xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision e91c37f1)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38 
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41 
42 #include "display/intel_display.h"
43 
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_mman.h"
48 #include "gem/i915_gem_object_frontbuffer.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gt/intel_engine_user.h"
52 #include "gt/intel_gt.h"
53 #include "gt/intel_gt_pm.h"
54 #include "gt/intel_workarounds.h"
55 
56 #include "i915_drv.h"
57 #include "i915_file_private.h"
58 #include "i915_trace.h"
59 #include "i915_vgpu.h"
60 #include "intel_clock_gating.h"
61 
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
64 {
65 	int err;
66 
67 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
68 	if (err)
69 		return err;
70 
71 	memset(node, 0, sizeof(*node));
72 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
73 					  size, 0, I915_COLOR_UNEVICTABLE,
74 					  0, ggtt->mappable_end,
75 					  DRM_MM_INSERT_LOW);
76 
77 	mutex_unlock(&ggtt->vm.mutex);
78 
79 	return err;
80 }
81 
82 static void
83 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
84 {
85 	mutex_lock(&ggtt->vm.mutex);
86 	drm_mm_remove_node(node);
87 	mutex_unlock(&ggtt->vm.mutex);
88 }
89 
90 int
91 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
92 			    struct drm_file *file)
93 {
94 	struct drm_i915_private *i915 = to_i915(dev);
95 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
96 	struct drm_i915_gem_get_aperture *args = data;
97 	struct i915_vma *vma;
98 	u64 pinned;
99 
100 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
101 		return -EINTR;
102 
103 	pinned = ggtt->vm.reserved;
104 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
105 		if (i915_vma_is_pinned(vma))
106 			pinned += vma->node.size;
107 
108 	mutex_unlock(&ggtt->vm.mutex);
109 
110 	args->aper_size = ggtt->vm.total;
111 	args->aper_available_size = args->aper_size - pinned;
112 
113 	return 0;
114 }
115 
116 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
117 			   unsigned long flags)
118 {
119 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
120 	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
121 	LIST_HEAD(still_in_list);
122 	intel_wakeref_t wakeref;
123 	struct i915_vma *vma;
124 	int ret;
125 
126 	assert_object_held(obj);
127 
128 	if (list_empty(&obj->vma.list))
129 		return 0;
130 
131 	/*
132 	 * As some machines use ACPI to handle runtime-resume callbacks, and
133 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
134 	 * as they are required by the shrinker. Ergo, we wake the device up
135 	 * first just in case.
136 	 */
137 	wakeref = intel_runtime_pm_get(rpm);
138 
139 try_again:
140 	ret = 0;
141 	spin_lock(&obj->vma.lock);
142 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
143 						       struct i915_vma,
144 						       obj_link))) {
145 		list_move_tail(&vma->obj_link, &still_in_list);
146 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
147 			continue;
148 
149 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
150 			ret = -EBUSY;
151 			break;
152 		}
153 
154 		/*
155 		 * Requiring the vm destructor to take the object lock
156 		 * before destroying a vma would help us eliminate the
157 		 * i915_vm_tryget() here, AND thus also the barrier stuff
158 		 * at the end. That's an easy fix, but sleeping locks in
159 		 * a kthread should generally be avoided.
160 		 */
161 		ret = -EAGAIN;
162 		if (!i915_vm_tryget(vma->vm))
163 			break;
164 
165 		spin_unlock(&obj->vma.lock);
166 
167 		/*
168 		 * Since i915_vma_parked() takes the object lock
169 		 * before vma destruction, it won't race us here,
170 		 * and destroy the vma from under us.
171 		 */
172 
173 		ret = -EBUSY;
174 		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
175 			assert_object_held(vma->obj);
176 			ret = i915_vma_unbind_async(vma, vm_trylock);
177 		}
178 
179 		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
180 				      !i915_vma_is_active(vma))) {
181 			if (vm_trylock) {
182 				if (mutex_trylock(&vma->vm->mutex)) {
183 					ret = __i915_vma_unbind(vma);
184 					mutex_unlock(&vma->vm->mutex);
185 				}
186 			} else {
187 				ret = i915_vma_unbind(vma);
188 			}
189 		}
190 
191 		i915_vm_put(vma->vm);
192 		spin_lock(&obj->vma.lock);
193 	}
194 	list_splice_init(&still_in_list, &obj->vma.list);
195 	spin_unlock(&obj->vma.lock);
196 
197 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
198 		rcu_barrier(); /* flush the i915_vm_release() */
199 		goto try_again;
200 	}
201 
202 	intel_runtime_pm_put(rpm, wakeref);
203 
204 	return ret;
205 }
206 
207 static int
208 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
209 	    bool needs_clflush)
210 {
211 	char *vaddr;
212 	int ret;
213 
214 	vaddr = kmap(page);
215 
216 	if (needs_clflush)
217 		drm_clflush_virt_range(vaddr + offset, len);
218 
219 	ret = __copy_to_user(user_data, vaddr + offset, len);
220 
221 	kunmap(page);
222 
223 	return ret ? -EFAULT : 0;
224 }
225 
226 static int
227 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
228 		     struct drm_i915_gem_pread *args)
229 {
230 	unsigned int needs_clflush;
231 	char __user *user_data;
232 	unsigned long offset;
233 	pgoff_t idx;
234 	u64 remain;
235 	int ret;
236 
237 	ret = i915_gem_object_lock_interruptible(obj, NULL);
238 	if (ret)
239 		return ret;
240 
241 	ret = i915_gem_object_pin_pages(obj);
242 	if (ret)
243 		goto err_unlock;
244 
245 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246 	if (ret)
247 		goto err_unpin;
248 
249 	i915_gem_object_finish_access(obj);
250 	i915_gem_object_unlock(obj);
251 
252 	remain = args->size;
253 	user_data = u64_to_user_ptr(args->data_ptr);
254 	offset = offset_in_page(args->offset);
255 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256 		struct page *page = i915_gem_object_get_page(obj, idx);
257 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258 
259 		ret = shmem_pread(page, offset, length, user_data,
260 				  needs_clflush);
261 		if (ret)
262 			break;
263 
264 		remain -= length;
265 		user_data += length;
266 		offset = 0;
267 	}
268 
269 	i915_gem_object_unpin_pages(obj);
270 	return ret;
271 
272 err_unpin:
273 	i915_gem_object_unpin_pages(obj);
274 err_unlock:
275 	i915_gem_object_unlock(obj);
276 	return ret;
277 }
278 
279 static inline bool
280 gtt_user_read(struct io_mapping *mapping,
281 	      loff_t base, int offset,
282 	      char __user *user_data, int length)
283 {
284 	void __iomem *vaddr;
285 	unsigned long unwritten;
286 
287 	/* We can use the cpu mem copy function because this is X86. */
288 	vaddr = io_mapping_map_atomic_wc(mapping, base);
289 	unwritten = __copy_to_user_inatomic(user_data,
290 					    (void __force *)vaddr + offset,
291 					    length);
292 	io_mapping_unmap_atomic(vaddr);
293 	if (unwritten) {
294 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295 		unwritten = copy_to_user(user_data,
296 					 (void __force *)vaddr + offset,
297 					 length);
298 		io_mapping_unmap(vaddr);
299 	}
300 	return unwritten;
301 }
302 
303 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304 					     struct drm_mm_node *node,
305 					     bool write)
306 {
307 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
308 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309 	struct i915_vma *vma;
310 	struct i915_gem_ww_ctx ww;
311 	int ret;
312 
313 	i915_gem_ww_ctx_init(&ww, true);
314 retry:
315 	vma = ERR_PTR(-ENODEV);
316 	ret = i915_gem_object_lock(obj, &ww);
317 	if (ret)
318 		goto err_ww;
319 
320 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
321 	if (ret)
322 		goto err_ww;
323 
324 	if (!i915_gem_object_is_tiled(obj))
325 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326 						  PIN_MAPPABLE |
327 						  PIN_NONBLOCK /* NOWARN */ |
328 						  PIN_NOEVICT);
329 	if (vma == ERR_PTR(-EDEADLK)) {
330 		ret = -EDEADLK;
331 		goto err_ww;
332 	} else if (!IS_ERR(vma)) {
333 		node->start = i915_ggtt_offset(vma);
334 		node->flags = 0;
335 	} else {
336 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337 		if (ret)
338 			goto err_ww;
339 		GEM_BUG_ON(!drm_mm_node_allocated(node));
340 		vma = NULL;
341 	}
342 
343 	ret = i915_gem_object_pin_pages(obj);
344 	if (ret) {
345 		if (drm_mm_node_allocated(node)) {
346 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347 			remove_mappable_node(ggtt, node);
348 		} else {
349 			i915_vma_unpin(vma);
350 		}
351 	}
352 
353 err_ww:
354 	if (ret == -EDEADLK) {
355 		ret = i915_gem_ww_ctx_backoff(&ww);
356 		if (!ret)
357 			goto retry;
358 	}
359 	i915_gem_ww_ctx_fini(&ww);
360 
361 	return ret ? ERR_PTR(ret) : vma;
362 }
363 
364 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365 				 struct drm_mm_node *node,
366 				 struct i915_vma *vma)
367 {
368 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370 
371 	i915_gem_object_unpin_pages(obj);
372 	if (drm_mm_node_allocated(node)) {
373 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374 		remove_mappable_node(ggtt, node);
375 	} else {
376 		i915_vma_unpin(vma);
377 	}
378 }
379 
380 static int
381 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382 		   const struct drm_i915_gem_pread *args)
383 {
384 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
385 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386 	unsigned long remain, offset;
387 	intel_wakeref_t wakeref;
388 	struct drm_mm_node node;
389 	void __user *user_data;
390 	struct i915_vma *vma;
391 	int ret = 0;
392 
393 	if (overflows_type(args->size, remain) ||
394 	    overflows_type(args->offset, offset))
395 		return -EINVAL;
396 
397 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
398 
399 	vma = i915_gem_gtt_prepare(obj, &node, false);
400 	if (IS_ERR(vma)) {
401 		ret = PTR_ERR(vma);
402 		goto out_rpm;
403 	}
404 
405 	user_data = u64_to_user_ptr(args->data_ptr);
406 	remain = args->size;
407 	offset = args->offset;
408 
409 	while (remain > 0) {
410 		/* Operation in this page
411 		 *
412 		 * page_base = page offset within aperture
413 		 * page_offset = offset within page
414 		 * page_length = bytes to copy for this page
415 		 */
416 		u32 page_base = node.start;
417 		unsigned page_offset = offset_in_page(offset);
418 		unsigned page_length = PAGE_SIZE - page_offset;
419 		page_length = remain < page_length ? remain : page_length;
420 		if (drm_mm_node_allocated(&node)) {
421 			ggtt->vm.insert_page(&ggtt->vm,
422 					     i915_gem_object_get_dma_address(obj,
423 									     offset >> PAGE_SHIFT),
424 					     node.start,
425 					     i915_gem_get_pat_index(i915,
426 								    I915_CACHE_NONE), 0);
427 		} else {
428 			page_base += offset & PAGE_MASK;
429 		}
430 
431 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
432 				  user_data, page_length)) {
433 			ret = -EFAULT;
434 			break;
435 		}
436 
437 		remain -= page_length;
438 		user_data += page_length;
439 		offset += page_length;
440 	}
441 
442 	i915_gem_gtt_cleanup(obj, &node, vma);
443 out_rpm:
444 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
445 	return ret;
446 }
447 
448 /**
449  * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
450  * @dev: drm device pointer
451  * @data: ioctl data blob
452  * @file: drm file pointer
453  *
454  * On error, the contents of *data are undefined.
455  */
456 int
457 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458 		     struct drm_file *file)
459 {
460 	struct drm_i915_private *i915 = to_i915(dev);
461 	struct drm_i915_gem_pread *args = data;
462 	struct drm_i915_gem_object *obj;
463 	int ret;
464 
465 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
466 	 * covers all platforms with local memory.
467 	 */
468 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
469 		return -EOPNOTSUPP;
470 
471 	if (args->size == 0)
472 		return 0;
473 
474 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
475 		       args->size))
476 		return -EFAULT;
477 
478 	obj = i915_gem_object_lookup(file, args->handle);
479 	if (!obj)
480 		return -ENOENT;
481 
482 	/* Bounds check source.  */
483 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
484 		ret = -EINVAL;
485 		goto out;
486 	}
487 
488 	trace_i915_gem_object_pread(obj, args->offset, args->size);
489 	ret = -ENODEV;
490 	if (obj->ops->pread)
491 		ret = obj->ops->pread(obj, args);
492 	if (ret != -ENODEV)
493 		goto out;
494 
495 	ret = i915_gem_object_wait(obj,
496 				   I915_WAIT_INTERRUPTIBLE,
497 				   MAX_SCHEDULE_TIMEOUT);
498 	if (ret)
499 		goto out;
500 
501 	ret = i915_gem_shmem_pread(obj, args);
502 	if (ret == -EFAULT || ret == -ENODEV)
503 		ret = i915_gem_gtt_pread(obj, args);
504 
505 out:
506 	i915_gem_object_put(obj);
507 	return ret;
508 }
509 
510 /* This is the fast write path which cannot handle
511  * page faults in the source data
512  */
513 
514 static inline bool
515 ggtt_write(struct io_mapping *mapping,
516 	   loff_t base, int offset,
517 	   char __user *user_data, int length)
518 {
519 	void __iomem *vaddr;
520 	unsigned long unwritten;
521 
522 	/* We can use the cpu mem copy function because this is X86. */
523 	vaddr = io_mapping_map_atomic_wc(mapping, base);
524 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
525 						      user_data, length);
526 	io_mapping_unmap_atomic(vaddr);
527 	if (unwritten) {
528 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
529 		unwritten = copy_from_user((void __force *)vaddr + offset,
530 					   user_data, length);
531 		io_mapping_unmap(vaddr);
532 	}
533 
534 	return unwritten;
535 }
536 
537 /**
538  * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
539  * user into the GTT, uncached.
540  * @obj: i915 GEM object
541  * @args: pwrite arguments structure
542  */
543 static int
544 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
545 			 const struct drm_i915_gem_pwrite *args)
546 {
547 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
548 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
549 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
550 	unsigned long remain, offset;
551 	intel_wakeref_t wakeref;
552 	struct drm_mm_node node;
553 	struct i915_vma *vma;
554 	void __user *user_data;
555 	int ret = 0;
556 
557 	if (overflows_type(args->size, remain) ||
558 	    overflows_type(args->offset, offset))
559 		return -EINVAL;
560 
561 	if (i915_gem_object_has_struct_page(obj)) {
562 		/*
563 		 * Avoid waking the device up if we can fallback, as
564 		 * waking/resuming is very slow (worst-case 10-100 ms
565 		 * depending on PCI sleeps and our own resume time).
566 		 * This easily dwarfs any performance advantage from
567 		 * using the cache bypass of indirect GGTT access.
568 		 */
569 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
570 		if (!wakeref)
571 			return -EFAULT;
572 	} else {
573 		/* No backing pages, no fallback, we must force GGTT access */
574 		wakeref = intel_runtime_pm_get(rpm);
575 	}
576 
577 	vma = i915_gem_gtt_prepare(obj, &node, true);
578 	if (IS_ERR(vma)) {
579 		ret = PTR_ERR(vma);
580 		goto out_rpm;
581 	}
582 
583 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
584 
585 	user_data = u64_to_user_ptr(args->data_ptr);
586 	offset = args->offset;
587 	remain = args->size;
588 	while (remain) {
589 		/* Operation in this page
590 		 *
591 		 * page_base = page offset within aperture
592 		 * page_offset = offset within page
593 		 * page_length = bytes to copy for this page
594 		 */
595 		u32 page_base = node.start;
596 		unsigned int page_offset = offset_in_page(offset);
597 		unsigned int page_length = PAGE_SIZE - page_offset;
598 		page_length = remain < page_length ? remain : page_length;
599 		if (drm_mm_node_allocated(&node)) {
600 			/* flush the write before we modify the GGTT */
601 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
602 			ggtt->vm.insert_page(&ggtt->vm,
603 					     i915_gem_object_get_dma_address(obj,
604 									     offset >> PAGE_SHIFT),
605 					     node.start,
606 					     i915_gem_get_pat_index(i915,
607 								    I915_CACHE_NONE), 0);
608 			wmb(); /* flush modifications to the GGTT (insert_page) */
609 		} else {
610 			page_base += offset & PAGE_MASK;
611 		}
612 		/* If we get a fault while copying data, then (presumably) our
613 		 * source page isn't available.  Return the error and we'll
614 		 * retry in the slow path.
615 		 * If the object is non-shmem backed, we retry again with the
616 		 * path that handles page fault.
617 		 */
618 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
619 			       user_data, page_length)) {
620 			ret = -EFAULT;
621 			break;
622 		}
623 
624 		remain -= page_length;
625 		user_data += page_length;
626 		offset += page_length;
627 	}
628 
629 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
630 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
631 
632 	i915_gem_gtt_cleanup(obj, &node, vma);
633 out_rpm:
634 	intel_runtime_pm_put(rpm, wakeref);
635 	return ret;
636 }
637 
638 /* Per-page copy function for the shmem pwrite fastpath.
639  * Flushes invalid cachelines before writing to the target if
640  * needs_clflush_before is set and flushes out any written cachelines after
641  * writing if needs_clflush is set.
642  */
643 static int
644 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
645 	     bool needs_clflush_before,
646 	     bool needs_clflush_after)
647 {
648 	char *vaddr;
649 	int ret;
650 
651 	vaddr = kmap(page);
652 
653 	if (needs_clflush_before)
654 		drm_clflush_virt_range(vaddr + offset, len);
655 
656 	ret = __copy_from_user(vaddr + offset, user_data, len);
657 	if (!ret && needs_clflush_after)
658 		drm_clflush_virt_range(vaddr + offset, len);
659 
660 	kunmap(page);
661 
662 	return ret ? -EFAULT : 0;
663 }
664 
665 static int
666 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
667 		      const struct drm_i915_gem_pwrite *args)
668 {
669 	unsigned int partial_cacheline_write;
670 	unsigned int needs_clflush;
671 	void __user *user_data;
672 	unsigned long offset;
673 	pgoff_t idx;
674 	u64 remain;
675 	int ret;
676 
677 	ret = i915_gem_object_lock_interruptible(obj, NULL);
678 	if (ret)
679 		return ret;
680 
681 	ret = i915_gem_object_pin_pages(obj);
682 	if (ret)
683 		goto err_unlock;
684 
685 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
686 	if (ret)
687 		goto err_unpin;
688 
689 	i915_gem_object_finish_access(obj);
690 	i915_gem_object_unlock(obj);
691 
692 	/* If we don't overwrite a cacheline completely we need to be
693 	 * careful to have up-to-date data by first clflushing. Don't
694 	 * overcomplicate things and flush the entire patch.
695 	 */
696 	partial_cacheline_write = 0;
697 	if (needs_clflush & CLFLUSH_BEFORE)
698 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
699 
700 	user_data = u64_to_user_ptr(args->data_ptr);
701 	remain = args->size;
702 	offset = offset_in_page(args->offset);
703 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
704 		struct page *page = i915_gem_object_get_page(obj, idx);
705 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
706 
707 		ret = shmem_pwrite(page, offset, length, user_data,
708 				   (offset | length) & partial_cacheline_write,
709 				   needs_clflush & CLFLUSH_AFTER);
710 		if (ret)
711 			break;
712 
713 		remain -= length;
714 		user_data += length;
715 		offset = 0;
716 	}
717 
718 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
719 
720 	i915_gem_object_unpin_pages(obj);
721 	return ret;
722 
723 err_unpin:
724 	i915_gem_object_unpin_pages(obj);
725 err_unlock:
726 	i915_gem_object_unlock(obj);
727 	return ret;
728 }
729 
730 /**
731  * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
732  * @dev: drm device
733  * @data: ioctl data blob
734  * @file: drm file
735  *
736  * On error, the contents of the buffer that were to be modified are undefined.
737  */
738 int
739 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
740 		      struct drm_file *file)
741 {
742 	struct drm_i915_private *i915 = to_i915(dev);
743 	struct drm_i915_gem_pwrite *args = data;
744 	struct drm_i915_gem_object *obj;
745 	int ret;
746 
747 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
748 	 * covers all platforms with local memory.
749 	 */
750 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
751 		return -EOPNOTSUPP;
752 
753 	if (args->size == 0)
754 		return 0;
755 
756 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
757 		return -EFAULT;
758 
759 	obj = i915_gem_object_lookup(file, args->handle);
760 	if (!obj)
761 		return -ENOENT;
762 
763 	/* Bounds check destination. */
764 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
765 		ret = -EINVAL;
766 		goto err;
767 	}
768 
769 	/* Writes not allowed into this read-only object */
770 	if (i915_gem_object_is_readonly(obj)) {
771 		ret = -EINVAL;
772 		goto err;
773 	}
774 
775 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
776 
777 	ret = -ENODEV;
778 	if (obj->ops->pwrite)
779 		ret = obj->ops->pwrite(obj, args);
780 	if (ret != -ENODEV)
781 		goto err;
782 
783 	ret = i915_gem_object_wait(obj,
784 				   I915_WAIT_INTERRUPTIBLE |
785 				   I915_WAIT_ALL,
786 				   MAX_SCHEDULE_TIMEOUT);
787 	if (ret)
788 		goto err;
789 
790 	ret = -EFAULT;
791 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
792 	 * it would end up going through the fenced access, and we'll get
793 	 * different detiling behavior between reading and writing.
794 	 * pread/pwrite currently are reading and writing from the CPU
795 	 * perspective, requiring manual detiling by the client.
796 	 */
797 	if (!i915_gem_object_has_struct_page(obj) ||
798 	    i915_gem_cpu_write_needs_clflush(obj))
799 		/* Note that the gtt paths might fail with non-page-backed user
800 		 * pointers (e.g. gtt mappings when moving data between
801 		 * textures). Fallback to the shmem path in that case.
802 		 */
803 		ret = i915_gem_gtt_pwrite_fast(obj, args);
804 
805 	if (ret == -EFAULT || ret == -ENOSPC) {
806 		if (i915_gem_object_has_struct_page(obj))
807 			ret = i915_gem_shmem_pwrite(obj, args);
808 	}
809 
810 err:
811 	i915_gem_object_put(obj);
812 	return ret;
813 }
814 
815 /**
816  * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
817  * @dev: drm device
818  * @data: ioctl data blob
819  * @file: drm file
820  */
821 int
822 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
823 			 struct drm_file *file)
824 {
825 	struct drm_i915_gem_sw_finish *args = data;
826 	struct drm_i915_gem_object *obj;
827 
828 	obj = i915_gem_object_lookup(file, args->handle);
829 	if (!obj)
830 		return -ENOENT;
831 
832 	/*
833 	 * Proxy objects are barred from CPU access, so there is no
834 	 * need to ban sw_finish as it is a nop.
835 	 */
836 
837 	/* Pinned buffers may be scanout, so flush the cache */
838 	i915_gem_object_flush_if_display(obj);
839 	i915_gem_object_put(obj);
840 
841 	return 0;
842 }
843 
844 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
845 {
846 	struct drm_i915_gem_object *obj, *on;
847 	int i;
848 
849 	/*
850 	 * Only called during RPM suspend. All users of the userfault_list
851 	 * must be holding an RPM wakeref to ensure that this can not
852 	 * run concurrently with themselves (and use the struct_mutex for
853 	 * protection between themselves).
854 	 */
855 
856 	list_for_each_entry_safe(obj, on,
857 				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
858 		__i915_gem_object_release_mmap_gtt(obj);
859 
860 	list_for_each_entry_safe(obj, on,
861 				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
862 		i915_gem_object_runtime_pm_release_mmap_offset(obj);
863 
864 	/*
865 	 * The fence will be lost when the device powers down. If any were
866 	 * in use by hardware (i.e. they are pinned), we should not be powering
867 	 * down! All other fences will be reacquired by the user upon waking.
868 	 */
869 	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
870 		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
871 
872 		/*
873 		 * Ideally we want to assert that the fence register is not
874 		 * live at this point (i.e. that no piece of code will be
875 		 * trying to write through fence + GTT, as that both violates
876 		 * our tracking of activity and associated locking/barriers,
877 		 * but also is illegal given that the hw is powered down).
878 		 *
879 		 * Previously we used reg->pin_count as a "liveness" indicator.
880 		 * That is not sufficient, and we need a more fine-grained
881 		 * tool if we want to have a sanity check here.
882 		 */
883 
884 		if (!reg->vma)
885 			continue;
886 
887 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
888 		reg->dirty = true;
889 	}
890 }
891 
892 static void discard_ggtt_vma(struct i915_vma *vma)
893 {
894 	struct drm_i915_gem_object *obj = vma->obj;
895 
896 	spin_lock(&obj->vma.lock);
897 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
898 		rb_erase(&vma->obj_node, &obj->vma.tree);
899 		RB_CLEAR_NODE(&vma->obj_node);
900 	}
901 	spin_unlock(&obj->vma.lock);
902 }
903 
904 struct i915_vma *
905 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
906 			    struct i915_gem_ww_ctx *ww,
907 			    const struct i915_gtt_view *view,
908 			    u64 size, u64 alignment, u64 flags)
909 {
910 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
911 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
912 	struct i915_vma *vma;
913 	int ret;
914 
915 	GEM_WARN_ON(!ww);
916 
917 	if (flags & PIN_MAPPABLE &&
918 	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
919 		/*
920 		 * If the required space is larger than the available
921 		 * aperture, we will not able to find a slot for the
922 		 * object and unbinding the object now will be in
923 		 * vain. Worse, doing so may cause us to ping-pong
924 		 * the object in and out of the Global GTT and
925 		 * waste a lot of cycles under the mutex.
926 		 */
927 		if (obj->base.size > ggtt->mappable_end)
928 			return ERR_PTR(-E2BIG);
929 
930 		/*
931 		 * If NONBLOCK is set the caller is optimistically
932 		 * trying to cache the full object within the mappable
933 		 * aperture, and *must* have a fallback in place for
934 		 * situations where we cannot bind the object. We
935 		 * can be a little more lax here and use the fallback
936 		 * more often to avoid costly migrations of ourselves
937 		 * and other objects within the aperture.
938 		 *
939 		 * Half-the-aperture is used as a simple heuristic.
940 		 * More interesting would to do search for a free
941 		 * block prior to making the commitment to unbind.
942 		 * That caters for the self-harm case, and with a
943 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
944 		 * we could try to minimise harm to others.
945 		 */
946 		if (flags & PIN_NONBLOCK &&
947 		    obj->base.size > ggtt->mappable_end / 2)
948 			return ERR_PTR(-ENOSPC);
949 	}
950 
951 new_vma:
952 	vma = i915_vma_instance(obj, &ggtt->vm, view);
953 	if (IS_ERR(vma))
954 		return vma;
955 
956 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
957 		if (flags & PIN_NONBLOCK) {
958 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
959 				return ERR_PTR(-ENOSPC);
960 
961 			/*
962 			 * If this misplaced vma is too big (i.e, at-least
963 			 * half the size of aperture) or hasn't been pinned
964 			 * mappable before, we ignore the misplacement when
965 			 * PIN_NONBLOCK is set in order to avoid the ping-pong
966 			 * issue described above. In other words, we try to
967 			 * avoid the costly operation of unbinding this vma
968 			 * from the GGTT and rebinding it back because there
969 			 * may not be enough space for this vma in the aperture.
970 			 */
971 			if (flags & PIN_MAPPABLE &&
972 			    (vma->fence_size > ggtt->mappable_end / 2 ||
973 			    !i915_vma_is_map_and_fenceable(vma)))
974 				return ERR_PTR(-ENOSPC);
975 		}
976 
977 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
978 			discard_ggtt_vma(vma);
979 			goto new_vma;
980 		}
981 
982 		ret = i915_vma_unbind(vma);
983 		if (ret)
984 			return ERR_PTR(ret);
985 	}
986 
987 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
988 
989 	if (ret)
990 		return ERR_PTR(ret);
991 
992 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
993 		mutex_lock(&ggtt->vm.mutex);
994 		i915_vma_revoke_fence(vma);
995 		mutex_unlock(&ggtt->vm.mutex);
996 	}
997 
998 	ret = i915_vma_wait_for_bind(vma);
999 	if (ret) {
1000 		i915_vma_unpin(vma);
1001 		return ERR_PTR(ret);
1002 	}
1003 
1004 	return vma;
1005 }
1006 
1007 struct i915_vma * __must_check
1008 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1009 			 const struct i915_gtt_view *view,
1010 			 u64 size, u64 alignment, u64 flags)
1011 {
1012 	struct i915_gem_ww_ctx ww;
1013 	struct i915_vma *ret;
1014 	int err;
1015 
1016 	for_i915_gem_ww(&ww, err, true) {
1017 		err = i915_gem_object_lock(obj, &ww);
1018 		if (err)
1019 			continue;
1020 
1021 		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1022 						  alignment, flags);
1023 		if (IS_ERR(ret))
1024 			err = PTR_ERR(ret);
1025 	}
1026 
1027 	return err ? ERR_PTR(err) : ret;
1028 }
1029 
1030 int
1031 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1032 		       struct drm_file *file_priv)
1033 {
1034 	struct drm_i915_private *i915 = to_i915(dev);
1035 	struct drm_i915_gem_madvise *args = data;
1036 	struct drm_i915_gem_object *obj;
1037 	int err;
1038 
1039 	switch (args->madv) {
1040 	case I915_MADV_DONTNEED:
1041 	case I915_MADV_WILLNEED:
1042 	    break;
1043 	default:
1044 	    return -EINVAL;
1045 	}
1046 
1047 	obj = i915_gem_object_lookup(file_priv, args->handle);
1048 	if (!obj)
1049 		return -ENOENT;
1050 
1051 	err = i915_gem_object_lock_interruptible(obj, NULL);
1052 	if (err)
1053 		goto out;
1054 
1055 	if (i915_gem_object_has_pages(obj) &&
1056 	    i915_gem_object_is_tiled(obj) &&
1057 	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1058 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1059 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1060 			i915_gem_object_clear_tiling_quirk(obj);
1061 			i915_gem_object_make_shrinkable(obj);
1062 		}
1063 		if (args->madv == I915_MADV_WILLNEED) {
1064 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1065 			i915_gem_object_make_unshrinkable(obj);
1066 			i915_gem_object_set_tiling_quirk(obj);
1067 		}
1068 	}
1069 
1070 	if (obj->mm.madv != __I915_MADV_PURGED) {
1071 		obj->mm.madv = args->madv;
1072 		if (obj->ops->adjust_lru)
1073 			obj->ops->adjust_lru(obj);
1074 	}
1075 
1076 	if (i915_gem_object_has_pages(obj) ||
1077 	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1078 		unsigned long flags;
1079 
1080 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1081 		if (!list_empty(&obj->mm.link)) {
1082 			struct list_head *list;
1083 
1084 			if (obj->mm.madv != I915_MADV_WILLNEED)
1085 				list = &i915->mm.purge_list;
1086 			else
1087 				list = &i915->mm.shrink_list;
1088 			list_move_tail(&obj->mm.link, list);
1089 
1090 		}
1091 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1092 	}
1093 
1094 	/* if the object is no longer attached, discard its backing storage */
1095 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1096 	    !i915_gem_object_has_pages(obj))
1097 		i915_gem_object_truncate(obj);
1098 
1099 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100 
1101 	i915_gem_object_unlock(obj);
1102 out:
1103 	i915_gem_object_put(obj);
1104 	return err;
1105 }
1106 
1107 /*
1108  * A single pass should suffice to release all the freed objects (along most
1109  * call paths), but be a little more paranoid in that freeing the objects does
1110  * take a little amount of time, during which the rcu callbacks could have added
1111  * new objects into the freed list, and armed the work again.
1112  */
1113 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1114 {
1115 	while (atomic_read(&i915->mm.free_count)) {
1116 		flush_work(&i915->mm.free_work);
1117 		drain_workqueue(i915->bdev.wq);
1118 		rcu_barrier();
1119 	}
1120 }
1121 
1122 /*
1123  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1124  * have workers that are armed by RCU and then rearm themselves in their
1125  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1126  * waiting for the RCU grace period so that we catch work queued via RCU from
1127  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1128  * result, we make an assumption that we only don't require more than 3 passes
1129  * to catch all _recursive_ RCU delayed work.
1130  */
1131 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1132 {
1133 	int i;
1134 
1135 	for (i = 0; i < 3; i++) {
1136 		flush_workqueue(i915->wq);
1137 		rcu_barrier();
1138 		i915_gem_drain_freed_objects(i915);
1139 	}
1140 
1141 	drain_workqueue(i915->wq);
1142 }
1143 
1144 int i915_gem_init(struct drm_i915_private *dev_priv)
1145 {
1146 	struct intel_gt *gt;
1147 	unsigned int i;
1148 	int ret;
1149 
1150 	/*
1151 	 * In the proccess of replacing cache_level with pat_index a tricky
1152 	 * dependency is created on the definition of the enum i915_cache_level.
1153 	 * in case this enum is changed, PTE encode would be broken.
1154 	 * Add a WARNING here. And remove when we completely quit using this
1155 	 * enum
1156 	 */
1157 	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1158 		     I915_CACHE_LLC != 1 ||
1159 		     I915_CACHE_L3_LLC != 2 ||
1160 		     I915_CACHE_WT != 3 ||
1161 		     I915_MAX_CACHE_LEVEL != 4);
1162 
1163 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1164 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1165 		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1166 
1167 	for_each_gt(gt, dev_priv, i) {
1168 		intel_uc_fetch_firmwares(&gt->uc);
1169 		intel_wopcm_init(&gt->wopcm);
1170 		if (GRAPHICS_VER(dev_priv) >= 8)
1171 			setup_private_pat(gt);
1172 	}
1173 
1174 	ret = i915_init_ggtt(dev_priv);
1175 	if (ret) {
1176 		GEM_BUG_ON(ret == -EIO);
1177 		goto err_unlock;
1178 	}
1179 
1180 	/*
1181 	 * Despite its name intel_clock_gating_init applies both display
1182 	 * clock gating workarounds; GT mmio workarounds and the occasional
1183 	 * GT power context workaround. Worse, sometimes it includes a context
1184 	 * register workaround which we need to apply before we record the
1185 	 * default HW state for all contexts.
1186 	 *
1187 	 * FIXME: break up the workarounds and apply them at the right time!
1188 	 */
1189 	intel_clock_gating_init(dev_priv);
1190 
1191 	for_each_gt(gt, dev_priv, i) {
1192 		ret = intel_gt_init(gt);
1193 		if (ret)
1194 			goto err_unlock;
1195 	}
1196 
1197 	/*
1198 	 * Register engines early to ensure the engine list is in its final
1199 	 * rb-tree form, lowering the amount of code that has to deal with
1200 	 * the intermediate llist state.
1201 	 */
1202 	intel_engines_driver_register(dev_priv);
1203 
1204 	return 0;
1205 
1206 	/*
1207 	 * Unwinding is complicated by that we want to handle -EIO to mean
1208 	 * disable GPU submission but keep KMS alive. We want to mark the
1209 	 * HW as irrevisibly wedged, but keep enough state around that the
1210 	 * driver doesn't explode during runtime.
1211 	 */
1212 err_unlock:
1213 	i915_gem_drain_workqueue(dev_priv);
1214 
1215 	if (ret != -EIO) {
1216 		for_each_gt(gt, dev_priv, i) {
1217 			intel_gt_driver_remove(gt);
1218 			intel_gt_driver_release(gt);
1219 			intel_uc_cleanup_firmwares(&gt->uc);
1220 		}
1221 	}
1222 
1223 	if (ret == -EIO) {
1224 		/*
1225 		 * Allow engines or uC initialisation to fail by marking the GPU
1226 		 * as wedged. But we only want to do this when the GPU is angry,
1227 		 * for all other failure, such as an allocation failure, bail.
1228 		 */
1229 		for_each_gt(gt, dev_priv, i) {
1230 			if (!intel_gt_is_wedged(gt)) {
1231 				i915_probe_error(dev_priv,
1232 						 "Failed to initialize GPU, declaring it wedged!\n");
1233 				intel_gt_set_wedged(gt);
1234 			}
1235 		}
1236 
1237 		/* Minimal basic recovery for KMS */
1238 		ret = i915_ggtt_enable_hw(dev_priv);
1239 		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1240 		intel_clock_gating_init(dev_priv);
1241 	}
1242 
1243 	i915_gem_drain_freed_objects(dev_priv);
1244 
1245 	return ret;
1246 }
1247 
1248 void i915_gem_driver_register(struct drm_i915_private *i915)
1249 {
1250 	i915_gem_driver_register__shrinker(i915);
1251 }
1252 
1253 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1254 {
1255 	i915_gem_driver_unregister__shrinker(i915);
1256 }
1257 
1258 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1259 {
1260 	struct intel_gt *gt;
1261 	unsigned int i;
1262 
1263 	i915_gem_suspend_late(dev_priv);
1264 	for_each_gt(gt, dev_priv, i)
1265 		intel_gt_driver_remove(gt);
1266 	dev_priv->uabi_engines = RB_ROOT;
1267 
1268 	/* Flush any outstanding unpin_work. */
1269 	i915_gem_drain_workqueue(dev_priv);
1270 }
1271 
1272 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1273 {
1274 	struct intel_gt *gt;
1275 	unsigned int i;
1276 
1277 	for_each_gt(gt, dev_priv, i) {
1278 		intel_gt_driver_release(gt);
1279 		intel_uc_cleanup_firmwares(&gt->uc);
1280 	}
1281 
1282 	/* Flush any outstanding work, including i915_gem_context.release_work. */
1283 	i915_gem_drain_workqueue(dev_priv);
1284 
1285 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1286 }
1287 
1288 static void i915_gem_init__mm(struct drm_i915_private *i915)
1289 {
1290 	spin_lock_init(&i915->mm.obj_lock);
1291 
1292 	init_llist_head(&i915->mm.free_list);
1293 
1294 	INIT_LIST_HEAD(&i915->mm.purge_list);
1295 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1296 
1297 	i915_gem_init__objects(i915);
1298 }
1299 
1300 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1301 {
1302 	i915_gem_init__mm(dev_priv);
1303 	i915_gem_init__contexts(dev_priv);
1304 }
1305 
1306 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1307 {
1308 	i915_gem_drain_workqueue(dev_priv);
1309 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1310 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1311 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1312 }
1313 
1314 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1315 {
1316 	struct drm_i915_file_private *file_priv;
1317 	struct i915_drm_client *client;
1318 	int ret = -ENOMEM;
1319 
1320 	drm_dbg(&i915->drm, "\n");
1321 
1322 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1323 	if (!file_priv)
1324 		goto err_alloc;
1325 
1326 	client = i915_drm_client_alloc();
1327 	if (!client)
1328 		goto err_client;
1329 
1330 	file->driver_priv = file_priv;
1331 	file_priv->i915 = i915;
1332 	file_priv->file = file;
1333 	file_priv->client = client;
1334 
1335 	file_priv->bsd_engine = -1;
1336 	file_priv->hang_timestamp = jiffies;
1337 
1338 	ret = i915_gem_context_open(i915, file);
1339 	if (ret)
1340 		goto err_context;
1341 
1342 	return 0;
1343 
1344 err_context:
1345 	i915_drm_client_put(client);
1346 err_client:
1347 	kfree(file_priv);
1348 err_alloc:
1349 	return ret;
1350 }
1351 
1352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1353 #include "selftests/mock_gem_device.c"
1354 #include "selftests/i915_gem.c"
1355 #endif
1356