xref: /linux/drivers/gpu/drm/omapdrm/dss/dispc.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009 Nokia Corporation
4  * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
5  *
6  * Some code and ideas taken from drivers/video/omap/ driver
7  * by Imre Deak.
8  */
9 
10 #define DSS_SUBSYS_NAME "DISPC"
11 
12 #include <linux/kernel.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/export.h>
16 #include <linux/clk.h>
17 #include <linux/io.h>
18 #include <linux/jiffies.h>
19 #include <linux/seq_file.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/hardirq.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sizes.h>
26 #include <linux/mfd/syscon.h>
27 #include <linux/regmap.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/component.h>
31 #include <linux/sys_soc.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_blend.h>
34 
35 #include "omapdss.h"
36 #include "dss.h"
37 #include "dispc.h"
38 
39 struct dispc_device;
40 
41 /* DISPC */
42 #define DISPC_SZ_REGS			SZ_4K
43 
44 enum omap_burst_size {
45 	BURST_SIZE_X2 = 0,
46 	BURST_SIZE_X4 = 1,
47 	BURST_SIZE_X8 = 2,
48 };
49 
50 #define REG_GET(dispc, idx, start, end) \
51 	FLD_GET(dispc_read_reg(dispc, idx), start, end)
52 
53 #define REG_FLD_MOD(dispc, idx, val, start, end)			\
54 	dispc_write_reg(dispc, idx, \
55 			FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
56 
57 /* DISPC has feature id */
58 enum dispc_feature_id {
59 	FEAT_LCDENABLEPOL,
60 	FEAT_LCDENABLESIGNAL,
61 	FEAT_PCKFREEENABLE,
62 	FEAT_FUNCGATED,
63 	FEAT_MGR_LCD2,
64 	FEAT_MGR_LCD3,
65 	FEAT_LINEBUFFERSPLIT,
66 	FEAT_ROWREPEATENABLE,
67 	FEAT_RESIZECONF,
68 	/* Independent core clk divider */
69 	FEAT_CORE_CLK_DIV,
70 	FEAT_HANDLE_UV_SEPARATE,
71 	FEAT_ATTR2,
72 	FEAT_CPR,
73 	FEAT_PRELOAD,
74 	FEAT_FIR_COEF_V,
75 	FEAT_ALPHA_FIXED_ZORDER,
76 	FEAT_ALPHA_FREE_ZORDER,
77 	FEAT_FIFO_MERGE,
78 	/* An unknown HW bug causing the normal FIFO thresholds not to work */
79 	FEAT_OMAP3_DSI_FIFO_BUG,
80 	FEAT_BURST_2D,
81 	FEAT_MFLAG,
82 };
83 
84 struct dispc_features {
85 	u8 sw_start;
86 	u8 fp_start;
87 	u8 bp_start;
88 	u16 sw_max;
89 	u16 vp_max;
90 	u16 hp_max;
91 	u8 mgr_width_start;
92 	u8 mgr_height_start;
93 	u16 mgr_width_max;
94 	u16 mgr_height_max;
95 	unsigned long max_lcd_pclk;
96 	unsigned long max_tv_pclk;
97 	unsigned int max_downscale;
98 	unsigned int max_line_width;
99 	unsigned int min_pcd;
100 	int (*calc_scaling)(struct dispc_device *dispc,
101 		unsigned long pclk, unsigned long lclk,
102 		const struct videomode *vm,
103 		u16 width, u16 height, u16 out_width, u16 out_height,
104 		u32 fourcc, bool *five_taps,
105 		int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
106 		u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
107 	unsigned long (*calc_core_clk) (unsigned long pclk,
108 		u16 width, u16 height, u16 out_width, u16 out_height,
109 		bool mem_to_mem);
110 	u8 num_fifos;
111 	const enum dispc_feature_id *features;
112 	unsigned int num_features;
113 	const struct dss_reg_field *reg_fields;
114 	const unsigned int num_reg_fields;
115 	const enum omap_overlay_caps *overlay_caps;
116 	const u32 **supported_color_modes;
117 	unsigned int num_mgrs;
118 	unsigned int num_ovls;
119 	unsigned int buffer_size_unit;
120 	unsigned int burst_size_unit;
121 
122 	/* swap GFX & WB fifos */
123 	bool gfx_fifo_workaround:1;
124 
125 	/* no DISPC_IRQ_FRAMEDONETV on this SoC */
126 	bool no_framedone_tv:1;
127 
128 	/* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
129 	bool mstandby_workaround:1;
130 
131 	bool set_max_preload:1;
132 
133 	/* PIXEL_INC is not added to the last pixel of a line */
134 	bool last_pixel_inc_missing:1;
135 
136 	/* POL_FREQ has ALIGN bit */
137 	bool supports_sync_align:1;
138 
139 	bool has_writeback:1;
140 
141 	bool supports_double_pixel:1;
142 
143 	/*
144 	 * Field order for VENC is different than HDMI. We should handle this in
145 	 * some intelligent manner, but as the SoCs have either HDMI or VENC,
146 	 * never both, we can just use this flag for now.
147 	 */
148 	bool reverse_ilace_field_order:1;
149 
150 	bool has_gamma_table:1;
151 
152 	bool has_gamma_i734_bug:1;
153 };
154 
155 #define DISPC_MAX_NR_FIFOS 5
156 #define DISPC_MAX_CHANNEL_GAMMA 4
157 
158 struct dispc_device {
159 	struct platform_device *pdev;
160 	void __iomem    *base;
161 	struct dss_device *dss;
162 
163 	struct dss_debugfs_entry *debugfs;
164 
165 	int irq;
166 	irq_handler_t user_handler;
167 	void *user_data;
168 
169 	unsigned long core_clk_rate;
170 	unsigned long tv_pclk_rate;
171 
172 	u32 fifo_size[DISPC_MAX_NR_FIFOS];
173 	/* maps which plane is using a fifo. fifo-id -> plane-id */
174 	int fifo_assignment[DISPC_MAX_NR_FIFOS];
175 
176 	bool		ctx_valid;
177 	u32		ctx[DISPC_SZ_REGS / sizeof(u32)];
178 
179 	u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
180 
181 	const struct dispc_features *feat;
182 
183 	bool is_enabled;
184 
185 	struct regmap *syscon_pol;
186 	u32 syscon_pol_offset;
187 
188 	/* DISPC_CONTROL & DISPC_CONFIG lock*/
189 	spinlock_t control_lock;
190 };
191 
192 enum omap_color_component {
193 	/* used for all color formats for OMAP3 and earlier
194 	 * and for RGB and Y color component on OMAP4
195 	 */
196 	DISPC_COLOR_COMPONENT_RGB_Y		= 1 << 0,
197 	/* used for UV component for
198 	 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
199 	 * color formats on OMAP4
200 	 */
201 	DISPC_COLOR_COMPONENT_UV		= 1 << 1,
202 };
203 
204 enum mgr_reg_fields {
205 	DISPC_MGR_FLD_ENABLE,
206 	DISPC_MGR_FLD_STNTFT,
207 	DISPC_MGR_FLD_GO,
208 	DISPC_MGR_FLD_TFTDATALINES,
209 	DISPC_MGR_FLD_STALLMODE,
210 	DISPC_MGR_FLD_TCKENABLE,
211 	DISPC_MGR_FLD_TCKSELECTION,
212 	DISPC_MGR_FLD_CPR,
213 	DISPC_MGR_FLD_FIFOHANDCHECK,
214 	/* used to maintain a count of the above fields */
215 	DISPC_MGR_FLD_NUM,
216 };
217 
218 /* DISPC register field id */
219 enum dispc_feat_reg_field {
220 	FEAT_REG_FIRHINC,
221 	FEAT_REG_FIRVINC,
222 	FEAT_REG_FIFOHIGHTHRESHOLD,
223 	FEAT_REG_FIFOLOWTHRESHOLD,
224 	FEAT_REG_FIFOSIZE,
225 	FEAT_REG_HORIZONTALACCU,
226 	FEAT_REG_VERTICALACCU,
227 };
228 
229 struct dispc_reg_field {
230 	u16 reg;
231 	u8 high;
232 	u8 low;
233 };
234 
235 struct dispc_gamma_desc {
236 	u32 len;
237 	u32 bits;
238 	u16 reg;
239 	bool has_index;
240 };
241 
242 static const struct {
243 	const char *name;
244 	u32 vsync_irq;
245 	u32 framedone_irq;
246 	u32 sync_lost_irq;
247 	struct dispc_gamma_desc gamma;
248 	struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
249 } mgr_desc[] = {
250 	[OMAP_DSS_CHANNEL_LCD] = {
251 		.name		= "LCD",
252 		.vsync_irq	= DISPC_IRQ_VSYNC,
253 		.framedone_irq	= DISPC_IRQ_FRAMEDONE,
254 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST,
255 		.gamma		= {
256 			.len	= 256,
257 			.bits	= 8,
258 			.reg	= DISPC_GAMMA_TABLE0,
259 			.has_index = true,
260 		},
261 		.reg_desc	= {
262 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  0,  0 },
263 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL,  3,  3 },
264 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  5,  5 },
265 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL,  9,  8 },
266 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL, 11, 11 },
267 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  10, 10 },
268 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  11, 11 },
269 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG,  15, 15 },
270 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
271 		},
272 	},
273 	[OMAP_DSS_CHANNEL_DIGIT] = {
274 		.name		= "DIGIT",
275 		.vsync_irq	= DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
276 		.framedone_irq	= DISPC_IRQ_FRAMEDONETV,
277 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST_DIGIT,
278 		.gamma		= {
279 			.len	= 1024,
280 			.bits	= 10,
281 			.reg	= DISPC_GAMMA_TABLE2,
282 			.has_index = false,
283 		},
284 		.reg_desc	= {
285 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL,  1,  1 },
286 			[DISPC_MGR_FLD_STNTFT]		= { },
287 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL,  6,  6 },
288 			[DISPC_MGR_FLD_TFTDATALINES]	= { },
289 			[DISPC_MGR_FLD_STALLMODE]	= { },
290 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG,  12, 12 },
291 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG,  13, 13 },
292 			[DISPC_MGR_FLD_CPR]		= { },
293 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG,  16, 16 },
294 		},
295 	},
296 	[OMAP_DSS_CHANNEL_LCD2] = {
297 		.name		= "LCD2",
298 		.vsync_irq	= DISPC_IRQ_VSYNC2,
299 		.framedone_irq	= DISPC_IRQ_FRAMEDONE2,
300 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST2,
301 		.gamma		= {
302 			.len	= 256,
303 			.bits	= 8,
304 			.reg	= DISPC_GAMMA_TABLE1,
305 			.has_index = true,
306 		},
307 		.reg_desc	= {
308 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL2,  0,  0 },
309 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL2,  3,  3 },
310 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL2,  5,  5 },
311 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL2,  9,  8 },
312 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL2, 11, 11 },
313 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG2,  10, 10 },
314 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG2,  11, 11 },
315 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG2,  15, 15 },
316 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG2,  16, 16 },
317 		},
318 	},
319 	[OMAP_DSS_CHANNEL_LCD3] = {
320 		.name		= "LCD3",
321 		.vsync_irq	= DISPC_IRQ_VSYNC3,
322 		.framedone_irq	= DISPC_IRQ_FRAMEDONE3,
323 		.sync_lost_irq	= DISPC_IRQ_SYNC_LOST3,
324 		.gamma		= {
325 			.len	= 256,
326 			.bits	= 8,
327 			.reg	= DISPC_GAMMA_TABLE3,
328 			.has_index = true,
329 		},
330 		.reg_desc	= {
331 			[DISPC_MGR_FLD_ENABLE]		= { DISPC_CONTROL3,  0,  0 },
332 			[DISPC_MGR_FLD_STNTFT]		= { DISPC_CONTROL3,  3,  3 },
333 			[DISPC_MGR_FLD_GO]		= { DISPC_CONTROL3,  5,  5 },
334 			[DISPC_MGR_FLD_TFTDATALINES]	= { DISPC_CONTROL3,  9,  8 },
335 			[DISPC_MGR_FLD_STALLMODE]	= { DISPC_CONTROL3, 11, 11 },
336 			[DISPC_MGR_FLD_TCKENABLE]	= { DISPC_CONFIG3,  10, 10 },
337 			[DISPC_MGR_FLD_TCKSELECTION]	= { DISPC_CONFIG3,  11, 11 },
338 			[DISPC_MGR_FLD_CPR]		= { DISPC_CONFIG3,  15, 15 },
339 			[DISPC_MGR_FLD_FIFOHANDCHECK]	= { DISPC_CONFIG3,  16, 16 },
340 		},
341 	},
342 };
343 
344 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
345 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
346 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
347 					 enum omap_channel channel);
348 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
349 					 enum omap_channel channel);
350 
351 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
352 					   enum omap_plane_id plane);
353 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
354 					   enum omap_plane_id plane);
355 
356 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask);
357 
358 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
359 {
360 	__raw_writel(val, dispc->base + idx);
361 }
362 
363 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
364 {
365 	return __raw_readl(dispc->base + idx);
366 }
367 
368 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
369 			enum mgr_reg_fields regfld)
370 {
371 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
372 
373 	return REG_GET(dispc, rfld.reg, rfld.high, rfld.low);
374 }
375 
376 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
377 			  enum mgr_reg_fields regfld, int val)
378 {
379 	const struct dispc_reg_field rfld = mgr_desc[channel].reg_desc[regfld];
380 	const bool need_lock = rfld.reg == DISPC_CONTROL || rfld.reg == DISPC_CONFIG;
381 	unsigned long flags;
382 
383 	if (need_lock) {
384 		spin_lock_irqsave(&dispc->control_lock, flags);
385 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
386 		spin_unlock_irqrestore(&dispc->control_lock, flags);
387 	} else {
388 		REG_FLD_MOD(dispc, rfld.reg, val, rfld.high, rfld.low);
389 	}
390 }
391 
392 static int dispc_get_num_ovls(struct dispc_device *dispc)
393 {
394 	return dispc->feat->num_ovls;
395 }
396 
397 static int dispc_get_num_mgrs(struct dispc_device *dispc)
398 {
399 	return dispc->feat->num_mgrs;
400 }
401 
402 static void dispc_get_reg_field(struct dispc_device *dispc,
403 				enum dispc_feat_reg_field id,
404 				u8 *start, u8 *end)
405 {
406 	if (id >= dispc->feat->num_reg_fields)
407 		BUG();
408 
409 	*start = dispc->feat->reg_fields[id].start;
410 	*end = dispc->feat->reg_fields[id].end;
411 }
412 
413 static bool dispc_has_feature(struct dispc_device *dispc,
414 			      enum dispc_feature_id id)
415 {
416 	unsigned int i;
417 
418 	for (i = 0; i < dispc->feat->num_features; i++) {
419 		if (dispc->feat->features[i] == id)
420 			return true;
421 	}
422 
423 	return false;
424 }
425 
426 #define SR(dispc, reg) \
427 	dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
428 #define RR(dispc, reg) \
429 	dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
430 
431 static void dispc_save_context(struct dispc_device *dispc)
432 {
433 	int i, j;
434 
435 	DSSDBG("dispc_save_context\n");
436 
437 	SR(dispc, IRQENABLE);
438 	SR(dispc, CONTROL);
439 	SR(dispc, CONFIG);
440 	SR(dispc, LINE_NUMBER);
441 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
442 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
443 		SR(dispc, GLOBAL_ALPHA);
444 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
445 		SR(dispc, CONTROL2);
446 		SR(dispc, CONFIG2);
447 	}
448 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
449 		SR(dispc, CONTROL3);
450 		SR(dispc, CONFIG3);
451 	}
452 
453 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
454 		SR(dispc, DEFAULT_COLOR(i));
455 		SR(dispc, TRANS_COLOR(i));
456 		SR(dispc, SIZE_MGR(i));
457 		if (i == OMAP_DSS_CHANNEL_DIGIT)
458 			continue;
459 		SR(dispc, TIMING_H(i));
460 		SR(dispc, TIMING_V(i));
461 		SR(dispc, POL_FREQ(i));
462 		SR(dispc, DIVISORo(i));
463 
464 		SR(dispc, DATA_CYCLE1(i));
465 		SR(dispc, DATA_CYCLE2(i));
466 		SR(dispc, DATA_CYCLE3(i));
467 
468 		if (dispc_has_feature(dispc, FEAT_CPR)) {
469 			SR(dispc, CPR_COEF_R(i));
470 			SR(dispc, CPR_COEF_G(i));
471 			SR(dispc, CPR_COEF_B(i));
472 		}
473 	}
474 
475 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
476 		SR(dispc, OVL_BA0(i));
477 		SR(dispc, OVL_BA1(i));
478 		SR(dispc, OVL_POSITION(i));
479 		SR(dispc, OVL_SIZE(i));
480 		SR(dispc, OVL_ATTRIBUTES(i));
481 		SR(dispc, OVL_FIFO_THRESHOLD(i));
482 		SR(dispc, OVL_ROW_INC(i));
483 		SR(dispc, OVL_PIXEL_INC(i));
484 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
485 			SR(dispc, OVL_PRELOAD(i));
486 		if (i == OMAP_DSS_GFX) {
487 			SR(dispc, OVL_WINDOW_SKIP(i));
488 			SR(dispc, OVL_TABLE_BA(i));
489 			continue;
490 		}
491 		SR(dispc, OVL_FIR(i));
492 		SR(dispc, OVL_PICTURE_SIZE(i));
493 		SR(dispc, OVL_ACCU0(i));
494 		SR(dispc, OVL_ACCU1(i));
495 
496 		for (j = 0; j < 8; j++)
497 			SR(dispc, OVL_FIR_COEF_H(i, j));
498 
499 		for (j = 0; j < 8; j++)
500 			SR(dispc, OVL_FIR_COEF_HV(i, j));
501 
502 		for (j = 0; j < 5; j++)
503 			SR(dispc, OVL_CONV_COEF(i, j));
504 
505 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
506 			for (j = 0; j < 8; j++)
507 				SR(dispc, OVL_FIR_COEF_V(i, j));
508 		}
509 
510 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
511 			SR(dispc, OVL_BA0_UV(i));
512 			SR(dispc, OVL_BA1_UV(i));
513 			SR(dispc, OVL_FIR2(i));
514 			SR(dispc, OVL_ACCU2_0(i));
515 			SR(dispc, OVL_ACCU2_1(i));
516 
517 			for (j = 0; j < 8; j++)
518 				SR(dispc, OVL_FIR_COEF_H2(i, j));
519 
520 			for (j = 0; j < 8; j++)
521 				SR(dispc, OVL_FIR_COEF_HV2(i, j));
522 
523 			for (j = 0; j < 8; j++)
524 				SR(dispc, OVL_FIR_COEF_V2(i, j));
525 		}
526 		if (dispc_has_feature(dispc, FEAT_ATTR2))
527 			SR(dispc, OVL_ATTRIBUTES2(i));
528 	}
529 
530 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
531 		SR(dispc, DIVISOR);
532 
533 	dispc->ctx_valid = true;
534 
535 	DSSDBG("context saved\n");
536 }
537 
538 static void dispc_restore_context(struct dispc_device *dispc)
539 {
540 	int i, j;
541 
542 	DSSDBG("dispc_restore_context\n");
543 
544 	if (!dispc->ctx_valid)
545 		return;
546 
547 	/*RR(dispc, IRQENABLE);*/
548 	/*RR(dispc, CONTROL);*/
549 	RR(dispc, CONFIG);
550 	RR(dispc, LINE_NUMBER);
551 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
552 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
553 		RR(dispc, GLOBAL_ALPHA);
554 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
555 		RR(dispc, CONFIG2);
556 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
557 		RR(dispc, CONFIG3);
558 
559 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
560 		RR(dispc, DEFAULT_COLOR(i));
561 		RR(dispc, TRANS_COLOR(i));
562 		RR(dispc, SIZE_MGR(i));
563 		if (i == OMAP_DSS_CHANNEL_DIGIT)
564 			continue;
565 		RR(dispc, TIMING_H(i));
566 		RR(dispc, TIMING_V(i));
567 		RR(dispc, POL_FREQ(i));
568 		RR(dispc, DIVISORo(i));
569 
570 		RR(dispc, DATA_CYCLE1(i));
571 		RR(dispc, DATA_CYCLE2(i));
572 		RR(dispc, DATA_CYCLE3(i));
573 
574 		if (dispc_has_feature(dispc, FEAT_CPR)) {
575 			RR(dispc, CPR_COEF_R(i));
576 			RR(dispc, CPR_COEF_G(i));
577 			RR(dispc, CPR_COEF_B(i));
578 		}
579 	}
580 
581 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
582 		RR(dispc, OVL_BA0(i));
583 		RR(dispc, OVL_BA1(i));
584 		RR(dispc, OVL_POSITION(i));
585 		RR(dispc, OVL_SIZE(i));
586 		RR(dispc, OVL_ATTRIBUTES(i));
587 		RR(dispc, OVL_FIFO_THRESHOLD(i));
588 		RR(dispc, OVL_ROW_INC(i));
589 		RR(dispc, OVL_PIXEL_INC(i));
590 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
591 			RR(dispc, OVL_PRELOAD(i));
592 		if (i == OMAP_DSS_GFX) {
593 			RR(dispc, OVL_WINDOW_SKIP(i));
594 			RR(dispc, OVL_TABLE_BA(i));
595 			continue;
596 		}
597 		RR(dispc, OVL_FIR(i));
598 		RR(dispc, OVL_PICTURE_SIZE(i));
599 		RR(dispc, OVL_ACCU0(i));
600 		RR(dispc, OVL_ACCU1(i));
601 
602 		for (j = 0; j < 8; j++)
603 			RR(dispc, OVL_FIR_COEF_H(i, j));
604 
605 		for (j = 0; j < 8; j++)
606 			RR(dispc, OVL_FIR_COEF_HV(i, j));
607 
608 		for (j = 0; j < 5; j++)
609 			RR(dispc, OVL_CONV_COEF(i, j));
610 
611 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
612 			for (j = 0; j < 8; j++)
613 				RR(dispc, OVL_FIR_COEF_V(i, j));
614 		}
615 
616 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
617 			RR(dispc, OVL_BA0_UV(i));
618 			RR(dispc, OVL_BA1_UV(i));
619 			RR(dispc, OVL_FIR2(i));
620 			RR(dispc, OVL_ACCU2_0(i));
621 			RR(dispc, OVL_ACCU2_1(i));
622 
623 			for (j = 0; j < 8; j++)
624 				RR(dispc, OVL_FIR_COEF_H2(i, j));
625 
626 			for (j = 0; j < 8; j++)
627 				RR(dispc, OVL_FIR_COEF_HV2(i, j));
628 
629 			for (j = 0; j < 8; j++)
630 				RR(dispc, OVL_FIR_COEF_V2(i, j));
631 		}
632 		if (dispc_has_feature(dispc, FEAT_ATTR2))
633 			RR(dispc, OVL_ATTRIBUTES2(i));
634 	}
635 
636 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
637 		RR(dispc, DIVISOR);
638 
639 	/* enable last, because LCD & DIGIT enable are here */
640 	RR(dispc, CONTROL);
641 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
642 		RR(dispc, CONTROL2);
643 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
644 		RR(dispc, CONTROL3);
645 	/* clear spurious SYNC_LOST_DIGIT interrupts */
646 	dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
647 
648 	/*
649 	 * enable last so IRQs won't trigger before
650 	 * the context is fully restored
651 	 */
652 	RR(dispc, IRQENABLE);
653 
654 	DSSDBG("context restored\n");
655 }
656 
657 #undef SR
658 #undef RR
659 
660 int dispc_runtime_get(struct dispc_device *dispc)
661 {
662 	int r;
663 
664 	DSSDBG("dispc_runtime_get\n");
665 
666 	r = pm_runtime_get_sync(&dispc->pdev->dev);
667 	WARN_ON(r < 0);
668 	return r < 0 ? r : 0;
669 }
670 
671 void dispc_runtime_put(struct dispc_device *dispc)
672 {
673 	int r;
674 
675 	DSSDBG("dispc_runtime_put\n");
676 
677 	r = pm_runtime_put_sync(&dispc->pdev->dev);
678 	WARN_ON(r < 0 && r != -ENOSYS);
679 }
680 
681 static u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
682 				   enum omap_channel channel)
683 {
684 	return mgr_desc[channel].vsync_irq;
685 }
686 
687 static u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
688 				       enum omap_channel channel)
689 {
690 	if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
691 		return 0;
692 
693 	return mgr_desc[channel].framedone_irq;
694 }
695 
696 static u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
697 				       enum omap_channel channel)
698 {
699 	return mgr_desc[channel].sync_lost_irq;
700 }
701 
702 static u32 dispc_wb_get_framedone_irq(struct dispc_device *dispc)
703 {
704 	return DISPC_IRQ_FRAMEDONEWB;
705 }
706 
707 static void dispc_mgr_enable(struct dispc_device *dispc,
708 			     enum omap_channel channel, bool enable)
709 {
710 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
711 	/* flush posted write */
712 	mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
713 }
714 
715 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
716 				 enum omap_channel channel)
717 {
718 	return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
719 }
720 
721 static bool dispc_mgr_go_busy(struct dispc_device *dispc,
722 			      enum omap_channel channel)
723 {
724 	return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
725 }
726 
727 static void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
728 {
729 	WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
730 	WARN_ON(dispc_mgr_go_busy(dispc, channel));
731 
732 	DSSDBG("GO %s\n", mgr_desc[channel].name);
733 
734 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
735 }
736 
737 static bool dispc_wb_go_busy(struct dispc_device *dispc)
738 {
739 	return REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
740 }
741 
742 static void dispc_wb_go(struct dispc_device *dispc)
743 {
744 	enum omap_plane_id plane = OMAP_DSS_WB;
745 	bool enable, go;
746 
747 	enable = REG_GET(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
748 
749 	if (!enable)
750 		return;
751 
752 	go = REG_GET(dispc, DISPC_CONTROL2, 6, 6) == 1;
753 	if (go) {
754 		DSSERR("GO bit not down for WB\n");
755 		return;
756 	}
757 
758 	REG_FLD_MOD(dispc, DISPC_CONTROL2, 1, 6, 6);
759 }
760 
761 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
762 				     enum omap_plane_id plane, int reg,
763 				     u32 value)
764 {
765 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
766 }
767 
768 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
769 				      enum omap_plane_id plane, int reg,
770 				      u32 value)
771 {
772 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
773 }
774 
775 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
776 				     enum omap_plane_id plane, int reg,
777 				     u32 value)
778 {
779 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
780 }
781 
782 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
783 				      enum omap_plane_id plane, int reg,
784 				      u32 value)
785 {
786 	BUG_ON(plane == OMAP_DSS_GFX);
787 
788 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
789 }
790 
791 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
792 				       enum omap_plane_id plane, int reg,
793 				       u32 value)
794 {
795 	BUG_ON(plane == OMAP_DSS_GFX);
796 
797 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
798 }
799 
800 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
801 				      enum omap_plane_id plane, int reg,
802 				      u32 value)
803 {
804 	BUG_ON(plane == OMAP_DSS_GFX);
805 
806 	dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
807 }
808 
809 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
810 				     enum omap_plane_id plane, int fir_hinc,
811 				     int fir_vinc, int five_taps,
812 				     enum omap_color_component color_comp)
813 {
814 	const struct dispc_coef *h_coef, *v_coef;
815 	int i;
816 
817 	h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
818 	v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
819 
820 	if (!h_coef || !v_coef) {
821 		dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
822 			__func__);
823 		return;
824 	}
825 
826 	for (i = 0; i < 8; i++) {
827 		u32 h, hv;
828 
829 		h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
830 			| FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
831 			| FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
832 			| FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
833 		hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
834 			| FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
835 			| FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
836 			| FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
837 
838 		if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
839 			dispc_ovl_write_firh_reg(dispc, plane, i, h);
840 			dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
841 		} else {
842 			dispc_ovl_write_firh2_reg(dispc, plane, i, h);
843 			dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
844 		}
845 
846 	}
847 
848 	if (five_taps) {
849 		for (i = 0; i < 8; i++) {
850 			u32 v;
851 			v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
852 				| FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
853 			if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
854 				dispc_ovl_write_firv_reg(dispc, plane, i, v);
855 			else
856 				dispc_ovl_write_firv2_reg(dispc, plane, i, v);
857 		}
858 	}
859 }
860 
861 struct csc_coef_yuv2rgb {
862 	int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
863 	bool full_range;
864 };
865 
866 struct csc_coef_rgb2yuv {
867 	int yr, yg, yb, cbr, cbg, cbb, crr, crg, crb;
868 	bool full_range;
869 };
870 
871 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
872 					    enum omap_plane_id plane,
873 					    const struct csc_coef_yuv2rgb *ct)
874 {
875 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
876 
877 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
878 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy,  ct->rcb));
879 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
880 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
881 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
882 
883 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
884 
885 #undef CVAL
886 }
887 
888 static void dispc_wb_write_color_conv_coef(struct dispc_device *dispc,
889 					   const struct csc_coef_rgb2yuv *ct)
890 {
891 	const enum omap_plane_id plane = OMAP_DSS_WB;
892 
893 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
894 
895 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->yg,  ct->yr));
896 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->crr, ct->yb));
897 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->crb, ct->crg));
898 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->cbg, ct->cbr));
899 	dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->cbb));
900 
901 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
902 
903 #undef CVAL
904 }
905 
906 static void dispc_setup_color_conv_coef(struct dispc_device *dispc)
907 {
908 	int i;
909 	int num_ovl = dispc_get_num_ovls(dispc);
910 
911 	/* YUV -> RGB, ITU-R BT.601, limited range */
912 	const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
913 		298,    0,  409,	/* ry, rcb, rcr */
914 		298, -100, -208,	/* gy, gcb, gcr */
915 		298,  516,    0,	/* by, bcb, bcr */
916 		false,			/* limited range */
917 	};
918 
919 	/* RGB -> YUV, ITU-R BT.601, limited range */
920 	const struct csc_coef_rgb2yuv coefs_rgb2yuv_bt601_lim = {
921 		 66, 129,  25,		/* yr,   yg,  yb */
922 		-38, -74, 112,		/* cbr, cbg, cbb */
923 		112, -94, -18,		/* crr, crg, crb */
924 		false,			/* limited range */
925 	};
926 
927 	for (i = 1; i < num_ovl; i++)
928 		dispc_ovl_write_color_conv_coef(dispc, i, &coefs_yuv2rgb_bt601_lim);
929 
930 	if (dispc->feat->has_writeback)
931 		dispc_wb_write_color_conv_coef(dispc, &coefs_rgb2yuv_bt601_lim);
932 }
933 
934 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
935 			      enum omap_plane_id plane, u32 paddr)
936 {
937 	dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
938 }
939 
940 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
941 			      enum omap_plane_id plane, u32 paddr)
942 {
943 	dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
944 }
945 
946 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
947 				 enum omap_plane_id plane, u32 paddr)
948 {
949 	dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
950 }
951 
952 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
953 				 enum omap_plane_id plane, u32 paddr)
954 {
955 	dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
956 }
957 
958 static void dispc_ovl_set_pos(struct dispc_device *dispc,
959 			      enum omap_plane_id plane,
960 			      enum omap_overlay_caps caps, int x, int y)
961 {
962 	u32 val;
963 
964 	if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
965 		return;
966 
967 	val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
968 
969 	dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
970 }
971 
972 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
973 				     enum omap_plane_id plane, int width,
974 				     int height)
975 {
976 	u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
977 
978 	if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
979 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
980 	else
981 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
982 }
983 
984 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
985 				      enum omap_plane_id plane, int width,
986 				      int height)
987 {
988 	u32 val;
989 
990 	BUG_ON(plane == OMAP_DSS_GFX);
991 
992 	val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
993 
994 	if (plane == OMAP_DSS_WB)
995 		dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
996 	else
997 		dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
998 }
999 
1000 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
1001 				 enum omap_plane_id plane,
1002 				 enum omap_overlay_caps caps, u8 zorder)
1003 {
1004 	if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
1005 		return;
1006 
1007 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
1008 }
1009 
1010 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
1011 {
1012 	int i;
1013 
1014 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
1015 		return;
1016 
1017 	for (i = 0; i < dispc_get_num_ovls(dispc); i++)
1018 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
1019 }
1020 
1021 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
1022 					 enum omap_plane_id plane,
1023 					 enum omap_overlay_caps caps,
1024 					 bool enable)
1025 {
1026 	if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
1027 		return;
1028 
1029 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1030 }
1031 
1032 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1033 					 enum omap_plane_id plane,
1034 					 enum omap_overlay_caps caps,
1035 					 u8 global_alpha)
1036 {
1037 	static const unsigned int shifts[] = { 0, 8, 16, 24, };
1038 	int shift;
1039 
1040 	if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1041 		return;
1042 
1043 	shift = shifts[plane];
1044 	REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1045 }
1046 
1047 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1048 				  enum omap_plane_id plane, s32 inc)
1049 {
1050 	dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1051 }
1052 
1053 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1054 				  enum omap_plane_id plane, s32 inc)
1055 {
1056 	dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1057 }
1058 
1059 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1060 				     enum omap_plane_id plane, u32 fourcc)
1061 {
1062 	u32 m = 0;
1063 	if (plane != OMAP_DSS_GFX) {
1064 		switch (fourcc) {
1065 		case DRM_FORMAT_NV12:
1066 			m = 0x0; break;
1067 		case DRM_FORMAT_XRGB4444:
1068 			m = 0x1; break;
1069 		case DRM_FORMAT_RGBA4444:
1070 			m = 0x2; break;
1071 		case DRM_FORMAT_RGBX4444:
1072 			m = 0x4; break;
1073 		case DRM_FORMAT_ARGB4444:
1074 			m = 0x5; break;
1075 		case DRM_FORMAT_RGB565:
1076 			m = 0x6; break;
1077 		case DRM_FORMAT_ARGB1555:
1078 			m = 0x7; break;
1079 		case DRM_FORMAT_XRGB8888:
1080 			m = 0x8; break;
1081 		case DRM_FORMAT_RGB888:
1082 			m = 0x9; break;
1083 		case DRM_FORMAT_YUYV:
1084 			m = 0xa; break;
1085 		case DRM_FORMAT_UYVY:
1086 			m = 0xb; break;
1087 		case DRM_FORMAT_ARGB8888:
1088 			m = 0xc; break;
1089 		case DRM_FORMAT_RGBA8888:
1090 			m = 0xd; break;
1091 		case DRM_FORMAT_RGBX8888:
1092 			m = 0xe; break;
1093 		case DRM_FORMAT_XRGB1555:
1094 			m = 0xf; break;
1095 		default:
1096 			BUG(); return;
1097 		}
1098 	} else {
1099 		switch (fourcc) {
1100 		case DRM_FORMAT_RGBX4444:
1101 			m = 0x4; break;
1102 		case DRM_FORMAT_ARGB4444:
1103 			m = 0x5; break;
1104 		case DRM_FORMAT_RGB565:
1105 			m = 0x6; break;
1106 		case DRM_FORMAT_ARGB1555:
1107 			m = 0x7; break;
1108 		case DRM_FORMAT_XRGB8888:
1109 			m = 0x8; break;
1110 		case DRM_FORMAT_RGB888:
1111 			m = 0x9; break;
1112 		case DRM_FORMAT_XRGB4444:
1113 			m = 0xa; break;
1114 		case DRM_FORMAT_RGBA4444:
1115 			m = 0xb; break;
1116 		case DRM_FORMAT_ARGB8888:
1117 			m = 0xc; break;
1118 		case DRM_FORMAT_RGBA8888:
1119 			m = 0xd; break;
1120 		case DRM_FORMAT_RGBX8888:
1121 			m = 0xe; break;
1122 		case DRM_FORMAT_XRGB1555:
1123 			m = 0xf; break;
1124 		default:
1125 			BUG(); return;
1126 		}
1127 	}
1128 
1129 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1130 }
1131 
1132 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1133 					   enum omap_plane_id plane,
1134 					   enum omap_dss_rotation_type rotation)
1135 {
1136 	if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1137 		return;
1138 
1139 	if (rotation == OMAP_DSS_ROT_TILER)
1140 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1141 	else
1142 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1143 }
1144 
1145 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1146 				      enum omap_plane_id plane,
1147 				      enum omap_channel channel)
1148 {
1149 	int shift;
1150 	u32 val;
1151 	int chan = 0, chan2 = 0;
1152 
1153 	switch (plane) {
1154 	case OMAP_DSS_GFX:
1155 		shift = 8;
1156 		break;
1157 	case OMAP_DSS_VIDEO1:
1158 	case OMAP_DSS_VIDEO2:
1159 	case OMAP_DSS_VIDEO3:
1160 		shift = 16;
1161 		break;
1162 	default:
1163 		BUG();
1164 		return;
1165 	}
1166 
1167 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1168 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1169 		switch (channel) {
1170 		case OMAP_DSS_CHANNEL_LCD:
1171 			chan = 0;
1172 			chan2 = 0;
1173 			break;
1174 		case OMAP_DSS_CHANNEL_DIGIT:
1175 			chan = 1;
1176 			chan2 = 0;
1177 			break;
1178 		case OMAP_DSS_CHANNEL_LCD2:
1179 			chan = 0;
1180 			chan2 = 1;
1181 			break;
1182 		case OMAP_DSS_CHANNEL_LCD3:
1183 			if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1184 				chan = 0;
1185 				chan2 = 2;
1186 			} else {
1187 				BUG();
1188 				return;
1189 			}
1190 			break;
1191 		case OMAP_DSS_CHANNEL_WB:
1192 			chan = 0;
1193 			chan2 = 3;
1194 			break;
1195 		default:
1196 			BUG();
1197 			return;
1198 		}
1199 
1200 		val = FLD_MOD(val, chan, shift, shift);
1201 		val = FLD_MOD(val, chan2, 31, 30);
1202 	} else {
1203 		val = FLD_MOD(val, channel, shift, shift);
1204 	}
1205 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1206 }
1207 
1208 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1209 						   enum omap_plane_id plane)
1210 {
1211 	int shift;
1212 	u32 val;
1213 
1214 	switch (plane) {
1215 	case OMAP_DSS_GFX:
1216 		shift = 8;
1217 		break;
1218 	case OMAP_DSS_VIDEO1:
1219 	case OMAP_DSS_VIDEO2:
1220 	case OMAP_DSS_VIDEO3:
1221 		shift = 16;
1222 		break;
1223 	default:
1224 		BUG();
1225 		return 0;
1226 	}
1227 
1228 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1229 
1230 	if (FLD_GET(val, shift, shift) == 1)
1231 		return OMAP_DSS_CHANNEL_DIGIT;
1232 
1233 	if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1234 		return OMAP_DSS_CHANNEL_LCD;
1235 
1236 	switch (FLD_GET(val, 31, 30)) {
1237 	case 0:
1238 	default:
1239 		return OMAP_DSS_CHANNEL_LCD;
1240 	case 1:
1241 		return OMAP_DSS_CHANNEL_LCD2;
1242 	case 2:
1243 		return OMAP_DSS_CHANNEL_LCD3;
1244 	case 3:
1245 		return OMAP_DSS_CHANNEL_WB;
1246 	}
1247 }
1248 
1249 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1250 				     enum omap_plane_id plane,
1251 				     enum omap_burst_size burst_size)
1252 {
1253 	static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1254 	int shift;
1255 
1256 	shift = shifts[plane];
1257 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1258 		    shift + 1, shift);
1259 }
1260 
1261 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1262 {
1263 	int i;
1264 	const int burst_size = BURST_SIZE_X8;
1265 
1266 	/* Configure burst size always to maximum size */
1267 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1268 		dispc_ovl_set_burst_size(dispc, i, burst_size);
1269 	if (dispc->feat->has_writeback)
1270 		dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1271 }
1272 
1273 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1274 				    enum omap_plane_id plane)
1275 {
1276 	/* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1277 	return dispc->feat->burst_size_unit * 8;
1278 }
1279 
1280 static bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1281 					   enum omap_plane_id plane, u32 fourcc)
1282 {
1283 	const u32 *modes;
1284 	unsigned int i;
1285 
1286 	modes = dispc->feat->supported_color_modes[plane];
1287 
1288 	for (i = 0; modes[i]; ++i) {
1289 		if (modes[i] == fourcc)
1290 			return true;
1291 	}
1292 
1293 	return false;
1294 }
1295 
1296 static const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1297 					    enum omap_plane_id plane)
1298 {
1299 	return dispc->feat->supported_color_modes[plane];
1300 }
1301 
1302 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1303 				 enum omap_channel channel, bool enable)
1304 {
1305 	if (channel == OMAP_DSS_CHANNEL_DIGIT)
1306 		return;
1307 
1308 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1309 }
1310 
1311 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1312 				   enum omap_channel channel,
1313 				   const struct omap_dss_cpr_coefs *coefs)
1314 {
1315 	u32 coef_r, coef_g, coef_b;
1316 
1317 	if (!dss_mgr_is_lcd(channel))
1318 		return;
1319 
1320 	coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1321 		FLD_VAL(coefs->rb, 9, 0);
1322 	coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1323 		FLD_VAL(coefs->gb, 9, 0);
1324 	coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1325 		FLD_VAL(coefs->bb, 9, 0);
1326 
1327 	dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1328 	dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1329 	dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1330 }
1331 
1332 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1333 					 enum omap_plane_id plane, bool enable)
1334 {
1335 	u32 val;
1336 
1337 	BUG_ON(plane == OMAP_DSS_GFX);
1338 
1339 	val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1340 	val = FLD_MOD(val, enable, 9, 9);
1341 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1342 }
1343 
1344 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1345 					 enum omap_plane_id plane,
1346 					 enum omap_overlay_caps caps,
1347 					 bool enable)
1348 {
1349 	static const unsigned int shifts[] = { 5, 10, 10, 10 };
1350 	int shift;
1351 
1352 	if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1353 		return;
1354 
1355 	shift = shifts[plane];
1356 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1357 }
1358 
1359 static void dispc_mgr_set_size(struct dispc_device *dispc,
1360 			       enum omap_channel channel, u16 width, u16 height)
1361 {
1362 	u32 val;
1363 
1364 	val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1365 		FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1366 
1367 	dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1368 }
1369 
1370 static void dispc_init_fifos(struct dispc_device *dispc)
1371 {
1372 	u32 size;
1373 	int fifo;
1374 	u8 start, end;
1375 	u32 unit;
1376 	int i;
1377 
1378 	unit = dispc->feat->buffer_size_unit;
1379 
1380 	dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1381 
1382 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1383 		size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1384 			       start, end);
1385 		size *= unit;
1386 		dispc->fifo_size[fifo] = size;
1387 
1388 		/*
1389 		 * By default fifos are mapped directly to overlays, fifo 0 to
1390 		 * ovl 0, fifo 1 to ovl 1, etc.
1391 		 */
1392 		dispc->fifo_assignment[fifo] = fifo;
1393 	}
1394 
1395 	/*
1396 	 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1397 	 * causes problems with certain use cases, like using the tiler in 2D
1398 	 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1399 	 * giving GFX plane a larger fifo. WB but should work fine with a
1400 	 * smaller fifo.
1401 	 */
1402 	if (dispc->feat->gfx_fifo_workaround) {
1403 		u32 v;
1404 
1405 		v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1406 
1407 		v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1408 		v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1409 		v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1410 		v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1411 
1412 		dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1413 
1414 		dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1415 		dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1416 	}
1417 
1418 	/*
1419 	 * Setup default fifo thresholds.
1420 	 */
1421 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1422 		u32 low, high;
1423 		const bool use_fifomerge = false;
1424 		const bool manual_update = false;
1425 
1426 		dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1427 						  use_fifomerge, manual_update);
1428 
1429 		dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1430 	}
1431 
1432 	if (dispc->feat->has_writeback) {
1433 		u32 low, high;
1434 		const bool use_fifomerge = false;
1435 		const bool manual_update = false;
1436 
1437 		dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1438 						  &low, &high, use_fifomerge,
1439 						  manual_update);
1440 
1441 		dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1442 	}
1443 }
1444 
1445 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1446 				   enum omap_plane_id plane)
1447 {
1448 	int fifo;
1449 	u32 size = 0;
1450 
1451 	for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1452 		if (dispc->fifo_assignment[fifo] == plane)
1453 			size += dispc->fifo_size[fifo];
1454 	}
1455 
1456 	return size;
1457 }
1458 
1459 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1460 				  enum omap_plane_id plane,
1461 				  u32 low, u32 high)
1462 {
1463 	u8 hi_start, hi_end, lo_start, lo_end;
1464 	u32 unit;
1465 
1466 	unit = dispc->feat->buffer_size_unit;
1467 
1468 	WARN_ON(low % unit != 0);
1469 	WARN_ON(high % unit != 0);
1470 
1471 	low /= unit;
1472 	high /= unit;
1473 
1474 	dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1475 			    &hi_start, &hi_end);
1476 	dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1477 			    &lo_start, &lo_end);
1478 
1479 	DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1480 			plane,
1481 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1482 				lo_start, lo_end) * unit,
1483 			REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1484 				hi_start, hi_end) * unit,
1485 			low * unit, high * unit);
1486 
1487 	dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1488 			FLD_VAL(high, hi_start, hi_end) |
1489 			FLD_VAL(low, lo_start, lo_end));
1490 
1491 	/*
1492 	 * configure the preload to the pipeline's high threhold, if HT it's too
1493 	 * large for the preload field, set the threshold to the maximum value
1494 	 * that can be held by the preload register
1495 	 */
1496 	if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1497 	    dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1498 		dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1499 				min(high, 0xfffu));
1500 }
1501 
1502 void dispc_enable_fifomerge(struct dispc_device *dispc, bool enable)
1503 {
1504 	if (!dispc_has_feature(dispc, FEAT_FIFO_MERGE)) {
1505 		WARN_ON(enable);
1506 		return;
1507 	}
1508 
1509 	DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1510 	REG_FLD_MOD(dispc, DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1511 }
1512 
1513 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1514 				       enum omap_plane_id plane,
1515 				       u32 *fifo_low, u32 *fifo_high,
1516 				       bool use_fifomerge, bool manual_update)
1517 {
1518 	/*
1519 	 * All sizes are in bytes. Both the buffer and burst are made of
1520 	 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1521 	 */
1522 	unsigned int buf_unit = dispc->feat->buffer_size_unit;
1523 	unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1524 	int i;
1525 
1526 	burst_size = dispc_ovl_get_burst_size(dispc, plane);
1527 	ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1528 
1529 	if (use_fifomerge) {
1530 		total_fifo_size = 0;
1531 		for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1532 			total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1533 	} else {
1534 		total_fifo_size = ovl_fifo_size;
1535 	}
1536 
1537 	/*
1538 	 * We use the same low threshold for both fifomerge and non-fifomerge
1539 	 * cases, but for fifomerge we calculate the high threshold using the
1540 	 * combined fifo size
1541 	 */
1542 
1543 	if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1544 		*fifo_low = ovl_fifo_size - burst_size * 2;
1545 		*fifo_high = total_fifo_size - burst_size;
1546 	} else if (plane == OMAP_DSS_WB) {
1547 		/*
1548 		 * Most optimal configuration for writeback is to push out data
1549 		 * to the interconnect the moment writeback pushes enough pixels
1550 		 * in the FIFO to form a burst
1551 		 */
1552 		*fifo_low = 0;
1553 		*fifo_high = burst_size;
1554 	} else {
1555 		*fifo_low = ovl_fifo_size - burst_size;
1556 		*fifo_high = total_fifo_size - buf_unit;
1557 	}
1558 }
1559 
1560 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1561 				enum omap_plane_id plane, bool enable)
1562 {
1563 	int bit;
1564 
1565 	if (plane == OMAP_DSS_GFX)
1566 		bit = 14;
1567 	else
1568 		bit = 23;
1569 
1570 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1571 }
1572 
1573 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1574 					  enum omap_plane_id plane,
1575 					  int low, int high)
1576 {
1577 	dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1578 		FLD_VAL(high, 31, 16) |	FLD_VAL(low, 15, 0));
1579 }
1580 
1581 static void dispc_init_mflag(struct dispc_device *dispc)
1582 {
1583 	int i;
1584 
1585 	/*
1586 	 * HACK: NV12 color format and MFLAG seem to have problems working
1587 	 * together: using two displays, and having an NV12 overlay on one of
1588 	 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1589 	 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1590 	 * remove the errors, but there doesn't seem to be a clear logic on
1591 	 * which values work and which not.
1592 	 *
1593 	 * As a work-around, set force MFLAG to always on.
1594 	 */
1595 	dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1596 		(1 << 0) |	/* MFLAG_CTRL = force always on */
1597 		(0 << 2));	/* MFLAG_START = disable */
1598 
1599 	for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1600 		u32 size = dispc_ovl_get_fifo_size(dispc, i);
1601 		u32 unit = dispc->feat->buffer_size_unit;
1602 		u32 low, high;
1603 
1604 		dispc_ovl_set_mflag(dispc, i, true);
1605 
1606 		/*
1607 		 * Simulation team suggests below thesholds:
1608 		 * HT = fifosize * 5 / 8;
1609 		 * LT = fifosize * 4 / 8;
1610 		 */
1611 
1612 		low = size * 4 / 8 / unit;
1613 		high = size * 5 / 8 / unit;
1614 
1615 		dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1616 	}
1617 
1618 	if (dispc->feat->has_writeback) {
1619 		u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1620 		u32 unit = dispc->feat->buffer_size_unit;
1621 		u32 low, high;
1622 
1623 		dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1624 
1625 		/*
1626 		 * Simulation team suggests below thesholds:
1627 		 * HT = fifosize * 5 / 8;
1628 		 * LT = fifosize * 4 / 8;
1629 		 */
1630 
1631 		low = size * 4 / 8 / unit;
1632 		high = size * 5 / 8 / unit;
1633 
1634 		dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1635 	}
1636 }
1637 
1638 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1639 			      enum omap_plane_id plane,
1640 			      int hinc, int vinc,
1641 			      enum omap_color_component color_comp)
1642 {
1643 	u32 val;
1644 
1645 	if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1646 		u8 hinc_start, hinc_end, vinc_start, vinc_end;
1647 
1648 		dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1649 				    &hinc_start, &hinc_end);
1650 		dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1651 				    &vinc_start, &vinc_end);
1652 		val = FLD_VAL(vinc, vinc_start, vinc_end) |
1653 				FLD_VAL(hinc, hinc_start, hinc_end);
1654 
1655 		dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1656 	} else {
1657 		val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1658 		dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1659 	}
1660 }
1661 
1662 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1663 				    enum omap_plane_id plane, int haccu,
1664 				    int vaccu)
1665 {
1666 	u32 val;
1667 	u8 hor_start, hor_end, vert_start, vert_end;
1668 
1669 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1670 			    &hor_start, &hor_end);
1671 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1672 			    &vert_start, &vert_end);
1673 
1674 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1675 			FLD_VAL(haccu, hor_start, hor_end);
1676 
1677 	dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1678 }
1679 
1680 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1681 				    enum omap_plane_id plane, int haccu,
1682 				    int vaccu)
1683 {
1684 	u32 val;
1685 	u8 hor_start, hor_end, vert_start, vert_end;
1686 
1687 	dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1688 			    &hor_start, &hor_end);
1689 	dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1690 			    &vert_start, &vert_end);
1691 
1692 	val = FLD_VAL(vaccu, vert_start, vert_end) |
1693 			FLD_VAL(haccu, hor_start, hor_end);
1694 
1695 	dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1696 }
1697 
1698 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1699 				      enum omap_plane_id plane, int haccu,
1700 				      int vaccu)
1701 {
1702 	u32 val;
1703 
1704 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1705 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1706 }
1707 
1708 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1709 				      enum omap_plane_id plane, int haccu,
1710 				      int vaccu)
1711 {
1712 	u32 val;
1713 
1714 	val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1715 	dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1716 }
1717 
1718 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1719 				      enum omap_plane_id plane,
1720 				      u16 orig_width, u16 orig_height,
1721 				      u16 out_width, u16 out_height,
1722 				      bool five_taps, u8 rotation,
1723 				      enum omap_color_component color_comp)
1724 {
1725 	int fir_hinc, fir_vinc;
1726 
1727 	fir_hinc = 1024 * orig_width / out_width;
1728 	fir_vinc = 1024 * orig_height / out_height;
1729 
1730 	dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1731 				 color_comp);
1732 	dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1733 }
1734 
1735 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1736 				  enum omap_plane_id plane,
1737 				  u16 orig_width, u16 orig_height,
1738 				  u16 out_width, u16 out_height,
1739 				  bool ilace, u32 fourcc, u8 rotation)
1740 {
1741 	int h_accu2_0, h_accu2_1;
1742 	int v_accu2_0, v_accu2_1;
1743 	int chroma_hinc, chroma_vinc;
1744 	int idx;
1745 
1746 	struct accu {
1747 		s8 h0_m, h0_n;
1748 		s8 h1_m, h1_n;
1749 		s8 v0_m, v0_n;
1750 		s8 v1_m, v1_n;
1751 	};
1752 
1753 	const struct accu *accu_table;
1754 	const struct accu *accu_val;
1755 
1756 	static const struct accu accu_nv12[4] = {
1757 		{  0, 1,  0, 1 , -1, 2, 0, 1 },
1758 		{  1, 2, -3, 4 ,  0, 1, 0, 1 },
1759 		{ -1, 1,  0, 1 , -1, 2, 0, 1 },
1760 		{ -1, 2, -1, 2 , -1, 1, 0, 1 },
1761 	};
1762 
1763 	static const struct accu accu_nv12_ilace[4] = {
1764 		{  0, 1,  0, 1 , -3, 4, -1, 4 },
1765 		{ -1, 4, -3, 4 ,  0, 1,  0, 1 },
1766 		{ -1, 1,  0, 1 , -1, 4, -3, 4 },
1767 		{ -3, 4, -3, 4 , -1, 1,  0, 1 },
1768 	};
1769 
1770 	static const struct accu accu_yuv[4] = {
1771 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1772 		{  0, 1, 0, 1,  0, 1, 0, 1 },
1773 		{ -1, 1, 0, 1,  0, 1, 0, 1 },
1774 		{  0, 1, 0, 1, -1, 1, 0, 1 },
1775 	};
1776 
1777 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1778 	switch (rotation & DRM_MODE_ROTATE_MASK) {
1779 	default:
1780 	case DRM_MODE_ROTATE_0:
1781 		idx = 0;
1782 		break;
1783 	case DRM_MODE_ROTATE_90:
1784 		idx = 3;
1785 		break;
1786 	case DRM_MODE_ROTATE_180:
1787 		idx = 2;
1788 		break;
1789 	case DRM_MODE_ROTATE_270:
1790 		idx = 1;
1791 		break;
1792 	}
1793 
1794 	switch (fourcc) {
1795 	case DRM_FORMAT_NV12:
1796 		if (ilace)
1797 			accu_table = accu_nv12_ilace;
1798 		else
1799 			accu_table = accu_nv12;
1800 		break;
1801 	case DRM_FORMAT_YUYV:
1802 	case DRM_FORMAT_UYVY:
1803 		accu_table = accu_yuv;
1804 		break;
1805 	default:
1806 		BUG();
1807 		return;
1808 	}
1809 
1810 	accu_val = &accu_table[idx];
1811 
1812 	chroma_hinc = 1024 * orig_width / out_width;
1813 	chroma_vinc = 1024 * orig_height / out_height;
1814 
1815 	h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1816 	h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1817 	v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1818 	v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1819 
1820 	dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1821 	dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1822 }
1823 
1824 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1825 					 enum omap_plane_id plane,
1826 					 u16 orig_width, u16 orig_height,
1827 					 u16 out_width, u16 out_height,
1828 					 bool ilace, bool five_taps,
1829 					 bool fieldmode, u32 fourcc,
1830 					 u8 rotation)
1831 {
1832 	int accu0 = 0;
1833 	int accu1 = 0;
1834 	u32 l;
1835 
1836 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1837 				  out_width, out_height, five_taps,
1838 				  rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1839 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1840 
1841 	/* RESIZEENABLE and VERTICALTAPS */
1842 	l &= ~((0x3 << 5) | (0x1 << 21));
1843 	l |= (orig_width != out_width) ? (1 << 5) : 0;
1844 	l |= (orig_height != out_height) ? (1 << 6) : 0;
1845 	l |= five_taps ? (1 << 21) : 0;
1846 
1847 	/* VRESIZECONF and HRESIZECONF */
1848 	if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1849 		l &= ~(0x3 << 7);
1850 		l |= (orig_width <= out_width) ? 0 : (1 << 7);
1851 		l |= (orig_height <= out_height) ? 0 : (1 << 8);
1852 	}
1853 
1854 	/* LINEBUFFERSPLIT */
1855 	if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1856 		l &= ~(0x1 << 22);
1857 		l |= five_taps ? (1 << 22) : 0;
1858 	}
1859 
1860 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1861 
1862 	/*
1863 	 * field 0 = even field = bottom field
1864 	 * field 1 = odd field = top field
1865 	 */
1866 	if (ilace && !fieldmode) {
1867 		accu1 = 0;
1868 		accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1869 		if (accu0 >= 1024/2) {
1870 			accu1 = 1024/2;
1871 			accu0 -= accu1;
1872 		}
1873 	}
1874 
1875 	dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1876 	dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1877 }
1878 
1879 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1880 				     enum omap_plane_id plane,
1881 				     u16 orig_width, u16 orig_height,
1882 				     u16 out_width, u16 out_height,
1883 				     bool ilace, bool five_taps,
1884 				     bool fieldmode, u32 fourcc,
1885 				     u8 rotation)
1886 {
1887 	int scale_x = out_width != orig_width;
1888 	int scale_y = out_height != orig_height;
1889 	bool chroma_upscale = plane != OMAP_DSS_WB;
1890 	const struct drm_format_info *info;
1891 
1892 	info = drm_format_info(fourcc);
1893 
1894 	if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1895 		return;
1896 
1897 	if (!info->is_yuv) {
1898 		/* reset chroma resampling for RGB formats  */
1899 		if (plane != OMAP_DSS_WB)
1900 			REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1901 				    0, 8, 8);
1902 		return;
1903 	}
1904 
1905 	dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1906 			      out_height, ilace, fourcc, rotation);
1907 
1908 	switch (fourcc) {
1909 	case DRM_FORMAT_NV12:
1910 		if (chroma_upscale) {
1911 			/* UV is subsampled by 2 horizontally and vertically */
1912 			orig_height >>= 1;
1913 			orig_width >>= 1;
1914 		} else {
1915 			/* UV is downsampled by 2 horizontally and vertically */
1916 			orig_height <<= 1;
1917 			orig_width <<= 1;
1918 		}
1919 
1920 		break;
1921 	case DRM_FORMAT_YUYV:
1922 	case DRM_FORMAT_UYVY:
1923 		/* For YUV422 with 90/270 rotation, we don't upsample chroma */
1924 		if (!drm_rotation_90_or_270(rotation)) {
1925 			if (chroma_upscale)
1926 				/* UV is subsampled by 2 horizontally */
1927 				orig_width >>= 1;
1928 			else
1929 				/* UV is downsampled by 2 horizontally */
1930 				orig_width <<= 1;
1931 		}
1932 
1933 		/* must use FIR for YUV422 if rotated */
1934 		if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1935 			scale_x = scale_y = true;
1936 
1937 		break;
1938 	default:
1939 		BUG();
1940 		return;
1941 	}
1942 
1943 	if (out_width != orig_width)
1944 		scale_x = true;
1945 	if (out_height != orig_height)
1946 		scale_y = true;
1947 
1948 	dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1949 				  out_width, out_height, five_taps,
1950 				  rotation, DISPC_COLOR_COMPONENT_UV);
1951 
1952 	if (plane != OMAP_DSS_WB)
1953 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1954 			(scale_x || scale_y) ? 1 : 0, 8, 8);
1955 
1956 	/* set H scaling */
1957 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1958 	/* set V scaling */
1959 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1960 }
1961 
1962 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1963 				  enum omap_plane_id plane,
1964 				  u16 orig_width, u16 orig_height,
1965 				  u16 out_width, u16 out_height,
1966 				  bool ilace, bool five_taps,
1967 				  bool fieldmode, u32 fourcc,
1968 				  u8 rotation)
1969 {
1970 	BUG_ON(plane == OMAP_DSS_GFX);
1971 
1972 	dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1973 				     out_width, out_height, ilace, five_taps,
1974 				     fieldmode, fourcc, rotation);
1975 
1976 	dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1977 				 out_width, out_height, ilace, five_taps,
1978 				 fieldmode, fourcc, rotation);
1979 }
1980 
1981 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1982 					 enum omap_plane_id plane, u8 rotation,
1983 					 enum omap_dss_rotation_type rotation_type,
1984 					 u32 fourcc)
1985 {
1986 	bool row_repeat = false;
1987 	int vidrot = 0;
1988 
1989 	/* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1990 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
1991 
1992 		if (rotation & DRM_MODE_REFLECT_X) {
1993 			switch (rotation & DRM_MODE_ROTATE_MASK) {
1994 			case DRM_MODE_ROTATE_0:
1995 				vidrot = 2;
1996 				break;
1997 			case DRM_MODE_ROTATE_90:
1998 				vidrot = 1;
1999 				break;
2000 			case DRM_MODE_ROTATE_180:
2001 				vidrot = 0;
2002 				break;
2003 			case DRM_MODE_ROTATE_270:
2004 				vidrot = 3;
2005 				break;
2006 			}
2007 		} else {
2008 			switch (rotation & DRM_MODE_ROTATE_MASK) {
2009 			case DRM_MODE_ROTATE_0:
2010 				vidrot = 0;
2011 				break;
2012 			case DRM_MODE_ROTATE_90:
2013 				vidrot = 3;
2014 				break;
2015 			case DRM_MODE_ROTATE_180:
2016 				vidrot = 2;
2017 				break;
2018 			case DRM_MODE_ROTATE_270:
2019 				vidrot = 1;
2020 				break;
2021 			}
2022 		}
2023 
2024 		if (drm_rotation_90_or_270(rotation))
2025 			row_repeat = true;
2026 		else
2027 			row_repeat = false;
2028 	}
2029 
2030 	/*
2031 	 * OMAP4/5 Errata i631:
2032 	 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
2033 	 * rows beyond the framebuffer, which may cause OCP error.
2034 	 */
2035 	if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
2036 		vidrot = 1;
2037 
2038 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
2039 	if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
2040 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2041 			row_repeat ? 1 : 0, 18, 18);
2042 
2043 	if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2044 		bool doublestride =
2045 			fourcc == DRM_FORMAT_NV12 &&
2046 			rotation_type == OMAP_DSS_ROT_TILER &&
2047 			!drm_rotation_90_or_270(rotation);
2048 
2049 		/* DOUBLESTRIDE */
2050 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2051 			    doublestride, 22, 22);
2052 	}
2053 }
2054 
2055 static int color_mode_to_bpp(u32 fourcc)
2056 {
2057 	switch (fourcc) {
2058 	case DRM_FORMAT_NV12:
2059 		return 8;
2060 	case DRM_FORMAT_RGBX4444:
2061 	case DRM_FORMAT_RGB565:
2062 	case DRM_FORMAT_ARGB4444:
2063 	case DRM_FORMAT_YUYV:
2064 	case DRM_FORMAT_UYVY:
2065 	case DRM_FORMAT_RGBA4444:
2066 	case DRM_FORMAT_XRGB4444:
2067 	case DRM_FORMAT_ARGB1555:
2068 	case DRM_FORMAT_XRGB1555:
2069 		return 16;
2070 	case DRM_FORMAT_RGB888:
2071 		return 24;
2072 	case DRM_FORMAT_XRGB8888:
2073 	case DRM_FORMAT_ARGB8888:
2074 	case DRM_FORMAT_RGBA8888:
2075 	case DRM_FORMAT_RGBX8888:
2076 		return 32;
2077 	default:
2078 		BUG();
2079 		return 0;
2080 	}
2081 }
2082 
2083 static s32 pixinc(int pixels, u8 ps)
2084 {
2085 	if (pixels == 1)
2086 		return 1;
2087 	else if (pixels > 1)
2088 		return 1 + (pixels - 1) * ps;
2089 	else if (pixels < 0)
2090 		return 1 - (-pixels + 1) * ps;
2091 	else
2092 		BUG();
2093 		return 0;
2094 }
2095 
2096 static void calc_offset(u16 screen_width, u16 width,
2097 		u32 fourcc, bool fieldmode, unsigned int field_offset,
2098 		unsigned int *offset0, unsigned int *offset1,
2099 		s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2100 		enum omap_dss_rotation_type rotation_type, u8 rotation)
2101 {
2102 	u8 ps;
2103 
2104 	ps = color_mode_to_bpp(fourcc) / 8;
2105 
2106 	DSSDBG("scrw %d, width %d\n", screen_width, width);
2107 
2108 	if (rotation_type == OMAP_DSS_ROT_TILER &&
2109 	    (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2110 	    drm_rotation_90_or_270(rotation)) {
2111 		/*
2112 		 * HACK: ROW_INC needs to be calculated with TILER units.
2113 		 * We get such 'screen_width' that multiplying it with the
2114 		 * YUV422 pixel size gives the correct TILER container width.
2115 		 * However, 'width' is in pixels and multiplying it with YUV422
2116 		 * pixel size gives incorrect result. We thus multiply it here
2117 		 * with 2 to match the 32 bit TILER unit size.
2118 		 */
2119 		width *= 2;
2120 	}
2121 
2122 	/*
2123 	 * field 0 = even field = bottom field
2124 	 * field 1 = odd field = top field
2125 	 */
2126 	*offset0 = field_offset * screen_width * ps;
2127 	*offset1 = 0;
2128 
2129 	*row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2130 			(fieldmode ? screen_width : 0), ps);
2131 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2132 		*pix_inc = pixinc(x_predecim, 2 * ps);
2133 	else
2134 		*pix_inc = pixinc(x_predecim, ps);
2135 }
2136 
2137 /*
2138  * This function is used to avoid synclosts in OMAP3, because of some
2139  * undocumented horizontal position and timing related limitations.
2140  */
2141 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2142 		const struct videomode *vm, u16 pos_x,
2143 		u16 width, u16 height, u16 out_width, u16 out_height,
2144 		bool five_taps)
2145 {
2146 	const int ds = DIV_ROUND_UP(height, out_height);
2147 	unsigned long nonactive;
2148 	static const u8 limits[3] = { 8, 10, 20 };
2149 	u64 val, blank;
2150 	int i;
2151 
2152 	nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2153 		    vm->hback_porch - out_width;
2154 
2155 	i = 0;
2156 	if (out_height < height)
2157 		i++;
2158 	if (out_width < width)
2159 		i++;
2160 	blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2161 			lclk, pclk);
2162 	DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2163 	if (blank <= limits[i])
2164 		return -EINVAL;
2165 
2166 	/* FIXME add checks for 3-tap filter once the limitations are known */
2167 	if (!five_taps)
2168 		return 0;
2169 
2170 	/*
2171 	 * Pixel data should be prepared before visible display point starts.
2172 	 * So, atleast DS-2 lines must have already been fetched by DISPC
2173 	 * during nonactive - pos_x period.
2174 	 */
2175 	val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2176 	DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2177 		val, max(0, ds - 2) * width);
2178 	if (val < max(0, ds - 2) * width)
2179 		return -EINVAL;
2180 
2181 	/*
2182 	 * All lines need to be refilled during the nonactive period of which
2183 	 * only one line can be loaded during the active period. So, atleast
2184 	 * DS - 1 lines should be loaded during nonactive period.
2185 	 */
2186 	val =  div_u64((u64)nonactive * lclk, pclk);
2187 	DSSDBG("nonactive * pcd  = %llu, max(0, DS - 1) * width = %d\n",
2188 		val, max(0, ds - 1) * width);
2189 	if (val < max(0, ds - 1) * width)
2190 		return -EINVAL;
2191 
2192 	return 0;
2193 }
2194 
2195 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2196 		const struct videomode *vm, u16 width,
2197 		u16 height, u16 out_width, u16 out_height,
2198 		u32 fourcc)
2199 {
2200 	u32 core_clk = 0;
2201 	u64 tmp;
2202 
2203 	if (height <= out_height && width <= out_width)
2204 		return (unsigned long) pclk;
2205 
2206 	if (height > out_height) {
2207 		unsigned int ppl = vm->hactive;
2208 
2209 		tmp = (u64)pclk * height * out_width;
2210 		do_div(tmp, 2 * out_height * ppl);
2211 		core_clk = tmp;
2212 
2213 		if (height > 2 * out_height) {
2214 			if (ppl == out_width)
2215 				return 0;
2216 
2217 			tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2218 			do_div(tmp, 2 * out_height * (ppl - out_width));
2219 			core_clk = max_t(u32, core_clk, tmp);
2220 		}
2221 	}
2222 
2223 	if (width > out_width) {
2224 		tmp = (u64)pclk * width;
2225 		do_div(tmp, out_width);
2226 		core_clk = max_t(u32, core_clk, tmp);
2227 
2228 		if (fourcc == DRM_FORMAT_XRGB8888)
2229 			core_clk <<= 1;
2230 	}
2231 
2232 	return core_clk;
2233 }
2234 
2235 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2236 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2237 {
2238 	if (height > out_height && width > out_width)
2239 		return pclk * 4;
2240 	else
2241 		return pclk * 2;
2242 }
2243 
2244 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2245 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2246 {
2247 	unsigned int hf, vf;
2248 
2249 	/*
2250 	 * FIXME how to determine the 'A' factor
2251 	 * for the no downscaling case ?
2252 	 */
2253 
2254 	if (width > 3 * out_width)
2255 		hf = 4;
2256 	else if (width > 2 * out_width)
2257 		hf = 3;
2258 	else if (width > out_width)
2259 		hf = 2;
2260 	else
2261 		hf = 1;
2262 	if (height > out_height)
2263 		vf = 2;
2264 	else
2265 		vf = 1;
2266 
2267 	return pclk * vf * hf;
2268 }
2269 
2270 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2271 		u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2272 {
2273 	/*
2274 	 * If the overlay/writeback is in mem to mem mode, there are no
2275 	 * downscaling limitations with respect to pixel clock, return 1 as
2276 	 * required core clock to represent that we have sufficient enough
2277 	 * core clock to do maximum downscaling
2278 	 */
2279 	if (mem_to_mem)
2280 		return 1;
2281 
2282 	if (width > out_width)
2283 		return DIV_ROUND_UP(pclk, out_width) * width;
2284 	else
2285 		return pclk;
2286 }
2287 
2288 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2289 				       unsigned long pclk, unsigned long lclk,
2290 				       const struct videomode *vm,
2291 				       u16 width, u16 height,
2292 				       u16 out_width, u16 out_height,
2293 				       u32 fourcc, bool *five_taps,
2294 				       int *x_predecim, int *y_predecim,
2295 				       int *decim_x, int *decim_y,
2296 				       u16 pos_x, unsigned long *core_clk,
2297 				       bool mem_to_mem)
2298 {
2299 	int error;
2300 	u16 in_width, in_height;
2301 	int min_factor = min(*decim_x, *decim_y);
2302 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2303 
2304 	*five_taps = false;
2305 
2306 	do {
2307 		in_height = height / *decim_y;
2308 		in_width = width / *decim_x;
2309 		*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2310 				in_height, out_width, out_height, mem_to_mem);
2311 		error = (in_width > maxsinglelinewidth || !*core_clk ||
2312 			*core_clk > dispc_core_clk_rate(dispc));
2313 		if (error) {
2314 			if (*decim_x == *decim_y) {
2315 				*decim_x = min_factor;
2316 				++*decim_y;
2317 			} else {
2318 				swap(*decim_x, *decim_y);
2319 				if (*decim_x < *decim_y)
2320 					++*decim_x;
2321 			}
2322 		}
2323 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2324 
2325 	if (error) {
2326 		DSSERR("failed to find scaling settings\n");
2327 		return -EINVAL;
2328 	}
2329 
2330 	if (in_width > maxsinglelinewidth) {
2331 		DSSERR("Cannot scale max input width exceeded\n");
2332 		return -EINVAL;
2333 	}
2334 	return 0;
2335 }
2336 
2337 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2338 				       unsigned long pclk, unsigned long lclk,
2339 				       const struct videomode *vm,
2340 				       u16 width, u16 height,
2341 				       u16 out_width, u16 out_height,
2342 				       u32 fourcc, bool *five_taps,
2343 				       int *x_predecim, int *y_predecim,
2344 				       int *decim_x, int *decim_y,
2345 				       u16 pos_x, unsigned long *core_clk,
2346 				       bool mem_to_mem)
2347 {
2348 	int error;
2349 	u16 in_width, in_height;
2350 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2351 
2352 	do {
2353 		in_height = height / *decim_y;
2354 		in_width = width / *decim_x;
2355 		*five_taps = in_height > out_height;
2356 
2357 		if (in_width > maxsinglelinewidth)
2358 			if (in_height > out_height &&
2359 						in_height < out_height * 2)
2360 				*five_taps = false;
2361 again:
2362 		if (*five_taps)
2363 			*core_clk = calc_core_clk_five_taps(pclk, vm,
2364 						in_width, in_height, out_width,
2365 						out_height, fourcc);
2366 		else
2367 			*core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2368 					in_height, out_width, out_height,
2369 					mem_to_mem);
2370 
2371 		error = check_horiz_timing_omap3(pclk, lclk, vm,
2372 				pos_x, in_width, in_height, out_width,
2373 				out_height, *five_taps);
2374 		if (error && *five_taps) {
2375 			*five_taps = false;
2376 			goto again;
2377 		}
2378 
2379 		error = (error || in_width > maxsinglelinewidth * 2 ||
2380 			(in_width > maxsinglelinewidth && *five_taps) ||
2381 			!*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2382 
2383 		if (!error) {
2384 			/* verify that we're inside the limits of scaler */
2385 			if (in_width / 4 > out_width)
2386 					error = 1;
2387 
2388 			if (*five_taps) {
2389 				if (in_height / 4 > out_height)
2390 					error = 1;
2391 			} else {
2392 				if (in_height / 2 > out_height)
2393 					error = 1;
2394 			}
2395 		}
2396 
2397 		if (error)
2398 			++*decim_y;
2399 	} while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2400 
2401 	if (error) {
2402 		DSSERR("failed to find scaling settings\n");
2403 		return -EINVAL;
2404 	}
2405 
2406 	if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2407 				in_height, out_width, out_height, *five_taps)) {
2408 			DSSERR("horizontal timing too tight\n");
2409 			return -EINVAL;
2410 	}
2411 
2412 	if (in_width > (maxsinglelinewidth * 2)) {
2413 		DSSERR("Cannot setup scaling\n");
2414 		DSSERR("width exceeds maximum width possible\n");
2415 		return -EINVAL;
2416 	}
2417 
2418 	if (in_width > maxsinglelinewidth && *five_taps) {
2419 		DSSERR("cannot setup scaling with five taps\n");
2420 		return -EINVAL;
2421 	}
2422 	return 0;
2423 }
2424 
2425 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2426 				       unsigned long pclk, unsigned long lclk,
2427 				       const struct videomode *vm,
2428 				       u16 width, u16 height,
2429 				       u16 out_width, u16 out_height,
2430 				       u32 fourcc, bool *five_taps,
2431 				       int *x_predecim, int *y_predecim,
2432 				       int *decim_x, int *decim_y,
2433 				       u16 pos_x, unsigned long *core_clk,
2434 				       bool mem_to_mem)
2435 {
2436 	u16 in_width, in_width_max;
2437 	int decim_x_min = *decim_x;
2438 	u16 in_height = height / *decim_y;
2439 	const int maxsinglelinewidth = dispc->feat->max_line_width;
2440 	const int maxdownscale = dispc->feat->max_downscale;
2441 
2442 	if (mem_to_mem) {
2443 		in_width_max = out_width * maxdownscale;
2444 	} else {
2445 		in_width_max = dispc_core_clk_rate(dispc)
2446 			     / DIV_ROUND_UP(pclk, out_width);
2447 	}
2448 
2449 	*decim_x = DIV_ROUND_UP(width, in_width_max);
2450 
2451 	*decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2452 	if (*decim_x > *x_predecim)
2453 		return -EINVAL;
2454 
2455 	do {
2456 		in_width = width / *decim_x;
2457 	} while (*decim_x <= *x_predecim &&
2458 			in_width > maxsinglelinewidth && ++*decim_x);
2459 
2460 	if (in_width > maxsinglelinewidth) {
2461 		DSSERR("Cannot scale width exceeds max line width\n");
2462 		return -EINVAL;
2463 	}
2464 
2465 	if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2466 		/*
2467 		 * Let's disable all scaling that requires horizontal
2468 		 * decimation with higher factor than 4, until we have
2469 		 * better estimates of what we can and can not
2470 		 * do. However, NV12 color format appears to work Ok
2471 		 * with all decimation factors.
2472 		 *
2473 		 * When decimating horizontally by more that 4 the dss
2474 		 * is not able to fetch the data in burst mode. When
2475 		 * this happens it is hard to tell if there enough
2476 		 * bandwidth. Despite what theory says this appears to
2477 		 * be true also for 16-bit color formats.
2478 		 */
2479 		DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2480 
2481 		return -EINVAL;
2482 	}
2483 
2484 	*core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2485 				out_width, out_height, mem_to_mem);
2486 	return 0;
2487 }
2488 
2489 #define DIV_FRAC(dividend, divisor) \
2490 	((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2491 
2492 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2493 				  enum omap_plane_id plane,
2494 				  unsigned long pclk, unsigned long lclk,
2495 				  enum omap_overlay_caps caps,
2496 				  const struct videomode *vm,
2497 				  u16 width, u16 height,
2498 				  u16 out_width, u16 out_height,
2499 				  u32 fourcc, bool *five_taps,
2500 				  int *x_predecim, int *y_predecim, u16 pos_x,
2501 				  enum omap_dss_rotation_type rotation_type,
2502 				  bool mem_to_mem)
2503 {
2504 	int maxhdownscale = dispc->feat->max_downscale;
2505 	int maxvdownscale = dispc->feat->max_downscale;
2506 	const int max_decim_limit = 16;
2507 	unsigned long core_clk = 0;
2508 	int decim_x, decim_y, ret;
2509 
2510 	if (width == out_width && height == out_height)
2511 		return 0;
2512 
2513 	if (plane == OMAP_DSS_WB) {
2514 		switch (fourcc) {
2515 		case DRM_FORMAT_NV12:
2516 			maxhdownscale = maxvdownscale = 2;
2517 			break;
2518 		case DRM_FORMAT_YUYV:
2519 		case DRM_FORMAT_UYVY:
2520 			maxhdownscale = 2;
2521 			maxvdownscale = 4;
2522 			break;
2523 		default:
2524 			break;
2525 		}
2526 	}
2527 	if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2528 		DSSERR("cannot calculate scaling settings: pclk is zero\n");
2529 		return -EINVAL;
2530 	}
2531 
2532 	if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2533 		return -EINVAL;
2534 
2535 	if (mem_to_mem) {
2536 		*x_predecim = *y_predecim = 1;
2537 	} else {
2538 		*x_predecim = max_decim_limit;
2539 		*y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2540 				dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2541 				2 : max_decim_limit;
2542 	}
2543 
2544 	decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2545 	decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2546 
2547 	if (decim_x > *x_predecim || out_width > width * 8)
2548 		return -EINVAL;
2549 
2550 	if (decim_y > *y_predecim || out_height > height * 8)
2551 		return -EINVAL;
2552 
2553 	ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2554 					out_width, out_height, fourcc,
2555 					five_taps, x_predecim, y_predecim,
2556 					&decim_x, &decim_y, pos_x, &core_clk,
2557 					mem_to_mem);
2558 	if (ret)
2559 		return ret;
2560 
2561 	DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2562 		width, height,
2563 		out_width, out_height,
2564 		out_width / width, DIV_FRAC(out_width, width),
2565 		out_height / height, DIV_FRAC(out_height, height),
2566 
2567 		decim_x, decim_y,
2568 		width / decim_x, height / decim_y,
2569 		out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2570 		out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2571 
2572 		*five_taps ? 5 : 3,
2573 		core_clk, dispc_core_clk_rate(dispc));
2574 
2575 	if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2576 		DSSERR("failed to set up scaling, "
2577 			"required core clk rate = %lu Hz, "
2578 			"current core clk rate = %lu Hz\n",
2579 			core_clk, dispc_core_clk_rate(dispc));
2580 		return -EINVAL;
2581 	}
2582 
2583 	*x_predecim = decim_x;
2584 	*y_predecim = decim_y;
2585 	return 0;
2586 }
2587 
2588 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2589 				  enum omap_plane_id plane,
2590 				  enum omap_overlay_caps caps,
2591 				  u32 paddr, u32 p_uv_addr,
2592 				  u16 screen_width, int pos_x, int pos_y,
2593 				  u16 width, u16 height,
2594 				  u16 out_width, u16 out_height,
2595 				  u32 fourcc, u8 rotation, u8 zorder,
2596 				  u8 pre_mult_alpha, u8 global_alpha,
2597 				  enum omap_dss_rotation_type rotation_type,
2598 				  bool replication, const struct videomode *vm,
2599 				  bool mem_to_mem)
2600 {
2601 	bool five_taps = true;
2602 	bool fieldmode = false;
2603 	int r, cconv = 0;
2604 	unsigned int offset0, offset1;
2605 	s32 row_inc;
2606 	s32 pix_inc;
2607 	u16 frame_width;
2608 	unsigned int field_offset = 0;
2609 	u16 in_height = height;
2610 	u16 in_width = width;
2611 	int x_predecim = 1, y_predecim = 1;
2612 	bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2613 	unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2614 	unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2615 	const struct drm_format_info *info;
2616 
2617 	info = drm_format_info(fourcc);
2618 
2619 	/* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2620 	if (plane == OMAP_DSS_WB)
2621 		pclk = vm->pixelclock;
2622 
2623 	if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2624 		return -EINVAL;
2625 
2626 	if (info->is_yuv && (in_width & 1)) {
2627 		DSSERR("input width %d is not even for YUV format\n", in_width);
2628 		return -EINVAL;
2629 	}
2630 
2631 	out_width = out_width == 0 ? width : out_width;
2632 	out_height = out_height == 0 ? height : out_height;
2633 
2634 	if (plane != OMAP_DSS_WB) {
2635 		if (ilace && height == out_height)
2636 			fieldmode = true;
2637 
2638 		if (ilace) {
2639 			if (fieldmode)
2640 				in_height /= 2;
2641 			pos_y /= 2;
2642 			out_height /= 2;
2643 
2644 			DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2645 				in_height, pos_y, out_height);
2646 		}
2647 	}
2648 
2649 	if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2650 		return -EINVAL;
2651 
2652 	r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2653 				   in_height, out_width, out_height, fourcc,
2654 				   &five_taps, &x_predecim, &y_predecim, pos_x,
2655 				   rotation_type, mem_to_mem);
2656 	if (r)
2657 		return r;
2658 
2659 	in_width = in_width / x_predecim;
2660 	in_height = in_height / y_predecim;
2661 
2662 	if (x_predecim > 1 || y_predecim > 1)
2663 		DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2664 			x_predecim, y_predecim, in_width, in_height);
2665 
2666 	if (info->is_yuv && (in_width & 1)) {
2667 		DSSDBG("predecimated input width is not even for YUV format\n");
2668 		DSSDBG("adjusting input width %d -> %d\n",
2669 			in_width, in_width & ~1);
2670 
2671 		in_width &= ~1;
2672 	}
2673 
2674 	if (info->is_yuv)
2675 		cconv = 1;
2676 
2677 	if (ilace && !fieldmode) {
2678 		/*
2679 		 * when downscaling the bottom field may have to start several
2680 		 * source lines below the top field. Unfortunately ACCUI
2681 		 * registers will only hold the fractional part of the offset
2682 		 * so the integer part must be added to the base address of the
2683 		 * bottom field.
2684 		 */
2685 		if (!in_height || in_height == out_height)
2686 			field_offset = 0;
2687 		else
2688 			field_offset = in_height / out_height / 2;
2689 	}
2690 
2691 	/* Fields are independent but interleaved in memory. */
2692 	if (fieldmode)
2693 		field_offset = 1;
2694 
2695 	offset0 = 0;
2696 	offset1 = 0;
2697 	row_inc = 0;
2698 	pix_inc = 0;
2699 
2700 	if (plane == OMAP_DSS_WB)
2701 		frame_width = out_width;
2702 	else
2703 		frame_width = in_width;
2704 
2705 	calc_offset(screen_width, frame_width,
2706 			fourcc, fieldmode, field_offset,
2707 			&offset0, &offset1, &row_inc, &pix_inc,
2708 			x_predecim, y_predecim,
2709 			rotation_type, rotation);
2710 
2711 	DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2712 			offset0, offset1, row_inc, pix_inc);
2713 
2714 	dispc_ovl_set_color_mode(dispc, plane, fourcc);
2715 
2716 	dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2717 
2718 	if (dispc->feat->reverse_ilace_field_order)
2719 		swap(offset0, offset1);
2720 
2721 	dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2722 	dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2723 
2724 	if (fourcc == DRM_FORMAT_NV12) {
2725 		dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2726 		dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2727 	}
2728 
2729 	if (dispc->feat->last_pixel_inc_missing)
2730 		row_inc += pix_inc - 1;
2731 
2732 	dispc_ovl_set_row_inc(dispc, plane, row_inc);
2733 	dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2734 
2735 	DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2736 			in_height, out_width, out_height);
2737 
2738 	dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2739 
2740 	dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2741 
2742 	if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2743 		dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2744 				      out_width, out_height, ilace, five_taps,
2745 				      fieldmode, fourcc, rotation);
2746 		dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2747 		dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2748 	}
2749 
2750 	dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2751 				     fourcc);
2752 
2753 	dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2754 	dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2755 	dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2756 
2757 	dispc_ovl_enable_replication(dispc, plane, caps, replication);
2758 
2759 	return 0;
2760 }
2761 
2762 static int dispc_ovl_setup(struct dispc_device *dispc,
2763 			   enum omap_plane_id plane,
2764 			   const struct omap_overlay_info *oi,
2765 			   const struct videomode *vm, bool mem_to_mem,
2766 			   enum omap_channel channel)
2767 {
2768 	int r;
2769 	enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2770 	const bool replication = true;
2771 
2772 	DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2773 		" %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2774 		plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2775 		oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2776 		oi->fourcc, oi->rotation, channel, replication);
2777 
2778 	dispc_ovl_set_channel_out(dispc, plane, channel);
2779 
2780 	r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2781 		oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2782 		oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2783 		oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2784 		oi->rotation_type, replication, vm, mem_to_mem);
2785 
2786 	return r;
2787 }
2788 
2789 static int dispc_wb_setup(struct dispc_device *dispc,
2790 		   const struct omap_dss_writeback_info *wi,
2791 		   bool mem_to_mem, const struct videomode *vm,
2792 		   enum dss_writeback_channel channel_in)
2793 {
2794 	int r;
2795 	u32 l;
2796 	enum omap_plane_id plane = OMAP_DSS_WB;
2797 	const int pos_x = 0, pos_y = 0;
2798 	const u8 zorder = 0, global_alpha = 0;
2799 	const bool replication = true;
2800 	bool truncation;
2801 	int in_width = vm->hactive;
2802 	int in_height = vm->vactive;
2803 	enum omap_overlay_caps caps =
2804 		OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2805 
2806 	if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2807 		in_height /= 2;
2808 
2809 	DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2810 		"rot %d\n", wi->paddr, wi->p_uv_addr, in_width,
2811 		in_height, wi->width, wi->height, wi->fourcc, wi->rotation);
2812 
2813 	r = dispc_ovl_setup_common(dispc, plane, caps, wi->paddr, wi->p_uv_addr,
2814 		wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2815 		wi->height, wi->fourcc, wi->rotation, zorder,
2816 		wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2817 		replication, vm, mem_to_mem);
2818 	if (r)
2819 		return r;
2820 
2821 	switch (wi->fourcc) {
2822 	case DRM_FORMAT_RGB565:
2823 	case DRM_FORMAT_RGB888:
2824 	case DRM_FORMAT_ARGB4444:
2825 	case DRM_FORMAT_RGBA4444:
2826 	case DRM_FORMAT_RGBX4444:
2827 	case DRM_FORMAT_ARGB1555:
2828 	case DRM_FORMAT_XRGB1555:
2829 	case DRM_FORMAT_XRGB4444:
2830 		truncation = true;
2831 		break;
2832 	default:
2833 		truncation = false;
2834 		break;
2835 	}
2836 
2837 	/* setup extra DISPC_WB_ATTRIBUTES */
2838 	l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
2839 	l = FLD_MOD(l, truncation, 10, 10);	/* TRUNCATIONENABLE */
2840 	l = FLD_MOD(l, channel_in, 18, 16);	/* CHANNELIN */
2841 	l = FLD_MOD(l, mem_to_mem, 19, 19);	/* WRITEBACKMODE */
2842 	if (mem_to_mem)
2843 		l = FLD_MOD(l, 1, 26, 24);	/* CAPTUREMODE */
2844 	else
2845 		l = FLD_MOD(l, 0, 26, 24);	/* CAPTUREMODE */
2846 	dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
2847 
2848 	if (mem_to_mem) {
2849 		/* WBDELAYCOUNT */
2850 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), 0, 7, 0);
2851 	} else {
2852 		u32 wbdelay;
2853 
2854 		if (channel_in == DSS_WB_TV_MGR)
2855 			wbdelay = vm->vsync_len + vm->vback_porch;
2856 		else
2857 			wbdelay = vm->vfront_porch + vm->vsync_len +
2858 				vm->vback_porch;
2859 
2860 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
2861 			wbdelay /= 2;
2862 
2863 		wbdelay = min(wbdelay, 255u);
2864 
2865 		/* WBDELAYCOUNT */
2866 		REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane), wbdelay, 7, 0);
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static bool dispc_has_writeback(struct dispc_device *dispc)
2873 {
2874 	return dispc->feat->has_writeback;
2875 }
2876 
2877 static int dispc_ovl_enable(struct dispc_device *dispc,
2878 			    enum omap_plane_id plane, bool enable)
2879 {
2880 	DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2881 
2882 	REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2883 
2884 	return 0;
2885 }
2886 
2887 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2888 					     bool act_high)
2889 {
2890 	if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2891 		return;
2892 
2893 	REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2894 }
2895 
2896 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2897 {
2898 	if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2899 		return;
2900 
2901 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2902 }
2903 
2904 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2905 {
2906 	if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2907 		return;
2908 
2909 	REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2910 }
2911 
2912 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2913 					   enum omap_channel channel,
2914 					   bool enable)
2915 {
2916 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2917 }
2918 
2919 
2920 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2921 				       enum omap_channel channel)
2922 {
2923 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2924 }
2925 
2926 static void dispc_set_loadmode(struct dispc_device *dispc,
2927 			       enum omap_dss_load_mode mode)
2928 {
2929 	REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2930 }
2931 
2932 
2933 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2934 					enum omap_channel channel, u32 color)
2935 {
2936 	dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2937 }
2938 
2939 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2940 				    enum omap_channel ch,
2941 				    enum omap_dss_trans_key_type type,
2942 				    u32 trans_key)
2943 {
2944 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2945 
2946 	dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2947 }
2948 
2949 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2950 				       enum omap_channel ch, bool enable)
2951 {
2952 	mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2953 }
2954 
2955 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2956 						enum omap_channel ch,
2957 						bool enable)
2958 {
2959 	if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2960 		return;
2961 
2962 	if (ch == OMAP_DSS_CHANNEL_LCD)
2963 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2964 	else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2965 		REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2966 }
2967 
2968 static void dispc_mgr_setup(struct dispc_device *dispc,
2969 			    enum omap_channel channel,
2970 			    const struct omap_overlay_manager_info *info)
2971 {
2972 	dispc_mgr_set_default_color(dispc, channel, info->default_color);
2973 	dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
2974 				info->trans_key);
2975 	dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
2976 	dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
2977 			info->partial_alpha_enabled);
2978 	if (dispc_has_feature(dispc, FEAT_CPR)) {
2979 		dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
2980 		dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
2981 	}
2982 }
2983 
2984 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
2985 					 enum omap_channel channel,
2986 					 u8 data_lines)
2987 {
2988 	int code;
2989 
2990 	switch (data_lines) {
2991 	case 12:
2992 		code = 0;
2993 		break;
2994 	case 16:
2995 		code = 1;
2996 		break;
2997 	case 18:
2998 		code = 2;
2999 		break;
3000 	case 24:
3001 		code = 3;
3002 		break;
3003 	default:
3004 		BUG();
3005 		return;
3006 	}
3007 
3008 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
3009 }
3010 
3011 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
3012 				      enum dss_io_pad_mode mode)
3013 {
3014 	u32 l;
3015 	int gpout0, gpout1;
3016 
3017 	switch (mode) {
3018 	case DSS_IO_PAD_MODE_RESET:
3019 		gpout0 = 0;
3020 		gpout1 = 0;
3021 		break;
3022 	case DSS_IO_PAD_MODE_RFBI:
3023 		gpout0 = 1;
3024 		gpout1 = 0;
3025 		break;
3026 	case DSS_IO_PAD_MODE_BYPASS:
3027 		gpout0 = 1;
3028 		gpout1 = 1;
3029 		break;
3030 	default:
3031 		BUG();
3032 		return;
3033 	}
3034 
3035 	l = dispc_read_reg(dispc, DISPC_CONTROL);
3036 	l = FLD_MOD(l, gpout0, 15, 15);
3037 	l = FLD_MOD(l, gpout1, 16, 16);
3038 	dispc_write_reg(dispc, DISPC_CONTROL, l);
3039 }
3040 
3041 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
3042 				       enum omap_channel channel, bool enable)
3043 {
3044 	mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
3045 }
3046 
3047 static void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
3048 				     enum omap_channel channel,
3049 				     const struct dss_lcd_mgr_config *config)
3050 {
3051 	dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
3052 
3053 	dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
3054 	dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
3055 
3056 	dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
3057 
3058 	dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
3059 
3060 	dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
3061 
3062 	dispc_mgr_set_lcd_type_tft(dispc, channel);
3063 }
3064 
3065 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
3066 			       u16 width, u16 height)
3067 {
3068 	return width <= dispc->feat->mgr_width_max &&
3069 		height <= dispc->feat->mgr_height_max;
3070 }
3071 
3072 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
3073 				  int hsync_len, int hfp, int hbp,
3074 				  int vsw, int vfp, int vbp)
3075 {
3076 	if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
3077 	    hfp < 1 || hfp > dispc->feat->hp_max ||
3078 	    hbp < 1 || hbp > dispc->feat->hp_max ||
3079 	    vsw < 1 || vsw > dispc->feat->sw_max ||
3080 	    vfp < 0 || vfp > dispc->feat->vp_max ||
3081 	    vbp < 0 || vbp > dispc->feat->vp_max)
3082 		return false;
3083 	return true;
3084 }
3085 
3086 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
3087 			       enum omap_channel channel,
3088 			       unsigned long pclk)
3089 {
3090 	if (dss_mgr_is_lcd(channel))
3091 		return pclk <= dispc->feat->max_lcd_pclk;
3092 	else
3093 		return pclk <= dispc->feat->max_tv_pclk;
3094 }
3095 
3096 static int dispc_mgr_check_timings(struct dispc_device *dispc,
3097 				   enum omap_channel channel,
3098 				   const struct videomode *vm)
3099 {
3100 	if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3101 		return MODE_BAD;
3102 
3103 	if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3104 		return MODE_BAD;
3105 
3106 	if (dss_mgr_is_lcd(channel)) {
3107 		/* TODO: OMAP4+ supports interlace for LCD outputs */
3108 		if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3109 			return MODE_BAD;
3110 
3111 		if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3112 				vm->hfront_porch, vm->hback_porch,
3113 				vm->vsync_len, vm->vfront_porch,
3114 				vm->vback_porch))
3115 			return MODE_BAD;
3116 	}
3117 
3118 	return MODE_OK;
3119 }
3120 
3121 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3122 				       enum omap_channel channel,
3123 				       const struct videomode *vm)
3124 {
3125 	u32 timing_h, timing_v, l;
3126 	bool onoff, rf, ipc, vs, hs, de;
3127 
3128 	timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3129 		   FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3130 		   FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3131 	timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3132 		   FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3133 		   FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3134 
3135 	dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3136 	dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3137 
3138 	if (vm->flags & DISPLAY_FLAGS_VSYNC_HIGH)
3139 		vs = false;
3140 	else
3141 		vs = true;
3142 
3143 	if (vm->flags & DISPLAY_FLAGS_HSYNC_HIGH)
3144 		hs = false;
3145 	else
3146 		hs = true;
3147 
3148 	if (vm->flags & DISPLAY_FLAGS_DE_HIGH)
3149 		de = false;
3150 	else
3151 		de = true;
3152 
3153 	if (vm->flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
3154 		ipc = false;
3155 	else
3156 		ipc = true;
3157 
3158 	/* always use the 'rf' setting */
3159 	onoff = true;
3160 
3161 	if (vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE)
3162 		rf = true;
3163 	else
3164 		rf = false;
3165 
3166 	l = FLD_VAL(onoff, 17, 17) |
3167 		FLD_VAL(rf, 16, 16) |
3168 		FLD_VAL(de, 15, 15) |
3169 		FLD_VAL(ipc, 14, 14) |
3170 		FLD_VAL(hs, 13, 13) |
3171 		FLD_VAL(vs, 12, 12);
3172 
3173 	/* always set ALIGN bit when available */
3174 	if (dispc->feat->supports_sync_align)
3175 		l |= (1 << 18);
3176 
3177 	dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3178 
3179 	if (dispc->syscon_pol) {
3180 		const int shifts[] = {
3181 			[OMAP_DSS_CHANNEL_LCD] = 0,
3182 			[OMAP_DSS_CHANNEL_LCD2] = 1,
3183 			[OMAP_DSS_CHANNEL_LCD3] = 2,
3184 		};
3185 
3186 		u32 mask, val;
3187 
3188 		mask = (1 << 0) | (1 << 3) | (1 << 6);
3189 		val = (rf << 0) | (ipc << 3) | (onoff << 6);
3190 
3191 		mask <<= 16 + shifts[channel];
3192 		val <<= 16 + shifts[channel];
3193 
3194 		regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3195 				   mask, val);
3196 	}
3197 }
3198 
3199 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3200 	enum display_flags low)
3201 {
3202 	if (flags & high)
3203 		return 1;
3204 	if (flags & low)
3205 		return -1;
3206 	return 0;
3207 }
3208 
3209 /* change name to mode? */
3210 static void dispc_mgr_set_timings(struct dispc_device *dispc,
3211 				  enum omap_channel channel,
3212 				  const struct videomode *vm)
3213 {
3214 	unsigned int xtot, ytot;
3215 	unsigned long ht, vt;
3216 	struct videomode t = *vm;
3217 
3218 	DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3219 
3220 	if (dispc_mgr_check_timings(dispc, channel, &t)) {
3221 		BUG();
3222 		return;
3223 	}
3224 
3225 	if (dss_mgr_is_lcd(channel)) {
3226 		_dispc_mgr_set_lcd_timings(dispc, channel, &t);
3227 
3228 		xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3229 		ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3230 
3231 		ht = vm->pixelclock / xtot;
3232 		vt = vm->pixelclock / xtot / ytot;
3233 
3234 		DSSDBG("pck %lu\n", vm->pixelclock);
3235 		DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3236 			t.hsync_len, t.hfront_porch, t.hback_porch,
3237 			t.vsync_len, t.vfront_porch, t.vback_porch);
3238 		DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3239 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3240 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3241 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3242 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3243 			vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3244 
3245 		DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3246 	} else {
3247 		if (t.flags & DISPLAY_FLAGS_INTERLACED)
3248 			t.vactive /= 2;
3249 
3250 		if (dispc->feat->supports_double_pixel)
3251 			REG_FLD_MOD(dispc, DISPC_CONTROL,
3252 				    !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3253 				    19, 17);
3254 	}
3255 
3256 	dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3257 }
3258 
3259 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3260 				      enum omap_channel channel, u16 lck_div,
3261 				      u16 pck_div)
3262 {
3263 	BUG_ON(lck_div < 1);
3264 	BUG_ON(pck_div < 1);
3265 
3266 	dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3267 			FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3268 
3269 	if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3270 			channel == OMAP_DSS_CHANNEL_LCD)
3271 		dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3272 }
3273 
3274 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3275 				      enum omap_channel channel, int *lck_div,
3276 				      int *pck_div)
3277 {
3278 	u32 l;
3279 	l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3280 	*lck_div = FLD_GET(l, 23, 16);
3281 	*pck_div = FLD_GET(l, 7, 0);
3282 }
3283 
3284 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3285 {
3286 	unsigned long r;
3287 	enum dss_clk_source src;
3288 
3289 	src = dss_get_dispc_clk_source(dispc->dss);
3290 
3291 	if (src == DSS_CLK_SRC_FCK) {
3292 		r = dss_get_dispc_clk_rate(dispc->dss);
3293 	} else {
3294 		struct dss_pll *pll;
3295 		unsigned int clkout_idx;
3296 
3297 		pll = dss_pll_find_by_src(dispc->dss, src);
3298 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3299 
3300 		r = pll->cinfo.clkout[clkout_idx];
3301 	}
3302 
3303 	return r;
3304 }
3305 
3306 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3307 					 enum omap_channel channel)
3308 {
3309 	int lcd;
3310 	unsigned long r;
3311 	enum dss_clk_source src;
3312 
3313 	/* for TV, LCLK rate is the FCLK rate */
3314 	if (!dss_mgr_is_lcd(channel))
3315 		return dispc_fclk_rate(dispc);
3316 
3317 	src = dss_get_lcd_clk_source(dispc->dss, channel);
3318 
3319 	if (src == DSS_CLK_SRC_FCK) {
3320 		r = dss_get_dispc_clk_rate(dispc->dss);
3321 	} else {
3322 		struct dss_pll *pll;
3323 		unsigned int clkout_idx;
3324 
3325 		pll = dss_pll_find_by_src(dispc->dss, src);
3326 		clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3327 
3328 		r = pll->cinfo.clkout[clkout_idx];
3329 	}
3330 
3331 	lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3332 
3333 	return r / lcd;
3334 }
3335 
3336 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3337 					 enum omap_channel channel)
3338 {
3339 	unsigned long r;
3340 
3341 	if (dss_mgr_is_lcd(channel)) {
3342 		int pcd;
3343 		u32 l;
3344 
3345 		l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3346 
3347 		pcd = FLD_GET(l, 7, 0);
3348 
3349 		r = dispc_mgr_lclk_rate(dispc, channel);
3350 
3351 		return r / pcd;
3352 	} else {
3353 		return dispc->tv_pclk_rate;
3354 	}
3355 }
3356 
3357 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3358 {
3359 	dispc->tv_pclk_rate = pclk;
3360 }
3361 
3362 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3363 {
3364 	return dispc->core_clk_rate;
3365 }
3366 
3367 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3368 					   enum omap_plane_id plane)
3369 {
3370 	enum omap_channel channel;
3371 
3372 	if (plane == OMAP_DSS_WB)
3373 		return 0;
3374 
3375 	channel = dispc_ovl_get_channel_out(dispc, plane);
3376 
3377 	return dispc_mgr_pclk_rate(dispc, channel);
3378 }
3379 
3380 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3381 					   enum omap_plane_id plane)
3382 {
3383 	enum omap_channel channel;
3384 
3385 	if (plane == OMAP_DSS_WB)
3386 		return 0;
3387 
3388 	channel	= dispc_ovl_get_channel_out(dispc, plane);
3389 
3390 	return dispc_mgr_lclk_rate(dispc, channel);
3391 }
3392 
3393 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3394 				      struct seq_file *s,
3395 				      enum omap_channel channel)
3396 {
3397 	int lcd, pcd;
3398 	enum dss_clk_source lcd_clk_src;
3399 
3400 	seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3401 
3402 	lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3403 
3404 	seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3405 		dss_get_clk_source_name(lcd_clk_src));
3406 
3407 	dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3408 
3409 	seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3410 		dispc_mgr_lclk_rate(dispc, channel), lcd);
3411 	seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3412 		dispc_mgr_pclk_rate(dispc, channel), pcd);
3413 }
3414 
3415 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3416 {
3417 	enum dss_clk_source dispc_clk_src;
3418 	int lcd;
3419 	u32 l;
3420 
3421 	if (dispc_runtime_get(dispc))
3422 		return;
3423 
3424 	seq_printf(s, "- DISPC -\n");
3425 
3426 	dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3427 	seq_printf(s, "dispc fclk source = %s\n",
3428 			dss_get_clk_source_name(dispc_clk_src));
3429 
3430 	seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3431 
3432 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3433 		seq_printf(s, "- DISPC-CORE-CLK -\n");
3434 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3435 		lcd = FLD_GET(l, 23, 16);
3436 
3437 		seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3438 				(dispc_fclk_rate(dispc)/lcd), lcd);
3439 	}
3440 
3441 	dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3442 
3443 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3444 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3445 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3446 		dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3447 
3448 	dispc_runtime_put(dispc);
3449 }
3450 
3451 static int dispc_dump_regs(struct seq_file *s, void *p)
3452 {
3453 	struct dispc_device *dispc = s->private;
3454 	int i, j;
3455 	const char *mgr_names[] = {
3456 		[OMAP_DSS_CHANNEL_LCD]		= "LCD",
3457 		[OMAP_DSS_CHANNEL_DIGIT]	= "TV",
3458 		[OMAP_DSS_CHANNEL_LCD2]		= "LCD2",
3459 		[OMAP_DSS_CHANNEL_LCD3]		= "LCD3",
3460 	};
3461 	const char *ovl_names[] = {
3462 		[OMAP_DSS_GFX]		= "GFX",
3463 		[OMAP_DSS_VIDEO1]	= "VID1",
3464 		[OMAP_DSS_VIDEO2]	= "VID2",
3465 		[OMAP_DSS_VIDEO3]	= "VID3",
3466 		[OMAP_DSS_WB]		= "WB",
3467 	};
3468 	const char **p_names;
3469 
3470 #define DUMPREG(dispc, r) \
3471 	seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3472 
3473 	if (dispc_runtime_get(dispc))
3474 		return 0;
3475 
3476 	/* DISPC common registers */
3477 	DUMPREG(dispc, DISPC_REVISION);
3478 	DUMPREG(dispc, DISPC_SYSCONFIG);
3479 	DUMPREG(dispc, DISPC_SYSSTATUS);
3480 	DUMPREG(dispc, DISPC_IRQSTATUS);
3481 	DUMPREG(dispc, DISPC_IRQENABLE);
3482 	DUMPREG(dispc, DISPC_CONTROL);
3483 	DUMPREG(dispc, DISPC_CONFIG);
3484 	DUMPREG(dispc, DISPC_CAPABLE);
3485 	DUMPREG(dispc, DISPC_LINE_STATUS);
3486 	DUMPREG(dispc, DISPC_LINE_NUMBER);
3487 	if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3488 			dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3489 		DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3490 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3491 		DUMPREG(dispc, DISPC_CONTROL2);
3492 		DUMPREG(dispc, DISPC_CONFIG2);
3493 	}
3494 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3495 		DUMPREG(dispc, DISPC_CONTROL3);
3496 		DUMPREG(dispc, DISPC_CONFIG3);
3497 	}
3498 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3499 		DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3500 
3501 #undef DUMPREG
3502 
3503 #define DISPC_REG(i, name) name(i)
3504 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3505 	(int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3506 	dispc_read_reg(dispc, DISPC_REG(i, r)))
3507 
3508 	p_names = mgr_names;
3509 
3510 	/* DISPC channel specific registers */
3511 	for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3512 		DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3513 		DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3514 		DUMPREG(dispc, i, DISPC_SIZE_MGR);
3515 
3516 		if (i == OMAP_DSS_CHANNEL_DIGIT)
3517 			continue;
3518 
3519 		DUMPREG(dispc, i, DISPC_TIMING_H);
3520 		DUMPREG(dispc, i, DISPC_TIMING_V);
3521 		DUMPREG(dispc, i, DISPC_POL_FREQ);
3522 		DUMPREG(dispc, i, DISPC_DIVISORo);
3523 
3524 		DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3525 		DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3526 		DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3527 
3528 		if (dispc_has_feature(dispc, FEAT_CPR)) {
3529 			DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3530 			DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3531 			DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3532 		}
3533 	}
3534 
3535 	p_names = ovl_names;
3536 
3537 	for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3538 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3539 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3540 		DUMPREG(dispc, i, DISPC_OVL_POSITION);
3541 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3542 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3543 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3544 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3545 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3546 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3547 
3548 		if (dispc_has_feature(dispc, FEAT_PRELOAD))
3549 			DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3550 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3551 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3552 
3553 		if (i == OMAP_DSS_GFX) {
3554 			DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3555 			DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3556 			continue;
3557 		}
3558 
3559 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3560 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3561 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3562 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3563 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3564 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3565 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3566 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3567 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3568 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3569 		}
3570 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3571 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3572 	}
3573 
3574 	if (dispc->feat->has_writeback) {
3575 		i = OMAP_DSS_WB;
3576 		DUMPREG(dispc, i, DISPC_OVL_BA0);
3577 		DUMPREG(dispc, i, DISPC_OVL_BA1);
3578 		DUMPREG(dispc, i, DISPC_OVL_SIZE);
3579 		DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3580 		DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3581 		DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3582 		DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3583 		DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3584 
3585 		if (dispc_has_feature(dispc, FEAT_MFLAG))
3586 			DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3587 
3588 		DUMPREG(dispc, i, DISPC_OVL_FIR);
3589 		DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3590 		DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3591 		DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3592 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3593 			DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3594 			DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3595 			DUMPREG(dispc, i, DISPC_OVL_FIR2);
3596 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3597 			DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3598 		}
3599 		if (dispc_has_feature(dispc, FEAT_ATTR2))
3600 			DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3601 	}
3602 
3603 #undef DISPC_REG
3604 #undef DUMPREG
3605 
3606 #define DISPC_REG(plane, name, i) name(plane, i)
3607 #define DUMPREG(dispc, plane, name, i) \
3608 	seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3609 	(int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3610 	dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3611 
3612 	/* Video pipeline coefficient registers */
3613 
3614 	/* start from OMAP_DSS_VIDEO1 */
3615 	for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3616 		for (j = 0; j < 8; j++)
3617 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3618 
3619 		for (j = 0; j < 8; j++)
3620 			DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3621 
3622 		for (j = 0; j < 5; j++)
3623 			DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3624 
3625 		if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3626 			for (j = 0; j < 8; j++)
3627 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3628 		}
3629 
3630 		if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3631 			for (j = 0; j < 8; j++)
3632 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3633 
3634 			for (j = 0; j < 8; j++)
3635 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3636 
3637 			for (j = 0; j < 8; j++)
3638 				DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3639 		}
3640 	}
3641 
3642 	dispc_runtime_put(dispc);
3643 
3644 #undef DISPC_REG
3645 #undef DUMPREG
3646 
3647 	return 0;
3648 }
3649 
3650 /* calculate clock rates using dividers in cinfo */
3651 int dispc_calc_clock_rates(struct dispc_device *dispc,
3652 			   unsigned long dispc_fclk_rate,
3653 			   struct dispc_clock_info *cinfo)
3654 {
3655 	if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3656 		return -EINVAL;
3657 	if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3658 		return -EINVAL;
3659 
3660 	cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3661 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3662 
3663 	return 0;
3664 }
3665 
3666 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3667 		    unsigned long pck_min, unsigned long pck_max,
3668 		    dispc_div_calc_func func, void *data)
3669 {
3670 	int lckd, lckd_start, lckd_stop;
3671 	int pckd, pckd_start, pckd_stop;
3672 	unsigned long pck, lck;
3673 	unsigned long lck_max;
3674 	unsigned long pckd_hw_min, pckd_hw_max;
3675 	unsigned int min_fck_per_pck;
3676 	unsigned long fck;
3677 
3678 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3679 	min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3680 #else
3681 	min_fck_per_pck = 0;
3682 #endif
3683 
3684 	pckd_hw_min = dispc->feat->min_pcd;
3685 	pckd_hw_max = 255;
3686 
3687 	lck_max = dss_get_max_fck_rate(dispc->dss);
3688 
3689 	pck_min = pck_min ? pck_min : 1;
3690 	pck_max = pck_max ? pck_max : ULONG_MAX;
3691 
3692 	lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3693 	lckd_stop = min(dispc_freq / pck_min, 255ul);
3694 
3695 	for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3696 		lck = dispc_freq / lckd;
3697 
3698 		pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3699 		pckd_stop = min(lck / pck_min, pckd_hw_max);
3700 
3701 		for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3702 			pck = lck / pckd;
3703 
3704 			/*
3705 			 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3706 			 * clock, which means we're configuring DISPC fclk here
3707 			 * also. Thus we need to use the calculated lck. For
3708 			 * OMAP4+ the DISPC fclk is a separate clock.
3709 			 */
3710 			if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3711 				fck = dispc_core_clk_rate(dispc);
3712 			else
3713 				fck = lck;
3714 
3715 			if (fck < pck * min_fck_per_pck)
3716 				continue;
3717 
3718 			if (func(lckd, pckd, lck, pck, data))
3719 				return true;
3720 		}
3721 	}
3722 
3723 	return false;
3724 }
3725 
3726 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3727 			     enum omap_channel channel,
3728 			     const struct dispc_clock_info *cinfo)
3729 {
3730 	DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3731 	DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3732 
3733 	dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3734 				  cinfo->pck_div);
3735 }
3736 
3737 int dispc_mgr_get_clock_div(struct dispc_device *dispc,
3738 			    enum omap_channel channel,
3739 			    struct dispc_clock_info *cinfo)
3740 {
3741 	unsigned long fck;
3742 
3743 	fck = dispc_fclk_rate(dispc);
3744 
3745 	cinfo->lck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3746 	cinfo->pck_div = REG_GET(dispc, DISPC_DIVISORo(channel), 7, 0);
3747 
3748 	cinfo->lck = fck / cinfo->lck_div;
3749 	cinfo->pck = cinfo->lck / cinfo->pck_div;
3750 
3751 	return 0;
3752 }
3753 
3754 static u32 dispc_read_irqstatus(struct dispc_device *dispc)
3755 {
3756 	return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3757 }
3758 
3759 static void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3760 {
3761 	dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3762 }
3763 
3764 static void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3765 {
3766 	u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3767 
3768 	/* clear the irqstatus for newly enabled irqs */
3769 	dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3770 
3771 	dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3772 
3773 	/* flush posted write */
3774 	dispc_read_reg(dispc, DISPC_IRQENABLE);
3775 }
3776 
3777 void dispc_enable_sidle(struct dispc_device *dispc)
3778 {
3779 	/* SIDLEMODE: smart idle */
3780 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3781 }
3782 
3783 void dispc_disable_sidle(struct dispc_device *dispc)
3784 {
3785 	REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3);	/* SIDLEMODE: no idle */
3786 }
3787 
3788 static u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3789 				enum omap_channel channel)
3790 {
3791 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3792 
3793 	if (!dispc->feat->has_gamma_table)
3794 		return 0;
3795 
3796 	return gdesc->len;
3797 }
3798 
3799 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3800 					enum omap_channel channel)
3801 {
3802 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3803 	u32 *table = dispc->gamma_table[channel];
3804 	unsigned int i;
3805 
3806 	DSSDBG("%s: channel %d\n", __func__, channel);
3807 
3808 	for (i = 0; i < gdesc->len; ++i) {
3809 		u32 v = table[i];
3810 
3811 		if (gdesc->has_index)
3812 			v |= i << 24;
3813 		else if (i == 0)
3814 			v |= 1 << 31;
3815 
3816 		dispc_write_reg(dispc, gdesc->reg, v);
3817 	}
3818 }
3819 
3820 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3821 {
3822 	DSSDBG("%s()\n", __func__);
3823 
3824 	if (!dispc->feat->has_gamma_table)
3825 		return;
3826 
3827 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3828 
3829 	dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3830 
3831 	if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3832 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3833 
3834 	if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3835 		dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3836 }
3837 
3838 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3839 	{ .red = 0, .green = 0, .blue = 0, },
3840 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3841 };
3842 
3843 static void dispc_mgr_set_gamma(struct dispc_device *dispc,
3844 				enum omap_channel channel,
3845 				const struct drm_color_lut *lut,
3846 				unsigned int length)
3847 {
3848 	const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3849 	u32 *table = dispc->gamma_table[channel];
3850 	uint i;
3851 
3852 	DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3853 	       channel, length, gdesc->len);
3854 
3855 	if (!dispc->feat->has_gamma_table)
3856 		return;
3857 
3858 	if (lut == NULL || length < 2) {
3859 		lut = dispc_mgr_gamma_default_lut;
3860 		length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3861 	}
3862 
3863 	for (i = 0; i < length - 1; ++i) {
3864 		uint first = i * (gdesc->len - 1) / (length - 1);
3865 		uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3866 		uint w = last - first;
3867 		u16 r, g, b;
3868 		uint j;
3869 
3870 		if (w == 0)
3871 			continue;
3872 
3873 		for (j = 0; j <= w; j++) {
3874 			r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3875 			g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3876 			b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3877 
3878 			r >>= 16 - gdesc->bits;
3879 			g >>= 16 - gdesc->bits;
3880 			b >>= 16 - gdesc->bits;
3881 
3882 			table[first + j] = (r << (gdesc->bits * 2)) |
3883 				(g << gdesc->bits) | b;
3884 		}
3885 	}
3886 
3887 	if (dispc->is_enabled)
3888 		dispc_mgr_write_gamma_table(dispc, channel);
3889 }
3890 
3891 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3892 {
3893 	int channel;
3894 
3895 	if (!dispc->feat->has_gamma_table)
3896 		return 0;
3897 
3898 	for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3899 		const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3900 		u32 *gt;
3901 
3902 		if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3903 		    !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3904 			continue;
3905 
3906 		if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3907 		    !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3908 			continue;
3909 
3910 		gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3911 					sizeof(u32), GFP_KERNEL);
3912 		if (!gt)
3913 			return -ENOMEM;
3914 
3915 		dispc->gamma_table[channel] = gt;
3916 
3917 		dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3918 	}
3919 	return 0;
3920 }
3921 
3922 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3923 {
3924 	u32 l;
3925 
3926 	/* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3927 	if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3928 		l = dispc_read_reg(dispc, DISPC_DIVISOR);
3929 		/* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3930 		l = FLD_MOD(l, 1, 0, 0);
3931 		l = FLD_MOD(l, 1, 23, 16);
3932 		dispc_write_reg(dispc, DISPC_DIVISOR, l);
3933 
3934 		dispc->core_clk_rate = dispc_fclk_rate(dispc);
3935 	}
3936 
3937 	/* Use gamma table mode, instead of palette mode */
3938 	if (dispc->feat->has_gamma_table)
3939 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3940 
3941 	/* For older DSS versions (FEAT_FUNCGATED) this enables
3942 	 * func-clock auto-gating. For newer versions
3943 	 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3944 	 */
3945 	if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3946 	    dispc->feat->has_gamma_table)
3947 		REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3948 
3949 	dispc_setup_color_conv_coef(dispc);
3950 
3951 	dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3952 
3953 	dispc_init_fifos(dispc);
3954 
3955 	dispc_configure_burst_sizes(dispc);
3956 
3957 	dispc_ovl_enable_zorder_planes(dispc);
3958 
3959 	if (dispc->feat->mstandby_workaround)
3960 		REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3961 
3962 	if (dispc_has_feature(dispc, FEAT_MFLAG))
3963 		dispc_init_mflag(dispc);
3964 }
3965 
3966 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3967 	FEAT_LCDENABLEPOL,
3968 	FEAT_LCDENABLESIGNAL,
3969 	FEAT_PCKFREEENABLE,
3970 	FEAT_FUNCGATED,
3971 	FEAT_ROWREPEATENABLE,
3972 	FEAT_RESIZECONF,
3973 };
3974 
3975 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3976 	FEAT_LCDENABLEPOL,
3977 	FEAT_LCDENABLESIGNAL,
3978 	FEAT_PCKFREEENABLE,
3979 	FEAT_FUNCGATED,
3980 	FEAT_LINEBUFFERSPLIT,
3981 	FEAT_ROWREPEATENABLE,
3982 	FEAT_RESIZECONF,
3983 	FEAT_CPR,
3984 	FEAT_PRELOAD,
3985 	FEAT_FIR_COEF_V,
3986 	FEAT_ALPHA_FIXED_ZORDER,
3987 	FEAT_FIFO_MERGE,
3988 	FEAT_OMAP3_DSI_FIFO_BUG,
3989 };
3990 
3991 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
3992 	FEAT_LCDENABLEPOL,
3993 	FEAT_LCDENABLESIGNAL,
3994 	FEAT_PCKFREEENABLE,
3995 	FEAT_FUNCGATED,
3996 	FEAT_LINEBUFFERSPLIT,
3997 	FEAT_ROWREPEATENABLE,
3998 	FEAT_RESIZECONF,
3999 	FEAT_CPR,
4000 	FEAT_PRELOAD,
4001 	FEAT_FIR_COEF_V,
4002 	FEAT_ALPHA_FIXED_ZORDER,
4003 	FEAT_FIFO_MERGE,
4004 };
4005 
4006 static const enum dispc_feature_id omap4_dispc_features_list[] = {
4007 	FEAT_MGR_LCD2,
4008 	FEAT_CORE_CLK_DIV,
4009 	FEAT_HANDLE_UV_SEPARATE,
4010 	FEAT_ATTR2,
4011 	FEAT_CPR,
4012 	FEAT_PRELOAD,
4013 	FEAT_FIR_COEF_V,
4014 	FEAT_ALPHA_FREE_ZORDER,
4015 	FEAT_FIFO_MERGE,
4016 	FEAT_BURST_2D,
4017 };
4018 
4019 static const enum dispc_feature_id omap5_dispc_features_list[] = {
4020 	FEAT_MGR_LCD2,
4021 	FEAT_MGR_LCD3,
4022 	FEAT_CORE_CLK_DIV,
4023 	FEAT_HANDLE_UV_SEPARATE,
4024 	FEAT_ATTR2,
4025 	FEAT_CPR,
4026 	FEAT_PRELOAD,
4027 	FEAT_FIR_COEF_V,
4028 	FEAT_ALPHA_FREE_ZORDER,
4029 	FEAT_FIFO_MERGE,
4030 	FEAT_BURST_2D,
4031 	FEAT_MFLAG,
4032 };
4033 
4034 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
4035 	[FEAT_REG_FIRHINC]			= { 11, 0 },
4036 	[FEAT_REG_FIRVINC]			= { 27, 16 },
4037 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 8, 0 },
4038 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 24, 16 },
4039 	[FEAT_REG_FIFOSIZE]			= { 8, 0 },
4040 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4041 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4042 };
4043 
4044 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
4045 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4046 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4047 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 11, 0 },
4048 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 27, 16 },
4049 	[FEAT_REG_FIFOSIZE]			= { 10, 0 },
4050 	[FEAT_REG_HORIZONTALACCU]		= { 9, 0 },
4051 	[FEAT_REG_VERTICALACCU]			= { 25, 16 },
4052 };
4053 
4054 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
4055 	[FEAT_REG_FIRHINC]			= { 12, 0 },
4056 	[FEAT_REG_FIRVINC]			= { 28, 16 },
4057 	[FEAT_REG_FIFOLOWTHRESHOLD]		= { 15, 0 },
4058 	[FEAT_REG_FIFOHIGHTHRESHOLD]		= { 31, 16 },
4059 	[FEAT_REG_FIFOSIZE]			= { 15, 0 },
4060 	[FEAT_REG_HORIZONTALACCU]		= { 10, 0 },
4061 	[FEAT_REG_VERTICALACCU]			= { 26, 16 },
4062 };
4063 
4064 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
4065 	/* OMAP_DSS_GFX */
4066 	OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4067 
4068 	/* OMAP_DSS_VIDEO1 */
4069 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4070 		OMAP_DSS_OVL_CAP_REPLICATION,
4071 
4072 	/* OMAP_DSS_VIDEO2 */
4073 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4074 		OMAP_DSS_OVL_CAP_REPLICATION,
4075 };
4076 
4077 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
4078 	/* OMAP_DSS_GFX */
4079 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
4080 		OMAP_DSS_OVL_CAP_REPLICATION,
4081 
4082 	/* OMAP_DSS_VIDEO1 */
4083 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4084 		OMAP_DSS_OVL_CAP_REPLICATION,
4085 
4086 	/* OMAP_DSS_VIDEO2 */
4087 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4088 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4089 };
4090 
4091 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
4092 	/* OMAP_DSS_GFX */
4093 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4094 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4095 
4096 	/* OMAP_DSS_VIDEO1 */
4097 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
4098 		OMAP_DSS_OVL_CAP_REPLICATION,
4099 
4100 	/* OMAP_DSS_VIDEO2 */
4101 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4102 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
4103 		OMAP_DSS_OVL_CAP_REPLICATION,
4104 };
4105 
4106 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
4107 	/* OMAP_DSS_GFX */
4108 	OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
4109 		OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
4110 		OMAP_DSS_OVL_CAP_REPLICATION,
4111 
4112 	/* OMAP_DSS_VIDEO1 */
4113 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4114 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4115 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4116 
4117 	/* OMAP_DSS_VIDEO2 */
4118 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4119 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4120 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4121 
4122 	/* OMAP_DSS_VIDEO3 */
4123 	OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
4124 		OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
4125 		OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
4126 };
4127 
4128 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
4129 
4130 static const u32 *omap2_dispc_supported_color_modes[] = {
4131 
4132 	/* OMAP_DSS_GFX */
4133 	COLOR_ARRAY(
4134 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4135 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
4136 
4137 	/* OMAP_DSS_VIDEO1 */
4138 	COLOR_ARRAY(
4139 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4140 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4141 	DRM_FORMAT_UYVY),
4142 
4143 	/* OMAP_DSS_VIDEO2 */
4144 	COLOR_ARRAY(
4145 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4146 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4147 	DRM_FORMAT_UYVY),
4148 };
4149 
4150 static const u32 *omap3_dispc_supported_color_modes[] = {
4151 	/* OMAP_DSS_GFX */
4152 	COLOR_ARRAY(
4153 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4154 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4155 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4156 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4157 
4158 	/* OMAP_DSS_VIDEO1 */
4159 	COLOR_ARRAY(
4160 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4161 	DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4162 	DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4163 
4164 	/* OMAP_DSS_VIDEO2 */
4165 	COLOR_ARRAY(
4166 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4167 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4168 	DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4169 	DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4170 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4171 };
4172 
4173 static const u32 *omap4_dispc_supported_color_modes[] = {
4174 	/* OMAP_DSS_GFX */
4175 	COLOR_ARRAY(
4176 	DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4177 	DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4178 	DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4179 	DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4180 	DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4181 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4182 
4183 	/* OMAP_DSS_VIDEO1 */
4184 	COLOR_ARRAY(
4185 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4186 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4187 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4188 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4189 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4190 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4191 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4192 	DRM_FORMAT_RGBX8888),
4193 
4194        /* OMAP_DSS_VIDEO2 */
4195 	COLOR_ARRAY(
4196 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4197 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4198 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4199 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4200 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4201 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4202 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4203 	DRM_FORMAT_RGBX8888),
4204 
4205 	/* OMAP_DSS_VIDEO3 */
4206 	COLOR_ARRAY(
4207 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4208 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4209 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4210 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4211 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4212 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4213 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4214 	DRM_FORMAT_RGBX8888),
4215 
4216 	/* OMAP_DSS_WB */
4217 	COLOR_ARRAY(
4218 	DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4219 	DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4220 	DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4221 	DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4222 	DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4223 	DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4224 	DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4225 	DRM_FORMAT_RGBX8888),
4226 };
4227 
4228 static const struct dispc_features omap24xx_dispc_feats = {
4229 	.sw_start		=	5,
4230 	.fp_start		=	15,
4231 	.bp_start		=	27,
4232 	.sw_max			=	64,
4233 	.vp_max			=	255,
4234 	.hp_max			=	256,
4235 	.mgr_width_start	=	10,
4236 	.mgr_height_start	=	26,
4237 	.mgr_width_max		=	2048,
4238 	.mgr_height_max		=	2048,
4239 	.max_lcd_pclk		=	66500000,
4240 	.max_downscale		=	2,
4241 	/*
4242 	 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4243 	 * cannot scale an image width larger than 768.
4244 	 */
4245 	.max_line_width		=	768,
4246 	.min_pcd		=	2,
4247 	.calc_scaling		=	dispc_ovl_calc_scaling_24xx,
4248 	.calc_core_clk		=	calc_core_clk_24xx,
4249 	.num_fifos		=	3,
4250 	.features		=	omap2_dispc_features_list,
4251 	.num_features		=	ARRAY_SIZE(omap2_dispc_features_list),
4252 	.reg_fields		=	omap2_dispc_reg_fields,
4253 	.num_reg_fields		=	ARRAY_SIZE(omap2_dispc_reg_fields),
4254 	.overlay_caps		=	omap2_dispc_overlay_caps,
4255 	.supported_color_modes	=	omap2_dispc_supported_color_modes,
4256 	.num_mgrs		=	2,
4257 	.num_ovls		=	3,
4258 	.buffer_size_unit	=	1,
4259 	.burst_size_unit	=	8,
4260 	.no_framedone_tv	=	true,
4261 	.set_max_preload	=	false,
4262 	.last_pixel_inc_missing	=	true,
4263 };
4264 
4265 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4266 	.sw_start		=	5,
4267 	.fp_start		=	15,
4268 	.bp_start		=	27,
4269 	.sw_max			=	64,
4270 	.vp_max			=	255,
4271 	.hp_max			=	256,
4272 	.mgr_width_start	=	10,
4273 	.mgr_height_start	=	26,
4274 	.mgr_width_max		=	2048,
4275 	.mgr_height_max		=	2048,
4276 	.max_lcd_pclk		=	173000000,
4277 	.max_tv_pclk		=	59000000,
4278 	.max_downscale		=	4,
4279 	.max_line_width		=	1024,
4280 	.min_pcd		=	1,
4281 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4282 	.calc_core_clk		=	calc_core_clk_34xx,
4283 	.num_fifos		=	3,
4284 	.features		=	omap3_dispc_features_list,
4285 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4286 	.reg_fields		=	omap3_dispc_reg_fields,
4287 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4288 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4289 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4290 	.num_mgrs		=	2,
4291 	.num_ovls		=	3,
4292 	.buffer_size_unit	=	1,
4293 	.burst_size_unit	=	8,
4294 	.no_framedone_tv	=	true,
4295 	.set_max_preload	=	false,
4296 	.last_pixel_inc_missing	=	true,
4297 };
4298 
4299 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4300 	.sw_start		=	7,
4301 	.fp_start		=	19,
4302 	.bp_start		=	31,
4303 	.sw_max			=	256,
4304 	.vp_max			=	4095,
4305 	.hp_max			=	4096,
4306 	.mgr_width_start	=	10,
4307 	.mgr_height_start	=	26,
4308 	.mgr_width_max		=	2048,
4309 	.mgr_height_max		=	2048,
4310 	.max_lcd_pclk		=	173000000,
4311 	.max_tv_pclk		=	59000000,
4312 	.max_downscale		=	4,
4313 	.max_line_width		=	1024,
4314 	.min_pcd		=	1,
4315 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4316 	.calc_core_clk		=	calc_core_clk_34xx,
4317 	.num_fifos		=	3,
4318 	.features		=	omap3_dispc_features_list,
4319 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4320 	.reg_fields		=	omap3_dispc_reg_fields,
4321 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4322 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4323 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4324 	.num_mgrs		=	2,
4325 	.num_ovls		=	3,
4326 	.buffer_size_unit	=	1,
4327 	.burst_size_unit	=	8,
4328 	.no_framedone_tv	=	true,
4329 	.set_max_preload	=	false,
4330 	.last_pixel_inc_missing	=	true,
4331 };
4332 
4333 static const struct dispc_features omap36xx_dispc_feats = {
4334 	.sw_start		=	7,
4335 	.fp_start		=	19,
4336 	.bp_start		=	31,
4337 	.sw_max			=	256,
4338 	.vp_max			=	4095,
4339 	.hp_max			=	4096,
4340 	.mgr_width_start	=	10,
4341 	.mgr_height_start	=	26,
4342 	.mgr_width_max		=	2048,
4343 	.mgr_height_max		=	2048,
4344 	.max_lcd_pclk		=	173000000,
4345 	.max_tv_pclk		=	59000000,
4346 	.max_downscale		=	4,
4347 	.max_line_width		=	1024,
4348 	.min_pcd		=	1,
4349 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4350 	.calc_core_clk		=	calc_core_clk_34xx,
4351 	.num_fifos		=	3,
4352 	.features		=	omap3_dispc_features_list,
4353 	.num_features		=	ARRAY_SIZE(omap3_dispc_features_list),
4354 	.reg_fields		=	omap3_dispc_reg_fields,
4355 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4356 	.overlay_caps		=	omap3630_dispc_overlay_caps,
4357 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4358 	.num_mgrs		=	2,
4359 	.num_ovls		=	3,
4360 	.buffer_size_unit	=	1,
4361 	.burst_size_unit	=	8,
4362 	.no_framedone_tv	=	true,
4363 	.set_max_preload	=	false,
4364 	.last_pixel_inc_missing	=	true,
4365 };
4366 
4367 static const struct dispc_features am43xx_dispc_feats = {
4368 	.sw_start		=	7,
4369 	.fp_start		=	19,
4370 	.bp_start		=	31,
4371 	.sw_max			=	256,
4372 	.vp_max			=	4095,
4373 	.hp_max			=	4096,
4374 	.mgr_width_start	=	10,
4375 	.mgr_height_start	=	26,
4376 	.mgr_width_max		=	2048,
4377 	.mgr_height_max		=	2048,
4378 	.max_lcd_pclk		=	173000000,
4379 	.max_tv_pclk		=	59000000,
4380 	.max_downscale		=	4,
4381 	.max_line_width		=	1024,
4382 	.min_pcd		=	1,
4383 	.calc_scaling		=	dispc_ovl_calc_scaling_34xx,
4384 	.calc_core_clk		=	calc_core_clk_34xx,
4385 	.num_fifos		=	3,
4386 	.features		=	am43xx_dispc_features_list,
4387 	.num_features		=	ARRAY_SIZE(am43xx_dispc_features_list),
4388 	.reg_fields		=	omap3_dispc_reg_fields,
4389 	.num_reg_fields		=	ARRAY_SIZE(omap3_dispc_reg_fields),
4390 	.overlay_caps		=	omap3430_dispc_overlay_caps,
4391 	.supported_color_modes	=	omap3_dispc_supported_color_modes,
4392 	.num_mgrs		=	1,
4393 	.num_ovls		=	3,
4394 	.buffer_size_unit	=	1,
4395 	.burst_size_unit	=	8,
4396 	.no_framedone_tv	=	true,
4397 	.set_max_preload	=	false,
4398 	.last_pixel_inc_missing	=	true,
4399 };
4400 
4401 static const struct dispc_features omap44xx_dispc_feats = {
4402 	.sw_start		=	7,
4403 	.fp_start		=	19,
4404 	.bp_start		=	31,
4405 	.sw_max			=	256,
4406 	.vp_max			=	4095,
4407 	.hp_max			=	4096,
4408 	.mgr_width_start	=	10,
4409 	.mgr_height_start	=	26,
4410 	.mgr_width_max		=	2048,
4411 	.mgr_height_max		=	2048,
4412 	.max_lcd_pclk		=	170000000,
4413 	.max_tv_pclk		=	185625000,
4414 	.max_downscale		=	4,
4415 	.max_line_width		=	2048,
4416 	.min_pcd		=	1,
4417 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4418 	.calc_core_clk		=	calc_core_clk_44xx,
4419 	.num_fifos		=	5,
4420 	.features		=	omap4_dispc_features_list,
4421 	.num_features		=	ARRAY_SIZE(omap4_dispc_features_list),
4422 	.reg_fields		=	omap4_dispc_reg_fields,
4423 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4424 	.overlay_caps		=	omap4_dispc_overlay_caps,
4425 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4426 	.num_mgrs		=	3,
4427 	.num_ovls		=	4,
4428 	.buffer_size_unit	=	16,
4429 	.burst_size_unit	=	16,
4430 	.gfx_fifo_workaround	=	true,
4431 	.set_max_preload	=	true,
4432 	.supports_sync_align	=	true,
4433 	.has_writeback		=	true,
4434 	.supports_double_pixel	=	true,
4435 	.reverse_ilace_field_order =	true,
4436 	.has_gamma_table	=	true,
4437 	.has_gamma_i734_bug	=	true,
4438 };
4439 
4440 static const struct dispc_features omap54xx_dispc_feats = {
4441 	.sw_start		=	7,
4442 	.fp_start		=	19,
4443 	.bp_start		=	31,
4444 	.sw_max			=	256,
4445 	.vp_max			=	4095,
4446 	.hp_max			=	4096,
4447 	.mgr_width_start	=	11,
4448 	.mgr_height_start	=	27,
4449 	.mgr_width_max		=	4096,
4450 	.mgr_height_max		=	4096,
4451 	.max_lcd_pclk		=	170000000,
4452 	.max_tv_pclk		=	186000000,
4453 	.max_downscale		=	4,
4454 	.max_line_width		=	2048,
4455 	.min_pcd		=	1,
4456 	.calc_scaling		=	dispc_ovl_calc_scaling_44xx,
4457 	.calc_core_clk		=	calc_core_clk_44xx,
4458 	.num_fifos		=	5,
4459 	.features		=	omap5_dispc_features_list,
4460 	.num_features		=	ARRAY_SIZE(omap5_dispc_features_list),
4461 	.reg_fields		=	omap4_dispc_reg_fields,
4462 	.num_reg_fields		=	ARRAY_SIZE(omap4_dispc_reg_fields),
4463 	.overlay_caps		=	omap4_dispc_overlay_caps,
4464 	.supported_color_modes	=	omap4_dispc_supported_color_modes,
4465 	.num_mgrs		=	4,
4466 	.num_ovls		=	4,
4467 	.buffer_size_unit	=	16,
4468 	.burst_size_unit	=	16,
4469 	.gfx_fifo_workaround	=	true,
4470 	.mstandby_workaround	=	true,
4471 	.set_max_preload	=	true,
4472 	.supports_sync_align	=	true,
4473 	.has_writeback		=	true,
4474 	.supports_double_pixel	=	true,
4475 	.reverse_ilace_field_order =	true,
4476 	.has_gamma_table	=	true,
4477 	.has_gamma_i734_bug	=	true,
4478 };
4479 
4480 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4481 {
4482 	struct dispc_device *dispc = arg;
4483 
4484 	if (!dispc->is_enabled)
4485 		return IRQ_NONE;
4486 
4487 	return dispc->user_handler(irq, dispc->user_data);
4488 }
4489 
4490 static int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4491 			     void *dev_id)
4492 {
4493 	int r;
4494 
4495 	if (dispc->user_handler != NULL)
4496 		return -EBUSY;
4497 
4498 	dispc->user_handler = handler;
4499 	dispc->user_data = dev_id;
4500 
4501 	/* ensure the dispc_irq_handler sees the values above */
4502 	smp_wmb();
4503 
4504 	r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4505 			     IRQF_SHARED, "OMAP DISPC", dispc);
4506 	if (r) {
4507 		dispc->user_handler = NULL;
4508 		dispc->user_data = NULL;
4509 	}
4510 
4511 	return r;
4512 }
4513 
4514 static void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4515 {
4516 	devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4517 
4518 	dispc->user_handler = NULL;
4519 	dispc->user_data = NULL;
4520 }
4521 
4522 static u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4523 {
4524 	u32 limit = 0;
4525 
4526 	/* Optional maximum memory bandwidth */
4527 	of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4528 			     &limit);
4529 
4530 	return limit;
4531 }
4532 
4533 /*
4534  * Workaround for errata i734 in DSS dispc
4535  *  - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4536  *
4537  * For gamma tables to work on LCD1 the GFX plane has to be used at
4538  * least once after DSS HW has come out of reset. The workaround
4539  * sets up a minimal LCD setup with GFX plane and waits for one
4540  * vertical sync irq before disabling the setup and continuing with
4541  * the context restore. The physical outputs are gated during the
4542  * operation. This workaround requires that gamma table's LOADMODE
4543  * is set to 0x2 in DISPC_CONTROL1 register.
4544  *
4545  * For details see:
4546  * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4547  * Literature Number: SWPZ037E
4548  * Or some other relevant errata document for the DSS IP version.
4549  */
4550 
4551 static const struct dispc_errata_i734_data {
4552 	struct videomode vm;
4553 	struct omap_overlay_info ovli;
4554 	struct omap_overlay_manager_info mgri;
4555 	struct dss_lcd_mgr_config lcd_conf;
4556 } i734 = {
4557 	.vm = {
4558 		.hactive = 8, .vactive = 1,
4559 		.pixelclock = 16000000,
4560 		.hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4561 		.vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4562 
4563 		.flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4564 			 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4565 			 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4566 	},
4567 	.ovli = {
4568 		.screen_width = 1,
4569 		.width = 1, .height = 1,
4570 		.fourcc = DRM_FORMAT_XRGB8888,
4571 		.rotation = DRM_MODE_ROTATE_0,
4572 		.rotation_type = OMAP_DSS_ROT_NONE,
4573 		.pos_x = 0, .pos_y = 0,
4574 		.out_width = 0, .out_height = 0,
4575 		.global_alpha = 0xff,
4576 		.pre_mult_alpha = 0,
4577 		.zorder = 0,
4578 	},
4579 	.mgri = {
4580 		.default_color = 0,
4581 		.trans_enabled = false,
4582 		.partial_alpha_enabled = false,
4583 		.cpr_enable = false,
4584 	},
4585 	.lcd_conf = {
4586 		.io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4587 		.stallmode = false,
4588 		.fifohandcheck = false,
4589 		.clock_info = {
4590 			.lck_div = 1,
4591 			.pck_div = 2,
4592 		},
4593 		.video_port_width = 24,
4594 		.lcden_sig_polarity = 0,
4595 	},
4596 };
4597 
4598 static struct i734_buf {
4599 	size_t size;
4600 	dma_addr_t paddr;
4601 	void *vaddr;
4602 } i734_buf;
4603 
4604 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4605 {
4606 	if (!dispc->feat->has_gamma_i734_bug)
4607 		return 0;
4608 
4609 	i734_buf.size = i734.ovli.width * i734.ovli.height *
4610 		color_mode_to_bpp(i734.ovli.fourcc) / 8;
4611 
4612 	i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size,
4613 				      &i734_buf.paddr, GFP_KERNEL);
4614 	if (!i734_buf.vaddr) {
4615 		dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n",
4616 			__func__);
4617 		return -ENOMEM;
4618 	}
4619 
4620 	return 0;
4621 }
4622 
4623 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4624 {
4625 	if (!dispc->feat->has_gamma_i734_bug)
4626 		return;
4627 
4628 	dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4629 		    i734_buf.paddr);
4630 }
4631 
4632 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4633 {
4634 	u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4635 							OMAP_DSS_CHANNEL_LCD);
4636 	struct omap_overlay_info ovli;
4637 	struct dss_lcd_mgr_config lcd_conf;
4638 	u32 gatestate;
4639 	unsigned int count;
4640 
4641 	if (!dispc->feat->has_gamma_i734_bug)
4642 		return;
4643 
4644 	gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4645 
4646 	ovli = i734.ovli;
4647 	ovli.paddr = i734_buf.paddr;
4648 	lcd_conf = i734.lcd_conf;
4649 
4650 	/* Gate all LCD1 outputs */
4651 	REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4652 
4653 	/* Setup and enable GFX plane */
4654 	dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4655 			OMAP_DSS_CHANNEL_LCD);
4656 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4657 
4658 	/* Set up and enable display manager for LCD1 */
4659 	dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4660 	dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4661 			       &lcd_conf.clock_info);
4662 	dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4663 	dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4664 
4665 	dispc_clear_irqstatus(dispc, framedone_irq);
4666 
4667 	/* Enable and shut the channel to produce just one frame */
4668 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4669 	dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4670 
4671 	/* Busy wait for framedone. We can't fiddle with irq handlers
4672 	 * in PM resume. Typically the loop runs less than 5 times and
4673 	 * waits less than a micro second.
4674 	 */
4675 	count = 0;
4676 	while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4677 		if (count++ > 10000) {
4678 			dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4679 				__func__);
4680 			break;
4681 		}
4682 	}
4683 	dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4684 
4685 	/* Clear all irq bits before continuing */
4686 	dispc_clear_irqstatus(dispc, 0xffffffff);
4687 
4688 	/* Restore the original state to LCD1 output gates */
4689 	REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4690 }
4691 
4692 static const struct dispc_ops dispc_ops = {
4693 	.read_irqstatus = dispc_read_irqstatus,
4694 	.clear_irqstatus = dispc_clear_irqstatus,
4695 	.write_irqenable = dispc_write_irqenable,
4696 
4697 	.request_irq = dispc_request_irq,
4698 	.free_irq = dispc_free_irq,
4699 
4700 	.runtime_get = dispc_runtime_get,
4701 	.runtime_put = dispc_runtime_put,
4702 
4703 	.get_num_ovls = dispc_get_num_ovls,
4704 	.get_num_mgrs = dispc_get_num_mgrs,
4705 
4706 	.get_memory_bandwidth_limit = dispc_get_memory_bandwidth_limit,
4707 
4708 	.mgr_enable = dispc_mgr_enable,
4709 	.mgr_is_enabled = dispc_mgr_is_enabled,
4710 	.mgr_get_vsync_irq = dispc_mgr_get_vsync_irq,
4711 	.mgr_get_framedone_irq = dispc_mgr_get_framedone_irq,
4712 	.mgr_get_sync_lost_irq = dispc_mgr_get_sync_lost_irq,
4713 	.mgr_go_busy = dispc_mgr_go_busy,
4714 	.mgr_go = dispc_mgr_go,
4715 	.mgr_set_lcd_config = dispc_mgr_set_lcd_config,
4716 	.mgr_check_timings = dispc_mgr_check_timings,
4717 	.mgr_set_timings = dispc_mgr_set_timings,
4718 	.mgr_setup = dispc_mgr_setup,
4719 	.mgr_gamma_size = dispc_mgr_gamma_size,
4720 	.mgr_set_gamma = dispc_mgr_set_gamma,
4721 
4722 	.ovl_enable = dispc_ovl_enable,
4723 	.ovl_setup = dispc_ovl_setup,
4724 	.ovl_get_color_modes = dispc_ovl_get_color_modes,
4725 
4726 	.wb_get_framedone_irq = dispc_wb_get_framedone_irq,
4727 	.wb_setup = dispc_wb_setup,
4728 	.has_writeback = dispc_has_writeback,
4729 	.wb_go_busy = dispc_wb_go_busy,
4730 	.wb_go = dispc_wb_go,
4731 };
4732 
4733 /* DISPC HW IP initialisation */
4734 static const struct of_device_id dispc_of_match[] = {
4735 	{ .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4736 	{ .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4737 	{ .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4738 	{ .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4739 	{ .compatible = "ti,dra7-dispc",  .data = &omap54xx_dispc_feats },
4740 	{},
4741 };
4742 
4743 static const struct soc_device_attribute dispc_soc_devices[] = {
4744 	{ .machine = "OMAP3[45]*",
4745 	  .revision = "ES[12].?",	.data = &omap34xx_rev1_0_dispc_feats },
4746 	{ .machine = "OMAP3[45]*",	.data = &omap34xx_rev3_0_dispc_feats },
4747 	{ .machine = "AM35*",		.data = &omap34xx_rev3_0_dispc_feats },
4748 	{ .machine = "AM43*",		.data = &am43xx_dispc_feats },
4749 	{ /* sentinel */ }
4750 };
4751 
4752 static int dispc_bind(struct device *dev, struct device *master, void *data)
4753 {
4754 	struct platform_device *pdev = to_platform_device(dev);
4755 	const struct soc_device_attribute *soc;
4756 	struct dss_device *dss = dss_get_device(master);
4757 	struct dispc_device *dispc;
4758 	u32 rev;
4759 	int r = 0;
4760 	struct resource *dispc_mem;
4761 	struct device_node *np = pdev->dev.of_node;
4762 
4763 	dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4764 	if (!dispc)
4765 		return -ENOMEM;
4766 
4767 	dispc->pdev = pdev;
4768 	platform_set_drvdata(pdev, dispc);
4769 	dispc->dss = dss;
4770 
4771 	spin_lock_init(&dispc->control_lock);
4772 
4773 	/*
4774 	 * The OMAP3-based models can't be told apart using the compatible
4775 	 * string, use SoC device matching.
4776 	 */
4777 	soc = soc_device_match(dispc_soc_devices);
4778 	if (soc)
4779 		dispc->feat = soc->data;
4780 	else
4781 		dispc->feat = of_match_device(dispc_of_match, &pdev->dev)->data;
4782 
4783 	r = dispc_errata_i734_wa_init(dispc);
4784 	if (r)
4785 		goto err_free;
4786 
4787 	dispc_mem = platform_get_resource(dispc->pdev, IORESOURCE_MEM, 0);
4788 	dispc->base = devm_ioremap_resource(&pdev->dev, dispc_mem);
4789 	if (IS_ERR(dispc->base)) {
4790 		r = PTR_ERR(dispc->base);
4791 		goto err_free;
4792 	}
4793 
4794 	dispc->irq = platform_get_irq(dispc->pdev, 0);
4795 	if (dispc->irq < 0) {
4796 		DSSERR("platform_get_irq failed\n");
4797 		r = -ENODEV;
4798 		goto err_free;
4799 	}
4800 
4801 	if (np && of_property_read_bool(np, "syscon-pol")) {
4802 		dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4803 		if (IS_ERR(dispc->syscon_pol)) {
4804 			dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4805 			r = PTR_ERR(dispc->syscon_pol);
4806 			goto err_free;
4807 		}
4808 
4809 		if (of_property_read_u32_index(np, "syscon-pol", 1,
4810 				&dispc->syscon_pol_offset)) {
4811 			dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4812 			r = -EINVAL;
4813 			goto err_free;
4814 		}
4815 	}
4816 
4817 	r = dispc_init_gamma_tables(dispc);
4818 	if (r)
4819 		goto err_free;
4820 
4821 	pm_runtime_enable(&pdev->dev);
4822 
4823 	r = dispc_runtime_get(dispc);
4824 	if (r)
4825 		goto err_runtime_get;
4826 
4827 	_omap_dispc_initial_config(dispc);
4828 
4829 	rev = dispc_read_reg(dispc, DISPC_REVISION);
4830 	dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4831 	       FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4832 
4833 	dispc_runtime_put(dispc);
4834 
4835 	dss->dispc = dispc;
4836 	dss->dispc_ops = &dispc_ops;
4837 
4838 	dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4839 						 dispc);
4840 
4841 	return 0;
4842 
4843 err_runtime_get:
4844 	pm_runtime_disable(&pdev->dev);
4845 err_free:
4846 	kfree(dispc);
4847 	return r;
4848 }
4849 
4850 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4851 {
4852 	struct dispc_device *dispc = dev_get_drvdata(dev);
4853 	struct dss_device *dss = dispc->dss;
4854 
4855 	dss_debugfs_remove_file(dispc->debugfs);
4856 
4857 	dss->dispc = NULL;
4858 	dss->dispc_ops = NULL;
4859 
4860 	pm_runtime_disable(dev);
4861 
4862 	dispc_errata_i734_wa_fini(dispc);
4863 
4864 	kfree(dispc);
4865 }
4866 
4867 static const struct component_ops dispc_component_ops = {
4868 	.bind	= dispc_bind,
4869 	.unbind	= dispc_unbind,
4870 };
4871 
4872 static int dispc_probe(struct platform_device *pdev)
4873 {
4874 	return component_add(&pdev->dev, &dispc_component_ops);
4875 }
4876 
4877 static int dispc_remove(struct platform_device *pdev)
4878 {
4879 	component_del(&pdev->dev, &dispc_component_ops);
4880 	return 0;
4881 }
4882 
4883 static int dispc_runtime_suspend(struct device *dev)
4884 {
4885 	struct dispc_device *dispc = dev_get_drvdata(dev);
4886 
4887 	dispc->is_enabled = false;
4888 	/* ensure the dispc_irq_handler sees the is_enabled value */
4889 	smp_wmb();
4890 	/* wait for current handler to finish before turning the DISPC off */
4891 	synchronize_irq(dispc->irq);
4892 
4893 	dispc_save_context(dispc);
4894 
4895 	return 0;
4896 }
4897 
4898 static int dispc_runtime_resume(struct device *dev)
4899 {
4900 	struct dispc_device *dispc = dev_get_drvdata(dev);
4901 
4902 	/*
4903 	 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4904 	 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4905 	 * _omap_dispc_initial_config(). We can thus use it to detect if
4906 	 * we have lost register context.
4907 	 */
4908 	if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4909 		_omap_dispc_initial_config(dispc);
4910 
4911 		dispc_errata_i734_wa(dispc);
4912 
4913 		dispc_restore_context(dispc);
4914 
4915 		dispc_restore_gamma_tables(dispc);
4916 	}
4917 
4918 	dispc->is_enabled = true;
4919 	/* ensure the dispc_irq_handler sees the is_enabled value */
4920 	smp_wmb();
4921 
4922 	return 0;
4923 }
4924 
4925 static const struct dev_pm_ops dispc_pm_ops = {
4926 	.runtime_suspend = dispc_runtime_suspend,
4927 	.runtime_resume = dispc_runtime_resume,
4928 };
4929 
4930 struct platform_driver omap_dispchw_driver = {
4931 	.probe		= dispc_probe,
4932 	.remove         = dispc_remove,
4933 	.driver         = {
4934 		.name   = "omapdss_dispc",
4935 		.pm	= &dispc_pm_ops,
4936 		.of_match_table = dispc_of_match,
4937 		.suppress_bind_attrs = true,
4938 	},
4939 };
4940