xref: /linux/drivers/gpu/drm/i915/gt/intel_gtt.h (revision 2da68a77)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2020 Intel Corporation
4  *
5  * Please try to maintain the following order within this file unless it makes
6  * sense to do otherwise. From top to bottom:
7  * 1. typedefs
8  * 2. #defines, and macros
9  * 3. structure definitions
10  * 4. function prototypes
11  *
12  * Within each section, please try to order by generation in ascending order,
13  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
14  */
15 
16 #ifndef __INTEL_GTT_H__
17 #define __INTEL_GTT_H__
18 
19 #include <linux/io-mapping.h>
20 #include <linux/kref.h>
21 #include <linux/mm.h>
22 #include <linux/pagevec.h>
23 #include <linux/scatterlist.h>
24 #include <linux/workqueue.h>
25 
26 #include <drm/drm_mm.h>
27 
28 #include "gt/intel_reset.h"
29 #include "i915_selftest.h"
30 #include "i915_vma_resource.h"
31 #include "i915_vma_types.h"
32 #include "i915_params.h"
33 #include "intel_memory_region.h"
34 
35 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
36 
37 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
38 #define DBG(...) trace_printk(__VA_ARGS__)
39 #else
40 #define DBG(...)
41 #endif
42 
43 #define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */
44 
45 #define I915_GTT_PAGE_SIZE_4K	BIT_ULL(12)
46 #define I915_GTT_PAGE_SIZE_64K	BIT_ULL(16)
47 #define I915_GTT_PAGE_SIZE_2M	BIT_ULL(21)
48 
49 #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
50 #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
51 
52 #define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE
53 
54 #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
55 
56 #define I915_FENCE_REG_NONE -1
57 #define I915_MAX_NUM_FENCES 32
58 /* 32 fences + sign bit for FENCE_REG_NONE */
59 #define I915_MAX_NUM_FENCE_BITS 6
60 
61 typedef u32 gen6_pte_t;
62 typedef u64 gen8_pte_t;
63 
64 #define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT)
65 
66 #define I915_PTES(pte_len)		((unsigned int)(PAGE_SIZE / (pte_len)))
67 #define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
68 #define I915_PDES			512
69 #define I915_PDE_MASK			(I915_PDES - 1)
70 
71 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
72 #define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
73 #define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
74 #define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
75 #define GEN6_PTE_CACHE_LLC		(2 << 1)
76 #define GEN6_PTE_UNCACHED		(1 << 1)
77 #define GEN6_PTE_VALID			REG_BIT(0)
78 
79 #define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
80 #define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
81 #define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
82 #define GEN6_PDE_SHIFT			22
83 #define GEN6_PDE_VALID			REG_BIT(0)
84 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
85 
86 #define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
87 
88 #define BYT_PTE_SNOOPED_BY_CPU_CACHES	REG_BIT(2)
89 #define BYT_PTE_WRITEABLE		REG_BIT(1)
90 
91 #define GEN12_PPGTT_PTE_LM	BIT_ULL(11)
92 
93 #define GEN12_GGTT_PTE_LM	BIT_ULL(1)
94 
95 #define GEN12_PDE_64K BIT(6)
96 
97 /*
98  * Cacheability Control is a 4-bit value. The low three bits are stored in bits
99  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
100  */
101 #define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
102 					 (((bits) & 0x8) << (11 - 3)))
103 #define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
104 #define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
105 #define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
106 #define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
107 #define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
108 #define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
109 #define HSW_PTE_UNCACHED		(0)
110 #define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
111 #define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
112 
113 /*
114  * GEN8 32b style address is defined as a 3 level page table:
115  * 31:30 | 29:21 | 20:12 |  11:0
116  * PDPE  |  PDE  |  PTE  | offset
117  * The difference as compared to normal x86 3 level page table is the PDPEs are
118  * programmed via register.
119  *
120  * GEN8 48b style address is defined as a 4 level page table:
121  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
122  * PML4E | PDPE  |  PDE  |  PTE  | offset
123  */
124 #define GEN8_3LVL_PDPES			4
125 
126 #define PPAT_UNCACHED			(_PAGE_PWT | _PAGE_PCD)
127 #define PPAT_CACHED_PDE			0 /* WB LLC */
128 #define PPAT_CACHED			_PAGE_PAT /* WB LLCeLLC */
129 #define PPAT_DISPLAY_ELLC		_PAGE_PCD /* WT eLLC */
130 
131 #define CHV_PPAT_SNOOP			REG_BIT(6)
132 #define GEN8_PPAT_AGE(x)		((x)<<4)
133 #define GEN8_PPAT_LLCeLLC		(3<<2)
134 #define GEN8_PPAT_LLCELLC		(2<<2)
135 #define GEN8_PPAT_LLC			(1<<2)
136 #define GEN8_PPAT_WB			(3<<0)
137 #define GEN8_PPAT_WT			(2<<0)
138 #define GEN8_PPAT_WC			(1<<0)
139 #define GEN8_PPAT_UC			(0<<0)
140 #define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
141 #define GEN8_PPAT(i, x)			((u64)(x) << ((i) * 8))
142 
143 #define GEN8_PAGE_PRESENT		BIT_ULL(0)
144 #define GEN8_PAGE_RW			BIT_ULL(1)
145 
146 #define GEN8_PDE_IPS_64K BIT(11)
147 #define GEN8_PDE_PS_2M   BIT(7)
148 
149 enum i915_cache_level;
150 
151 struct drm_i915_gem_object;
152 struct i915_fence_reg;
153 struct i915_vma;
154 struct intel_gt;
155 
156 #define for_each_sgt_daddr(__dp, __iter, __sgt) \
157 	__for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE)
158 
159 struct i915_page_table {
160 	struct drm_i915_gem_object *base;
161 	union {
162 		atomic_t used;
163 		struct i915_page_table *stash;
164 	};
165 	bool is_compact;
166 };
167 
168 struct i915_page_directory {
169 	struct i915_page_table pt;
170 	spinlock_t lock;
171 	void **entry;
172 };
173 
174 #define __px_choose_expr(x, type, expr, other) \
175 	__builtin_choose_expr( \
176 	__builtin_types_compatible_p(typeof(x), type) || \
177 	__builtin_types_compatible_p(typeof(x), const type), \
178 	({ type __x = (type)(x); expr; }), \
179 	other)
180 
181 #define px_base(px) \
182 	__px_choose_expr(px, struct drm_i915_gem_object *, __x, \
183 	__px_choose_expr(px, struct i915_page_table *, __x->base, \
184 	__px_choose_expr(px, struct i915_page_directory *, __x->pt.base, \
185 	(void)0)))
186 
187 struct page *__px_page(struct drm_i915_gem_object *p);
188 dma_addr_t __px_dma(struct drm_i915_gem_object *p);
189 #define px_dma(px) (__px_dma(px_base(px)))
190 
191 void *__px_vaddr(struct drm_i915_gem_object *p);
192 #define px_vaddr(px) (__px_vaddr(px_base(px)))
193 
194 #define px_pt(px) \
195 	__px_choose_expr(px, struct i915_page_table *, __x, \
196 	__px_choose_expr(px, struct i915_page_directory *, &__x->pt, \
197 	(void)0))
198 #define px_used(px) (&px_pt(px)->used)
199 
200 struct i915_vm_pt_stash {
201 	/* preallocated chains of page tables/directories */
202 	struct i915_page_table *pt[2];
203 	/*
204 	 * Optionally override the alignment/size of the physical page that
205 	 * contains each PT. If not set defaults back to the usual
206 	 * I915_GTT_PAGE_SIZE_4K. This does not influence the other paging
207 	 * structures. MUST be a power-of-two. ONLY applicable on discrete
208 	 * platforms.
209 	 */
210 	int pt_sz;
211 };
212 
213 struct i915_vma_ops {
214 	/* Map an object into an address space with the given cache flags. */
215 	void (*bind_vma)(struct i915_address_space *vm,
216 			 struct i915_vm_pt_stash *stash,
217 			 struct i915_vma_resource *vma_res,
218 			 enum i915_cache_level cache_level,
219 			 u32 flags);
220 	/*
221 	 * Unmap an object from an address space. This usually consists of
222 	 * setting the valid PTE entries to a reserved scratch page.
223 	 */
224 	void (*unbind_vma)(struct i915_address_space *vm,
225 			   struct i915_vma_resource *vma_res);
226 
227 };
228 
229 struct i915_address_space {
230 	struct kref ref;
231 	struct work_struct release_work;
232 
233 	struct drm_mm mm;
234 	struct intel_gt *gt;
235 	struct drm_i915_private *i915;
236 	struct device *dma;
237 	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
238 	u64 reserved;		/* size addr space reserved */
239 	u64 min_alignment[INTEL_MEMORY_STOLEN_LOCAL + 1];
240 
241 	unsigned int bind_async_flags;
242 
243 	struct mutex mutex; /* protects vma and our lists */
244 
245 	struct kref resv_ref; /* kref to keep the reservation lock alive. */
246 	struct dma_resv _resv; /* reservation lock for all pd objects, and buffer pool */
247 #define VM_CLASS_GGTT 0
248 #define VM_CLASS_PPGTT 1
249 #define VM_CLASS_DPT 2
250 
251 	struct drm_i915_gem_object *scratch[4];
252 	/**
253 	 * List of vma currently bound.
254 	 */
255 	struct list_head bound_list;
256 
257 	/**
258 	 * List of vmas not yet bound or evicted.
259 	 */
260 	struct list_head unbound_list;
261 
262 	/* Global GTT */
263 	bool is_ggtt:1;
264 
265 	/* Display page table */
266 	bool is_dpt:1;
267 
268 	/* Some systems support read-only mappings for GGTT and/or PPGTT */
269 	bool has_read_only:1;
270 
271 	/* Skip pte rewrite on unbind for suspend. Protected by @mutex */
272 	bool skip_pte_rewrite:1;
273 
274 	u8 top;
275 	u8 pd_shift;
276 	u8 scratch_order;
277 
278 	/* Flags used when creating page-table objects for this vm */
279 	unsigned long lmem_pt_obj_flags;
280 
281 	/* Interval tree for pending unbind vma resources */
282 	struct rb_root_cached pending_unbind;
283 
284 	struct drm_i915_gem_object *
285 		(*alloc_pt_dma)(struct i915_address_space *vm, int sz);
286 	struct drm_i915_gem_object *
287 		(*alloc_scratch_dma)(struct i915_address_space *vm, int sz);
288 
289 	u64 (*pte_encode)(dma_addr_t addr,
290 			  enum i915_cache_level level,
291 			  u32 flags); /* Create a valid PTE */
292 #define PTE_READ_ONLY	BIT(0)
293 #define PTE_LM		BIT(1)
294 
295 	void (*allocate_va_range)(struct i915_address_space *vm,
296 				  struct i915_vm_pt_stash *stash,
297 				  u64 start, u64 length);
298 	void (*clear_range)(struct i915_address_space *vm,
299 			    u64 start, u64 length);
300 	void (*insert_page)(struct i915_address_space *vm,
301 			    dma_addr_t addr,
302 			    u64 offset,
303 			    enum i915_cache_level cache_level,
304 			    u32 flags);
305 	void (*insert_entries)(struct i915_address_space *vm,
306 			       struct i915_vma_resource *vma_res,
307 			       enum i915_cache_level cache_level,
308 			       u32 flags);
309 	void (*raw_insert_page)(struct i915_address_space *vm,
310 				dma_addr_t addr,
311 				u64 offset,
312 				enum i915_cache_level cache_level,
313 				u32 flags);
314 	void (*raw_insert_entries)(struct i915_address_space *vm,
315 				   struct i915_vma_resource *vma_res,
316 				   enum i915_cache_level cache_level,
317 				   u32 flags);
318 	void (*cleanup)(struct i915_address_space *vm);
319 
320 	void (*foreach)(struct i915_address_space *vm,
321 			u64 start, u64 length,
322 			void (*fn)(struct i915_address_space *vm,
323 				   struct i915_page_table *pt,
324 				   void *data),
325 			void *data);
326 
327 	struct i915_vma_ops vma_ops;
328 
329 	I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
330 	I915_SELFTEST_DECLARE(bool scrub_64K);
331 };
332 
333 /*
334  * The Graphics Translation Table is the way in which GEN hardware translates a
335  * Graphics Virtual Address into a Physical Address. In addition to the normal
336  * collateral associated with any va->pa translations GEN hardware also has a
337  * portion of the GTT which can be mapped by the CPU and remain both coherent
338  * and correct (in cases like swizzling). That region is referred to as GMADR in
339  * the spec.
340  */
341 struct i915_ggtt {
342 	struct i915_address_space vm;
343 
344 	struct io_mapping iomap;	/* Mapping to our CPU mappable region */
345 	struct resource gmadr;          /* GMADR resource */
346 	resource_size_t mappable_end;	/* End offset that we can CPU map */
347 
348 	/** "Graphics Stolen Memory" holds the global PTEs */
349 	void __iomem *gsm;
350 	void (*invalidate)(struct i915_ggtt *ggtt);
351 
352 	/** PPGTT used for aliasing the PPGTT with the GTT */
353 	struct i915_ppgtt *alias;
354 
355 	bool do_idle_maps;
356 
357 	/**
358 	 * @pte_lost: Are ptes lost on resume?
359 	 *
360 	 * Whether the system was recently restored from hibernate and
361 	 * thus may have lost pte content.
362 	 */
363 	bool pte_lost;
364 
365 	/**
366 	 * @probed_pte: Probed pte value on suspend. Re-checked on resume.
367 	 */
368 	u64 probed_pte;
369 
370 	int mtrr;
371 
372 	/** Bit 6 swizzling required for X tiling */
373 	u32 bit_6_swizzle_x;
374 	/** Bit 6 swizzling required for Y tiling */
375 	u32 bit_6_swizzle_y;
376 
377 	u32 pin_bias;
378 
379 	unsigned int num_fences;
380 	struct i915_fence_reg *fence_regs;
381 	struct list_head fence_list;
382 
383 	/**
384 	 * List of all objects in gtt_space, currently mmaped by userspace.
385 	 * All objects within this list must also be on bound_list.
386 	 */
387 	struct list_head userfault_list;
388 
389 	struct mutex error_mutex;
390 	struct drm_mm_node error_capture;
391 	struct drm_mm_node uc_fw;
392 };
393 
394 struct i915_ppgtt {
395 	struct i915_address_space vm;
396 
397 	struct i915_page_directory *pd;
398 };
399 
400 #define i915_is_ggtt(vm) ((vm)->is_ggtt)
401 #define i915_is_dpt(vm) ((vm)->is_dpt)
402 #define i915_is_ggtt_or_dpt(vm) (i915_is_ggtt(vm) || i915_is_dpt(vm))
403 
404 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915);
405 
406 int __must_check
407 i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww);
408 
409 static inline bool
410 i915_vm_is_4lvl(const struct i915_address_space *vm)
411 {
412 	return (vm->total - 1) >> 32;
413 }
414 
415 static inline bool
416 i915_vm_has_scratch_64K(struct i915_address_space *vm)
417 {
418 	return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K);
419 }
420 
421 static inline u64 i915_vm_min_alignment(struct i915_address_space *vm,
422 					enum intel_memory_type type)
423 {
424 	/* avoid INTEL_MEMORY_MOCK overflow */
425 	if ((int)type >= ARRAY_SIZE(vm->min_alignment))
426 		type = INTEL_MEMORY_SYSTEM;
427 
428 	return vm->min_alignment[type];
429 }
430 
431 static inline u64 i915_vm_obj_min_alignment(struct i915_address_space *vm,
432 					    struct drm_i915_gem_object  *obj)
433 {
434 	struct intel_memory_region *mr = READ_ONCE(obj->mm.region);
435 	enum intel_memory_type type = mr ? mr->type : INTEL_MEMORY_SYSTEM;
436 
437 	return i915_vm_min_alignment(vm, type);
438 }
439 
440 static inline bool
441 i915_vm_has_cache_coloring(struct i915_address_space *vm)
442 {
443 	return i915_is_ggtt(vm) && vm->mm.color_adjust;
444 }
445 
446 static inline struct i915_ggtt *
447 i915_vm_to_ggtt(struct i915_address_space *vm)
448 {
449 	BUILD_BUG_ON(offsetof(struct i915_ggtt, vm));
450 	GEM_BUG_ON(!i915_is_ggtt(vm));
451 	return container_of(vm, struct i915_ggtt, vm);
452 }
453 
454 static inline struct i915_ppgtt *
455 i915_vm_to_ppgtt(struct i915_address_space *vm)
456 {
457 	BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm));
458 	GEM_BUG_ON(i915_is_ggtt_or_dpt(vm));
459 	return container_of(vm, struct i915_ppgtt, vm);
460 }
461 
462 static inline struct i915_address_space *
463 i915_vm_get(struct i915_address_space *vm)
464 {
465 	kref_get(&vm->ref);
466 	return vm;
467 }
468 
469 static inline struct i915_address_space *
470 i915_vm_tryget(struct i915_address_space *vm)
471 {
472 	return kref_get_unless_zero(&vm->ref) ? vm : NULL;
473 }
474 
475 static inline void assert_vm_alive(struct i915_address_space *vm)
476 {
477 	GEM_BUG_ON(!kref_read(&vm->ref));
478 }
479 
480 /**
481  * i915_vm_resv_get - Obtain a reference on the vm's reservation lock
482  * @vm: The vm whose reservation lock we want to share.
483  *
484  * Return: A pointer to the vm's reservation lock.
485  */
486 static inline struct dma_resv *i915_vm_resv_get(struct i915_address_space *vm)
487 {
488 	kref_get(&vm->resv_ref);
489 	return &vm->_resv;
490 }
491 
492 void i915_vm_release(struct kref *kref);
493 
494 void i915_vm_resv_release(struct kref *kref);
495 
496 static inline void i915_vm_put(struct i915_address_space *vm)
497 {
498 	kref_put(&vm->ref, i915_vm_release);
499 }
500 
501 /**
502  * i915_vm_resv_put - Release a reference on the vm's reservation lock
503  * @resv: Pointer to a reservation lock obtained from i915_vm_resv_get()
504  */
505 static inline void i915_vm_resv_put(struct i915_address_space *vm)
506 {
507 	kref_put(&vm->resv_ref, i915_vm_resv_release);
508 }
509 
510 void i915_address_space_init(struct i915_address_space *vm, int subclass);
511 void i915_address_space_fini(struct i915_address_space *vm);
512 
513 static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
514 {
515 	const u32 mask = NUM_PTE(pde_shift) - 1;
516 
517 	return (address >> PAGE_SHIFT) & mask;
518 }
519 
520 /*
521  * Helper to counts the number of PTEs within the given length. This count
522  * does not cross a page table boundary, so the max value would be
523  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
524  */
525 static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
526 {
527 	const u64 mask = ~((1ULL << pde_shift) - 1);
528 	u64 end;
529 
530 	GEM_BUG_ON(length == 0);
531 	GEM_BUG_ON(offset_in_page(addr | length));
532 
533 	end = addr + length;
534 
535 	if ((addr & mask) != (end & mask))
536 		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
537 
538 	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
539 }
540 
541 static inline u32 i915_pde_index(u64 addr, u32 shift)
542 {
543 	return (addr >> shift) & I915_PDE_MASK;
544 }
545 
546 static inline struct i915_page_table *
547 i915_pt_entry(const struct i915_page_directory * const pd,
548 	      const unsigned short n)
549 {
550 	return pd->entry[n];
551 }
552 
553 static inline struct i915_page_directory *
554 i915_pd_entry(const struct i915_page_directory * const pdp,
555 	      const unsigned short n)
556 {
557 	return pdp->entry[n];
558 }
559 
560 static inline dma_addr_t
561 i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n)
562 {
563 	struct i915_page_table *pt = ppgtt->pd->entry[n];
564 
565 	return __px_dma(pt ? px_base(pt) : ppgtt->vm.scratch[ppgtt->vm.top]);
566 }
567 
568 void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt,
569 		unsigned long lmem_pt_obj_flags);
570 void intel_ggtt_bind_vma(struct i915_address_space *vm,
571 			 struct i915_vm_pt_stash *stash,
572 			 struct i915_vma_resource *vma_res,
573 			 enum i915_cache_level cache_level,
574 			 u32 flags);
575 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
576 			   struct i915_vma_resource *vma_res);
577 
578 int i915_ggtt_probe_hw(struct drm_i915_private *i915);
579 int i915_ggtt_init_hw(struct drm_i915_private *i915);
580 int i915_ggtt_enable_hw(struct drm_i915_private *i915);
581 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt);
582 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt);
583 int i915_init_ggtt(struct drm_i915_private *i915);
584 void i915_ggtt_driver_release(struct drm_i915_private *i915);
585 void i915_ggtt_driver_late_release(struct drm_i915_private *i915);
586 
587 static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt)
588 {
589 	return ggtt->mappable_end > 0;
590 }
591 
592 int i915_ppgtt_init_hw(struct intel_gt *gt);
593 
594 struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt,
595 				     unsigned long lmem_pt_obj_flags);
596 
597 void i915_ggtt_suspend_vm(struct i915_address_space *vm);
598 bool i915_ggtt_resume_vm(struct i915_address_space *vm);
599 void i915_ggtt_suspend(struct i915_ggtt *gtt);
600 void i915_ggtt_resume(struct i915_ggtt *ggtt);
601 
602 /**
603  * i915_ggtt_mark_pte_lost - Mark ggtt ptes as lost or clear such a marking
604  * @i915 The device private.
605  * @val whether the ptes should be marked as lost.
606  *
607  * In some cases pte content is retained across suspend, but typically lost
608  * across hibernate. Typically they should be marked as lost on
609  * hibernation restore and such marking cleared on suspend.
610  */
611 void i915_ggtt_mark_pte_lost(struct drm_i915_private *i915, bool val);
612 
613 void
614 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count);
615 
616 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
617 #define fill32_px(px, v) do {						\
618 	u64 v__ = lower_32_bits(v);					\
619 	fill_px((px), v__ << 32 | v__);					\
620 } while (0)
621 
622 int setup_scratch_page(struct i915_address_space *vm);
623 void free_scratch(struct i915_address_space *vm);
624 
625 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz);
626 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz);
627 struct i915_page_table *alloc_pt(struct i915_address_space *vm, int sz);
628 struct i915_page_directory *alloc_pd(struct i915_address_space *vm);
629 struct i915_page_directory *__alloc_pd(int npde);
630 
631 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj);
632 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj);
633 
634 void free_px(struct i915_address_space *vm,
635 	     struct i915_page_table *pt, int lvl);
636 #define free_pt(vm, px) free_px(vm, px, 0)
637 #define free_pd(vm, px) free_px(vm, px_pt(px), 1)
638 
639 void
640 __set_pd_entry(struct i915_page_directory * const pd,
641 	       const unsigned short idx,
642 	       struct i915_page_table *pt,
643 	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level));
644 
645 #define set_pd_entry(pd, idx, to) \
646 	__set_pd_entry((pd), (idx), px_pt(to), gen8_pde_encode)
647 
648 void
649 clear_pd_entry(struct i915_page_directory * const pd,
650 	       const unsigned short idx,
651 	       const struct drm_i915_gem_object * const scratch);
652 
653 bool
654 release_pd_entry(struct i915_page_directory * const pd,
655 		 const unsigned short idx,
656 		 struct i915_page_table * const pt,
657 		 const struct drm_i915_gem_object * const scratch);
658 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt);
659 
660 void ppgtt_bind_vma(struct i915_address_space *vm,
661 		    struct i915_vm_pt_stash *stash,
662 		    struct i915_vma_resource *vma_res,
663 		    enum i915_cache_level cache_level,
664 		    u32 flags);
665 void ppgtt_unbind_vma(struct i915_address_space *vm,
666 		      struct i915_vma_resource *vma_res);
667 
668 void gtt_write_workarounds(struct intel_gt *gt);
669 
670 void setup_private_pat(struct intel_uncore *uncore);
671 
672 int i915_vm_alloc_pt_stash(struct i915_address_space *vm,
673 			   struct i915_vm_pt_stash *stash,
674 			   u64 size);
675 int i915_vm_map_pt_stash(struct i915_address_space *vm,
676 			 struct i915_vm_pt_stash *stash);
677 void i915_vm_free_pt_stash(struct i915_address_space *vm,
678 			   struct i915_vm_pt_stash *stash);
679 
680 struct i915_vma *
681 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size);
682 
683 struct i915_vma *
684 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size);
685 
686 static inline struct sgt_dma {
687 	struct scatterlist *sg;
688 	dma_addr_t dma, max;
689 } sgt_dma(struct i915_vma_resource *vma_res) {
690 	struct scatterlist *sg = vma_res->bi.pages->sgl;
691 	dma_addr_t addr = sg_dma_address(sg);
692 
693 	return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
694 }
695 
696 #endif
697