 		rq = fetch_and_zero(&ve->request);
3156 		if (rq) {
3157 			if (i915_request_mark_eio(rq)) {
3158 				rq->engine = engine;
3159 				__i915_request_submit(rq);
3160 				i915_request_put(rq);
3161 			}
3162 			i915_request_put(rq);
3163 
3164 			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3165 		}
3166 		spin_unlock(&ve->base.sched_engine->lock);
3167 	}
3168 
3169 	/* Remaining _unready_ requests will be nop'ed when submitted */
3170 
3171 	sched_engine->queue_priority_hint = INT_MIN;
3172 	sched_engine->queue = RB_ROOT_CACHED;
3173 
3174 	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3175 	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3176 
3177 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3178 	rcu_read_unlock();
3179 }
3180 
3181 static void execlists_reset_finish(struct intel_engine_cs *engine)
3182 {
3183 	struct intel_engine_execlists * const execlists = &engine->execlists;
3184 
3185 	/*
3186 	 * After a GPU reset, we may have requests to replay. Do so now while
3187 	 * we still have the forcewake to be sure that the GPU is not allowed
3188 	 * to sleep before we restart and reload a context.
3189 	 *
3190 	 * If the GPU reset fails, the engine may still be alive with requests
3191 	 * inflight. We expect those to complete, or for the device to be
3192 	 * reset as the next level of recovery, and as a final resort we
3193 	 * will declare the device wedged.
3194 	 */
3195 	GEM_BUG_ON(!reset_in_progress(engine));
3196 
3197 	/* And kick in case we missed a new request submission. */
3198 	if (__tasklet_enable(&engine->sched_engine->tasklet))
3199 		__execlists_kick(execlists);
3200 
3201 	ENGINE_TRACE(engine, "depth->%d\n",
3202 		     atomic_read(&engine->sched_engine->tasklet.count));
3203 }
3204 
3205 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3206 {
3207 	ENGINE_WRITE(engine, RING_IMR,
3208 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3209 	ENGINE_POSTING_READ(engine, RING_IMR);
3210 }
3211 
3212 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3213 {
3214 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3215 }
3216 
3217 static void execlists_park(struct intel_engine_cs *engine)
3218 {
3219 	cancel_timer(&engine->execlists.timer);
3220 	cancel_timer(&engine->execlists.preempt);
3221 }
3222 
3223 static void add_to_engine(struct i915_request *rq)
3224 {
3225 	lockdep_assert_held(&rq->engine->sched_engine->lock);
3226 	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3227 }
3228 
3229 static void remove_from_engine(struct i915_request *rq)
3230 {
3231 	struct intel_engine_cs *engine, *locked;
3232 
3233 	/*
3234 	 * Virtual engines complicate acquiring the engine timeline lock,
3235 	 * as their rq->engine pointer is not stable until under that
3236 	 * engine lock. The simple ploy we use is to take the lock then
3237 	 * check that the rq still belongs to the newly locked engine.
3238 	 */
3239 	locked = READ_ONCE(rq->engine);
3240 	spin_lock_irq(&locked->sched_engine->lock);
3241 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3242 		spin_unlock(&locked->sched_engine->lock);
3243 		spin_lock(&engine->sched_engine->lock);
3244 		locked = engine;
3245 	}
3246 	list_del_init(&rq->sched.link);
3247 
3248 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3249 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3250 
3251 	/* Prevent further __await_execution() registering a cb, then flush */
3252 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3253 
3254 	spin_unlock_irq(&locked->sched_engine->lock);
3255 
3256 	i915_request_notify_execute_cb_imm(rq);
3257 }
3258 
3259 static bool can_preempt(struct intel_engine_cs *engine)
3260 {
3261 	if (GRAPHICS_VER(engine->i915) > 8)
3262 		return true;
3263 
3264 	/* GPGPU on bdw requires extra w/a; not implemented */
3265 	return engine->class != RENDER_CLASS;
3266 }
3267 
3268 static void kick_execlists(const struct i915_request *rq, int prio)
3269 {
3270 	struct intel_engine_cs *engine = rq->engine;
3271 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3272 	const struct i915_request *inflight;
3273 
3274 	/*
3275 	 * We only need to kick the tasklet once for the high priority
3276 	 * new context we add into the queue.
3277 	 */
3278 	if (prio <= sched_engine->queue_priority_hint)
3279 		return;
3280 
3281 	rcu_read_lock();
3282 
3283 	/* Nothing currently active? We're overdue for a submission! */
3284 	inflight = execlists_active(&engine->execlists);
3285 	if (!inflight)
3286 		goto unlock;
3287 
3288 	/*
3289 	 * If we are already the currently executing context, don't
3290 	 * bother evaluating if we should preempt ourselves.
3291 	 */
3292 	if (inflight->context == rq->context)
3293 		goto unlock;
3294 
3295 	ENGINE_TRACE(engine,
3296 		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3297 		     prio,
3298 		     rq->fence.context, rq->fence.seqno,
3299 		     inflight->fence.context, inflight->fence.seqno,
3300 		     inflight->sched.attr.priority);
3301 
3302 	sched_engine->queue_priority_hint = prio;
3303 
3304 	/*
3305 	 * Allow preemption of low -> normal -> high, but we do
3306 	 * not allow low priority tasks to preempt other low priority
3307 	 * tasks under the impression that latency for low priority
3308 	 * tasks does not matter (as much as background throughput),
3309 	 * so kiss.
3310 	 */
3311 	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3312 		tasklet_hi_schedule(&sched_engine->tasklet);
3313 
3314 unlock:
3315 	rcu_read_unlock();
3316 }
3317 
3318 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3319 {
3320 	engine->submit_request = execlists_submit_request;
3321 	engine->sched_engine->schedule = i915_schedule;
3322 	engine->sched_engine->kick_backend = kick_execlists;
3323 	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3324 }
3325 
3326 static void execlists_shutdown(struct intel_engine_cs *engine)
3327 {
3328 	/* Synchronise with residual timers and any softirq they raise */
3329 	del_timer_sync(&engine->execlists.timer);
3330 	del_timer_sync(&engine->execlists.preempt);
3331 	tasklet_kill(&engine->sched_engine->tasklet);
3332 }
3333 
3334 static void execlists_release(struct intel_engine_cs *engine)
3335 {
3336 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3337 
3338 	execlists_shutdown(engine);
3339 
3340 	intel_engine_cleanup_common(engine);
3341 	lrc_fini_wa_ctx(engine);
3342 }
3343 
3344 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3345 					   ktime_t *now)
3346 {
3347 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3348 	ktime_t total = stats->total;
3349 
3350 	/*
3351 	 * If the engine is executing something at the moment
3352 	 * add it to the total.
3353 	 */
3354 	*now = ktime_get();
3355 	if (READ_ONCE(stats->active))
3356 		total = ktime_add(total, ktime_sub(*now, stats->start));
3357 
3358 	return total;
3359 }
3360 
3361 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3362 					 ktime_t *now)
3363 {
3364 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3365 	unsigned int seq;
3366 	ktime_t total;
3367 
3368 	do {
3369 		seq = read_seqcount_begin(&stats->lock);
3370 		total = __execlists_engine_busyness(engine, now);
3371 	} while (read_seqcount_retry(&stats->lock, seq));
3372 
3373 	return total;
3374 }
3375 
3376 static void
3377 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3378 {
3379 	/* Default vfuncs which can be overridden by each engine. */
3380 
3381 	engine->resume = execlists_resume;
3382 
3383 	engine->cops = &execlists_context_ops;
3384 	engine->request_alloc = execlists_request_alloc;
3385 	engine->add_active_request = add_to_engine;
3386 	engine->remove_active_request = remove_from_engine;
3387 
3388 	engine->reset.prepare = execlists_reset_prepare;
3389 	engine->reset.rewind = execlists_reset_rewind;
3390 	engine->reset.cancel = execlists_reset_cancel;
3391 	engine->reset.finish = execlists_reset_finish;
3392 
3393 	engine->park = execlists_park;
3394 	engine->unpark = NULL;
3395 
3396 	engine->emit_flush = gen8_emit_flush_xcs;
3397 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3398 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3399 	if (GRAPHICS_VER(engine->i915) >= 12) {
3400 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3401 		engine->emit_flush = gen12_emit_flush_xcs;
3402 	}
3403 	engine->set_default_submission = execlists_set_default_submission;
3404 
3405 	if (GRAPHICS_VER(engine->i915) < 11) {
3406 		engine->irq_enable = gen8_logical_ring_enable_irq;
3407 		engine->irq_disable = gen8_logical_ring_disable_irq;
3408 	} else {
3409 		/*
3410 		 * TODO: On Gen11 interrupt masks need to be clear
3411 		 * to allow C6 entry. Keep interrupts enabled at
3412 		 * and take the hit of generating extra interrupts
3413 		 * until a more refined solution exists.
3414 		 */
3415 	}
3416 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3417 
3418 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3419 	if (!intel_vgpu_active(engine->i915)) {
3420 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3421 		if (can_preempt(engine)) {
3422 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3423 			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3424 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3425 		}
3426 	}
3427 
3428 	if (intel_engine_has_preemption(engine))
3429 		engine->emit_bb_start = gen8_emit_bb_start;
3430 	else
3431 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3432 
3433 	engine->busyness = execlists_engine_busyness;
3434 }
3435 
3436 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3437 {
3438 	unsigned int shift = 0;
3439 
3440 	if (GRAPHICS_VER(engine->i915) < 11) {
3441 		const u8 irq_shifts[] = {
3442 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3443 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3444 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3445 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3446 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3447 		};
3448 
3449 		shift = irq_shifts[engine->id];
3450 	}
3451 
3452 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3453 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3454 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3455 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3456 }
3457 
3458 static void rcs_submission_override(struct intel_engine_cs *engine)
3459 {
3460 	switch (GRAPHICS_VER(engine->i915)) {
3461 	case 12:
3462 		engine->emit_flush = gen12_emit_flush_rcs;
3463 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3464 		break;
3465 	case 11:
3466 		engine->emit_flush = gen11_emit_flush_rcs;
3467 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3468 		break;
3469 	default:
3470 		engine->emit_flush = gen8_emit_flush_rcs;
3471 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3472 		break;
3473 	}
3474 }
3475 
3476 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3477 {
3478 	struct intel_engine_execlists * const execlists = &engine->execlists;
3479 	struct drm_i915_private *i915 = engine->i915;
3480 	struct intel_uncore *uncore = engine->uncore;
3481 	u32 base = engine->mmio_base;
3482 
3483 	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3484 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3485 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3486 
3487 	logical_ring_default_vfuncs(engine);
3488 	logical_ring_default_irqs(engine);
3489 
3490 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3491 		rcs_submission_override(engine);
3492 
3493 	lrc_init_wa_ctx(engine);
3494 
3495 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3496 		execlists->submit_reg = uncore->regs +
3497 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3498 		execlists->ctrl_reg = uncore->regs +
3499 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3500 
3501 		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3502 				    RING_EXECLIST_CONTROL(engine->mmio_base),
3503 				    FW_REG_WRITE);
3504 	} else {
3505 		execlists->submit_reg = uncore->regs +
3506 			i915_mmio_reg_offset(RING_ELSP(base));
3507 	}
3508 
3509 	execlists->csb_status =
3510 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3511 
3512 	execlists->csb_write =
3513 		&engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3514 
3515 	if (GRAPHICS_VER(i915) < 11)
3516 		execlists->csb_size = GEN8_CSB_ENTRIES;
3517 	else
3518 		execlists->csb_size = GEN11_CSB_ENTRIES;
3519 
3520 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3521 	if (GRAPHICS_VER(engine->i915) >= 11 &&
3522 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3523 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3524 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3525 	}
3526 
3527 	/* Finally, take ownership and responsibility for cleanup! */
3528 	engine->sanitize = execlists_sanitize;
3529 	engine->release = execlists_release;
3530 
3531 	return 0;
3532 }
3533 
3534 static struct list_head *virtual_queue(struct virtual_engine *ve)
3535 {
3536 	return &ve->base.sched_engine->default_priolist.requests;
3537 }
3538 
3539 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3540 {
3541 	struct virtual_engine *ve =
3542 		container_of(wrk, typeof(*ve), rcu.work);
3543 	unsigned int n;
3544 
3545 	GEM_BUG_ON(ve->context.inflight);
3546 
3547 	/* Preempt-to-busy may leave a stale request behind. */
3548 	if (unlikely(ve->request)) {
3549 		struct i915_request *old;
3550 
3551 		spin_lock_irq(&ve->base.sched_engine->lock);
3552 
3553 		old = fetch_and_zero(&ve->request);
3554 		if (old) {
3555 			GEM_BUG_ON(!__i915_request_is_complete(old));
3556 			__i915_request_submit(old);
3557 			i915_request_put(old);
3558 		}
3559 
3560 		spin_unlock_irq(&ve->base.sched_engine->lock);
3561 	}
3562 
3563 	/*
3564 	 * Flush the tasklet in case it is still running on another core.
3565 	 *
3566 	 * This needs to be done before we remove ourselves from the siblings'
3567 	 * rbtrees as in the case it is running in parallel, it may reinsert
3568 	 * the rb_node into a sibling.
3569 	 */
3570 	tasklet_kill(&ve->base.sched_engine->tasklet);
3571 
3572 	/* Decouple ourselves from the siblings, no more access allowed. */
3573 	for (n = 0; n < ve->num_siblings; n++) {
3574 		struct intel_engine_cs *sibling = ve->siblings[n];
3575 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3576 
3577 		if (RB_EMPTY_NODE(node))
3578 			continue;
3579 
3580 		spin_lock_irq(&sibling->sched_engine->lock);
3581 
3582 		/* Detachment is lazily performed in the sched_engine->tasklet */
3583 		if (!RB_EMPTY_NODE(node))
3584 			rb_erase_cached(node, &sibling->execlists.virtual);
3585 
3586 		spin_unlock_irq(&sibling->sched_engine->lock);
3587 	}
3588 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3589 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3590 
3591 	lrc_fini(&ve->context);
3592 	intel_context_fini(&ve->context);
3593 
3594 	if (ve->base.breadcrumbs)
3595 		intel_breadcrumbs_put(ve->base.breadcrumbs);
3596 	if (ve->base.sched_engine)
3597 		i915_sched_engine_put(ve->base.sched_engine);
3598 	intel_engine_free_request_pool(&ve->base);
3599 
3600 	kfree(ve);
3601 }
3602 
3603 static void virtual_context_destroy(struct kref *kref)
3604 {
3605 	struct virtual_engine *ve =
3606 		container_of(kref, typeof(*ve), context.ref);
3607 
3608 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3609 
3610 	/*
3611 	 * When destroying the virtual engine, we have to be aware that
3612 	 * it may still be in use from an hardirq/softirq context causing
3613 	 * the resubmission of a completed request (background completion
3614 	 * due to preempt-to-busy). Before we can free the engine, we need
3615 	 * to flush the submission code and tasklets that are still potentially
3616 	 * accessing the engine. Flushing the tasklets requires process context,
3617 	 * and since we can guard the resubmit onto the engine with an RCU read
3618 	 * lock, we can delegate the free of the engine to an RCU worker.
3619 	 */
3620 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3621 	queue_rcu_work(system_wq, &ve->rcu);
3622 }
3623 
3624 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3625 {
3626 	int swp;
3627 
3628 	/*
3629 	 * Pick a random sibling on starting to help spread the load around.
3630 	 *
3631 	 * New contexts are typically created with exactly the same order
3632 	 * of siblings, and often started in batches. Due to the way we iterate
3633 	 * the array of sibling when submitting requests, sibling[0] is
3634 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3635 	 * randomised across the system, we also help spread the load by the
3636 	 * first engine we inspect being different each time.
3637 	 *
3638 	 * NB This does not force us to execute on this engine, it will just
3639 	 * typically be the first we inspect for submission.
3640 	 */
3641 	swp = prandom_u32_max(ve->num_siblings);
3642 	if (swp)
3643 		swap(ve->siblings[swp], ve->siblings[0]);
3644 }
3645 
3646 static int virtual_context_alloc(struct intel_context *ce)
3647 {
3648 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3649 
3650 	return lrc_alloc(ce, ve->siblings[0]);
3651 }
3652 
3653 static int virtual_context_pre_pin(struct intel_context *ce,
3654 				   struct i915_gem_ww_ctx *ww,
3655 				   void **vaddr)
3656 {
3657 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3658 
3659 	 /* Note: we must use a real engine class for setting up reg state */
3660 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3661 }
3662 
3663 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3664 {
3665 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3666 
3667 	return lrc_pin(ce, ve->siblings[0], vaddr);
3668 }
3669 
3670 static void virtual_context_enter(struct intel_context *ce)
3671 {
3672 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3673 	unsigned int n;
3674 
3675 	for (n = 0; n < ve->num_siblings; n++)
3676 		intel_engine_pm_get(ve->siblings[n]);
3677 
3678 	intel_timeline_enter(ce->timeline);
3679 }
3680 
3681 static void virtual_context_exit(struct intel_context *ce)
3682 {
3683 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3684 	unsigned int n;
3685 
3686 	intel_timeline_exit(ce->timeline);
3687 
3688 	for (n = 0; n < ve->num_siblings; n++)
3689 		intel_engine_pm_put(ve->siblings[n]);
3690 }
3691 
3692 static struct intel_engine_cs *
3693 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3694 {
3695 	struct virtual_engine *ve = to_virtual_engine(engine);
3696 
3697 	if (sibling >= ve->num_siblings)
3698 		return NULL;
3699 
3700 	return ve->siblings[sibling];
3701 }
3702 
3703 static const struct intel_context_ops virtual_context_ops = {
3704 	.flags = COPS_HAS_INFLIGHT,
3705 
3706 	.alloc = virtual_context_alloc,
3707 
3708 	.cancel_request = execlists_context_cancel_request,
3709 
3710 	.pre_pin = virtual_context_pre_pin,
3711 	.pin = virtual_context_pin,
3712 	.unpin = lrc_unpin,
3713 	.post_unpin = lrc_post_unpin,
3714 
3715 	.enter = virtual_context_enter,
3716 	.exit = virtual_context_exit,
3717 
3718 	.destroy = virtual_context_destroy,
3719 
3720 	.get_sibling = virtual_get_sibling,
3721 };
3722 
3723 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3724 {
3725 	struct i915_request *rq;
3726 	intel_engine_mask_t mask;
3727 
3728 	rq = READ_ONCE(ve->request);
3729 	if (!rq)
3730 		return 0;
3731 
3732 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3733 	mask = rq->execution_mask;
3734 	if (unlikely(!mask)) {
3735 		/* Invalid selection, submit to a random engine in error */
3736 		i915_request_set_error_once(rq, -ENODEV);
3737 		mask = ve->siblings[0]->mask;
3738 	}
3739 
3740 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3741 		     rq->fence.context, rq->fence.seqno,
3742 		     mask, ve->base.sched_engine->queue_priority_hint);
3743 
3744 	return mask;
3745 }
3746 
3747 static void virtual_submission_tasklet(struct tasklet_struct *t)
3748 {
3749 	struct i915_sched_engine *sched_engine =
3750 		from_tasklet(sched_engine, t, tasklet);
3751 	struct virtual_engine * const ve =
3752 		(struct virtual_engine *)sched_engine->private_data;
3753 	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3754 	intel_engine_mask_t mask;
3755 	unsigned int n;
3756 
3757 	rcu_read_lock();
3758 	mask = virtual_submission_mask(ve);
3759 	rcu_read_unlock();
3760 	if (unlikely(!mask))
3761 		return;
3762 
3763 	for (n = 0; n < ve->num_siblings; n++) {
3764 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3765 		struct ve_node * const node = &ve->nodes[sibling->id];
3766 		struct rb_node **parent, *rb;
3767 		bool first;
3768 
3769 		if (!READ_ONCE(ve->request))
3770 			break; /* already handled by a sibling's tasklet */
3771 
3772 		spin_lock_irq(&sibling->sched_engine->lock);
3773 
3774 		if (unlikely(!(mask & sibling->mask))) {
3775 			if (!RB_EMPTY_NODE(&node->rb)) {
3776 				rb_erase_cached(&node->rb,
3777 						&sibling->execlists.virtual);
3778 				RB_CLEAR_NODE(&node->rb);
3779 			}
3780 
3781 			goto unlock_engine;
3782 		}
3783 
3784 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3785 			/*
3786 			 * Cheat and avoid rebalancing the tree if we can
3787 			 * reuse this node in situ.
3788 			 */
3789 			first = rb_first_cached(&sibling->execlists.virtual) ==
3790 				&node->rb;
3791 			if (prio == node->prio || (prio > node->prio && first))
3792 				goto submit_engine;
3793 
3794 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3795 		}
3796 
3797 		rb = NULL;
3798 		first = true;
3799 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3800 		while (*parent) {
3801 			struct ve_node *other;
3802 
3803 			rb = *parent;
3804 			other = rb_entry(rb, typeof(*other), rb);
3805 			if (prio > other->prio) {
3806 				parent = &rb->rb_left;
3807 			} else {
3808 				parent = &rb->rb_right;
3809 				first = false;
3810 			}
3811 		}
3812 
3813 		rb_link_node(&node->rb, rb, parent);
3814 		rb_insert_color_cached(&node->rb,
3815 				       &sibling->execlists.virtual,
3816 				       first);
3817 
3818 submit_engine:
3819 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3820 		node->prio = prio;
3821 		if (first && prio > sibling->sched_engine->queue_priority_hint)
3822 			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3823 
3824 unlock_engine:
3825 		spin_unlock_irq(&sibling->sched_engine->lock);
3826 
3827 		if (intel_context_inflight(&ve->context))
3828 			break;
3829 	}
3830 }
3831 
3832 static void virtual_submit_request(struct i915_request *rq)
3833 {
3834 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3835 	unsigned long flags;
3836 
3837 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3838 		     rq->fence.context,
3839 		     rq->fence.seqno);
3840 
3841 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3842 
3843 	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3844 
3845 	/* By the time we resubmit a request, it may be completed */
3846 	if (__i915_request_is_complete(rq)) {
3847 		__i915_request_submit(rq);
3848 		goto unlock;
3849 	}
3850 
3851 	if (ve->request) { /* background completion from preempt-to-busy */
3852 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3853 		__i915_request_submit(ve->request);
3854 		i915_request_put(ve->request);
3855 	}
3856 
3857 	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3858 	ve->request = i915_request_get(rq);
3859 
3860 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3861 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3862 
3863 	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3864 
3865 unlock:
3866 	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3867 }
3868 
3869 static struct intel_context *
3870 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3871 			 unsigned long flags)
3872 {
3873 	struct virtual_engine *ve;
3874 	unsigned int n;
3875 	int err;
3876 
3877 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3878 	if (!ve)
3879 		return ERR_PTR(-ENOMEM);
3880 
3881 	ve->base.i915 = siblings[0]->i915;
3882 	ve->base.gt = siblings[0]->gt;
3883 	ve->base.uncore = siblings[0]->uncore;
3884 	ve->base.id = -1;
3885 
3886 	ve->base.class = OTHER_CLASS;
3887 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3888 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3889 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3890 
3891 	/*
3892 	 * The decision on whether to submit a request using semaphores
3893 	 * depends on the saturated state of the engine. We only compute
3894 	 * this during HW submission of the request, and we need for this
3895 	 * state to be globally applied to all requests being submitted
3896 	 * to this engine. Virtual engines encompass more than one physical
3897 	 * engine and so we cannot accurately tell in advance if one of those
3898 	 * engines is already saturated and so cannot afford to use a semaphore
3899 	 * and be pessimized in priority for doing so -- if we are the only
3900 	 * context using semaphores after all other clients have stopped, we
3901 	 * will be starved on the saturated system. Such a global switch for
3902 	 * semaphores is less than ideal, but alas is the current compromise.
3903 	 */
3904 	ve->base.saturated = ALL_ENGINES;
3905 
3906 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3907 
3908 	intel_engine_init_execlists(&ve->base);
3909 
3910 	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3911 	if (!ve->base.sched_engine) {
3912 		err = -ENOMEM;
3913 		goto err_put;
3914 	}
3915 	ve->base.sched_engine->private_data = &ve->base;
3916 
3917 	ve->base.cops = &virtual_context_ops;
3918 	ve->base.request_alloc = execlists_request_alloc;
3919 
3920 	ve->base.sched_engine->schedule = i915_schedule;
3921 	ve->base.sched_engine->kick_backend = kick_execlists;
3922 	ve->base.submit_request = virtual_submit_request;
3923 
3924 	INIT_LIST_HEAD(virtual_queue(ve));
3925 	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3926 
3927 	intel_context_init(&ve->context, &ve->base);
3928 
3929 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3930 	if (!ve->base.breadcrumbs) {
3931 		err = -ENOMEM;
3932 		goto err_put;
3933 	}
3934 
3935 	for (n = 0; n < count; n++) {
3936 		struct intel_engine_cs *sibling = siblings[n];
3937 
3938 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3939 		if (sibling->mask & ve->base.mask) {
3940 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3941 				  sibling->name);
3942 			err = -EINVAL;
3943 			goto err_put;
3944 		}
3945 
3946 		/*
3947 		 * The virtual engine implementation is tightly coupled to
3948 		 * the execlists backend -- we push out request directly
3949 		 * into a tree inside each physical engine. We could support
3950 		 * layering if we handle cloning of the requests and
3951 		 * submitting a copy into each backend.
3952 		 */
3953 		if (sibling->sched_engine->tasklet.callback !=
3954 		    execlists_submission_tasklet) {
3955 			err = -ENODEV;
3956 			goto err_put;
3957 		}
3958 
3959 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3960 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3961 
3962 		ve->siblings[ve->num_siblings++] = sibling;
3963 		ve->base.mask |= sibling->mask;
3964 		ve->base.logical_mask |= sibling->logical_mask;
3965 
3966 		/*
3967 		 * All physical engines must be compatible for their emission
3968 		 * functions (as we build the instructions during request
3969 		 * construction and do not alter them before submission
3970 		 * on the physical engine). We use the engine class as a guide
3971 		 * here, although that could be refined.
3972 		 */
3973 		if (ve->base.class != OTHER_CLASS) {
3974 			if (ve->base.class != sibling->class) {
3975 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3976 					  sibling->class, ve->base.class);
3977 				err = -EINVAL;
3978 				goto err_put;
3979 			}
3980 			continue;
3981 		}
3982 
3983 		ve->base.class = sibling->class;
3984 		ve->base.uabi_class = sibling->uabi_class;
3985 		snprintf(ve->base.name, sizeof(ve->base.name),
3986 			 "v%dx%d", ve->base.class, count);
3987 		ve->base.context_size = sibling->context_size;
3988 
3989 		ve->base.add_active_request = sibling->add_active_request;
3990 		ve->base.remove_active_request = sibling->remove_active_request;
3991 		ve->base.emit_bb_start = sibling->emit_bb_start;
3992 		ve->base.emit_flush = sibling->emit_flush;
3993 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3994 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3995 		ve->base.emit_fini_breadcrumb_dw =
3996 			sibling->emit_fini_breadcrumb_dw;
3997 
3998 		ve->base.flags = sibling->flags;
3999 	}
4000 
4001 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4002 
4003 	virtual_engine_initial_hint(ve);
4004 	return &ve->context;
4005 
4006 err_put:
4007 	intel_context_put(&ve->context);
4008 	return ERR_PTR(err);
4009 }
4010 
4011 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4012 				   struct drm_printer *m,
4013 				   void (*show_request)(struct drm_printer *m,
4014 							const struct i915_request *rq,
4015 							const char *prefix,
4016 							int indent),
4017 				   unsigned int max)
4018 {
4019 	const struct intel_engine_execlists *execlists = &engine->execlists;
4020 	struct i915_sched_engine *sched_engine = engine->sched_engine;
4021 	struct i915_request *rq, *last;
4022 	unsigned long flags;
4023 	unsigned int count;
4024 	struct rb_node *rb;
4025 
4026 	spin_lock_irqsave(&sched_engine->lock, flags);
4027 
4028 	last = NULL;
4029 	count = 0;
4030 	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4031 		if (count++ < max - 1)
4032 			show_request(m, rq, "\t\t", 0);
4033 		else
4034 			last = rq;
4035 	}
4036 	if (last) {
4037 		if (count > max) {
4038 			drm_printf(m,
4039 				   "\t\t...skipping %d executing requests...\n",
4040 				   count - max);
4041 		}
4042 		show_request(m, last, "\t\t", 0);
4043 	}
4044 
4045 	if (sched_engine->queue_priority_hint != INT_MIN)
4046 		drm_printf(m, "\t\tQueue priority hint: %d\n",
4047 			   READ_ONCE(sched_engine->queue_priority_hint));
4048 
4049 	last = NULL;
4050 	count = 0;
4051 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4052 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4053 
4054 		priolist_for_each_request(rq, p) {
4055 			if (count++ < max - 1)
4056 				show_request(m, rq, "\t\t", 0);
4057 			else
4058 				last = rq;
4059 		}
4060 	}
4061 	if (last) {
4062 		if (count > max) {
4063 			drm_printf(m,
4064 				   "\t\t...skipping %d queued requests...\n",
4065 				   count - max);
4066 		}
4067 		show_request(m, last, "\t\t", 0);
4068 	}
4069 
4070 	last = NULL;
4071 	count = 0;
4072 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4073 		struct virtual_engine *ve =
4074 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4075 		struct i915_request *rq = READ_ONCE(ve->request);
4076 
4077 		if (rq) {
4078 			if (count++ < max - 1)
4079 				show_request(m, rq, "\t\t", 0);
4080 			else
4081 				last = rq;
4082 		}
4083 	}
4084 	if (last) {
4085 		if (count > max) {
4086 			drm_printf(m,
4087 				   "\t\t...skipping %d virtual requests...\n",
4088 				   count - max);
4089 		}
4090 		show_request(m, last, "\t\t", 0);
4091 	}
4092 
4093 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4094 }
4095 
4096 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4097 #include "selftest_execlists.c"
4098 #endif
4099