xref: /linux/drivers/gpu/drm/msm/adreno/a5xx_gpu.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
3  */
4 #ifndef __A5XX_GPU_H__
5 #define __A5XX_GPU_H__
6 
7 #include "adreno_gpu.h"
8 
9 /* Bringing over the hack from the previous targets */
10 #undef ROP_COPY
11 #undef ROP_XOR
12 
13 #include "a5xx.xml.h"
14 
15 struct a5xx_gpu {
16 	struct adreno_gpu base;
17 
18 	struct drm_gem_object *pm4_bo;
19 	uint64_t pm4_iova;
20 
21 	struct drm_gem_object *pfp_bo;
22 	uint64_t pfp_iova;
23 
24 	struct drm_gem_object *gpmu_bo;
25 	uint64_t gpmu_iova;
26 	uint32_t gpmu_dwords;
27 
28 	uint32_t lm_leakage;
29 
30 	struct msm_ringbuffer *cur_ring;
31 	struct msm_ringbuffer *next_ring;
32 
33 	struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS];
34 	struct a5xx_preempt_record *preempt[MSM_GPU_MAX_RINGS];
35 	uint64_t preempt_iova[MSM_GPU_MAX_RINGS];
36 
37 	atomic_t preempt_state;
38 	struct timer_list preempt_timer;
39 };
40 
41 #define to_a5xx_gpu(x) container_of(x, struct a5xx_gpu, base)
42 
43 #ifdef CONFIG_DEBUG_FS
44 int a5xx_debugfs_init(struct msm_gpu *gpu, struct drm_minor *minor);
45 #endif
46 
47 /*
48  * In order to do lockless preemption we use a simple state machine to progress
49  * through the process.
50  *
51  * PREEMPT_NONE - no preemption in progress.  Next state START.
52  * PREEMPT_START - The trigger is evaulating if preemption is possible. Next
53  * states: TRIGGERED, NONE
54  * PREEMPT_ABORT - An intermediate state before moving back to NONE. Next
55  * state: NONE.
56  * PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next
57  * states: FAULTED, PENDING
58  * PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger
59  * recovery.  Next state: N/A
60  * PREEMPT_PENDING: Preemption complete interrupt fired - the callback is
61  * checking the success of the operation. Next state: FAULTED, NONE.
62  */
63 
64 enum preempt_state {
65 	PREEMPT_NONE = 0,
66 	PREEMPT_START,
67 	PREEMPT_ABORT,
68 	PREEMPT_TRIGGERED,
69 	PREEMPT_FAULTED,
70 	PREEMPT_PENDING,
71 };
72 
73 /*
74  * struct a5xx_preempt_record is a shared buffer between the microcode and the
75  * CPU to store the state for preemption. The record itself is much larger
76  * (64k) but most of that is used by the CP for storage.
77  *
78  * There is a preemption record assigned per ringbuffer. When the CPU triggers a
79  * preemption, it fills out the record with the useful information (wptr, ring
80  * base, etc) and the microcode uses that information to set up the CP following
81  * the preemption.  When a ring is switched out, the CP will save the ringbuffer
82  * state back to the record. In this way, once the records are properly set up
83  * the CPU can quickly switch back and forth between ringbuffers by only
84  * updating a few registers (often only the wptr).
85  *
86  * These are the CPU aware registers in the record:
87  * @magic: Must always be 0x27C4BAFC
88  * @info: Type of the record - written 0 by the CPU, updated by the CP
89  * @data: Data field from SET_RENDER_MODE or a checkpoint. Written and used by
90  * the CP
91  * @cntl: Value of RB_CNTL written by CPU, save/restored by CP
92  * @rptr: Value of RB_RPTR written by CPU, save/restored by CP
93  * @wptr: Value of RB_WPTR written by CPU, save/restored by CP
94  * @rptr_addr: Value of RB_RPTR_ADDR written by CPU, save/restored by CP
95  * @rbase: Value of RB_BASE written by CPU, save/restored by CP
96  * @counter: GPU address of the storage area for the performance counters
97  */
98 struct a5xx_preempt_record {
99 	uint32_t magic;
100 	uint32_t info;
101 	uint32_t data;
102 	uint32_t cntl;
103 	uint32_t rptr;
104 	uint32_t wptr;
105 	uint64_t rptr_addr;
106 	uint64_t rbase;
107 	uint64_t counter;
108 };
109 
110 /* Magic identifier for the preemption record */
111 #define A5XX_PREEMPT_RECORD_MAGIC 0x27C4BAFCUL
112 
113 /*
114  * Even though the structure above is only a few bytes, we need a full 64k to
115  * store the entire preemption record from the CP
116  */
117 #define A5XX_PREEMPT_RECORD_SIZE (64 * 1024)
118 
119 /*
120  * The preemption counter block is a storage area for the value of the
121  * preemption counters that are saved immediately before context switch. We
122  * append it on to the end of the allocation for the preemption record.
123  */
124 #define A5XX_PREEMPT_COUNTER_SIZE (16 * 4)
125 
126 
127 int a5xx_power_init(struct msm_gpu *gpu);
128 void a5xx_gpmu_ucode_init(struct msm_gpu *gpu);
129 
130 static inline int spin_usecs(struct msm_gpu *gpu, uint32_t usecs,
131 		uint32_t reg, uint32_t mask, uint32_t value)
132 {
133 	while (usecs--) {
134 		udelay(1);
135 		if ((gpu_read(gpu, reg) & mask) == value)
136 			return 0;
137 		cpu_relax();
138 	}
139 
140 	return -ETIMEDOUT;
141 }
142 
143 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
144 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state);
145 
146 void a5xx_preempt_init(struct msm_gpu *gpu);
147 void a5xx_preempt_hw_init(struct msm_gpu *gpu);
148 void a5xx_preempt_trigger(struct msm_gpu *gpu);
149 void a5xx_preempt_irq(struct msm_gpu *gpu);
150 void a5xx_preempt_fini(struct msm_gpu *gpu);
151 
152 /* Return true if we are in a preempt state */
153 static inline bool a5xx_in_preempt(struct a5xx_gpu *a5xx_gpu)
154 {
155 	int preempt_state = atomic_read(&a5xx_gpu->preempt_state);
156 
157 	return !(preempt_state == PREEMPT_NONE ||
158 			preempt_state == PREEMPT_ABORT);
159 }
160 
161 #endif /* __A5XX_GPU_H__ */
162