xref: /linux/drivers/gpu/drm/i915/i915_active.c (revision 84b9b44b)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct kmem_cache *slab_cache;
25 
26 struct active_node {
27 	struct rb_node node;
28 	struct i915_active_fence base;
29 	struct i915_active *ref;
30 	u64 timeline;
31 };
32 
33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
34 
35 static inline struct active_node *
36 node_from_active(struct i915_active_fence *active)
37 {
38 	return container_of(active, struct active_node, base);
39 }
40 
41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42 
43 static inline bool is_barrier(const struct i915_active_fence *active)
44 {
45 	return IS_ERR(rcu_access_pointer(active->fence));
46 }
47 
48 static inline struct llist_node *barrier_to_ll(struct active_node *node)
49 {
50 	GEM_BUG_ON(!is_barrier(&node->base));
51 	return (struct llist_node *)&node->base.cb.node;
52 }
53 
54 static inline struct intel_engine_cs *
55 __barrier_to_engine(struct active_node *node)
56 {
57 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58 }
59 
60 static inline struct intel_engine_cs *
61 barrier_to_engine(struct active_node *node)
62 {
63 	GEM_BUG_ON(!is_barrier(&node->base));
64 	return __barrier_to_engine(node);
65 }
66 
67 static inline struct active_node *barrier_from_ll(struct llist_node *x)
68 {
69 	return container_of((struct list_head *)x,
70 			    struct active_node, base.cb.node);
71 }
72 
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74 
75 static void *active_debug_hint(void *addr)
76 {
77 	struct i915_active *ref = addr;
78 
79 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80 }
81 
82 static const struct debug_obj_descr active_debug_desc = {
83 	.name = "i915_active",
84 	.debug_hint = active_debug_hint,
85 };
86 
87 static void debug_active_init(struct i915_active *ref)
88 {
89 	debug_object_init(ref, &active_debug_desc);
90 }
91 
92 static void debug_active_activate(struct i915_active *ref)
93 {
94 	lockdep_assert_held(&ref->tree_lock);
95 	debug_object_activate(ref, &active_debug_desc);
96 }
97 
98 static void debug_active_deactivate(struct i915_active *ref)
99 {
100 	lockdep_assert_held(&ref->tree_lock);
101 	if (!atomic_read(&ref->count)) /* after the last dec */
102 		debug_object_deactivate(ref, &active_debug_desc);
103 }
104 
105 static void debug_active_fini(struct i915_active *ref)
106 {
107 	debug_object_free(ref, &active_debug_desc);
108 }
109 
110 static void debug_active_assert(struct i915_active *ref)
111 {
112 	debug_object_assert_init(ref, &active_debug_desc);
113 }
114 
115 #else
116 
117 static inline void debug_active_init(struct i915_active *ref) { }
118 static inline void debug_active_activate(struct i915_active *ref) { }
119 static inline void debug_active_deactivate(struct i915_active *ref) { }
120 static inline void debug_active_fini(struct i915_active *ref) { }
121 static inline void debug_active_assert(struct i915_active *ref) { }
122 
123 #endif
124 
125 static void
126 __active_retire(struct i915_active *ref)
127 {
128 	struct rb_root root = RB_ROOT;
129 	struct active_node *it, *n;
130 	unsigned long flags;
131 
132 	GEM_BUG_ON(i915_active_is_idle(ref));
133 
134 	/* return the unused nodes to our slabcache -- flushing the allocator */
135 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
136 		return;
137 
138 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
139 	debug_active_deactivate(ref);
140 
141 	/* Even if we have not used the cache, we may still have a barrier */
142 	if (!ref->cache)
143 		ref->cache = fetch_node(ref->tree.rb_node);
144 
145 	/* Keep the MRU cached node for reuse */
146 	if (ref->cache) {
147 		/* Discard all other nodes in the tree */
148 		rb_erase(&ref->cache->node, &ref->tree);
149 		root = ref->tree;
150 
151 		/* Rebuild the tree with only the cached node */
152 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
153 		rb_insert_color(&ref->cache->node, &ref->tree);
154 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
155 
156 		/* Make the cached node available for reuse with any timeline */
157 		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
158 	}
159 
160 	spin_unlock_irqrestore(&ref->tree_lock, flags);
161 
162 	/* After the final retire, the entire struct may be freed */
163 	if (ref->retire)
164 		ref->retire(ref);
165 
166 	/* ... except if you wait on it, you must manage your own references! */
167 	wake_up_var(ref);
168 
169 	/* Finally free the discarded timeline tree  */
170 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
171 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
172 		kmem_cache_free(slab_cache, it);
173 	}
174 }
175 
176 static void
177 active_work(struct work_struct *wrk)
178 {
179 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
180 
181 	GEM_BUG_ON(!atomic_read(&ref->count));
182 	if (atomic_add_unless(&ref->count, -1, 1))
183 		return;
184 
185 	__active_retire(ref);
186 }
187 
188 static void
189 active_retire(struct i915_active *ref)
190 {
191 	GEM_BUG_ON(!atomic_read(&ref->count));
192 	if (atomic_add_unless(&ref->count, -1, 1))
193 		return;
194 
195 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
196 		queue_work(system_unbound_wq, &ref->work);
197 		return;
198 	}
199 
200 	__active_retire(ref);
201 }
202 
203 static inline struct dma_fence **
204 __active_fence_slot(struct i915_active_fence *active)
205 {
206 	return (struct dma_fence ** __force)&active->fence;
207 }
208 
209 static inline bool
210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
211 {
212 	struct i915_active_fence *active =
213 		container_of(cb, typeof(*active), cb);
214 
215 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
216 }
217 
218 static void
219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
220 {
221 	if (active_fence_cb(fence, cb))
222 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
223 }
224 
225 static void
226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
227 {
228 	if (active_fence_cb(fence, cb))
229 		active_retire(container_of(cb, struct i915_active, excl.cb));
230 }
231 
232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
233 {
234 	struct active_node *it;
235 
236 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
237 
238 	/*
239 	 * We track the most recently used timeline to skip a rbtree search
240 	 * for the common case, under typical loads we never need the rbtree
241 	 * at all. We can reuse the last slot if it is empty, that is
242 	 * after the previous activity has been retired, or if it matches the
243 	 * current timeline.
244 	 */
245 	it = READ_ONCE(ref->cache);
246 	if (it) {
247 		u64 cached = READ_ONCE(it->timeline);
248 
249 		/* Once claimed, this slot will only belong to this idx */
250 		if (cached == idx)
251 			return it;
252 
253 		/*
254 		 * An unclaimed cache [.timeline=0] can only be claimed once.
255 		 *
256 		 * If the value is already non-zero, some other thread has
257 		 * claimed the cache and we know that is does not match our
258 		 * idx. If, and only if, the timeline is currently zero is it
259 		 * worth competing to claim it atomically for ourselves (for
260 		 * only the winner of that race will cmpxchg return the old
261 		 * value of 0).
262 		 */
263 		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
264 			return it;
265 	}
266 
267 	BUILD_BUG_ON(offsetof(typeof(*it), node));
268 
269 	/* While active, the tree can only be built; not destroyed */
270 	GEM_BUG_ON(i915_active_is_idle(ref));
271 
272 	it = fetch_node(ref->tree.rb_node);
273 	while (it) {
274 		if (it->timeline < idx) {
275 			it = fetch_node(it->node.rb_right);
276 		} else if (it->timeline > idx) {
277 			it = fetch_node(it->node.rb_left);
278 		} else {
279 			WRITE_ONCE(ref->cache, it);
280 			break;
281 		}
282 	}
283 
284 	/* NB: If the tree rotated beneath us, we may miss our target. */
285 	return it;
286 }
287 
288 static struct i915_active_fence *
289 active_instance(struct i915_active *ref, u64 idx)
290 {
291 	struct active_node *node;
292 	struct rb_node **p, *parent;
293 
294 	node = __active_lookup(ref, idx);
295 	if (likely(node))
296 		return &node->base;
297 
298 	spin_lock_irq(&ref->tree_lock);
299 	GEM_BUG_ON(i915_active_is_idle(ref));
300 
301 	parent = NULL;
302 	p = &ref->tree.rb_node;
303 	while (*p) {
304 		parent = *p;
305 
306 		node = rb_entry(parent, struct active_node, node);
307 		if (node->timeline == idx)
308 			goto out;
309 
310 		if (node->timeline < idx)
311 			p = &parent->rb_right;
312 		else
313 			p = &parent->rb_left;
314 	}
315 
316 	/*
317 	 * XXX: We should preallocate this before i915_active_ref() is ever
318 	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
319 	 */
320 	node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
321 	if (!node)
322 		goto out;
323 
324 	__i915_active_fence_init(&node->base, NULL, node_retire);
325 	node->ref = ref;
326 	node->timeline = idx;
327 
328 	rb_link_node(&node->node, parent, p);
329 	rb_insert_color(&node->node, &ref->tree);
330 
331 out:
332 	WRITE_ONCE(ref->cache, node);
333 	spin_unlock_irq(&ref->tree_lock);
334 
335 	return &node->base;
336 }
337 
338 void __i915_active_init(struct i915_active *ref,
339 			int (*active)(struct i915_active *ref),
340 			void (*retire)(struct i915_active *ref),
341 			unsigned long flags,
342 			struct lock_class_key *mkey,
343 			struct lock_class_key *wkey)
344 {
345 	debug_active_init(ref);
346 
347 	ref->flags = flags;
348 	ref->active = active;
349 	ref->retire = retire;
350 
351 	spin_lock_init(&ref->tree_lock);
352 	ref->tree = RB_ROOT;
353 	ref->cache = NULL;
354 
355 	init_llist_head(&ref->preallocated_barriers);
356 	atomic_set(&ref->count, 0);
357 	__mutex_init(&ref->mutex, "i915_active", mkey);
358 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
359 	INIT_WORK(&ref->work, active_work);
360 #if IS_ENABLED(CONFIG_LOCKDEP)
361 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
362 #endif
363 }
364 
365 static bool ____active_del_barrier(struct i915_active *ref,
366 				   struct active_node *node,
367 				   struct intel_engine_cs *engine)
368 
369 {
370 	struct llist_node *head = NULL, *tail = NULL;
371 	struct llist_node *pos, *next;
372 
373 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
374 
375 	/*
376 	 * Rebuild the llist excluding our node. We may perform this
377 	 * outside of the kernel_context timeline mutex and so someone
378 	 * else may be manipulating the engine->barrier_tasks, in
379 	 * which case either we or they will be upset :)
380 	 *
381 	 * A second __active_del_barrier() will report failure to claim
382 	 * the active_node and the caller will just shrug and know not to
383 	 * claim ownership of its node.
384 	 *
385 	 * A concurrent i915_request_add_active_barriers() will miss adding
386 	 * any of the tasks, but we will try again on the next -- and since
387 	 * we are actively using the barrier, we know that there will be
388 	 * at least another opportunity when we idle.
389 	 */
390 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
391 		if (node == barrier_from_ll(pos)) {
392 			node = NULL;
393 			continue;
394 		}
395 
396 		pos->next = head;
397 		head = pos;
398 		if (!tail)
399 			tail = pos;
400 	}
401 	if (head)
402 		llist_add_batch(head, tail, &engine->barrier_tasks);
403 
404 	return !node;
405 }
406 
407 static bool
408 __active_del_barrier(struct i915_active *ref, struct active_node *node)
409 {
410 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
411 }
412 
413 static bool
414 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
415 {
416 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
417 		return false;
418 
419 	/*
420 	 * This request is on the kernel_context timeline, and so
421 	 * we can use it to substitute for the pending idle-barrer
422 	 * request that we want to emit on the kernel_context.
423 	 */
424 	return __active_del_barrier(ref, node_from_active(active));
425 }
426 
427 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
428 {
429 	u64 idx = i915_request_timeline(rq)->fence_context;
430 	struct dma_fence *fence = &rq->fence;
431 	struct i915_active_fence *active;
432 	int err;
433 
434 	/* Prevent reaping in case we malloc/wait while building the tree */
435 	err = i915_active_acquire(ref);
436 	if (err)
437 		return err;
438 
439 	do {
440 		active = active_instance(ref, idx);
441 		if (!active) {
442 			err = -ENOMEM;
443 			goto out;
444 		}
445 
446 		if (replace_barrier(ref, active)) {
447 			RCU_INIT_POINTER(active->fence, NULL);
448 			atomic_dec(&ref->count);
449 		}
450 	} while (unlikely(is_barrier(active)));
451 
452 	if (!__i915_active_fence_set(active, fence))
453 		__i915_active_acquire(ref);
454 
455 out:
456 	i915_active_release(ref);
457 	return err;
458 }
459 
460 static struct dma_fence *
461 __i915_active_set_fence(struct i915_active *ref,
462 			struct i915_active_fence *active,
463 			struct dma_fence *fence)
464 {
465 	struct dma_fence *prev;
466 
467 	if (replace_barrier(ref, active)) {
468 		RCU_INIT_POINTER(active->fence, fence);
469 		return NULL;
470 	}
471 
472 	rcu_read_lock();
473 	prev = __i915_active_fence_set(active, fence);
474 	if (prev)
475 		prev = dma_fence_get_rcu(prev);
476 	else
477 		__i915_active_acquire(ref);
478 	rcu_read_unlock();
479 
480 	return prev;
481 }
482 
483 struct dma_fence *
484 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
485 {
486 	/* We expect the caller to manage the exclusive timeline ordering */
487 	return __i915_active_set_fence(ref, &ref->excl, f);
488 }
489 
490 bool i915_active_acquire_if_busy(struct i915_active *ref)
491 {
492 	debug_active_assert(ref);
493 	return atomic_add_unless(&ref->count, 1, 0);
494 }
495 
496 static void __i915_active_activate(struct i915_active *ref)
497 {
498 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
499 	if (!atomic_fetch_inc(&ref->count))
500 		debug_active_activate(ref);
501 	spin_unlock_irq(&ref->tree_lock);
502 }
503 
504 int i915_active_acquire(struct i915_active *ref)
505 {
506 	int err;
507 
508 	if (i915_active_acquire_if_busy(ref))
509 		return 0;
510 
511 	if (!ref->active) {
512 		__i915_active_activate(ref);
513 		return 0;
514 	}
515 
516 	err = mutex_lock_interruptible(&ref->mutex);
517 	if (err)
518 		return err;
519 
520 	if (likely(!i915_active_acquire_if_busy(ref))) {
521 		err = ref->active(ref);
522 		if (!err)
523 			__i915_active_activate(ref);
524 	}
525 
526 	mutex_unlock(&ref->mutex);
527 
528 	return err;
529 }
530 
531 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
532 {
533 	struct i915_active_fence *active;
534 	int err;
535 
536 	err = i915_active_acquire(ref);
537 	if (err)
538 		return err;
539 
540 	active = active_instance(ref, idx);
541 	if (!active) {
542 		i915_active_release(ref);
543 		return -ENOMEM;
544 	}
545 
546 	return 0; /* return with active ref */
547 }
548 
549 void i915_active_release(struct i915_active *ref)
550 {
551 	debug_active_assert(ref);
552 	active_retire(ref);
553 }
554 
555 static void enable_signaling(struct i915_active_fence *active)
556 {
557 	struct dma_fence *fence;
558 
559 	if (unlikely(is_barrier(active)))
560 		return;
561 
562 	fence = i915_active_fence_get(active);
563 	if (!fence)
564 		return;
565 
566 	dma_fence_enable_sw_signaling(fence);
567 	dma_fence_put(fence);
568 }
569 
570 static int flush_barrier(struct active_node *it)
571 {
572 	struct intel_engine_cs *engine;
573 
574 	if (likely(!is_barrier(&it->base)))
575 		return 0;
576 
577 	engine = __barrier_to_engine(it);
578 	smp_rmb(); /* serialise with add_active_barriers */
579 	if (!is_barrier(&it->base))
580 		return 0;
581 
582 	return intel_engine_flush_barriers(engine);
583 }
584 
585 static int flush_lazy_signals(struct i915_active *ref)
586 {
587 	struct active_node *it, *n;
588 	int err = 0;
589 
590 	enable_signaling(&ref->excl);
591 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
592 		err = flush_barrier(it); /* unconnected idle barrier? */
593 		if (err)
594 			break;
595 
596 		enable_signaling(&it->base);
597 	}
598 
599 	return err;
600 }
601 
602 int __i915_active_wait(struct i915_active *ref, int state)
603 {
604 	might_sleep();
605 
606 	/* Any fence added after the wait begins will not be auto-signaled */
607 	if (i915_active_acquire_if_busy(ref)) {
608 		int err;
609 
610 		err = flush_lazy_signals(ref);
611 		i915_active_release(ref);
612 		if (err)
613 			return err;
614 
615 		if (___wait_var_event(ref, i915_active_is_idle(ref),
616 				      state, 0, 0, schedule()))
617 			return -EINTR;
618 	}
619 
620 	/*
621 	 * After the wait is complete, the caller may free the active.
622 	 * We have to flush any concurrent retirement before returning.
623 	 */
624 	flush_work(&ref->work);
625 	return 0;
626 }
627 
628 static int __await_active(struct i915_active_fence *active,
629 			  int (*fn)(void *arg, struct dma_fence *fence),
630 			  void *arg)
631 {
632 	struct dma_fence *fence;
633 
634 	if (is_barrier(active)) /* XXX flush the barrier? */
635 		return 0;
636 
637 	fence = i915_active_fence_get(active);
638 	if (fence) {
639 		int err;
640 
641 		err = fn(arg, fence);
642 		dma_fence_put(fence);
643 		if (err < 0)
644 			return err;
645 	}
646 
647 	return 0;
648 }
649 
650 struct wait_barrier {
651 	struct wait_queue_entry base;
652 	struct i915_active *ref;
653 };
654 
655 static int
656 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
657 {
658 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
659 
660 	if (i915_active_is_idle(wb->ref)) {
661 		list_del(&wq->entry);
662 		i915_sw_fence_complete(wq->private);
663 		kfree(wq);
664 	}
665 
666 	return 0;
667 }
668 
669 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
670 {
671 	struct wait_barrier *wb;
672 
673 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
674 	if (unlikely(!wb))
675 		return -ENOMEM;
676 
677 	GEM_BUG_ON(i915_active_is_idle(ref));
678 	if (!i915_sw_fence_await(fence)) {
679 		kfree(wb);
680 		return -EINVAL;
681 	}
682 
683 	wb->base.flags = 0;
684 	wb->base.func = barrier_wake;
685 	wb->base.private = fence;
686 	wb->ref = ref;
687 
688 	add_wait_queue(__var_waitqueue(ref), &wb->base);
689 	return 0;
690 }
691 
692 static int await_active(struct i915_active *ref,
693 			unsigned int flags,
694 			int (*fn)(void *arg, struct dma_fence *fence),
695 			void *arg, struct i915_sw_fence *barrier)
696 {
697 	int err = 0;
698 
699 	if (!i915_active_acquire_if_busy(ref))
700 		return 0;
701 
702 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
703 	    rcu_access_pointer(ref->excl.fence)) {
704 		err = __await_active(&ref->excl, fn, arg);
705 		if (err)
706 			goto out;
707 	}
708 
709 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
710 		struct active_node *it, *n;
711 
712 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
713 			err = __await_active(&it->base, fn, arg);
714 			if (err)
715 				goto out;
716 		}
717 	}
718 
719 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
720 		err = flush_lazy_signals(ref);
721 		if (err)
722 			goto out;
723 
724 		err = __await_barrier(ref, barrier);
725 		if (err)
726 			goto out;
727 	}
728 
729 out:
730 	i915_active_release(ref);
731 	return err;
732 }
733 
734 static int rq_await_fence(void *arg, struct dma_fence *fence)
735 {
736 	return i915_request_await_dma_fence(arg, fence);
737 }
738 
739 int i915_request_await_active(struct i915_request *rq,
740 			      struct i915_active *ref,
741 			      unsigned int flags)
742 {
743 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
744 }
745 
746 static int sw_await_fence(void *arg, struct dma_fence *fence)
747 {
748 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
749 					     GFP_NOWAIT | __GFP_NOWARN);
750 }
751 
752 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
753 			       struct i915_active *ref,
754 			       unsigned int flags)
755 {
756 	return await_active(ref, flags, sw_await_fence, fence, fence);
757 }
758 
759 void i915_active_fini(struct i915_active *ref)
760 {
761 	debug_active_fini(ref);
762 	GEM_BUG_ON(atomic_read(&ref->count));
763 	GEM_BUG_ON(work_pending(&ref->work));
764 	mutex_destroy(&ref->mutex);
765 
766 	if (ref->cache)
767 		kmem_cache_free(slab_cache, ref->cache);
768 }
769 
770 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
771 {
772 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
773 }
774 
775 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
776 {
777 	struct rb_node *prev, *p;
778 
779 	if (RB_EMPTY_ROOT(&ref->tree))
780 		return NULL;
781 
782 	GEM_BUG_ON(i915_active_is_idle(ref));
783 
784 	/*
785 	 * Try to reuse any existing barrier nodes already allocated for this
786 	 * i915_active, due to overlapping active phases there is likely a
787 	 * node kept alive (as we reuse before parking). We prefer to reuse
788 	 * completely idle barriers (less hassle in manipulating the llists),
789 	 * but otherwise any will do.
790 	 */
791 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
792 		p = &ref->cache->node;
793 		goto match;
794 	}
795 
796 	prev = NULL;
797 	p = ref->tree.rb_node;
798 	while (p) {
799 		struct active_node *node =
800 			rb_entry(p, struct active_node, node);
801 
802 		if (is_idle_barrier(node, idx))
803 			goto match;
804 
805 		prev = p;
806 		if (node->timeline < idx)
807 			p = READ_ONCE(p->rb_right);
808 		else
809 			p = READ_ONCE(p->rb_left);
810 	}
811 
812 	/*
813 	 * No quick match, but we did find the leftmost rb_node for the
814 	 * kernel_context. Walk the rb_tree in-order to see if there were
815 	 * any idle-barriers on this timeline that we missed, or just use
816 	 * the first pending barrier.
817 	 */
818 	for (p = prev; p; p = rb_next(p)) {
819 		struct active_node *node =
820 			rb_entry(p, struct active_node, node);
821 		struct intel_engine_cs *engine;
822 
823 		if (node->timeline > idx)
824 			break;
825 
826 		if (node->timeline < idx)
827 			continue;
828 
829 		if (is_idle_barrier(node, idx))
830 			goto match;
831 
832 		/*
833 		 * The list of pending barriers is protected by the
834 		 * kernel_context timeline, which notably we do not hold
835 		 * here. i915_request_add_active_barriers() may consume
836 		 * the barrier before we claim it, so we have to check
837 		 * for success.
838 		 */
839 		engine = __barrier_to_engine(node);
840 		smp_rmb(); /* serialise with add_active_barriers */
841 		if (is_barrier(&node->base) &&
842 		    ____active_del_barrier(ref, node, engine))
843 			goto match;
844 	}
845 
846 	return NULL;
847 
848 match:
849 	spin_lock_irq(&ref->tree_lock);
850 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
851 	if (p == &ref->cache->node)
852 		WRITE_ONCE(ref->cache, NULL);
853 	spin_unlock_irq(&ref->tree_lock);
854 
855 	return rb_entry(p, struct active_node, node);
856 }
857 
858 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
859 					    struct intel_engine_cs *engine)
860 {
861 	intel_engine_mask_t tmp, mask = engine->mask;
862 	struct llist_node *first = NULL, *last = NULL;
863 	struct intel_gt *gt = engine->gt;
864 
865 	GEM_BUG_ON(i915_active_is_idle(ref));
866 
867 	/* Wait until the previous preallocation is completed */
868 	while (!llist_empty(&ref->preallocated_barriers))
869 		cond_resched();
870 
871 	/*
872 	 * Preallocate a node for each physical engine supporting the target
873 	 * engine (remember virtual engines have more than one sibling).
874 	 * We can then use the preallocated nodes in
875 	 * i915_active_acquire_barrier()
876 	 */
877 	GEM_BUG_ON(!mask);
878 	for_each_engine_masked(engine, gt, mask, tmp) {
879 		u64 idx = engine->kernel_context->timeline->fence_context;
880 		struct llist_node *prev = first;
881 		struct active_node *node;
882 
883 		rcu_read_lock();
884 		node = reuse_idle_barrier(ref, idx);
885 		rcu_read_unlock();
886 		if (!node) {
887 			node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
888 			if (!node)
889 				goto unwind;
890 
891 			RCU_INIT_POINTER(node->base.fence, NULL);
892 			node->base.cb.func = node_retire;
893 			node->timeline = idx;
894 			node->ref = ref;
895 		}
896 
897 		if (!i915_active_fence_isset(&node->base)) {
898 			/*
899 			 * Mark this as being *our* unconnected proto-node.
900 			 *
901 			 * Since this node is not in any list, and we have
902 			 * decoupled it from the rbtree, we can reuse the
903 			 * request to indicate this is an idle-barrier node
904 			 * and then we can use the rb_node and list pointers
905 			 * for our tracking of the pending barrier.
906 			 */
907 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
908 			node->base.cb.node.prev = (void *)engine;
909 			__i915_active_acquire(ref);
910 		}
911 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
912 
913 		GEM_BUG_ON(barrier_to_engine(node) != engine);
914 		first = barrier_to_ll(node);
915 		first->next = prev;
916 		if (!last)
917 			last = first;
918 		intel_engine_pm_get(engine);
919 	}
920 
921 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
922 	llist_add_batch(first, last, &ref->preallocated_barriers);
923 
924 	return 0;
925 
926 unwind:
927 	while (first) {
928 		struct active_node *node = barrier_from_ll(first);
929 
930 		first = first->next;
931 
932 		atomic_dec(&ref->count);
933 		intel_engine_pm_put(barrier_to_engine(node));
934 
935 		kmem_cache_free(slab_cache, node);
936 	}
937 	return -ENOMEM;
938 }
939 
940 void i915_active_acquire_barrier(struct i915_active *ref)
941 {
942 	struct llist_node *pos, *next;
943 	unsigned long flags;
944 
945 	GEM_BUG_ON(i915_active_is_idle(ref));
946 
947 	/*
948 	 * Transfer the list of preallocated barriers into the
949 	 * i915_active rbtree, but only as proto-nodes. They will be
950 	 * populated by i915_request_add_active_barriers() to point to the
951 	 * request that will eventually release them.
952 	 */
953 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
954 		struct active_node *node = barrier_from_ll(pos);
955 		struct intel_engine_cs *engine = barrier_to_engine(node);
956 		struct rb_node **p, *parent;
957 
958 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
959 					 SINGLE_DEPTH_NESTING);
960 		parent = NULL;
961 		p = &ref->tree.rb_node;
962 		while (*p) {
963 			struct active_node *it;
964 
965 			parent = *p;
966 
967 			it = rb_entry(parent, struct active_node, node);
968 			if (it->timeline < node->timeline)
969 				p = &parent->rb_right;
970 			else
971 				p = &parent->rb_left;
972 		}
973 		rb_link_node(&node->node, parent, p);
974 		rb_insert_color(&node->node, &ref->tree);
975 		spin_unlock_irqrestore(&ref->tree_lock, flags);
976 
977 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
978 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
979 		intel_engine_pm_put_delay(engine, 2);
980 	}
981 }
982 
983 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
984 {
985 	return __active_fence_slot(&barrier_from_ll(node)->base);
986 }
987 
988 void i915_request_add_active_barriers(struct i915_request *rq)
989 {
990 	struct intel_engine_cs *engine = rq->engine;
991 	struct llist_node *node, *next;
992 	unsigned long flags;
993 
994 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
995 	GEM_BUG_ON(intel_engine_is_virtual(engine));
996 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
997 
998 	node = llist_del_all(&engine->barrier_tasks);
999 	if (!node)
1000 		return;
1001 	/*
1002 	 * Attach the list of proto-fences to the in-flight request such
1003 	 * that the parent i915_active will be released when this request
1004 	 * is retired.
1005 	 */
1006 	spin_lock_irqsave(&rq->lock, flags);
1007 	llist_for_each_safe(node, next, node) {
1008 		/* serialise with reuse_idle_barrier */
1009 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1010 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1011 	}
1012 	spin_unlock_irqrestore(&rq->lock, flags);
1013 }
1014 
1015 /*
1016  * __i915_active_fence_set: Update the last active fence along its timeline
1017  * @active: the active tracker
1018  * @fence: the new fence (under construction)
1019  *
1020  * Records the new @fence as the last active fence along its timeline in
1021  * this active tracker, moving the tracking callbacks from the previous
1022  * fence onto this one. Returns the previous fence (if not already completed),
1023  * which the caller must ensure is executed before the new fence. To ensure
1024  * that the order of fences within the timeline of the i915_active_fence is
1025  * understood, it should be locked by the caller.
1026  */
1027 struct dma_fence *
1028 __i915_active_fence_set(struct i915_active_fence *active,
1029 			struct dma_fence *fence)
1030 {
1031 	struct dma_fence *prev;
1032 	unsigned long flags;
1033 
1034 	if (fence == rcu_access_pointer(active->fence))
1035 		return fence;
1036 
1037 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1038 
1039 	/*
1040 	 * Consider that we have two threads arriving (A and B), with
1041 	 * C already resident as the active->fence.
1042 	 *
1043 	 * A does the xchg first, and so it sees C or NULL depending
1044 	 * on the timing of the interrupt handler. If it is NULL, the
1045 	 * previous fence must have been signaled and we know that
1046 	 * we are first on the timeline. If it is still present,
1047 	 * we acquire the lock on that fence and serialise with the interrupt
1048 	 * handler, in the process removing it from any future interrupt
1049 	 * callback. A will then wait on C before executing (if present).
1050 	 *
1051 	 * As B is second, it sees A as the previous fence and so waits for
1052 	 * it to complete its transition and takes over the occupancy for
1053 	 * itself -- remembering that it needs to wait on A before executing.
1054 	 *
1055 	 * Note the strong ordering of the timeline also provides consistent
1056 	 * nesting rules for the fence->lock; the inner lock is always the
1057 	 * older lock.
1058 	 */
1059 	spin_lock_irqsave(fence->lock, flags);
1060 	prev = xchg(__active_fence_slot(active), fence);
1061 	if (prev) {
1062 		GEM_BUG_ON(prev == fence);
1063 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1064 		__list_del_entry(&active->cb.node);
1065 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1066 	}
1067 	list_add_tail(&active->cb.node, &fence->cb_list);
1068 	spin_unlock_irqrestore(fence->lock, flags);
1069 
1070 	return prev;
1071 }
1072 
1073 int i915_active_fence_set(struct i915_active_fence *active,
1074 			  struct i915_request *rq)
1075 {
1076 	struct dma_fence *fence;
1077 	int err = 0;
1078 
1079 	/* Must maintain timeline ordering wrt previous active requests */
1080 	rcu_read_lock();
1081 	fence = __i915_active_fence_set(active, &rq->fence);
1082 	if (fence) /* but the previous fence may not belong to that timeline! */
1083 		fence = dma_fence_get_rcu(fence);
1084 	rcu_read_unlock();
1085 	if (fence) {
1086 		err = i915_request_await_dma_fence(rq, fence);
1087 		dma_fence_put(fence);
1088 	}
1089 
1090 	return err;
1091 }
1092 
1093 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1094 {
1095 	active_fence_cb(fence, cb);
1096 }
1097 
1098 struct auto_active {
1099 	struct i915_active base;
1100 	struct kref ref;
1101 };
1102 
1103 struct i915_active *i915_active_get(struct i915_active *ref)
1104 {
1105 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1106 
1107 	kref_get(&aa->ref);
1108 	return &aa->base;
1109 }
1110 
1111 static void auto_release(struct kref *ref)
1112 {
1113 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1114 
1115 	i915_active_fini(&aa->base);
1116 	kfree(aa);
1117 }
1118 
1119 void i915_active_put(struct i915_active *ref)
1120 {
1121 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1122 
1123 	kref_put(&aa->ref, auto_release);
1124 }
1125 
1126 static int auto_active(struct i915_active *ref)
1127 {
1128 	i915_active_get(ref);
1129 	return 0;
1130 }
1131 
1132 static void auto_retire(struct i915_active *ref)
1133 {
1134 	i915_active_put(ref);
1135 }
1136 
1137 struct i915_active *i915_active_create(void)
1138 {
1139 	struct auto_active *aa;
1140 
1141 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1142 	if (!aa)
1143 		return NULL;
1144 
1145 	kref_init(&aa->ref);
1146 	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1147 
1148 	return &aa->base;
1149 }
1150 
1151 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1152 #include "selftests/i915_active.c"
1153 #endif
1154 
1155 void i915_active_module_exit(void)
1156 {
1157 	kmem_cache_destroy(slab_cache);
1158 }
1159 
1160 int __init i915_active_module_init(void)
1161 {
1162 	slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1163 	if (!slab_cache)
1164 		return -ENOMEM;
1165 
1166 	return 0;
1167 }
1168