xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 9a6b55ac)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_dependencies;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return "i915";
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	/*
66 	 * The timeline struct (as part of the ppgtt underneath a context)
67 	 * may be freed when the request is no longer in use by the GPU.
68 	 * We could extend the life of a context to beyond that of all
69 	 * fences, possibly keeping the hw resource around indefinitely,
70 	 * or we just give them a false name. Since
71 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
72 	 * lie seems justifiable.
73 	 */
74 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
75 		return "signaled";
76 
77 	return to_request(fence)->gem_context->name ?: "[i915]";
78 }
79 
80 static bool i915_fence_signaled(struct dma_fence *fence)
81 {
82 	return i915_request_completed(to_request(fence));
83 }
84 
85 static bool i915_fence_enable_signaling(struct dma_fence *fence)
86 {
87 	return i915_request_enable_breadcrumb(to_request(fence));
88 }
89 
90 static signed long i915_fence_wait(struct dma_fence *fence,
91 				   bool interruptible,
92 				   signed long timeout)
93 {
94 	return i915_request_wait(to_request(fence),
95 				 interruptible | I915_WAIT_PRIORITY,
96 				 timeout);
97 }
98 
99 static void i915_fence_release(struct dma_fence *fence)
100 {
101 	struct i915_request *rq = to_request(fence);
102 
103 	/*
104 	 * The request is put onto a RCU freelist (i.e. the address
105 	 * is immediately reused), mark the fences as being freed now.
106 	 * Otherwise the debugobjects for the fences are only marked as
107 	 * freed when the slab cache itself is freed, and so we would get
108 	 * caught trying to reuse dead objects.
109 	 */
110 	i915_sw_fence_fini(&rq->submit);
111 	i915_sw_fence_fini(&rq->semaphore);
112 
113 	kmem_cache_free(global.slab_requests, rq);
114 }
115 
116 const struct dma_fence_ops i915_fence_ops = {
117 	.get_driver_name = i915_fence_get_driver_name,
118 	.get_timeline_name = i915_fence_get_timeline_name,
119 	.enable_signaling = i915_fence_enable_signaling,
120 	.signaled = i915_fence_signaled,
121 	.wait = i915_fence_wait,
122 	.release = i915_fence_release,
123 };
124 
125 static void irq_execute_cb(struct irq_work *wrk)
126 {
127 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
128 
129 	i915_sw_fence_complete(cb->fence);
130 	kmem_cache_free(global.slab_execute_cbs, cb);
131 }
132 
133 static void irq_execute_cb_hook(struct irq_work *wrk)
134 {
135 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
136 
137 	cb->hook(container_of(cb->fence, struct i915_request, submit),
138 		 &cb->signal->fence);
139 	i915_request_put(cb->signal);
140 
141 	irq_execute_cb(wrk);
142 }
143 
144 static void __notify_execute_cb(struct i915_request *rq)
145 {
146 	struct execute_cb *cb;
147 
148 	lockdep_assert_held(&rq->lock);
149 
150 	if (list_empty(&rq->execute_cb))
151 		return;
152 
153 	list_for_each_entry(cb, &rq->execute_cb, link)
154 		irq_work_queue(&cb->work);
155 
156 	/*
157 	 * XXX Rollback on __i915_request_unsubmit()
158 	 *
159 	 * In the future, perhaps when we have an active time-slicing scheduler,
160 	 * it will be interesting to unsubmit parallel execution and remove
161 	 * busywaits from the GPU until their master is restarted. This is
162 	 * quite hairy, we have to carefully rollback the fence and do a
163 	 * preempt-to-idle cycle on the target engine, all the while the
164 	 * master execute_cb may refire.
165 	 */
166 	INIT_LIST_HEAD(&rq->execute_cb);
167 }
168 
169 static inline void
170 remove_from_client(struct i915_request *request)
171 {
172 	struct drm_i915_file_private *file_priv;
173 
174 	if (!READ_ONCE(request->file_priv))
175 		return;
176 
177 	rcu_read_lock();
178 	file_priv = xchg(&request->file_priv, NULL);
179 	if (file_priv) {
180 		spin_lock(&file_priv->mm.lock);
181 		list_del(&request->client_link);
182 		spin_unlock(&file_priv->mm.lock);
183 	}
184 	rcu_read_unlock();
185 }
186 
187 static void free_capture_list(struct i915_request *request)
188 {
189 	struct i915_capture_list *capture;
190 
191 	capture = request->capture_list;
192 	while (capture) {
193 		struct i915_capture_list *next = capture->next;
194 
195 		kfree(capture);
196 		capture = next;
197 	}
198 }
199 
200 static void remove_from_engine(struct i915_request *rq)
201 {
202 	struct intel_engine_cs *engine, *locked;
203 
204 	/*
205 	 * Virtual engines complicate acquiring the engine timeline lock,
206 	 * as their rq->engine pointer is not stable until under that
207 	 * engine lock. The simple ploy we use is to take the lock then
208 	 * check that the rq still belongs to the newly locked engine.
209 	 */
210 	locked = READ_ONCE(rq->engine);
211 	spin_lock_irq(&locked->active.lock);
212 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
213 		spin_unlock(&locked->active.lock);
214 		spin_lock(&engine->active.lock);
215 		locked = engine;
216 	}
217 	list_del(&rq->sched.link);
218 	spin_unlock_irq(&locked->active.lock);
219 }
220 
221 bool i915_request_retire(struct i915_request *rq)
222 {
223 	if (!i915_request_completed(rq))
224 		return false;
225 
226 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 		  rq->engine->name,
228 		  rq->fence.context, rq->fence.seqno,
229 		  hwsp_seqno(rq));
230 
231 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 	trace_i915_request_retire(rq);
233 
234 	/*
235 	 * We know the GPU must have read the request to have
236 	 * sent us the seqno + interrupt, so use the position
237 	 * of tail of the request to update the last known position
238 	 * of the GPU head.
239 	 *
240 	 * Note this requires that we are always called in request
241 	 * completion order.
242 	 */
243 	GEM_BUG_ON(!list_is_first(&rq->link,
244 				  &i915_request_timeline(rq)->requests));
245 	rq->ring->head = rq->postfix;
246 
247 	/*
248 	 * We only loosely track inflight requests across preemption,
249 	 * and so we may find ourselves attempting to retire a _completed_
250 	 * request that we have removed from the HW and put back on a run
251 	 * queue.
252 	 */
253 	remove_from_engine(rq);
254 
255 	spin_lock_irq(&rq->lock);
256 	i915_request_mark_complete(rq);
257 	if (!i915_request_signaled(rq))
258 		dma_fence_signal_locked(&rq->fence);
259 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
260 		i915_request_cancel_breadcrumb(rq);
261 	if (i915_request_has_waitboost(rq)) {
262 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
263 		atomic_dec(&rq->engine->gt->rps.num_waiters);
264 	}
265 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
266 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
267 		__notify_execute_cb(rq);
268 	}
269 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
270 	spin_unlock_irq(&rq->lock);
271 
272 	remove_from_client(rq);
273 	list_del(&rq->link);
274 
275 	intel_context_exit(rq->hw_context);
276 	intel_context_unpin(rq->hw_context);
277 
278 	free_capture_list(rq);
279 	i915_sched_node_fini(&rq->sched);
280 	i915_request_put(rq);
281 
282 	return true;
283 }
284 
285 void i915_request_retire_upto(struct i915_request *rq)
286 {
287 	struct intel_timeline * const tl = i915_request_timeline(rq);
288 	struct i915_request *tmp;
289 
290 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
291 		  rq->engine->name,
292 		  rq->fence.context, rq->fence.seqno,
293 		  hwsp_seqno(rq));
294 
295 	GEM_BUG_ON(!i915_request_completed(rq));
296 
297 	do {
298 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299 	} while (i915_request_retire(tmp) && tmp != rq);
300 }
301 
302 static int
303 __await_execution(struct i915_request *rq,
304 		  struct i915_request *signal,
305 		  void (*hook)(struct i915_request *rq,
306 			       struct dma_fence *signal),
307 		  gfp_t gfp)
308 {
309 	struct execute_cb *cb;
310 
311 	if (i915_request_is_active(signal)) {
312 		if (hook)
313 			hook(rq, &signal->fence);
314 		return 0;
315 	}
316 
317 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318 	if (!cb)
319 		return -ENOMEM;
320 
321 	cb->fence = &rq->submit;
322 	i915_sw_fence_await(cb->fence);
323 	init_irq_work(&cb->work, irq_execute_cb);
324 
325 	if (hook) {
326 		cb->hook = hook;
327 		cb->signal = i915_request_get(signal);
328 		cb->work.func = irq_execute_cb_hook;
329 	}
330 
331 	spin_lock_irq(&signal->lock);
332 	if (i915_request_is_active(signal)) {
333 		if (hook) {
334 			hook(rq, &signal->fence);
335 			i915_request_put(signal);
336 		}
337 		i915_sw_fence_complete(cb->fence);
338 		kmem_cache_free(global.slab_execute_cbs, cb);
339 	} else {
340 		list_add_tail(&cb->link, &signal->execute_cb);
341 	}
342 	spin_unlock_irq(&signal->lock);
343 
344 	/* Copy across semaphore status as we need the same behaviour */
345 	rq->sched.flags |= signal->sched.flags;
346 	return 0;
347 }
348 
349 bool __i915_request_submit(struct i915_request *request)
350 {
351 	struct intel_engine_cs *engine = request->engine;
352 	bool result = false;
353 
354 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
355 		  engine->name,
356 		  request->fence.context, request->fence.seqno,
357 		  hwsp_seqno(request));
358 
359 	GEM_BUG_ON(!irqs_disabled());
360 	lockdep_assert_held(&engine->active.lock);
361 
362 	/*
363 	 * With the advent of preempt-to-busy, we frequently encounter
364 	 * requests that we have unsubmitted from HW, but left running
365 	 * until the next ack and so have completed in the meantime. On
366 	 * resubmission of that completed request, we can skip
367 	 * updating the payload, and execlists can even skip submitting
368 	 * the request.
369 	 *
370 	 * We must remove the request from the caller's priority queue,
371 	 * and the caller must only call us when the request is in their
372 	 * priority queue, under the active.lock. This ensures that the
373 	 * request has *not* yet been retired and we can safely move
374 	 * the request into the engine->active.list where it will be
375 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
376 	 * request, this would be a horrible use-after-free.)
377 	 */
378 	if (i915_request_completed(request))
379 		goto xfer;
380 
381 	if (i915_gem_context_is_banned(request->gem_context))
382 		i915_request_skip(request, -EIO);
383 
384 	/*
385 	 * Are we using semaphores when the gpu is already saturated?
386 	 *
387 	 * Using semaphores incurs a cost in having the GPU poll a
388 	 * memory location, busywaiting for it to change. The continual
389 	 * memory reads can have a noticeable impact on the rest of the
390 	 * system with the extra bus traffic, stalling the cpu as it too
391 	 * tries to access memory across the bus (perf stat -e bus-cycles).
392 	 *
393 	 * If we installed a semaphore on this request and we only submit
394 	 * the request after the signaler completed, that indicates the
395 	 * system is overloaded and using semaphores at this time only
396 	 * increases the amount of work we are doing. If so, we disable
397 	 * further use of semaphores until we are idle again, whence we
398 	 * optimistically try again.
399 	 */
400 	if (request->sched.semaphores &&
401 	    i915_sw_fence_signaled(&request->semaphore))
402 		engine->saturated |= request->sched.semaphores;
403 
404 	engine->emit_fini_breadcrumb(request,
405 				     request->ring->vaddr + request->postfix);
406 
407 	trace_i915_request_execute(request);
408 	engine->serial++;
409 	result = true;
410 
411 xfer:	/* We may be recursing from the signal callback of another i915 fence */
412 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
413 
414 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
415 		list_move_tail(&request->sched.link, &engine->active.requests);
416 
417 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
418 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
419 	    !i915_request_enable_breadcrumb(request))
420 		intel_engine_queue_breadcrumbs(engine);
421 
422 	__notify_execute_cb(request);
423 
424 	spin_unlock(&request->lock);
425 
426 	return result;
427 }
428 
429 void i915_request_submit(struct i915_request *request)
430 {
431 	struct intel_engine_cs *engine = request->engine;
432 	unsigned long flags;
433 
434 	/* Will be called from irq-context when using foreign fences. */
435 	spin_lock_irqsave(&engine->active.lock, flags);
436 
437 	__i915_request_submit(request);
438 
439 	spin_unlock_irqrestore(&engine->active.lock, flags);
440 }
441 
442 void __i915_request_unsubmit(struct i915_request *request)
443 {
444 	struct intel_engine_cs *engine = request->engine;
445 
446 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
447 		  engine->name,
448 		  request->fence.context, request->fence.seqno,
449 		  hwsp_seqno(request));
450 
451 	GEM_BUG_ON(!irqs_disabled());
452 	lockdep_assert_held(&engine->active.lock);
453 
454 	/*
455 	 * Only unwind in reverse order, required so that the per-context list
456 	 * is kept in seqno/ring order.
457 	 */
458 
459 	/* We may be recursing from the signal callback of another i915 fence */
460 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
461 
462 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
463 		i915_request_cancel_breadcrumb(request);
464 
465 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
466 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
467 
468 	spin_unlock(&request->lock);
469 
470 	/* We've already spun, don't charge on resubmitting. */
471 	if (request->sched.semaphores && i915_request_started(request)) {
472 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
473 		request->sched.semaphores = 0;
474 	}
475 
476 	/*
477 	 * We don't need to wake_up any waiters on request->execute, they
478 	 * will get woken by any other event or us re-adding this request
479 	 * to the engine timeline (__i915_request_submit()). The waiters
480 	 * should be quite adapt at finding that the request now has a new
481 	 * global_seqno to the one they went to sleep on.
482 	 */
483 }
484 
485 void i915_request_unsubmit(struct i915_request *request)
486 {
487 	struct intel_engine_cs *engine = request->engine;
488 	unsigned long flags;
489 
490 	/* Will be called from irq-context when using foreign fences. */
491 	spin_lock_irqsave(&engine->active.lock, flags);
492 
493 	__i915_request_unsubmit(request);
494 
495 	spin_unlock_irqrestore(&engine->active.lock, flags);
496 }
497 
498 static int __i915_sw_fence_call
499 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
500 {
501 	struct i915_request *request =
502 		container_of(fence, typeof(*request), submit);
503 
504 	switch (state) {
505 	case FENCE_COMPLETE:
506 		trace_i915_request_submit(request);
507 
508 		if (unlikely(fence->error))
509 			i915_request_skip(request, fence->error);
510 
511 		/*
512 		 * We need to serialize use of the submit_request() callback
513 		 * with its hotplugging performed during an emergency
514 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
515 		 * critical section in order to force i915_gem_set_wedged() to
516 		 * wait until the submit_request() is completed before
517 		 * proceeding.
518 		 */
519 		rcu_read_lock();
520 		request->engine->submit_request(request);
521 		rcu_read_unlock();
522 		break;
523 
524 	case FENCE_FREE:
525 		i915_request_put(request);
526 		break;
527 	}
528 
529 	return NOTIFY_DONE;
530 }
531 
532 static int __i915_sw_fence_call
533 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
534 {
535 	struct i915_request *request =
536 		container_of(fence, typeof(*request), semaphore);
537 
538 	switch (state) {
539 	case FENCE_COMPLETE:
540 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
541 		break;
542 
543 	case FENCE_FREE:
544 		i915_request_put(request);
545 		break;
546 	}
547 
548 	return NOTIFY_DONE;
549 }
550 
551 static void retire_requests(struct intel_timeline *tl)
552 {
553 	struct i915_request *rq, *rn;
554 
555 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
556 		if (!i915_request_retire(rq))
557 			break;
558 }
559 
560 static noinline struct i915_request *
561 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
562 {
563 	struct i915_request *rq;
564 
565 	if (list_empty(&tl->requests))
566 		goto out;
567 
568 	if (!gfpflags_allow_blocking(gfp))
569 		goto out;
570 
571 	/* Move our oldest request to the slab-cache (if not in use!) */
572 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
573 	i915_request_retire(rq);
574 
575 	rq = kmem_cache_alloc(global.slab_requests,
576 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
577 	if (rq)
578 		return rq;
579 
580 	/* Ratelimit ourselves to prevent oom from malicious clients */
581 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
582 	cond_synchronize_rcu(rq->rcustate);
583 
584 	/* Retire our old requests in the hope that we free some */
585 	retire_requests(tl);
586 
587 out:
588 	return kmem_cache_alloc(global.slab_requests, gfp);
589 }
590 
591 struct i915_request *
592 __i915_request_create(struct intel_context *ce, gfp_t gfp)
593 {
594 	struct intel_timeline *tl = ce->timeline;
595 	struct i915_request *rq;
596 	u32 seqno;
597 	int ret;
598 
599 	might_sleep_if(gfpflags_allow_blocking(gfp));
600 
601 	/* Check that the caller provided an already pinned context */
602 	__intel_context_pin(ce);
603 
604 	/*
605 	 * Beware: Dragons be flying overhead.
606 	 *
607 	 * We use RCU to look up requests in flight. The lookups may
608 	 * race with the request being allocated from the slab freelist.
609 	 * That is the request we are writing to here, may be in the process
610 	 * of being read by __i915_active_request_get_rcu(). As such,
611 	 * we have to be very careful when overwriting the contents. During
612 	 * the RCU lookup, we change chase the request->engine pointer,
613 	 * read the request->global_seqno and increment the reference count.
614 	 *
615 	 * The reference count is incremented atomically. If it is zero,
616 	 * the lookup knows the request is unallocated and complete. Otherwise,
617 	 * it is either still in use, or has been reallocated and reset
618 	 * with dma_fence_init(). This increment is safe for release as we
619 	 * check that the request we have a reference to and matches the active
620 	 * request.
621 	 *
622 	 * Before we increment the refcount, we chase the request->engine
623 	 * pointer. We must not call kmem_cache_zalloc() or else we set
624 	 * that pointer to NULL and cause a crash during the lookup. If
625 	 * we see the request is completed (based on the value of the
626 	 * old engine and seqno), the lookup is complete and reports NULL.
627 	 * If we decide the request is not completed (new engine or seqno),
628 	 * then we grab a reference and double check that it is still the
629 	 * active request - which it won't be and restart the lookup.
630 	 *
631 	 * Do not use kmem_cache_zalloc() here!
632 	 */
633 	rq = kmem_cache_alloc(global.slab_requests,
634 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
635 	if (unlikely(!rq)) {
636 		rq = request_alloc_slow(tl, gfp);
637 		if (!rq) {
638 			ret = -ENOMEM;
639 			goto err_unreserve;
640 		}
641 	}
642 
643 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
644 	if (ret)
645 		goto err_free;
646 
647 	rq->i915 = ce->engine->i915;
648 	rq->hw_context = ce;
649 	rq->gem_context = ce->gem_context;
650 	rq->engine = ce->engine;
651 	rq->ring = ce->ring;
652 	rq->execution_mask = ce->engine->mask;
653 
654 	rcu_assign_pointer(rq->timeline, tl);
655 	rq->hwsp_seqno = tl->hwsp_seqno;
656 	rq->hwsp_cacheline = tl->hwsp_cacheline;
657 
658 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
659 
660 	spin_lock_init(&rq->lock);
661 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
662 		       tl->fence_context, seqno);
663 
664 	/* We bump the ref for the fence chain */
665 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
666 	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
667 
668 	i915_sched_node_init(&rq->sched);
669 
670 	/* No zalloc, must clear what we need by hand */
671 	rq->file_priv = NULL;
672 	rq->batch = NULL;
673 	rq->capture_list = NULL;
674 	rq->flags = 0;
675 
676 	INIT_LIST_HEAD(&rq->execute_cb);
677 
678 	/*
679 	 * Reserve space in the ring buffer for all the commands required to
680 	 * eventually emit this request. This is to guarantee that the
681 	 * i915_request_add() call can't fail. Note that the reserve may need
682 	 * to be redone if the request is not actually submitted straight
683 	 * away, e.g. because a GPU scheduler has deferred it.
684 	 *
685 	 * Note that due to how we add reserved_space to intel_ring_begin()
686 	 * we need to double our request to ensure that if we need to wrap
687 	 * around inside i915_request_add() there is sufficient space at
688 	 * the beginning of the ring as well.
689 	 */
690 	rq->reserved_space =
691 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
692 
693 	/*
694 	 * Record the position of the start of the request so that
695 	 * should we detect the updated seqno part-way through the
696 	 * GPU processing the request, we never over-estimate the
697 	 * position of the head.
698 	 */
699 	rq->head = rq->ring->emit;
700 
701 	ret = rq->engine->request_alloc(rq);
702 	if (ret)
703 		goto err_unwind;
704 
705 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
706 
707 	intel_context_mark_active(ce);
708 	return rq;
709 
710 err_unwind:
711 	ce->ring->emit = rq->head;
712 
713 	/* Make sure we didn't add ourselves to external state before freeing */
714 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
715 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
716 
717 err_free:
718 	kmem_cache_free(global.slab_requests, rq);
719 err_unreserve:
720 	intel_context_unpin(ce);
721 	return ERR_PTR(ret);
722 }
723 
724 struct i915_request *
725 i915_request_create(struct intel_context *ce)
726 {
727 	struct i915_request *rq;
728 	struct intel_timeline *tl;
729 
730 	tl = intel_context_timeline_lock(ce);
731 	if (IS_ERR(tl))
732 		return ERR_CAST(tl);
733 
734 	/* Move our oldest request to the slab-cache (if not in use!) */
735 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
736 	if (!list_is_last(&rq->link, &tl->requests))
737 		i915_request_retire(rq);
738 
739 	intel_context_enter(ce);
740 	rq = __i915_request_create(ce, GFP_KERNEL);
741 	intel_context_exit(ce); /* active reference transferred to request */
742 	if (IS_ERR(rq))
743 		goto err_unlock;
744 
745 	/* Check that we do not interrupt ourselves with a new request */
746 	rq->cookie = lockdep_pin_lock(&tl->mutex);
747 
748 	return rq;
749 
750 err_unlock:
751 	intel_context_timeline_unlock(tl);
752 	return rq;
753 }
754 
755 static int
756 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
757 {
758 	struct intel_timeline *tl;
759 	struct dma_fence *fence;
760 	int err;
761 
762 	GEM_BUG_ON(i915_request_timeline(rq) ==
763 		   rcu_access_pointer(signal->timeline));
764 
765 	rcu_read_lock();
766 	tl = rcu_dereference(signal->timeline);
767 	if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
768 		tl = NULL;
769 	rcu_read_unlock();
770 	if (!tl) /* already started or maybe even completed */
771 		return 0;
772 
773 	fence = ERR_PTR(-EBUSY);
774 	if (mutex_trylock(&tl->mutex)) {
775 		fence = NULL;
776 		if (!i915_request_started(signal) &&
777 		    !list_is_first(&signal->link, &tl->requests)) {
778 			signal = list_prev_entry(signal, link);
779 			fence = dma_fence_get(&signal->fence);
780 		}
781 		mutex_unlock(&tl->mutex);
782 	}
783 	intel_timeline_put(tl);
784 	if (IS_ERR_OR_NULL(fence))
785 		return PTR_ERR_OR_ZERO(fence);
786 
787 	err = 0;
788 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
789 		err = i915_sw_fence_await_dma_fence(&rq->submit,
790 						    fence, 0,
791 						    I915_FENCE_GFP);
792 	dma_fence_put(fence);
793 
794 	return err;
795 }
796 
797 static intel_engine_mask_t
798 already_busywaiting(struct i915_request *rq)
799 {
800 	/*
801 	 * Polling a semaphore causes bus traffic, delaying other users of
802 	 * both the GPU and CPU. We want to limit the impact on others,
803 	 * while taking advantage of early submission to reduce GPU
804 	 * latency. Therefore we restrict ourselves to not using more
805 	 * than one semaphore from each source, and not using a semaphore
806 	 * if we have detected the engine is saturated (i.e. would not be
807 	 * submitted early and cause bus traffic reading an already passed
808 	 * semaphore).
809 	 *
810 	 * See the are-we-too-late? check in __i915_request_submit().
811 	 */
812 	return rq->sched.semaphores | rq->engine->saturated;
813 }
814 
815 static int
816 __emit_semaphore_wait(struct i915_request *to,
817 		      struct i915_request *from,
818 		      u32 seqno)
819 {
820 	const int has_token = INTEL_GEN(to->i915) >= 12;
821 	u32 hwsp_offset;
822 	int len, err;
823 	u32 *cs;
824 
825 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
826 
827 	/* We need to pin the signaler's HWSP until we are finished reading. */
828 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
829 	if (err)
830 		return err;
831 
832 	len = 4;
833 	if (has_token)
834 		len += 2;
835 
836 	cs = intel_ring_begin(to, len);
837 	if (IS_ERR(cs))
838 		return PTR_ERR(cs);
839 
840 	/*
841 	 * Using greater-than-or-equal here means we have to worry
842 	 * about seqno wraparound. To side step that issue, we swap
843 	 * the timeline HWSP upon wrapping, so that everyone listening
844 	 * for the old (pre-wrap) values do not see the much smaller
845 	 * (post-wrap) values than they were expecting (and so wait
846 	 * forever).
847 	 */
848 	*cs++ = (MI_SEMAPHORE_WAIT |
849 		 MI_SEMAPHORE_GLOBAL_GTT |
850 		 MI_SEMAPHORE_POLL |
851 		 MI_SEMAPHORE_SAD_GTE_SDD) +
852 		has_token;
853 	*cs++ = seqno;
854 	*cs++ = hwsp_offset;
855 	*cs++ = 0;
856 	if (has_token) {
857 		*cs++ = 0;
858 		*cs++ = MI_NOOP;
859 	}
860 
861 	intel_ring_advance(to, cs);
862 	return 0;
863 }
864 
865 static int
866 emit_semaphore_wait(struct i915_request *to,
867 		    struct i915_request *from,
868 		    gfp_t gfp)
869 {
870 	/* Just emit the first semaphore we see as request space is limited. */
871 	if (already_busywaiting(to) & from->engine->mask)
872 		goto await_fence;
873 
874 	if (i915_request_await_start(to, from) < 0)
875 		goto await_fence;
876 
877 	/* Only submit our spinner after the signaler is running! */
878 	if (__await_execution(to, from, NULL, gfp))
879 		goto await_fence;
880 
881 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
882 		goto await_fence;
883 
884 	to->sched.semaphores |= from->engine->mask;
885 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
886 	return 0;
887 
888 await_fence:
889 	return i915_sw_fence_await_dma_fence(&to->submit,
890 					     &from->fence, 0,
891 					     I915_FENCE_GFP);
892 }
893 
894 static int
895 i915_request_await_request(struct i915_request *to, struct i915_request *from)
896 {
897 	int ret;
898 
899 	GEM_BUG_ON(to == from);
900 	GEM_BUG_ON(to->timeline == from->timeline);
901 
902 	if (i915_request_completed(from))
903 		return 0;
904 
905 	if (to->engine->schedule) {
906 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
907 		if (ret < 0)
908 			return ret;
909 	}
910 
911 	if (to->engine == from->engine) {
912 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
913 						       &from->submit,
914 						       I915_FENCE_GFP);
915 	} else if (intel_engine_has_semaphores(to->engine) &&
916 		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
917 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
918 	} else {
919 		ret = i915_sw_fence_await_dma_fence(&to->submit,
920 						    &from->fence, 0,
921 						    I915_FENCE_GFP);
922 	}
923 	if (ret < 0)
924 		return ret;
925 
926 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
927 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
928 						    &from->fence, 0,
929 						    I915_FENCE_GFP);
930 		if (ret < 0)
931 			return ret;
932 	}
933 
934 	return 0;
935 }
936 
937 int
938 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
939 {
940 	struct dma_fence **child = &fence;
941 	unsigned int nchild = 1;
942 	int ret;
943 
944 	/*
945 	 * Note that if the fence-array was created in signal-on-any mode,
946 	 * we should *not* decompose it into its individual fences. However,
947 	 * we don't currently store which mode the fence-array is operating
948 	 * in. Fortunately, the only user of signal-on-any is private to
949 	 * amdgpu and we should not see any incoming fence-array from
950 	 * sync-file being in signal-on-any mode.
951 	 */
952 	if (dma_fence_is_array(fence)) {
953 		struct dma_fence_array *array = to_dma_fence_array(fence);
954 
955 		child = array->fences;
956 		nchild = array->num_fences;
957 		GEM_BUG_ON(!nchild);
958 	}
959 
960 	do {
961 		fence = *child++;
962 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
963 			continue;
964 
965 		/*
966 		 * Requests on the same timeline are explicitly ordered, along
967 		 * with their dependencies, by i915_request_add() which ensures
968 		 * that requests are submitted in-order through each ring.
969 		 */
970 		if (fence->context == rq->fence.context)
971 			continue;
972 
973 		/* Squash repeated waits to the same timelines */
974 		if (fence->context &&
975 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
976 						 fence))
977 			continue;
978 
979 		if (dma_fence_is_i915(fence))
980 			ret = i915_request_await_request(rq, to_request(fence));
981 		else
982 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
983 							    fence->context ? I915_FENCE_TIMEOUT : 0,
984 							    I915_FENCE_GFP);
985 		if (ret < 0)
986 			return ret;
987 
988 		/* Record the latest fence used against each timeline */
989 		if (fence->context)
990 			intel_timeline_sync_set(i915_request_timeline(rq),
991 						fence);
992 	} while (--nchild);
993 
994 	return 0;
995 }
996 
997 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
998 					  struct dma_fence *fence)
999 {
1000 	return __intel_timeline_sync_is_later(tl,
1001 					      fence->context,
1002 					      fence->seqno - 1);
1003 }
1004 
1005 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1006 					 const struct dma_fence *fence)
1007 {
1008 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1009 }
1010 
1011 static int
1012 __i915_request_await_execution(struct i915_request *to,
1013 			       struct i915_request *from,
1014 			       void (*hook)(struct i915_request *rq,
1015 					    struct dma_fence *signal))
1016 {
1017 	int err;
1018 
1019 	/* Submit both requests at the same time */
1020 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1021 	if (err)
1022 		return err;
1023 
1024 	/* Squash repeated depenendices to the same timelines */
1025 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1026 					  &from->fence))
1027 		return 0;
1028 
1029 	/* Ensure both start together [after all semaphores in signal] */
1030 	if (intel_engine_has_semaphores(to->engine))
1031 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1032 	else
1033 		err = i915_request_await_start(to, from);
1034 	if (err < 0)
1035 		return err;
1036 
1037 	/* Couple the dependency tree for PI on this exposed to->fence */
1038 	if (to->engine->schedule) {
1039 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1040 		if (err < 0)
1041 			return err;
1042 	}
1043 
1044 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1045 					     &from->fence);
1046 }
1047 
1048 int
1049 i915_request_await_execution(struct i915_request *rq,
1050 			     struct dma_fence *fence,
1051 			     void (*hook)(struct i915_request *rq,
1052 					  struct dma_fence *signal))
1053 {
1054 	struct dma_fence **child = &fence;
1055 	unsigned int nchild = 1;
1056 	int ret;
1057 
1058 	if (dma_fence_is_array(fence)) {
1059 		struct dma_fence_array *array = to_dma_fence_array(fence);
1060 
1061 		/* XXX Error for signal-on-any fence arrays */
1062 
1063 		child = array->fences;
1064 		nchild = array->num_fences;
1065 		GEM_BUG_ON(!nchild);
1066 	}
1067 
1068 	do {
1069 		fence = *child++;
1070 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1071 			continue;
1072 
1073 		/*
1074 		 * We don't squash repeated fence dependencies here as we
1075 		 * want to run our callback in all cases.
1076 		 */
1077 
1078 		if (dma_fence_is_i915(fence))
1079 			ret = __i915_request_await_execution(rq,
1080 							     to_request(fence),
1081 							     hook);
1082 		else
1083 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1084 							    I915_FENCE_TIMEOUT,
1085 							    GFP_KERNEL);
1086 		if (ret < 0)
1087 			return ret;
1088 	} while (--nchild);
1089 
1090 	return 0;
1091 }
1092 
1093 /**
1094  * i915_request_await_object - set this request to (async) wait upon a bo
1095  * @to: request we are wishing to use
1096  * @obj: object which may be in use on another ring.
1097  * @write: whether the wait is on behalf of a writer
1098  *
1099  * This code is meant to abstract object synchronization with the GPU.
1100  * Conceptually we serialise writes between engines inside the GPU.
1101  * We only allow one engine to write into a buffer at any time, but
1102  * multiple readers. To ensure each has a coherent view of memory, we must:
1103  *
1104  * - If there is an outstanding write request to the object, the new
1105  *   request must wait for it to complete (either CPU or in hw, requests
1106  *   on the same ring will be naturally ordered).
1107  *
1108  * - If we are a write request (pending_write_domain is set), the new
1109  *   request must wait for outstanding read requests to complete.
1110  *
1111  * Returns 0 if successful, else propagates up the lower layer error.
1112  */
1113 int
1114 i915_request_await_object(struct i915_request *to,
1115 			  struct drm_i915_gem_object *obj,
1116 			  bool write)
1117 {
1118 	struct dma_fence *excl;
1119 	int ret = 0;
1120 
1121 	if (write) {
1122 		struct dma_fence **shared;
1123 		unsigned int count, i;
1124 
1125 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1126 							&excl, &count, &shared);
1127 		if (ret)
1128 			return ret;
1129 
1130 		for (i = 0; i < count; i++) {
1131 			ret = i915_request_await_dma_fence(to, shared[i]);
1132 			if (ret)
1133 				break;
1134 
1135 			dma_fence_put(shared[i]);
1136 		}
1137 
1138 		for (; i < count; i++)
1139 			dma_fence_put(shared[i]);
1140 		kfree(shared);
1141 	} else {
1142 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1143 	}
1144 
1145 	if (excl) {
1146 		if (ret == 0)
1147 			ret = i915_request_await_dma_fence(to, excl);
1148 
1149 		dma_fence_put(excl);
1150 	}
1151 
1152 	return ret;
1153 }
1154 
1155 void i915_request_skip(struct i915_request *rq, int error)
1156 {
1157 	void *vaddr = rq->ring->vaddr;
1158 	u32 head;
1159 
1160 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1161 	dma_fence_set_error(&rq->fence, error);
1162 
1163 	if (rq->infix == rq->postfix)
1164 		return;
1165 
1166 	/*
1167 	 * As this request likely depends on state from the lost
1168 	 * context, clear out all the user operations leaving the
1169 	 * breadcrumb at the end (so we get the fence notifications).
1170 	 */
1171 	head = rq->infix;
1172 	if (rq->postfix < head) {
1173 		memset(vaddr + head, 0, rq->ring->size - head);
1174 		head = 0;
1175 	}
1176 	memset(vaddr + head, 0, rq->postfix - head);
1177 	rq->infix = rq->postfix;
1178 }
1179 
1180 static struct i915_request *
1181 __i915_request_add_to_timeline(struct i915_request *rq)
1182 {
1183 	struct intel_timeline *timeline = i915_request_timeline(rq);
1184 	struct i915_request *prev;
1185 
1186 	/*
1187 	 * Dependency tracking and request ordering along the timeline
1188 	 * is special cased so that we can eliminate redundant ordering
1189 	 * operations while building the request (we know that the timeline
1190 	 * itself is ordered, and here we guarantee it).
1191 	 *
1192 	 * As we know we will need to emit tracking along the timeline,
1193 	 * we embed the hooks into our request struct -- at the cost of
1194 	 * having to have specialised no-allocation interfaces (which will
1195 	 * be beneficial elsewhere).
1196 	 *
1197 	 * A second benefit to open-coding i915_request_await_request is
1198 	 * that we can apply a slight variant of the rules specialised
1199 	 * for timelines that jump between engines (such as virtual engines).
1200 	 * If we consider the case of virtual engine, we must emit a dma-fence
1201 	 * to prevent scheduling of the second request until the first is
1202 	 * complete (to maximise our greedy late load balancing) and this
1203 	 * precludes optimising to use semaphores serialisation of a single
1204 	 * timeline across engines.
1205 	 */
1206 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1207 						  &rq->fence));
1208 	if (prev && !i915_request_completed(prev)) {
1209 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1210 			i915_sw_fence_await_sw_fence(&rq->submit,
1211 						     &prev->submit,
1212 						     &rq->submitq);
1213 		else
1214 			__i915_sw_fence_await_dma_fence(&rq->submit,
1215 							&prev->fence,
1216 							&rq->dmaq);
1217 		if (rq->engine->schedule)
1218 			__i915_sched_node_add_dependency(&rq->sched,
1219 							 &prev->sched,
1220 							 &rq->dep,
1221 							 0);
1222 	}
1223 
1224 	list_add_tail(&rq->link, &timeline->requests);
1225 
1226 	/*
1227 	 * Make sure that no request gazumped us - if it was allocated after
1228 	 * our i915_request_alloc() and called __i915_request_add() before
1229 	 * us, the timeline will hold its seqno which is later than ours.
1230 	 */
1231 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1232 
1233 	return prev;
1234 }
1235 
1236 /*
1237  * NB: This function is not allowed to fail. Doing so would mean the the
1238  * request is not being tracked for completion but the work itself is
1239  * going to happen on the hardware. This would be a Bad Thing(tm).
1240  */
1241 struct i915_request *__i915_request_commit(struct i915_request *rq)
1242 {
1243 	struct intel_engine_cs *engine = rq->engine;
1244 	struct intel_ring *ring = rq->ring;
1245 	u32 *cs;
1246 
1247 	GEM_TRACE("%s fence %llx:%lld\n",
1248 		  engine->name, rq->fence.context, rq->fence.seqno);
1249 
1250 	/*
1251 	 * To ensure that this call will not fail, space for its emissions
1252 	 * should already have been reserved in the ring buffer. Let the ring
1253 	 * know that it is time to use that space up.
1254 	 */
1255 	GEM_BUG_ON(rq->reserved_space > ring->space);
1256 	rq->reserved_space = 0;
1257 	rq->emitted_jiffies = jiffies;
1258 
1259 	/*
1260 	 * Record the position of the start of the breadcrumb so that
1261 	 * should we detect the updated seqno part-way through the
1262 	 * GPU processing the request, we never over-estimate the
1263 	 * position of the ring's HEAD.
1264 	 */
1265 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1266 	GEM_BUG_ON(IS_ERR(cs));
1267 	rq->postfix = intel_ring_offset(rq, cs);
1268 
1269 	return __i915_request_add_to_timeline(rq);
1270 }
1271 
1272 void __i915_request_queue(struct i915_request *rq,
1273 			  const struct i915_sched_attr *attr)
1274 {
1275 	/*
1276 	 * Let the backend know a new request has arrived that may need
1277 	 * to adjust the existing execution schedule due to a high priority
1278 	 * request - i.e. we may want to preempt the current request in order
1279 	 * to run a high priority dependency chain *before* we can execute this
1280 	 * request.
1281 	 *
1282 	 * This is called before the request is ready to run so that we can
1283 	 * decide whether to preempt the entire chain so that it is ready to
1284 	 * run at the earliest possible convenience.
1285 	 */
1286 	i915_sw_fence_commit(&rq->semaphore);
1287 	if (attr && rq->engine->schedule)
1288 		rq->engine->schedule(rq, attr);
1289 	i915_sw_fence_commit(&rq->submit);
1290 }
1291 
1292 void i915_request_add(struct i915_request *rq)
1293 {
1294 	struct i915_sched_attr attr = rq->gem_context->sched;
1295 	struct intel_timeline * const tl = i915_request_timeline(rq);
1296 	struct i915_request *prev;
1297 
1298 	lockdep_assert_held(&tl->mutex);
1299 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1300 
1301 	trace_i915_request_add(rq);
1302 
1303 	prev = __i915_request_commit(rq);
1304 
1305 	/*
1306 	 * Boost actual workloads past semaphores!
1307 	 *
1308 	 * With semaphores we spin on one engine waiting for another,
1309 	 * simply to reduce the latency of starting our work when
1310 	 * the signaler completes. However, if there is any other
1311 	 * work that we could be doing on this engine instead, that
1312 	 * is better utilisation and will reduce the overall duration
1313 	 * of the current work. To avoid PI boosting a semaphore
1314 	 * far in the distance past over useful work, we keep a history
1315 	 * of any semaphore use along our dependency chain.
1316 	 */
1317 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1318 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1319 
1320 	/*
1321 	 * Boost priorities to new clients (new request flows).
1322 	 *
1323 	 * Allow interactive/synchronous clients to jump ahead of
1324 	 * the bulk clients. (FQ_CODEL)
1325 	 */
1326 	if (list_empty(&rq->sched.signalers_list))
1327 		attr.priority |= I915_PRIORITY_WAIT;
1328 
1329 	local_bh_disable();
1330 	__i915_request_queue(rq, &attr);
1331 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1332 
1333 	/*
1334 	 * In typical scenarios, we do not expect the previous request on
1335 	 * the timeline to be still tracked by timeline->last_request if it
1336 	 * has been completed. If the completed request is still here, that
1337 	 * implies that request retirement is a long way behind submission,
1338 	 * suggesting that we haven't been retiring frequently enough from
1339 	 * the combination of retire-before-alloc, waiters and the background
1340 	 * retirement worker. So if the last request on this timeline was
1341 	 * already completed, do a catch up pass, flushing the retirement queue
1342 	 * up to this client. Since we have now moved the heaviest operations
1343 	 * during retirement onto secondary workers, such as freeing objects
1344 	 * or contexts, retiring a bunch of requests is mostly list management
1345 	 * (and cache misses), and so we should not be overly penalizing this
1346 	 * client by performing excess work, though we may still performing
1347 	 * work on behalf of others -- but instead we should benefit from
1348 	 * improved resource management. (Well, that's the theory at least.)
1349 	 */
1350 	if (prev &&
1351 	    i915_request_completed(prev) &&
1352 	    rcu_access_pointer(prev->timeline) == tl)
1353 		i915_request_retire_upto(prev);
1354 
1355 	mutex_unlock(&tl->mutex);
1356 }
1357 
1358 static unsigned long local_clock_us(unsigned int *cpu)
1359 {
1360 	unsigned long t;
1361 
1362 	/*
1363 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1364 	 * The result and subsequent calculations are also defined in the same
1365 	 * approximate microseconds units. The principal source of timing
1366 	 * error here is from the simple truncation.
1367 	 *
1368 	 * Note that local_clock() is only defined wrt to the current CPU;
1369 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1370 	 * blocking preemption for the entire busywait, we can detect the CPU
1371 	 * switch and use that as indicator of system load and a reason to
1372 	 * stop busywaiting, see busywait_stop().
1373 	 */
1374 	*cpu = get_cpu();
1375 	t = local_clock() >> 10;
1376 	put_cpu();
1377 
1378 	return t;
1379 }
1380 
1381 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1382 {
1383 	unsigned int this_cpu;
1384 
1385 	if (time_after(local_clock_us(&this_cpu), timeout))
1386 		return true;
1387 
1388 	return this_cpu != cpu;
1389 }
1390 
1391 static bool __i915_spin_request(const struct i915_request * const rq,
1392 				int state, unsigned long timeout_us)
1393 {
1394 	unsigned int cpu;
1395 
1396 	/*
1397 	 * Only wait for the request if we know it is likely to complete.
1398 	 *
1399 	 * We don't track the timestamps around requests, nor the average
1400 	 * request length, so we do not have a good indicator that this
1401 	 * request will complete within the timeout. What we do know is the
1402 	 * order in which requests are executed by the context and so we can
1403 	 * tell if the request has been started. If the request is not even
1404 	 * running yet, it is a fair assumption that it will not complete
1405 	 * within our relatively short timeout.
1406 	 */
1407 	if (!i915_request_is_running(rq))
1408 		return false;
1409 
1410 	/*
1411 	 * When waiting for high frequency requests, e.g. during synchronous
1412 	 * rendering split between the CPU and GPU, the finite amount of time
1413 	 * required to set up the irq and wait upon it limits the response
1414 	 * rate. By busywaiting on the request completion for a short while we
1415 	 * can service the high frequency waits as quick as possible. However,
1416 	 * if it is a slow request, we want to sleep as quickly as possible.
1417 	 * The tradeoff between waiting and sleeping is roughly the time it
1418 	 * takes to sleep on a request, on the order of a microsecond.
1419 	 */
1420 
1421 	timeout_us += local_clock_us(&cpu);
1422 	do {
1423 		if (i915_request_completed(rq))
1424 			return true;
1425 
1426 		if (signal_pending_state(state, current))
1427 			break;
1428 
1429 		if (busywait_stop(timeout_us, cpu))
1430 			break;
1431 
1432 		cpu_relax();
1433 	} while (!need_resched());
1434 
1435 	return false;
1436 }
1437 
1438 struct request_wait {
1439 	struct dma_fence_cb cb;
1440 	struct task_struct *tsk;
1441 };
1442 
1443 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1444 {
1445 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1446 
1447 	wake_up_process(wait->tsk);
1448 }
1449 
1450 /**
1451  * i915_request_wait - wait until execution of request has finished
1452  * @rq: the request to wait upon
1453  * @flags: how to wait
1454  * @timeout: how long to wait in jiffies
1455  *
1456  * i915_request_wait() waits for the request to be completed, for a
1457  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1458  * unbounded wait).
1459  *
1460  * Returns the remaining time (in jiffies) if the request completed, which may
1461  * be zero or -ETIME if the request is unfinished after the timeout expires.
1462  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1463  * pending before the request completes.
1464  */
1465 long i915_request_wait(struct i915_request *rq,
1466 		       unsigned int flags,
1467 		       long timeout)
1468 {
1469 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1470 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1471 	struct request_wait wait;
1472 
1473 	might_sleep();
1474 	GEM_BUG_ON(timeout < 0);
1475 
1476 	if (dma_fence_is_signaled(&rq->fence))
1477 		return timeout;
1478 
1479 	if (!timeout)
1480 		return -ETIME;
1481 
1482 	trace_i915_request_wait_begin(rq, flags);
1483 
1484 	/*
1485 	 * We must never wait on the GPU while holding a lock as we
1486 	 * may need to perform a GPU reset. So while we don't need to
1487 	 * serialise wait/reset with an explicit lock, we do want
1488 	 * lockdep to detect potential dependency cycles.
1489 	 */
1490 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1491 
1492 	/*
1493 	 * Optimistic spin before touching IRQs.
1494 	 *
1495 	 * We may use a rather large value here to offset the penalty of
1496 	 * switching away from the active task. Frequently, the client will
1497 	 * wait upon an old swapbuffer to throttle itself to remain within a
1498 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1499 	 * then it should not be waiting long at all, and a sleep now will incur
1500 	 * extra scheduler latency in producing the next frame. To try to
1501 	 * avoid adding the cost of enabling/disabling the interrupt to the
1502 	 * short wait, we first spin to see if the request would have completed
1503 	 * in the time taken to setup the interrupt.
1504 	 *
1505 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1506 	 * scheduler latency of a context switch, ignoring the secondary
1507 	 * impacts from a context switch such as cache eviction.
1508 	 *
1509 	 * The scheme used for low-latency IO is called "hybrid interrupt
1510 	 * polling". The suggestion there is to sleep until just before you
1511 	 * expect to be woken by the device interrupt and then poll for its
1512 	 * completion. That requires having a good predictor for the request
1513 	 * duration, which we currently lack.
1514 	 */
1515 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1516 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1517 		dma_fence_signal(&rq->fence);
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * This client is about to stall waiting for the GPU. In many cases
1523 	 * this is undesirable and limits the throughput of the system, as
1524 	 * many clients cannot continue processing user input/output whilst
1525 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1526 	 * to the GPU load and thus incurs additional latency for the client.
1527 	 * We can circumvent that by promoting the GPU frequency to maximum
1528 	 * before we sleep. This makes the GPU throttle up much more quickly
1529 	 * (good for benchmarks and user experience, e.g. window animations),
1530 	 * but at a cost of spending more power processing the workload
1531 	 * (bad for battery).
1532 	 */
1533 	if (flags & I915_WAIT_PRIORITY) {
1534 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1535 			intel_rps_boost(rq);
1536 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1537 	}
1538 
1539 	wait.tsk = current;
1540 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1541 		goto out;
1542 
1543 	for (;;) {
1544 		set_current_state(state);
1545 
1546 		if (i915_request_completed(rq)) {
1547 			dma_fence_signal(&rq->fence);
1548 			break;
1549 		}
1550 
1551 		if (signal_pending_state(state, current)) {
1552 			timeout = -ERESTARTSYS;
1553 			break;
1554 		}
1555 
1556 		if (!timeout) {
1557 			timeout = -ETIME;
1558 			break;
1559 		}
1560 
1561 		intel_engine_flush_submission(rq->engine);
1562 		timeout = io_schedule_timeout(timeout);
1563 	}
1564 	__set_current_state(TASK_RUNNING);
1565 
1566 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1567 
1568 out:
1569 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1570 	trace_i915_request_wait_end(rq);
1571 	return timeout;
1572 }
1573 
1574 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1575 #include "selftests/mock_request.c"
1576 #include "selftests/i915_request.c"
1577 #endif
1578 
1579 static void i915_global_request_shrink(void)
1580 {
1581 	kmem_cache_shrink(global.slab_dependencies);
1582 	kmem_cache_shrink(global.slab_execute_cbs);
1583 	kmem_cache_shrink(global.slab_requests);
1584 }
1585 
1586 static void i915_global_request_exit(void)
1587 {
1588 	kmem_cache_destroy(global.slab_dependencies);
1589 	kmem_cache_destroy(global.slab_execute_cbs);
1590 	kmem_cache_destroy(global.slab_requests);
1591 }
1592 
1593 static struct i915_global_request global = { {
1594 	.shrink = i915_global_request_shrink,
1595 	.exit = i915_global_request_exit,
1596 } };
1597 
1598 int __init i915_global_request_init(void)
1599 {
1600 	global.slab_requests = KMEM_CACHE(i915_request,
1601 					  SLAB_HWCACHE_ALIGN |
1602 					  SLAB_RECLAIM_ACCOUNT |
1603 					  SLAB_TYPESAFE_BY_RCU);
1604 	if (!global.slab_requests)
1605 		return -ENOMEM;
1606 
1607 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1608 					     SLAB_HWCACHE_ALIGN |
1609 					     SLAB_RECLAIM_ACCOUNT |
1610 					     SLAB_TYPESAFE_BY_RCU);
1611 	if (!global.slab_execute_cbs)
1612 		goto err_requests;
1613 
1614 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1615 					      SLAB_HWCACHE_ALIGN |
1616 					      SLAB_RECLAIM_ACCOUNT);
1617 	if (!global.slab_dependencies)
1618 		goto err_execute_cbs;
1619 
1620 	i915_global_register(&global.base);
1621 	return 0;
1622 
1623 err_execute_cbs:
1624 	kmem_cache_destroy(global.slab_execute_cbs);
1625 err_requests:
1626 	kmem_cache_destroy(global.slab_requests);
1627 	return -ENOMEM;
1628 }
1629