xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 9a6b55ac)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <drm/i915_drm.h>
30 #include <linux/dma-fence-array.h>
31 #include <linux/kthread.h>
32 #include <linux/dma-resv.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/stop_machine.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 #include <linux/mman.h>
40 
41 #include "display/intel_display.h"
42 #include "display/intel_frontbuffer.h"
43 
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_pm.h"
48 #include "gt/intel_context.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_gt_requests.h"
53 #include "gt/intel_mocs.h"
54 #include "gt/intel_reset.h"
55 #include "gt/intel_renderstate.h"
56 #include "gt/intel_rps.h"
57 #include "gt/intel_workarounds.h"
58 
59 #include "i915_drv.h"
60 #include "i915_scatterlist.h"
61 #include "i915_trace.h"
62 #include "i915_vgpu.h"
63 
64 #include "intel_pm.h"
65 
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
68 {
69 	int err;
70 
71 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
72 	if (err)
73 		return err;
74 
75 	memset(node, 0, sizeof(*node));
76 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
77 					  size, 0, I915_COLOR_UNEVICTABLE,
78 					  0, ggtt->mappable_end,
79 					  DRM_MM_INSERT_LOW);
80 
81 	mutex_unlock(&ggtt->vm.mutex);
82 
83 	return err;
84 }
85 
86 static void
87 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
88 {
89 	mutex_lock(&ggtt->vm.mutex);
90 	drm_mm_remove_node(node);
91 	mutex_unlock(&ggtt->vm.mutex);
92 }
93 
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 			    struct drm_file *file)
97 {
98 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
99 	struct drm_i915_gem_get_aperture *args = data;
100 	struct i915_vma *vma;
101 	u64 pinned;
102 
103 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
104 		return -EINTR;
105 
106 	pinned = ggtt->vm.reserved;
107 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
108 		if (i915_vma_is_pinned(vma))
109 			pinned += vma->node.size;
110 
111 	mutex_unlock(&ggtt->vm.mutex);
112 
113 	args->aper_size = ggtt->vm.total;
114 	args->aper_available_size = args->aper_size - pinned;
115 
116 	return 0;
117 }
118 
119 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
120 			   unsigned long flags)
121 {
122 	struct i915_vma *vma;
123 	LIST_HEAD(still_in_list);
124 	int ret = 0;
125 
126 	spin_lock(&obj->vma.lock);
127 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
128 						       struct i915_vma,
129 						       obj_link))) {
130 		struct i915_address_space *vm = vma->vm;
131 
132 		ret = -EBUSY;
133 		if (!i915_vm_tryopen(vm))
134 			break;
135 
136 		list_move_tail(&vma->obj_link, &still_in_list);
137 		spin_unlock(&obj->vma.lock);
138 
139 		if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
140 		    !i915_vma_is_active(vma))
141 			ret = i915_vma_unbind(vma);
142 
143 		i915_vm_close(vm);
144 		spin_lock(&obj->vma.lock);
145 	}
146 	list_splice(&still_in_list, &obj->vma.list);
147 	spin_unlock(&obj->vma.lock);
148 
149 	return ret;
150 }
151 
152 static int
153 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
154 		     struct drm_i915_gem_pwrite *args,
155 		     struct drm_file *file)
156 {
157 	void *vaddr = obj->phys_handle->vaddr + args->offset;
158 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
159 
160 	/*
161 	 * We manually control the domain here and pretend that it
162 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
163 	 */
164 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
165 
166 	if (copy_from_user(vaddr, user_data, args->size))
167 		return -EFAULT;
168 
169 	drm_clflush_virt_range(vaddr, args->size);
170 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
171 
172 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
173 	return 0;
174 }
175 
176 static int
177 i915_gem_create(struct drm_file *file,
178 		struct drm_i915_private *dev_priv,
179 		u64 *size_p,
180 		u32 *handle_p)
181 {
182 	struct drm_i915_gem_object *obj;
183 	u32 handle;
184 	u64 size;
185 	int ret;
186 
187 	size = round_up(*size_p, PAGE_SIZE);
188 	if (size == 0)
189 		return -EINVAL;
190 
191 	/* Allocate the new object */
192 	obj = i915_gem_object_create_shmem(dev_priv, size);
193 	if (IS_ERR(obj))
194 		return PTR_ERR(obj);
195 
196 	ret = drm_gem_handle_create(file, &obj->base, &handle);
197 	/* drop reference from allocate - handle holds it now */
198 	i915_gem_object_put(obj);
199 	if (ret)
200 		return ret;
201 
202 	*handle_p = handle;
203 	*size_p = size;
204 	return 0;
205 }
206 
207 int
208 i915_gem_dumb_create(struct drm_file *file,
209 		     struct drm_device *dev,
210 		     struct drm_mode_create_dumb *args)
211 {
212 	int cpp = DIV_ROUND_UP(args->bpp, 8);
213 	u32 format;
214 
215 	switch (cpp) {
216 	case 1:
217 		format = DRM_FORMAT_C8;
218 		break;
219 	case 2:
220 		format = DRM_FORMAT_RGB565;
221 		break;
222 	case 4:
223 		format = DRM_FORMAT_XRGB8888;
224 		break;
225 	default:
226 		return -EINVAL;
227 	}
228 
229 	/* have to work out size/pitch and return them */
230 	args->pitch = ALIGN(args->width * cpp, 64);
231 
232 	/* align stride to page size so that we can remap */
233 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
234 						    DRM_FORMAT_MOD_LINEAR))
235 		args->pitch = ALIGN(args->pitch, 4096);
236 
237 	args->size = args->pitch * args->height;
238 	return i915_gem_create(file, to_i915(dev),
239 			       &args->size, &args->handle);
240 }
241 
242 /**
243  * Creates a new mm object and returns a handle to it.
244  * @dev: drm device pointer
245  * @data: ioctl data blob
246  * @file: drm file pointer
247  */
248 int
249 i915_gem_create_ioctl(struct drm_device *dev, void *data,
250 		      struct drm_file *file)
251 {
252 	struct drm_i915_private *dev_priv = to_i915(dev);
253 	struct drm_i915_gem_create *args = data;
254 
255 	i915_gem_flush_free_objects(dev_priv);
256 
257 	return i915_gem_create(file, dev_priv,
258 			       &args->size, &args->handle);
259 }
260 
261 static int
262 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
263 	    bool needs_clflush)
264 {
265 	char *vaddr;
266 	int ret;
267 
268 	vaddr = kmap(page);
269 
270 	if (needs_clflush)
271 		drm_clflush_virt_range(vaddr + offset, len);
272 
273 	ret = __copy_to_user(user_data, vaddr + offset, len);
274 
275 	kunmap(page);
276 
277 	return ret ? -EFAULT : 0;
278 }
279 
280 static int
281 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
282 		     struct drm_i915_gem_pread *args)
283 {
284 	unsigned int needs_clflush;
285 	unsigned int idx, offset;
286 	struct dma_fence *fence;
287 	char __user *user_data;
288 	u64 remain;
289 	int ret;
290 
291 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
292 	if (ret)
293 		return ret;
294 
295 	fence = i915_gem_object_lock_fence(obj);
296 	i915_gem_object_finish_access(obj);
297 	if (!fence)
298 		return -ENOMEM;
299 
300 	remain = args->size;
301 	user_data = u64_to_user_ptr(args->data_ptr);
302 	offset = offset_in_page(args->offset);
303 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
304 		struct page *page = i915_gem_object_get_page(obj, idx);
305 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
306 
307 		ret = shmem_pread(page, offset, length, user_data,
308 				  needs_clflush);
309 		if (ret)
310 			break;
311 
312 		remain -= length;
313 		user_data += length;
314 		offset = 0;
315 	}
316 
317 	i915_gem_object_unlock_fence(obj, fence);
318 	return ret;
319 }
320 
321 static inline bool
322 gtt_user_read(struct io_mapping *mapping,
323 	      loff_t base, int offset,
324 	      char __user *user_data, int length)
325 {
326 	void __iomem *vaddr;
327 	unsigned long unwritten;
328 
329 	/* We can use the cpu mem copy function because this is X86. */
330 	vaddr = io_mapping_map_atomic_wc(mapping, base);
331 	unwritten = __copy_to_user_inatomic(user_data,
332 					    (void __force *)vaddr + offset,
333 					    length);
334 	io_mapping_unmap_atomic(vaddr);
335 	if (unwritten) {
336 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
337 		unwritten = copy_to_user(user_data,
338 					 (void __force *)vaddr + offset,
339 					 length);
340 		io_mapping_unmap(vaddr);
341 	}
342 	return unwritten;
343 }
344 
345 static int
346 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
347 		   const struct drm_i915_gem_pread *args)
348 {
349 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
350 	struct i915_ggtt *ggtt = &i915->ggtt;
351 	intel_wakeref_t wakeref;
352 	struct drm_mm_node node;
353 	struct dma_fence *fence;
354 	void __user *user_data;
355 	struct i915_vma *vma;
356 	u64 remain, offset;
357 	int ret;
358 
359 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
360 	vma = ERR_PTR(-ENODEV);
361 	if (!i915_gem_object_is_tiled(obj))
362 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
363 					       PIN_MAPPABLE |
364 					       PIN_NONBLOCK /* NOWARN */ |
365 					       PIN_NOEVICT);
366 	if (!IS_ERR(vma)) {
367 		node.start = i915_ggtt_offset(vma);
368 		node.flags = 0;
369 	} else {
370 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
371 		if (ret)
372 			goto out_rpm;
373 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
374 	}
375 
376 	ret = i915_gem_object_lock_interruptible(obj);
377 	if (ret)
378 		goto out_unpin;
379 
380 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
381 	if (ret) {
382 		i915_gem_object_unlock(obj);
383 		goto out_unpin;
384 	}
385 
386 	fence = i915_gem_object_lock_fence(obj);
387 	i915_gem_object_unlock(obj);
388 	if (!fence) {
389 		ret = -ENOMEM;
390 		goto out_unpin;
391 	}
392 
393 	user_data = u64_to_user_ptr(args->data_ptr);
394 	remain = args->size;
395 	offset = args->offset;
396 
397 	while (remain > 0) {
398 		/* Operation in this page
399 		 *
400 		 * page_base = page offset within aperture
401 		 * page_offset = offset within page
402 		 * page_length = bytes to copy for this page
403 		 */
404 		u32 page_base = node.start;
405 		unsigned page_offset = offset_in_page(offset);
406 		unsigned page_length = PAGE_SIZE - page_offset;
407 		page_length = remain < page_length ? remain : page_length;
408 		if (drm_mm_node_allocated(&node)) {
409 			ggtt->vm.insert_page(&ggtt->vm,
410 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
411 					     node.start, I915_CACHE_NONE, 0);
412 		} else {
413 			page_base += offset & PAGE_MASK;
414 		}
415 
416 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
417 				  user_data, page_length)) {
418 			ret = -EFAULT;
419 			break;
420 		}
421 
422 		remain -= page_length;
423 		user_data += page_length;
424 		offset += page_length;
425 	}
426 
427 	i915_gem_object_unlock_fence(obj, fence);
428 out_unpin:
429 	if (drm_mm_node_allocated(&node)) {
430 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
431 		remove_mappable_node(ggtt, &node);
432 	} else {
433 		i915_vma_unpin(vma);
434 	}
435 out_rpm:
436 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
437 	return ret;
438 }
439 
440 /**
441  * Reads data from the object referenced by handle.
442  * @dev: drm device pointer
443  * @data: ioctl data blob
444  * @file: drm file pointer
445  *
446  * On error, the contents of *data are undefined.
447  */
448 int
449 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450 		     struct drm_file *file)
451 {
452 	struct drm_i915_gem_pread *args = data;
453 	struct drm_i915_gem_object *obj;
454 	int ret;
455 
456 	if (args->size == 0)
457 		return 0;
458 
459 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
460 		       args->size))
461 		return -EFAULT;
462 
463 	obj = i915_gem_object_lookup(file, args->handle);
464 	if (!obj)
465 		return -ENOENT;
466 
467 	/* Bounds check source.  */
468 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
469 		ret = -EINVAL;
470 		goto out;
471 	}
472 
473 	trace_i915_gem_object_pread(obj, args->offset, args->size);
474 
475 	ret = i915_gem_object_wait(obj,
476 				   I915_WAIT_INTERRUPTIBLE,
477 				   MAX_SCHEDULE_TIMEOUT);
478 	if (ret)
479 		goto out;
480 
481 	ret = i915_gem_object_pin_pages(obj);
482 	if (ret)
483 		goto out;
484 
485 	ret = i915_gem_shmem_pread(obj, args);
486 	if (ret == -EFAULT || ret == -ENODEV)
487 		ret = i915_gem_gtt_pread(obj, args);
488 
489 	i915_gem_object_unpin_pages(obj);
490 out:
491 	i915_gem_object_put(obj);
492 	return ret;
493 }
494 
495 /* This is the fast write path which cannot handle
496  * page faults in the source data
497  */
498 
499 static inline bool
500 ggtt_write(struct io_mapping *mapping,
501 	   loff_t base, int offset,
502 	   char __user *user_data, int length)
503 {
504 	void __iomem *vaddr;
505 	unsigned long unwritten;
506 
507 	/* We can use the cpu mem copy function because this is X86. */
508 	vaddr = io_mapping_map_atomic_wc(mapping, base);
509 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
510 						      user_data, length);
511 	io_mapping_unmap_atomic(vaddr);
512 	if (unwritten) {
513 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
514 		unwritten = copy_from_user((void __force *)vaddr + offset,
515 					   user_data, length);
516 		io_mapping_unmap(vaddr);
517 	}
518 
519 	return unwritten;
520 }
521 
522 /**
523  * This is the fast pwrite path, where we copy the data directly from the
524  * user into the GTT, uncached.
525  * @obj: i915 GEM object
526  * @args: pwrite arguments structure
527  */
528 static int
529 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
530 			 const struct drm_i915_gem_pwrite *args)
531 {
532 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
533 	struct i915_ggtt *ggtt = &i915->ggtt;
534 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
535 	intel_wakeref_t wakeref;
536 	struct drm_mm_node node;
537 	struct dma_fence *fence;
538 	struct i915_vma *vma;
539 	u64 remain, offset;
540 	void __user *user_data;
541 	int ret;
542 
543 	if (i915_gem_object_has_struct_page(obj)) {
544 		/*
545 		 * Avoid waking the device up if we can fallback, as
546 		 * waking/resuming is very slow (worst-case 10-100 ms
547 		 * depending on PCI sleeps and our own resume time).
548 		 * This easily dwarfs any performance advantage from
549 		 * using the cache bypass of indirect GGTT access.
550 		 */
551 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
552 		if (!wakeref)
553 			return -EFAULT;
554 	} else {
555 		/* No backing pages, no fallback, we must force GGTT access */
556 		wakeref = intel_runtime_pm_get(rpm);
557 	}
558 
559 	vma = ERR_PTR(-ENODEV);
560 	if (!i915_gem_object_is_tiled(obj))
561 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
562 					       PIN_MAPPABLE |
563 					       PIN_NONBLOCK /* NOWARN */ |
564 					       PIN_NOEVICT);
565 	if (!IS_ERR(vma)) {
566 		node.start = i915_ggtt_offset(vma);
567 		node.flags = 0;
568 	} else {
569 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
570 		if (ret)
571 			goto out_rpm;
572 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
573 	}
574 
575 	ret = i915_gem_object_lock_interruptible(obj);
576 	if (ret)
577 		goto out_unpin;
578 
579 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
580 	if (ret) {
581 		i915_gem_object_unlock(obj);
582 		goto out_unpin;
583 	}
584 
585 	fence = i915_gem_object_lock_fence(obj);
586 	i915_gem_object_unlock(obj);
587 	if (!fence) {
588 		ret = -ENOMEM;
589 		goto out_unpin;
590 	}
591 
592 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
593 
594 	user_data = u64_to_user_ptr(args->data_ptr);
595 	offset = args->offset;
596 	remain = args->size;
597 	while (remain) {
598 		/* Operation in this page
599 		 *
600 		 * page_base = page offset within aperture
601 		 * page_offset = offset within page
602 		 * page_length = bytes to copy for this page
603 		 */
604 		u32 page_base = node.start;
605 		unsigned int page_offset = offset_in_page(offset);
606 		unsigned int page_length = PAGE_SIZE - page_offset;
607 		page_length = remain < page_length ? remain : page_length;
608 		if (drm_mm_node_allocated(&node)) {
609 			/* flush the write before we modify the GGTT */
610 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
611 			ggtt->vm.insert_page(&ggtt->vm,
612 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
613 					     node.start, I915_CACHE_NONE, 0);
614 			wmb(); /* flush modifications to the GGTT (insert_page) */
615 		} else {
616 			page_base += offset & PAGE_MASK;
617 		}
618 		/* If we get a fault while copying data, then (presumably) our
619 		 * source page isn't available.  Return the error and we'll
620 		 * retry in the slow path.
621 		 * If the object is non-shmem backed, we retry again with the
622 		 * path that handles page fault.
623 		 */
624 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
625 			       user_data, page_length)) {
626 			ret = -EFAULT;
627 			break;
628 		}
629 
630 		remain -= page_length;
631 		user_data += page_length;
632 		offset += page_length;
633 	}
634 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
635 
636 	i915_gem_object_unlock_fence(obj, fence);
637 out_unpin:
638 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
639 	if (drm_mm_node_allocated(&node)) {
640 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
641 		remove_mappable_node(ggtt, &node);
642 	} else {
643 		i915_vma_unpin(vma);
644 	}
645 out_rpm:
646 	intel_runtime_pm_put(rpm, wakeref);
647 	return ret;
648 }
649 
650 /* Per-page copy function for the shmem pwrite fastpath.
651  * Flushes invalid cachelines before writing to the target if
652  * needs_clflush_before is set and flushes out any written cachelines after
653  * writing if needs_clflush is set.
654  */
655 static int
656 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
657 	     bool needs_clflush_before,
658 	     bool needs_clflush_after)
659 {
660 	char *vaddr;
661 	int ret;
662 
663 	vaddr = kmap(page);
664 
665 	if (needs_clflush_before)
666 		drm_clflush_virt_range(vaddr + offset, len);
667 
668 	ret = __copy_from_user(vaddr + offset, user_data, len);
669 	if (!ret && needs_clflush_after)
670 		drm_clflush_virt_range(vaddr + offset, len);
671 
672 	kunmap(page);
673 
674 	return ret ? -EFAULT : 0;
675 }
676 
677 static int
678 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
679 		      const struct drm_i915_gem_pwrite *args)
680 {
681 	unsigned int partial_cacheline_write;
682 	unsigned int needs_clflush;
683 	unsigned int offset, idx;
684 	struct dma_fence *fence;
685 	void __user *user_data;
686 	u64 remain;
687 	int ret;
688 
689 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
690 	if (ret)
691 		return ret;
692 
693 	fence = i915_gem_object_lock_fence(obj);
694 	i915_gem_object_finish_access(obj);
695 	if (!fence)
696 		return -ENOMEM;
697 
698 	/* If we don't overwrite a cacheline completely we need to be
699 	 * careful to have up-to-date data by first clflushing. Don't
700 	 * overcomplicate things and flush the entire patch.
701 	 */
702 	partial_cacheline_write = 0;
703 	if (needs_clflush & CLFLUSH_BEFORE)
704 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
705 
706 	user_data = u64_to_user_ptr(args->data_ptr);
707 	remain = args->size;
708 	offset = offset_in_page(args->offset);
709 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
710 		struct page *page = i915_gem_object_get_page(obj, idx);
711 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
712 
713 		ret = shmem_pwrite(page, offset, length, user_data,
714 				   (offset | length) & partial_cacheline_write,
715 				   needs_clflush & CLFLUSH_AFTER);
716 		if (ret)
717 			break;
718 
719 		remain -= length;
720 		user_data += length;
721 		offset = 0;
722 	}
723 
724 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
725 	i915_gem_object_unlock_fence(obj, fence);
726 
727 	return ret;
728 }
729 
730 /**
731  * Writes data to the object referenced by handle.
732  * @dev: drm device
733  * @data: ioctl data blob
734  * @file: drm file
735  *
736  * On error, the contents of the buffer that were to be modified are undefined.
737  */
738 int
739 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
740 		      struct drm_file *file)
741 {
742 	struct drm_i915_gem_pwrite *args = data;
743 	struct drm_i915_gem_object *obj;
744 	int ret;
745 
746 	if (args->size == 0)
747 		return 0;
748 
749 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
750 		return -EFAULT;
751 
752 	obj = i915_gem_object_lookup(file, args->handle);
753 	if (!obj)
754 		return -ENOENT;
755 
756 	/* Bounds check destination. */
757 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
758 		ret = -EINVAL;
759 		goto err;
760 	}
761 
762 	/* Writes not allowed into this read-only object */
763 	if (i915_gem_object_is_readonly(obj)) {
764 		ret = -EINVAL;
765 		goto err;
766 	}
767 
768 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
769 
770 	ret = -ENODEV;
771 	if (obj->ops->pwrite)
772 		ret = obj->ops->pwrite(obj, args);
773 	if (ret != -ENODEV)
774 		goto err;
775 
776 	ret = i915_gem_object_wait(obj,
777 				   I915_WAIT_INTERRUPTIBLE |
778 				   I915_WAIT_ALL,
779 				   MAX_SCHEDULE_TIMEOUT);
780 	if (ret)
781 		goto err;
782 
783 	ret = i915_gem_object_pin_pages(obj);
784 	if (ret)
785 		goto err;
786 
787 	ret = -EFAULT;
788 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
789 	 * it would end up going through the fenced access, and we'll get
790 	 * different detiling behavior between reading and writing.
791 	 * pread/pwrite currently are reading and writing from the CPU
792 	 * perspective, requiring manual detiling by the client.
793 	 */
794 	if (!i915_gem_object_has_struct_page(obj) ||
795 	    cpu_write_needs_clflush(obj))
796 		/* Note that the gtt paths might fail with non-page-backed user
797 		 * pointers (e.g. gtt mappings when moving data between
798 		 * textures). Fallback to the shmem path in that case.
799 		 */
800 		ret = i915_gem_gtt_pwrite_fast(obj, args);
801 
802 	if (ret == -EFAULT || ret == -ENOSPC) {
803 		if (obj->phys_handle)
804 			ret = i915_gem_phys_pwrite(obj, args, file);
805 		else
806 			ret = i915_gem_shmem_pwrite(obj, args);
807 	}
808 
809 	i915_gem_object_unpin_pages(obj);
810 err:
811 	i915_gem_object_put(obj);
812 	return ret;
813 }
814 
815 /**
816  * Called when user space has done writes to this buffer
817  * @dev: drm device
818  * @data: ioctl data blob
819  * @file: drm file
820  */
821 int
822 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
823 			 struct drm_file *file)
824 {
825 	struct drm_i915_gem_sw_finish *args = data;
826 	struct drm_i915_gem_object *obj;
827 
828 	obj = i915_gem_object_lookup(file, args->handle);
829 	if (!obj)
830 		return -ENOENT;
831 
832 	/*
833 	 * Proxy objects are barred from CPU access, so there is no
834 	 * need to ban sw_finish as it is a nop.
835 	 */
836 
837 	/* Pinned buffers may be scanout, so flush the cache */
838 	i915_gem_object_flush_if_display(obj);
839 	i915_gem_object_put(obj);
840 
841 	return 0;
842 }
843 
844 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
845 {
846 	struct drm_i915_gem_object *obj, *on;
847 	int i;
848 
849 	/*
850 	 * Only called during RPM suspend. All users of the userfault_list
851 	 * must be holding an RPM wakeref to ensure that this can not
852 	 * run concurrently with themselves (and use the struct_mutex for
853 	 * protection between themselves).
854 	 */
855 
856 	list_for_each_entry_safe(obj, on,
857 				 &i915->ggtt.userfault_list, userfault_link)
858 		__i915_gem_object_release_mmap(obj);
859 
860 	/*
861 	 * The fence will be lost when the device powers down. If any were
862 	 * in use by hardware (i.e. they are pinned), we should not be powering
863 	 * down! All other fences will be reacquired by the user upon waking.
864 	 */
865 	for (i = 0; i < i915->ggtt.num_fences; i++) {
866 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
867 
868 		/*
869 		 * Ideally we want to assert that the fence register is not
870 		 * live at this point (i.e. that no piece of code will be
871 		 * trying to write through fence + GTT, as that both violates
872 		 * our tracking of activity and associated locking/barriers,
873 		 * but also is illegal given that the hw is powered down).
874 		 *
875 		 * Previously we used reg->pin_count as a "liveness" indicator.
876 		 * That is not sufficient, and we need a more fine-grained
877 		 * tool if we want to have a sanity check here.
878 		 */
879 
880 		if (!reg->vma)
881 			continue;
882 
883 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
884 		reg->dirty = true;
885 	}
886 }
887 
888 struct i915_vma *
889 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
890 			 const struct i915_ggtt_view *view,
891 			 u64 size,
892 			 u64 alignment,
893 			 u64 flags)
894 {
895 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
896 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
897 
898 	return i915_gem_object_pin(obj, vm, view, size, alignment,
899 				   flags | PIN_GLOBAL);
900 }
901 
902 struct i915_vma *
903 i915_gem_object_pin(struct drm_i915_gem_object *obj,
904 		    struct i915_address_space *vm,
905 		    const struct i915_ggtt_view *view,
906 		    u64 size,
907 		    u64 alignment,
908 		    u64 flags)
909 {
910 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
911 	struct i915_vma *vma;
912 	int ret;
913 
914 	if (i915_gem_object_never_bind_ggtt(obj))
915 		return ERR_PTR(-ENODEV);
916 
917 	if (flags & PIN_MAPPABLE &&
918 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
919 		/* If the required space is larger than the available
920 		 * aperture, we will not able to find a slot for the
921 		 * object and unbinding the object now will be in
922 		 * vain. Worse, doing so may cause us to ping-pong
923 		 * the object in and out of the Global GTT and
924 		 * waste a lot of cycles under the mutex.
925 		 */
926 		if (obj->base.size > dev_priv->ggtt.mappable_end)
927 			return ERR_PTR(-E2BIG);
928 
929 		/* If NONBLOCK is set the caller is optimistically
930 		 * trying to cache the full object within the mappable
931 		 * aperture, and *must* have a fallback in place for
932 		 * situations where we cannot bind the object. We
933 		 * can be a little more lax here and use the fallback
934 		 * more often to avoid costly migrations of ourselves
935 		 * and other objects within the aperture.
936 		 *
937 		 * Half-the-aperture is used as a simple heuristic.
938 		 * More interesting would to do search for a free
939 		 * block prior to making the commitment to unbind.
940 		 * That caters for the self-harm case, and with a
941 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
942 		 * we could try to minimise harm to others.
943 		 */
944 		if (flags & PIN_NONBLOCK &&
945 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
946 			return ERR_PTR(-ENOSPC);
947 	}
948 
949 	vma = i915_vma_instance(obj, vm, view);
950 	if (IS_ERR(vma))
951 		return vma;
952 
953 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
954 		if (flags & PIN_NONBLOCK) {
955 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
956 				return ERR_PTR(-ENOSPC);
957 
958 			if (flags & PIN_MAPPABLE &&
959 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
960 				return ERR_PTR(-ENOSPC);
961 		}
962 
963 		ret = i915_vma_unbind(vma);
964 		if (ret)
965 			return ERR_PTR(ret);
966 	}
967 
968 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
969 		mutex_lock(&vma->vm->mutex);
970 		ret = i915_vma_revoke_fence(vma);
971 		mutex_unlock(&vma->vm->mutex);
972 		if (ret)
973 			return ERR_PTR(ret);
974 	}
975 
976 	ret = i915_vma_pin(vma, size, alignment, flags);
977 	if (ret)
978 		return ERR_PTR(ret);
979 
980 	return vma;
981 }
982 
983 int
984 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
985 		       struct drm_file *file_priv)
986 {
987 	struct drm_i915_private *i915 = to_i915(dev);
988 	struct drm_i915_gem_madvise *args = data;
989 	struct drm_i915_gem_object *obj;
990 	int err;
991 
992 	switch (args->madv) {
993 	case I915_MADV_DONTNEED:
994 	case I915_MADV_WILLNEED:
995 	    break;
996 	default:
997 	    return -EINVAL;
998 	}
999 
1000 	obj = i915_gem_object_lookup(file_priv, args->handle);
1001 	if (!obj)
1002 		return -ENOENT;
1003 
1004 	err = mutex_lock_interruptible(&obj->mm.lock);
1005 	if (err)
1006 		goto out;
1007 
1008 	if (i915_gem_object_has_pages(obj) &&
1009 	    i915_gem_object_is_tiled(obj) &&
1010 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1011 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1012 			GEM_BUG_ON(!obj->mm.quirked);
1013 			__i915_gem_object_unpin_pages(obj);
1014 			obj->mm.quirked = false;
1015 		}
1016 		if (args->madv == I915_MADV_WILLNEED) {
1017 			GEM_BUG_ON(obj->mm.quirked);
1018 			__i915_gem_object_pin_pages(obj);
1019 			obj->mm.quirked = true;
1020 		}
1021 	}
1022 
1023 	if (obj->mm.madv != __I915_MADV_PURGED)
1024 		obj->mm.madv = args->madv;
1025 
1026 	if (i915_gem_object_has_pages(obj)) {
1027 		struct list_head *list;
1028 
1029 		if (i915_gem_object_is_shrinkable(obj)) {
1030 			unsigned long flags;
1031 
1032 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
1033 
1034 			if (obj->mm.madv != I915_MADV_WILLNEED)
1035 				list = &i915->mm.purge_list;
1036 			else
1037 				list = &i915->mm.shrink_list;
1038 			list_move_tail(&obj->mm.link, list);
1039 
1040 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1041 		}
1042 	}
1043 
1044 	/* if the object is no longer attached, discard its backing storage */
1045 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1046 	    !i915_gem_object_has_pages(obj))
1047 		i915_gem_object_truncate(obj);
1048 
1049 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1050 	mutex_unlock(&obj->mm.lock);
1051 
1052 out:
1053 	i915_gem_object_put(obj);
1054 	return err;
1055 }
1056 
1057 static int __intel_context_flush_retire(struct intel_context *ce)
1058 {
1059 	struct intel_timeline *tl;
1060 
1061 	tl = intel_context_timeline_lock(ce);
1062 	if (IS_ERR(tl))
1063 		return PTR_ERR(tl);
1064 
1065 	intel_context_timeline_unlock(tl);
1066 	return 0;
1067 }
1068 
1069 static int __intel_engines_record_defaults(struct intel_gt *gt)
1070 {
1071 	struct i915_request *requests[I915_NUM_ENGINES] = {};
1072 	struct intel_engine_cs *engine;
1073 	enum intel_engine_id id;
1074 	int err = 0;
1075 
1076 	/*
1077 	 * As we reset the gpu during very early sanitisation, the current
1078 	 * register state on the GPU should reflect its defaults values.
1079 	 * We load a context onto the hw (with restore-inhibit), then switch
1080 	 * over to a second context to save that default register state. We
1081 	 * can then prime every new context with that state so they all start
1082 	 * from the same default HW values.
1083 	 */
1084 
1085 	for_each_engine(engine, gt, id) {
1086 		struct intel_context *ce;
1087 		struct i915_request *rq;
1088 
1089 		/* We must be able to switch to something! */
1090 		GEM_BUG_ON(!engine->kernel_context);
1091 		engine->serial++; /* force the kernel context switch */
1092 
1093 		ce = intel_context_create(engine->kernel_context->gem_context,
1094 					  engine);
1095 		if (IS_ERR(ce)) {
1096 			err = PTR_ERR(ce);
1097 			goto out;
1098 		}
1099 
1100 		rq = intel_context_create_request(ce);
1101 		if (IS_ERR(rq)) {
1102 			err = PTR_ERR(rq);
1103 			intel_context_put(ce);
1104 			goto out;
1105 		}
1106 
1107 		err = intel_engine_emit_ctx_wa(rq);
1108 		if (err)
1109 			goto err_rq;
1110 
1111 		err = intel_renderstate_emit(rq);
1112 		if (err)
1113 			goto err_rq;
1114 
1115 err_rq:
1116 		requests[id] = i915_request_get(rq);
1117 		i915_request_add(rq);
1118 		if (err)
1119 			goto out;
1120 	}
1121 
1122 	/* Flush the default context image to memory, and enable powersaving. */
1123 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
1124 		err = -EIO;
1125 		goto out;
1126 	}
1127 
1128 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
1129 		struct i915_request *rq;
1130 		struct i915_vma *state;
1131 		void *vaddr;
1132 
1133 		rq = requests[id];
1134 		if (!rq)
1135 			continue;
1136 
1137 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT,
1138 				     &rq->hw_context->flags));
1139 		state = rq->hw_context->state;
1140 		if (!state)
1141 			continue;
1142 
1143 		/* Serialise with retirement on another CPU */
1144 		err = __intel_context_flush_retire(rq->hw_context);
1145 		if (err)
1146 			goto out;
1147 
1148 		/* We want to be able to unbind the state from the GGTT */
1149 		GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
1150 
1151 		/*
1152 		 * As we will hold a reference to the logical state, it will
1153 		 * not be torn down with the context, and importantly the
1154 		 * object will hold onto its vma (making it possible for a
1155 		 * stray GTT write to corrupt our defaults). Unmap the vma
1156 		 * from the GTT to prevent such accidents and reclaim the
1157 		 * space.
1158 		 */
1159 		err = i915_vma_unbind(state);
1160 		if (err)
1161 			goto out;
1162 
1163 		i915_gem_object_lock(state->obj);
1164 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1165 		i915_gem_object_unlock(state->obj);
1166 		if (err)
1167 			goto out;
1168 
1169 		i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1170 
1171 		/* Check we can acquire the image of the context state */
1172 		vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1173 		if (IS_ERR(vaddr)) {
1174 			err = PTR_ERR(vaddr);
1175 			goto out;
1176 		}
1177 
1178 		rq->engine->default_state = i915_gem_object_get(state->obj);
1179 		i915_gem_object_unpin_map(state->obj);
1180 	}
1181 
1182 out:
1183 	/*
1184 	 * If we have to abandon now, we expect the engines to be idle
1185 	 * and ready to be torn-down. The quickest way we can accomplish
1186 	 * this is by declaring ourselves wedged.
1187 	 */
1188 	if (err)
1189 		intel_gt_set_wedged(gt);
1190 
1191 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
1192 		struct intel_context *ce;
1193 		struct i915_request *rq;
1194 
1195 		rq = requests[id];
1196 		if (!rq)
1197 			continue;
1198 
1199 		ce = rq->hw_context;
1200 		i915_request_put(rq);
1201 		intel_context_put(ce);
1202 	}
1203 	return err;
1204 }
1205 
1206 static int intel_engines_verify_workarounds(struct intel_gt *gt)
1207 {
1208 	struct intel_engine_cs *engine;
1209 	enum intel_engine_id id;
1210 	int err = 0;
1211 
1212 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1213 		return 0;
1214 
1215 	for_each_engine(engine, gt, id) {
1216 		if (intel_engine_verify_workarounds(engine, "load"))
1217 			err = -EIO;
1218 	}
1219 
1220 	return err;
1221 }
1222 
1223 int i915_gem_init(struct drm_i915_private *dev_priv)
1224 {
1225 	int ret;
1226 
1227 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1228 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1229 		mkwrite_device_info(dev_priv)->page_sizes =
1230 			I915_GTT_PAGE_SIZE_4K;
1231 
1232 	intel_timelines_init(dev_priv);
1233 
1234 	ret = i915_gem_init_userptr(dev_priv);
1235 	if (ret)
1236 		return ret;
1237 
1238 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1239 	intel_wopcm_init(&dev_priv->wopcm);
1240 
1241 	/* This is just a security blanket to placate dragons.
1242 	 * On some systems, we very sporadically observe that the first TLBs
1243 	 * used by the CS may be stale, despite us poking the TLB reset. If
1244 	 * we hold the forcewake during initialisation these problems
1245 	 * just magically go away.
1246 	 */
1247 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1248 
1249 	ret = i915_init_ggtt(dev_priv);
1250 	if (ret) {
1251 		GEM_BUG_ON(ret == -EIO);
1252 		goto err_unlock;
1253 	}
1254 
1255 	intel_gt_init(&dev_priv->gt);
1256 
1257 	ret = intel_engines_setup(&dev_priv->gt);
1258 	if (ret) {
1259 		GEM_BUG_ON(ret == -EIO);
1260 		goto err_unlock;
1261 	}
1262 
1263 	ret = i915_gem_init_contexts(dev_priv);
1264 	if (ret) {
1265 		GEM_BUG_ON(ret == -EIO);
1266 		goto err_scratch;
1267 	}
1268 
1269 	ret = intel_engines_init(&dev_priv->gt);
1270 	if (ret) {
1271 		GEM_BUG_ON(ret == -EIO);
1272 		goto err_context;
1273 	}
1274 
1275 	intel_uc_init(&dev_priv->gt.uc);
1276 
1277 	ret = intel_gt_init_hw(&dev_priv->gt);
1278 	if (ret)
1279 		goto err_uc_init;
1280 
1281 	/* Only when the HW is re-initialised, can we replay the requests */
1282 	ret = intel_gt_resume(&dev_priv->gt);
1283 	if (ret)
1284 		goto err_init_hw;
1285 
1286 	/*
1287 	 * Despite its name intel_init_clock_gating applies both display
1288 	 * clock gating workarounds; GT mmio workarounds and the occasional
1289 	 * GT power context workaround. Worse, sometimes it includes a context
1290 	 * register workaround which we need to apply before we record the
1291 	 * default HW state for all contexts.
1292 	 *
1293 	 * FIXME: break up the workarounds and apply them at the right time!
1294 	 */
1295 	intel_init_clock_gating(dev_priv);
1296 
1297 	ret = intel_engines_verify_workarounds(&dev_priv->gt);
1298 	if (ret)
1299 		goto err_gt;
1300 
1301 	ret = __intel_engines_record_defaults(&dev_priv->gt);
1302 	if (ret)
1303 		goto err_gt;
1304 
1305 	ret = i915_inject_probe_error(dev_priv, -ENODEV);
1306 	if (ret)
1307 		goto err_gt;
1308 
1309 	ret = i915_inject_probe_error(dev_priv, -EIO);
1310 	if (ret)
1311 		goto err_gt;
1312 
1313 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1314 
1315 	return 0;
1316 
1317 	/*
1318 	 * Unwinding is complicated by that we want to handle -EIO to mean
1319 	 * disable GPU submission but keep KMS alive. We want to mark the
1320 	 * HW as irrevisibly wedged, but keep enough state around that the
1321 	 * driver doesn't explode during runtime.
1322 	 */
1323 err_gt:
1324 	intel_gt_set_wedged_on_init(&dev_priv->gt);
1325 	i915_gem_suspend(dev_priv);
1326 	i915_gem_suspend_late(dev_priv);
1327 
1328 	i915_gem_drain_workqueue(dev_priv);
1329 err_init_hw:
1330 	intel_uc_fini_hw(&dev_priv->gt.uc);
1331 err_uc_init:
1332 	if (ret != -EIO) {
1333 		intel_uc_fini(&dev_priv->gt.uc);
1334 		intel_engines_cleanup(&dev_priv->gt);
1335 	}
1336 err_context:
1337 	if (ret != -EIO)
1338 		i915_gem_driver_release__contexts(dev_priv);
1339 err_scratch:
1340 	intel_gt_driver_release(&dev_priv->gt);
1341 err_unlock:
1342 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1343 
1344 	if (ret != -EIO) {
1345 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1346 		i915_gem_cleanup_userptr(dev_priv);
1347 		intel_timelines_fini(dev_priv);
1348 	}
1349 
1350 	if (ret == -EIO) {
1351 		/*
1352 		 * Allow engines or uC initialisation to fail by marking the GPU
1353 		 * as wedged. But we only want to do this when the GPU is angry,
1354 		 * for all other failure, such as an allocation failure, bail.
1355 		 */
1356 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1357 			i915_probe_error(dev_priv,
1358 					 "Failed to initialize GPU, declaring it wedged!\n");
1359 			intel_gt_set_wedged(&dev_priv->gt);
1360 		}
1361 
1362 		/* Minimal basic recovery for KMS */
1363 		ret = i915_ggtt_enable_hw(dev_priv);
1364 		i915_gem_restore_gtt_mappings(dev_priv);
1365 		i915_gem_restore_fences(&dev_priv->ggtt);
1366 		intel_init_clock_gating(dev_priv);
1367 	}
1368 
1369 	i915_gem_drain_freed_objects(dev_priv);
1370 	return ret;
1371 }
1372 
1373 void i915_gem_driver_register(struct drm_i915_private *i915)
1374 {
1375 	i915_gem_driver_register__shrinker(i915);
1376 
1377 	intel_engines_driver_register(i915);
1378 }
1379 
1380 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1381 {
1382 	i915_gem_driver_unregister__shrinker(i915);
1383 }
1384 
1385 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1386 {
1387 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1388 
1389 	i915_gem_suspend_late(dev_priv);
1390 	intel_gt_driver_remove(&dev_priv->gt);
1391 
1392 	/* Flush any outstanding unpin_work. */
1393 	i915_gem_drain_workqueue(dev_priv);
1394 
1395 	intel_uc_fini_hw(&dev_priv->gt.uc);
1396 	intel_uc_fini(&dev_priv->gt.uc);
1397 
1398 	i915_gem_drain_freed_objects(dev_priv);
1399 }
1400 
1401 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1402 {
1403 	intel_engines_cleanup(&dev_priv->gt);
1404 	i915_gem_driver_release__contexts(dev_priv);
1405 	intel_gt_driver_release(&dev_priv->gt);
1406 
1407 	intel_wa_list_free(&dev_priv->gt_wa_list);
1408 
1409 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1410 	i915_gem_cleanup_userptr(dev_priv);
1411 	intel_timelines_fini(dev_priv);
1412 
1413 	i915_gem_drain_freed_objects(dev_priv);
1414 
1415 	WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
1416 }
1417 
1418 static void i915_gem_init__mm(struct drm_i915_private *i915)
1419 {
1420 	spin_lock_init(&i915->mm.obj_lock);
1421 
1422 	init_llist_head(&i915->mm.free_list);
1423 
1424 	INIT_LIST_HEAD(&i915->mm.purge_list);
1425 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1426 
1427 	i915_gem_init__objects(i915);
1428 }
1429 
1430 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1431 {
1432 	i915_gem_init__mm(dev_priv);
1433 
1434 	spin_lock_init(&dev_priv->fb_tracking.lock);
1435 }
1436 
1437 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1438 {
1439 	i915_gem_drain_freed_objects(dev_priv);
1440 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1441 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1442 	WARN_ON(dev_priv->mm.shrink_count);
1443 }
1444 
1445 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1446 {
1447 	/* Discard all purgeable objects, let userspace recover those as
1448 	 * required after resuming.
1449 	 */
1450 	i915_gem_shrink_all(dev_priv);
1451 
1452 	return 0;
1453 }
1454 
1455 int i915_gem_freeze_late(struct drm_i915_private *i915)
1456 {
1457 	struct drm_i915_gem_object *obj;
1458 	intel_wakeref_t wakeref;
1459 
1460 	/*
1461 	 * Called just before we write the hibernation image.
1462 	 *
1463 	 * We need to update the domain tracking to reflect that the CPU
1464 	 * will be accessing all the pages to create and restore from the
1465 	 * hibernation, and so upon restoration those pages will be in the
1466 	 * CPU domain.
1467 	 *
1468 	 * To make sure the hibernation image contains the latest state,
1469 	 * we update that state just before writing out the image.
1470 	 *
1471 	 * To try and reduce the hibernation image, we manually shrink
1472 	 * the objects as well, see i915_gem_freeze()
1473 	 */
1474 
1475 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1476 
1477 	i915_gem_shrink(i915, -1UL, NULL, ~0);
1478 	i915_gem_drain_freed_objects(i915);
1479 
1480 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1481 		i915_gem_object_lock(obj);
1482 		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1483 		i915_gem_object_unlock(obj);
1484 	}
1485 
1486 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1487 
1488 	return 0;
1489 }
1490 
1491 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1492 {
1493 	struct drm_i915_file_private *file_priv = file->driver_priv;
1494 	struct i915_request *request;
1495 
1496 	/* Clean up our request list when the client is going away, so that
1497 	 * later retire_requests won't dereference our soon-to-be-gone
1498 	 * file_priv.
1499 	 */
1500 	spin_lock(&file_priv->mm.lock);
1501 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1502 		request->file_priv = NULL;
1503 	spin_unlock(&file_priv->mm.lock);
1504 }
1505 
1506 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1507 {
1508 	struct drm_i915_file_private *file_priv;
1509 	int ret;
1510 
1511 	DRM_DEBUG("\n");
1512 
1513 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1514 	if (!file_priv)
1515 		return -ENOMEM;
1516 
1517 	file->driver_priv = file_priv;
1518 	file_priv->dev_priv = i915;
1519 	file_priv->file = file;
1520 
1521 	spin_lock_init(&file_priv->mm.lock);
1522 	INIT_LIST_HEAD(&file_priv->mm.request_list);
1523 
1524 	file_priv->bsd_engine = -1;
1525 	file_priv->hang_timestamp = jiffies;
1526 
1527 	ret = i915_gem_context_open(i915, file);
1528 	if (ret)
1529 		kfree(file_priv);
1530 
1531 	return ret;
1532 }
1533 
1534 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1535 #include "selftests/mock_gem_device.c"
1536 #include "selftests/i915_gem.c"
1537 #endif
1538