xref: /linux/drivers/gpu/drm/vc4/vc4_plane.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 plane module
8  *
9  * Each DRM plane is a layer of pixels being scanned out by the HVS.
10  *
11  * At atomic modeset check time, we compute the HVS display element
12  * state that would be necessary for displaying the plane (giving us a
13  * chance to figure out if a plane configuration is invalid), then at
14  * atomic flush time the CRTC will ask us to write our element state
15  * into the region of the HVS that it has allocated for us.
16  */
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_plane_helper.h>
22 #include <drm/drm_atomic_uapi.h>
23 
24 #include "uapi/drm/vc4_drm.h"
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27 
28 static const struct hvs_format {
29 	u32 drm; /* DRM_FORMAT_* */
30 	u32 hvs; /* HVS_FORMAT_* */
31 	u32 pixel_order;
32 } hvs_formats[] = {
33 	{
34 		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
35 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
36 	},
37 	{
38 		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
39 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
40 	},
41 	{
42 		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
43 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
44 	},
45 	{
46 		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
47 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
48 	},
49 	{
50 		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
51 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
52 	},
53 	{
54 		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
55 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
56 	},
57 	{
58 		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
59 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
60 	},
61 	{
62 		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
63 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
64 	},
65 	{
66 		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
67 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
68 	},
69 	{
70 		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
71 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
72 	},
73 	{
74 		.drm = DRM_FORMAT_YUV422,
75 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
76 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
77 	},
78 	{
79 		.drm = DRM_FORMAT_YVU422,
80 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
81 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
82 	},
83 	{
84 		.drm = DRM_FORMAT_YUV420,
85 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
86 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
87 	},
88 	{
89 		.drm = DRM_FORMAT_YVU420,
90 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
91 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
92 	},
93 	{
94 		.drm = DRM_FORMAT_NV12,
95 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
96 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
97 	},
98 	{
99 		.drm = DRM_FORMAT_NV21,
100 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
101 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
102 	},
103 	{
104 		.drm = DRM_FORMAT_NV16,
105 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
106 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
107 	},
108 	{
109 		.drm = DRM_FORMAT_NV61,
110 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
111 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
112 	},
113 };
114 
115 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
116 {
117 	unsigned i;
118 
119 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
120 		if (hvs_formats[i].drm == drm_format)
121 			return &hvs_formats[i];
122 	}
123 
124 	return NULL;
125 }
126 
127 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
128 {
129 	if (dst == src)
130 		return VC4_SCALING_NONE;
131 	if (3 * dst >= 2 * src)
132 		return VC4_SCALING_PPF;
133 	else
134 		return VC4_SCALING_TPZ;
135 }
136 
137 static bool plane_enabled(struct drm_plane_state *state)
138 {
139 	return state->fb && state->crtc;
140 }
141 
142 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
143 {
144 	struct vc4_plane_state *vc4_state;
145 
146 	if (WARN_ON(!plane->state))
147 		return NULL;
148 
149 	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
150 	if (!vc4_state)
151 		return NULL;
152 
153 	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
154 	vc4_state->dlist_initialized = 0;
155 
156 	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
157 
158 	if (vc4_state->dlist) {
159 		vc4_state->dlist = kmemdup(vc4_state->dlist,
160 					   vc4_state->dlist_count * 4,
161 					   GFP_KERNEL);
162 		if (!vc4_state->dlist) {
163 			kfree(vc4_state);
164 			return NULL;
165 		}
166 		vc4_state->dlist_size = vc4_state->dlist_count;
167 	}
168 
169 	return &vc4_state->base;
170 }
171 
172 static void vc4_plane_destroy_state(struct drm_plane *plane,
173 				    struct drm_plane_state *state)
174 {
175 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
176 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
177 
178 	if (vc4_state->lbm.allocated) {
179 		unsigned long irqflags;
180 
181 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
182 		drm_mm_remove_node(&vc4_state->lbm);
183 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
184 	}
185 
186 	kfree(vc4_state->dlist);
187 	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
188 	kfree(state);
189 }
190 
191 /* Called during init to allocate the plane's atomic state. */
192 static void vc4_plane_reset(struct drm_plane *plane)
193 {
194 	struct vc4_plane_state *vc4_state;
195 
196 	WARN_ON(plane->state);
197 
198 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
199 	if (!vc4_state)
200 		return;
201 
202 	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
203 }
204 
205 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
206 {
207 	if (vc4_state->dlist_count == vc4_state->dlist_size) {
208 		u32 new_size = max(4u, vc4_state->dlist_count * 2);
209 		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
210 
211 		if (!new_dlist)
212 			return;
213 		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
214 
215 		kfree(vc4_state->dlist);
216 		vc4_state->dlist = new_dlist;
217 		vc4_state->dlist_size = new_size;
218 	}
219 
220 	vc4_state->dlist[vc4_state->dlist_count++] = val;
221 }
222 
223 /* Returns the scl0/scl1 field based on whether the dimensions need to
224  * be up/down/non-scaled.
225  *
226  * This is a replication of a table from the spec.
227  */
228 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
229 {
230 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
231 
232 	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
233 	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
234 		return SCALER_CTL0_SCL_H_PPF_V_PPF;
235 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
236 		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
237 	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
238 		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
239 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
240 		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
241 	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
242 		return SCALER_CTL0_SCL_H_PPF_V_NONE;
243 	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
244 		return SCALER_CTL0_SCL_H_NONE_V_PPF;
245 	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
246 		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
247 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
248 		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
249 	default:
250 	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
251 		/* The unity case is independently handled by
252 		 * SCALER_CTL0_UNITY.
253 		 */
254 		return 0;
255 	}
256 }
257 
258 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
259 {
260 	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
261 	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
262 	struct drm_crtc_state *crtc_state;
263 
264 	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
265 						   pstate->crtc);
266 
267 	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
268 	if (!left && !right && !top && !bottom)
269 		return 0;
270 
271 	if (left + right >= crtc_state->mode.hdisplay ||
272 	    top + bottom >= crtc_state->mode.vdisplay)
273 		return -EINVAL;
274 
275 	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
276 	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
277 					       adjhdisplay,
278 					       crtc_state->mode.hdisplay);
279 	vc4_pstate->crtc_x += left;
280 	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
281 		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
282 
283 	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
284 	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
285 					       adjvdisplay,
286 					       crtc_state->mode.vdisplay);
287 	vc4_pstate->crtc_y += top;
288 	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
289 		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
290 
291 	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
292 					       adjhdisplay,
293 					       crtc_state->mode.hdisplay);
294 	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
295 					       adjvdisplay,
296 					       crtc_state->mode.vdisplay);
297 
298 	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
299 		return -EINVAL;
300 
301 	return 0;
302 }
303 
304 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
305 {
306 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
307 	struct drm_framebuffer *fb = state->fb;
308 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
309 	u32 subpixel_src_mask = (1 << 16) - 1;
310 	u32 format = fb->format->format;
311 	int num_planes = fb->format->num_planes;
312 	struct drm_crtc_state *crtc_state;
313 	u32 h_subsample, v_subsample;
314 	int i, ret;
315 
316 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
317 							state->crtc);
318 	if (!crtc_state) {
319 		DRM_DEBUG_KMS("Invalid crtc state\n");
320 		return -EINVAL;
321 	}
322 
323 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
324 						  INT_MAX, true, true);
325 	if (ret)
326 		return ret;
327 
328 	h_subsample = drm_format_horz_chroma_subsampling(format);
329 	v_subsample = drm_format_vert_chroma_subsampling(format);
330 
331 	for (i = 0; i < num_planes; i++)
332 		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
333 
334 	/* We don't support subpixel source positioning for scaling. */
335 	if ((state->src.x1 & subpixel_src_mask) ||
336 	    (state->src.x2 & subpixel_src_mask) ||
337 	    (state->src.y1 & subpixel_src_mask) ||
338 	    (state->src.y2 & subpixel_src_mask)) {
339 		return -EINVAL;
340 	}
341 
342 	vc4_state->src_x = state->src.x1 >> 16;
343 	vc4_state->src_y = state->src.y1 >> 16;
344 	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
345 	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
346 
347 	vc4_state->crtc_x = state->dst.x1;
348 	vc4_state->crtc_y = state->dst.y1;
349 	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
350 	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
351 
352 	ret = vc4_plane_margins_adj(state);
353 	if (ret)
354 		return ret;
355 
356 	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
357 						       vc4_state->crtc_w);
358 	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
359 						       vc4_state->crtc_h);
360 
361 	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
362 			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
363 
364 	if (num_planes > 1) {
365 		vc4_state->is_yuv = true;
366 
367 		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
368 		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
369 
370 		vc4_state->x_scaling[1] =
371 			vc4_get_scaling_mode(vc4_state->src_w[1],
372 					     vc4_state->crtc_w);
373 		vc4_state->y_scaling[1] =
374 			vc4_get_scaling_mode(vc4_state->src_h[1],
375 					     vc4_state->crtc_h);
376 
377 		/* YUV conversion requires that horizontal scaling be enabled
378 		 * on the UV plane even if vc4_get_scaling_mode() returned
379 		 * VC4_SCALING_NONE (which can happen when the down-scaling
380 		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
381 		 * case.
382 		 */
383 		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
384 			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
385 	} else {
386 		vc4_state->is_yuv = false;
387 		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
388 		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
389 	}
390 
391 	return 0;
392 }
393 
394 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
395 {
396 	u32 scale, recip;
397 
398 	scale = (1 << 16) * src / dst;
399 
400 	/* The specs note that while the reciprocal would be defined
401 	 * as (1<<32)/scale, ~0 is close enough.
402 	 */
403 	recip = ~0 / scale;
404 
405 	vc4_dlist_write(vc4_state,
406 			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
407 			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
408 	vc4_dlist_write(vc4_state,
409 			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
410 }
411 
412 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
413 {
414 	u32 scale = (1 << 16) * src / dst;
415 
416 	vc4_dlist_write(vc4_state,
417 			SCALER_PPF_AGC |
418 			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
419 			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
420 }
421 
422 static u32 vc4_lbm_size(struct drm_plane_state *state)
423 {
424 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
425 	/* This is the worst case number.  One of the two sizes will
426 	 * be used depending on the scaling configuration.
427 	 */
428 	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
429 	u32 lbm;
430 
431 	/* LBM is not needed when there's no vertical scaling. */
432 	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
433 	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
434 		return 0;
435 
436 	if (!vc4_state->is_yuv) {
437 		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
438 			lbm = pix_per_line * 8;
439 		else {
440 			/* In special cases, this multiplier might be 12. */
441 			lbm = pix_per_line * 16;
442 		}
443 	} else {
444 		/* There are cases for this going down to a multiplier
445 		 * of 2, but according to the firmware source, the
446 		 * table in the docs is somewhat wrong.
447 		 */
448 		lbm = pix_per_line * 16;
449 	}
450 
451 	lbm = roundup(lbm, 32);
452 
453 	return lbm;
454 }
455 
456 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
457 					 int channel)
458 {
459 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
460 
461 	/* Ch0 H-PPF Word 0: Scaling Parameters */
462 	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
463 		vc4_write_ppf(vc4_state,
464 			      vc4_state->src_w[channel], vc4_state->crtc_w);
465 	}
466 
467 	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
468 	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
469 		vc4_write_ppf(vc4_state,
470 			      vc4_state->src_h[channel], vc4_state->crtc_h);
471 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
472 	}
473 
474 	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
475 	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
476 		vc4_write_tpz(vc4_state,
477 			      vc4_state->src_w[channel], vc4_state->crtc_w);
478 	}
479 
480 	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
481 	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
482 		vc4_write_tpz(vc4_state,
483 			      vc4_state->src_h[channel], vc4_state->crtc_h);
484 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
485 	}
486 }
487 
488 static void vc4_plane_calc_load(struct drm_plane_state *state)
489 {
490 	unsigned int hvs_load_shift, vrefresh, i;
491 	struct drm_framebuffer *fb = state->fb;
492 	struct vc4_plane_state *vc4_state;
493 	struct drm_crtc_state *crtc_state;
494 	unsigned int vscale_factor;
495 
496 	vc4_state = to_vc4_plane_state(state);
497 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
498 							state->crtc);
499 	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
500 
501 	/* The HVS is able to process 2 pixels/cycle when scaling the source,
502 	 * 4 pixels/cycle otherwise.
503 	 * Alpha blending step seems to be pipelined and it's always operating
504 	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
505 	 * scaler block.
506 	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
507 	 */
508 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
509 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
510 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
511 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
512 		hvs_load_shift = 1;
513 	else
514 		hvs_load_shift = 2;
515 
516 	vc4_state->membus_load = 0;
517 	vc4_state->hvs_load = 0;
518 	for (i = 0; i < fb->format->num_planes; i++) {
519 		/* Even if the bandwidth/plane required for a single frame is
520 		 *
521 		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
522 		 *
523 		 * when downscaling, we have to read more pixels per line in
524 		 * the time frame reserved for a single line, so the bandwidth
525 		 * demand can be punctually higher. To account for that, we
526 		 * calculate the down-scaling factor and multiply the plane
527 		 * load by this number. We're likely over-estimating the read
528 		 * demand, but that's better than under-estimating it.
529 		 */
530 		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
531 					     vc4_state->crtc_h);
532 		vc4_state->membus_load += vc4_state->src_w[i] *
533 					  vc4_state->src_h[i] * vscale_factor *
534 					  fb->format->cpp[i];
535 		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
536 	}
537 
538 	vc4_state->hvs_load *= vrefresh;
539 	vc4_state->hvs_load >>= hvs_load_shift;
540 	vc4_state->membus_load *= vrefresh;
541 }
542 
543 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
544 {
545 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
546 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
547 	unsigned long irqflags;
548 	u32 lbm_size;
549 
550 	lbm_size = vc4_lbm_size(state);
551 	if (!lbm_size)
552 		return 0;
553 
554 	if (WARN_ON(!vc4_state->lbm_offset))
555 		return -EINVAL;
556 
557 	/* Allocate the LBM memory that the HVS will use for temporary
558 	 * storage due to our scaling/format conversion.
559 	 */
560 	if (!vc4_state->lbm.allocated) {
561 		int ret;
562 
563 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
564 		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
565 						 &vc4_state->lbm,
566 						 lbm_size, 32, 0, 0);
567 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
568 
569 		if (ret)
570 			return ret;
571 	} else {
572 		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
573 	}
574 
575 	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
576 
577 	return 0;
578 }
579 
580 /* Writes out a full display list for an active plane to the plane's
581  * private dlist state.
582  */
583 static int vc4_plane_mode_set(struct drm_plane *plane,
584 			      struct drm_plane_state *state)
585 {
586 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
587 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
588 	struct drm_framebuffer *fb = state->fb;
589 	u32 ctl0_offset = vc4_state->dlist_count;
590 	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
591 	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
592 	int num_planes = drm_format_num_planes(format->drm);
593 	u32 h_subsample, v_subsample;
594 	bool mix_plane_alpha;
595 	bool covers_screen;
596 	u32 scl0, scl1, pitch0;
597 	u32 tiling, src_y;
598 	u32 hvs_format = format->hvs;
599 	unsigned int rotation;
600 	int ret, i;
601 
602 	if (vc4_state->dlist_initialized)
603 		return 0;
604 
605 	ret = vc4_plane_setup_clipping_and_scaling(state);
606 	if (ret)
607 		return ret;
608 
609 	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
610 	 * and 4:4:4, scl1 should be set to scl0 so both channels of
611 	 * the scaler do the same thing.  For YUV, the Y plane needs
612 	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
613 	 * the scl fields here.
614 	 */
615 	if (num_planes == 1) {
616 		scl0 = vc4_get_scl_field(state, 0);
617 		scl1 = scl0;
618 	} else {
619 		scl0 = vc4_get_scl_field(state, 1);
620 		scl1 = vc4_get_scl_field(state, 0);
621 	}
622 
623 	h_subsample = drm_format_horz_chroma_subsampling(format->drm);
624 	v_subsample = drm_format_vert_chroma_subsampling(format->drm);
625 
626 	rotation = drm_rotation_simplify(state->rotation,
627 					 DRM_MODE_ROTATE_0 |
628 					 DRM_MODE_REFLECT_X |
629 					 DRM_MODE_REFLECT_Y);
630 
631 	/* We must point to the last line when Y reflection is enabled. */
632 	src_y = vc4_state->src_y;
633 	if (rotation & DRM_MODE_REFLECT_Y)
634 		src_y += vc4_state->src_h[0] - 1;
635 
636 	switch (base_format_mod) {
637 	case DRM_FORMAT_MOD_LINEAR:
638 		tiling = SCALER_CTL0_TILING_LINEAR;
639 		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
640 
641 		/* Adjust the base pointer to the first pixel to be scanned
642 		 * out.
643 		 */
644 		for (i = 0; i < num_planes; i++) {
645 			vc4_state->offsets[i] += src_y /
646 						 (i ? v_subsample : 1) *
647 						 fb->pitches[i];
648 
649 			vc4_state->offsets[i] += vc4_state->src_x /
650 						 (i ? h_subsample : 1) *
651 						 fb->format->cpp[i];
652 		}
653 
654 		break;
655 
656 	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
657 		u32 tile_size_shift = 12; /* T tiles are 4kb */
658 		/* Whole-tile offsets, mostly for setting the pitch. */
659 		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
660 		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
661 		u32 tile_w_mask = (1 << tile_w_shift) - 1;
662 		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
663 		 * the height (in pixels) of a 4k tile.
664 		 */
665 		u32 tile_h_mask = (2 << tile_h_shift) - 1;
666 		/* For T-tiled, the FB pitch is "how many bytes from one row to
667 		 * the next, such that
668 		 *
669 		 *	pitch * tile_h == tile_size * tiles_per_row
670 		 */
671 		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
672 		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
673 		u32 tiles_r = tiles_w - tiles_l;
674 		u32 tiles_t = src_y >> tile_h_shift;
675 		/* Intra-tile offsets, which modify the base address (the
676 		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
677 		 * base address).
678 		 */
679 		u32 tile_y = (src_y >> 4) & 1;
680 		u32 subtile_y = (src_y >> 2) & 3;
681 		u32 utile_y = src_y & 3;
682 		u32 x_off = vc4_state->src_x & tile_w_mask;
683 		u32 y_off = src_y & tile_h_mask;
684 
685 		/* When Y reflection is requested we must set the
686 		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
687 		 * after the initial one should be fetched in descending order,
688 		 * which makes sense since we start from the last line and go
689 		 * backward.
690 		 * Don't know why we need y_off = max_y_off - y_off, but it's
691 		 * definitely required (I guess it's also related to the "going
692 		 * backward" situation).
693 		 */
694 		if (rotation & DRM_MODE_REFLECT_Y) {
695 			y_off = tile_h_mask - y_off;
696 			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
697 		} else {
698 			pitch0 = 0;
699 		}
700 
701 		tiling = SCALER_CTL0_TILING_256B_OR_T;
702 		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
703 			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
704 			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
705 			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
706 		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
707 		vc4_state->offsets[0] += subtile_y << 8;
708 		vc4_state->offsets[0] += utile_y << 4;
709 
710 		/* Rows of tiles alternate left-to-right and right-to-left. */
711 		if (tiles_t & 1) {
712 			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
713 			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
714 						 tile_size_shift;
715 			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
716 		} else {
717 			vc4_state->offsets[0] += tiles_l << tile_size_shift;
718 			vc4_state->offsets[0] += tile_y << 10;
719 		}
720 
721 		break;
722 	}
723 
724 	case DRM_FORMAT_MOD_BROADCOM_SAND64:
725 	case DRM_FORMAT_MOD_BROADCOM_SAND128:
726 	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
727 		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
728 		u32 tile_w, tile, x_off, pix_per_tile;
729 
730 		hvs_format = HVS_PIXEL_FORMAT_H264;
731 
732 		switch (base_format_mod) {
733 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
734 			tiling = SCALER_CTL0_TILING_64B;
735 			tile_w = 64;
736 			break;
737 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
738 			tiling = SCALER_CTL0_TILING_128B;
739 			tile_w = 128;
740 			break;
741 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
742 			tiling = SCALER_CTL0_TILING_256B_OR_T;
743 			tile_w = 256;
744 			break;
745 		default:
746 			break;
747 		}
748 
749 		if (param > SCALER_TILE_HEIGHT_MASK) {
750 			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
751 			return -EINVAL;
752 		}
753 
754 		pix_per_tile = tile_w / fb->format->cpp[0];
755 		tile = vc4_state->src_x / pix_per_tile;
756 		x_off = vc4_state->src_x % pix_per_tile;
757 
758 		/* Adjust the base pointer to the first pixel to be scanned
759 		 * out.
760 		 */
761 		for (i = 0; i < num_planes; i++) {
762 			vc4_state->offsets[i] += param * tile_w * tile;
763 			vc4_state->offsets[i] += src_y /
764 						 (i ? v_subsample : 1) *
765 						 tile_w;
766 			vc4_state->offsets[i] += x_off /
767 						 (i ? h_subsample : 1) *
768 						 fb->format->cpp[i];
769 		}
770 
771 		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
772 		break;
773 	}
774 
775 	default:
776 		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
777 			      (long long)fb->modifier);
778 		return -EINVAL;
779 	}
780 
781 	/* Control word */
782 	vc4_dlist_write(vc4_state,
783 			SCALER_CTL0_VALID |
784 			(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
785 			(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
786 			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
787 			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
788 			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
789 			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
790 			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
791 			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
792 			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
793 
794 	/* Position Word 0: Image Positions and Alpha Value */
795 	vc4_state->pos0_offset = vc4_state->dlist_count;
796 	vc4_dlist_write(vc4_state,
797 			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
798 			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
799 			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
800 
801 	/* Position Word 1: Scaled Image Dimensions. */
802 	if (!vc4_state->is_unity) {
803 		vc4_dlist_write(vc4_state,
804 				VC4_SET_FIELD(vc4_state->crtc_w,
805 					      SCALER_POS1_SCL_WIDTH) |
806 				VC4_SET_FIELD(vc4_state->crtc_h,
807 					      SCALER_POS1_SCL_HEIGHT));
808 	}
809 
810 	/* Don't waste cycles mixing with plane alpha if the set alpha
811 	 * is opaque or there is no per-pixel alpha information.
812 	 * In any case we use the alpha property value as the fixed alpha.
813 	 */
814 	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
815 			  fb->format->has_alpha;
816 
817 	/* Position Word 2: Source Image Size, Alpha */
818 	vc4_state->pos2_offset = vc4_state->dlist_count;
819 	vc4_dlist_write(vc4_state,
820 			VC4_SET_FIELD(fb->format->has_alpha ?
821 				      SCALER_POS2_ALPHA_MODE_PIPELINE :
822 				      SCALER_POS2_ALPHA_MODE_FIXED,
823 				      SCALER_POS2_ALPHA_MODE) |
824 			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
825 			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
826 			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
827 			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
828 
829 	/* Position Word 3: Context.  Written by the HVS. */
830 	vc4_dlist_write(vc4_state, 0xc0c0c0c0);
831 
832 
833 	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
834 	 *
835 	 * The pointers may be any byte address.
836 	 */
837 	vc4_state->ptr0_offset = vc4_state->dlist_count;
838 	for (i = 0; i < num_planes; i++)
839 		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
840 
841 	/* Pointer Context Word 0/1/2: Written by the HVS */
842 	for (i = 0; i < num_planes; i++)
843 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
844 
845 	/* Pitch word 0 */
846 	vc4_dlist_write(vc4_state, pitch0);
847 
848 	/* Pitch word 1/2 */
849 	for (i = 1; i < num_planes; i++) {
850 		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
851 			vc4_dlist_write(vc4_state,
852 					VC4_SET_FIELD(fb->pitches[i],
853 						      SCALER_SRC_PITCH));
854 		} else {
855 			vc4_dlist_write(vc4_state, pitch0);
856 		}
857 	}
858 
859 	/* Colorspace conversion words */
860 	if (vc4_state->is_yuv) {
861 		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
862 		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
863 		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
864 	}
865 
866 	vc4_state->lbm_offset = 0;
867 
868 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
869 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
870 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
871 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
872 		/* Reserve a slot for the LBM Base Address. The real value will
873 		 * be set when calling vc4_plane_allocate_lbm().
874 		 */
875 		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
876 		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
877 			vc4_state->lbm_offset = vc4_state->dlist_count++;
878 
879 		if (num_planes > 1) {
880 			/* Emit Cb/Cr as channel 0 and Y as channel
881 			 * 1. This matches how we set up scl0/scl1
882 			 * above.
883 			 */
884 			vc4_write_scaling_parameters(state, 1);
885 		}
886 		vc4_write_scaling_parameters(state, 0);
887 
888 		/* If any PPF setup was done, then all the kernel
889 		 * pointers get uploaded.
890 		 */
891 		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
892 		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
893 		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
894 		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
895 			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
896 						   SCALER_PPF_KERNEL_OFFSET);
897 
898 			/* HPPF plane 0 */
899 			vc4_dlist_write(vc4_state, kernel);
900 			/* VPPF plane 0 */
901 			vc4_dlist_write(vc4_state, kernel);
902 			/* HPPF plane 1 */
903 			vc4_dlist_write(vc4_state, kernel);
904 			/* VPPF plane 1 */
905 			vc4_dlist_write(vc4_state, kernel);
906 		}
907 	}
908 
909 	vc4_state->dlist[ctl0_offset] |=
910 		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
911 
912 	/* crtc_* are already clipped coordinates. */
913 	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
914 			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
915 			vc4_state->crtc_h == state->crtc->mode.vdisplay;
916 	/* Background fill might be necessary when the plane has per-pixel
917 	 * alpha content or a non-opaque plane alpha and could blend from the
918 	 * background or does not cover the entire screen.
919 	 */
920 	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
921 				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
922 
923 	/* Flag the dlist as initialized to avoid checking it twice in case
924 	 * the async update check already called vc4_plane_mode_set() and
925 	 * decided to fallback to sync update because async update was not
926 	 * possible.
927 	 */
928 	vc4_state->dlist_initialized = 1;
929 
930 	vc4_plane_calc_load(state);
931 
932 	return 0;
933 }
934 
935 /* If a modeset involves changing the setup of a plane, the atomic
936  * infrastructure will call this to validate a proposed plane setup.
937  * However, if a plane isn't getting updated, this (and the
938  * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
939  * compute the dlist here and have all active plane dlists get updated
940  * in the CRTC's flush.
941  */
942 static int vc4_plane_atomic_check(struct drm_plane *plane,
943 				  struct drm_plane_state *state)
944 {
945 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
946 	int ret;
947 
948 	vc4_state->dlist_count = 0;
949 
950 	if (!plane_enabled(state))
951 		return 0;
952 
953 	ret = vc4_plane_mode_set(plane, state);
954 	if (ret)
955 		return ret;
956 
957 	return vc4_plane_allocate_lbm(state);
958 }
959 
960 static void vc4_plane_atomic_update(struct drm_plane *plane,
961 				    struct drm_plane_state *old_state)
962 {
963 	/* No contents here.  Since we don't know where in the CRTC's
964 	 * dlist we should be stored, our dlist is uploaded to the
965 	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
966 	 * time.
967 	 */
968 }
969 
970 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
971 {
972 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
973 	int i;
974 
975 	vc4_state->hw_dlist = dlist;
976 
977 	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
978 	for (i = 0; i < vc4_state->dlist_count; i++)
979 		writel(vc4_state->dlist[i], &dlist[i]);
980 
981 	return vc4_state->dlist_count;
982 }
983 
984 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
985 {
986 	const struct vc4_plane_state *vc4_state =
987 		container_of(state, typeof(*vc4_state), base);
988 
989 	return vc4_state->dlist_count;
990 }
991 
992 /* Updates the plane to immediately (well, once the FIFO needs
993  * refilling) scan out from at a new framebuffer.
994  */
995 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
996 {
997 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
998 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
999 	uint32_t addr;
1000 
1001 	/* We're skipping the address adjustment for negative origin,
1002 	 * because this is only called on the primary plane.
1003 	 */
1004 	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1005 	addr = bo->paddr + fb->offsets[0];
1006 
1007 	/* Write the new address into the hardware immediately.  The
1008 	 * scanout will start from this address as soon as the FIFO
1009 	 * needs to refill with pixels.
1010 	 */
1011 	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1012 
1013 	/* Also update the CPU-side dlist copy, so that any later
1014 	 * atomic updates that don't do a new modeset on our plane
1015 	 * also use our updated address.
1016 	 */
1017 	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1018 }
1019 
1020 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1021 					  struct drm_plane_state *state)
1022 {
1023 	struct vc4_plane_state *vc4_state, *new_vc4_state;
1024 
1025 	swap(plane->state->fb, state->fb);
1026 	plane->state->crtc_x = state->crtc_x;
1027 	plane->state->crtc_y = state->crtc_y;
1028 	plane->state->crtc_w = state->crtc_w;
1029 	plane->state->crtc_h = state->crtc_h;
1030 	plane->state->src_x = state->src_x;
1031 	plane->state->src_y = state->src_y;
1032 	plane->state->src_w = state->src_w;
1033 	plane->state->src_h = state->src_h;
1034 	plane->state->src_h = state->src_h;
1035 	plane->state->alpha = state->alpha;
1036 	plane->state->pixel_blend_mode = state->pixel_blend_mode;
1037 	plane->state->rotation = state->rotation;
1038 	plane->state->zpos = state->zpos;
1039 	plane->state->normalized_zpos = state->normalized_zpos;
1040 	plane->state->color_encoding = state->color_encoding;
1041 	plane->state->color_range = state->color_range;
1042 	plane->state->src = state->src;
1043 	plane->state->dst = state->dst;
1044 	plane->state->visible = state->visible;
1045 
1046 	new_vc4_state = to_vc4_plane_state(state);
1047 	vc4_state = to_vc4_plane_state(plane->state);
1048 
1049 	vc4_state->crtc_x = new_vc4_state->crtc_x;
1050 	vc4_state->crtc_y = new_vc4_state->crtc_y;
1051 	vc4_state->crtc_h = new_vc4_state->crtc_h;
1052 	vc4_state->crtc_w = new_vc4_state->crtc_w;
1053 	vc4_state->src_x = new_vc4_state->src_x;
1054 	vc4_state->src_y = new_vc4_state->src_y;
1055 	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1056 	       sizeof(vc4_state->src_w));
1057 	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1058 	       sizeof(vc4_state->src_h));
1059 	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1060 	       sizeof(vc4_state->x_scaling));
1061 	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1062 	       sizeof(vc4_state->y_scaling));
1063 	vc4_state->is_unity = new_vc4_state->is_unity;
1064 	vc4_state->is_yuv = new_vc4_state->is_yuv;
1065 	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1066 	       sizeof(vc4_state->offsets));
1067 	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1068 
1069 	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1070 	vc4_state->dlist[vc4_state->pos0_offset] =
1071 		new_vc4_state->dlist[vc4_state->pos0_offset];
1072 	vc4_state->dlist[vc4_state->pos2_offset] =
1073 		new_vc4_state->dlist[vc4_state->pos2_offset];
1074 	vc4_state->dlist[vc4_state->ptr0_offset] =
1075 		new_vc4_state->dlist[vc4_state->ptr0_offset];
1076 
1077 	/* Note that we can't just call vc4_plane_write_dlist()
1078 	 * because that would smash the context data that the HVS is
1079 	 * currently using.
1080 	 */
1081 	writel(vc4_state->dlist[vc4_state->pos0_offset],
1082 	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1083 	writel(vc4_state->dlist[vc4_state->pos2_offset],
1084 	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1085 	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1086 	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1087 }
1088 
1089 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1090 					struct drm_plane_state *state)
1091 {
1092 	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1093 	int ret;
1094 	u32 i;
1095 
1096 	ret = vc4_plane_mode_set(plane, state);
1097 	if (ret)
1098 		return ret;
1099 
1100 	old_vc4_state = to_vc4_plane_state(plane->state);
1101 	new_vc4_state = to_vc4_plane_state(state);
1102 	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1103 	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1104 	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1105 	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1106 	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1107 		return -EINVAL;
1108 
1109 	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1110 	 * if anything else has changed, fallback to a sync update.
1111 	 */
1112 	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1113 		if (i == new_vc4_state->pos0_offset ||
1114 		    i == new_vc4_state->pos2_offset ||
1115 		    i == new_vc4_state->ptr0_offset ||
1116 		    (new_vc4_state->lbm_offset &&
1117 		     i == new_vc4_state->lbm_offset))
1118 			continue;
1119 
1120 		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1121 			return -EINVAL;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int vc4_prepare_fb(struct drm_plane *plane,
1128 			  struct drm_plane_state *state)
1129 {
1130 	struct vc4_bo *bo;
1131 	struct dma_fence *fence;
1132 	int ret;
1133 
1134 	if (!state->fb)
1135 		return 0;
1136 
1137 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1138 
1139 	fence = reservation_object_get_excl_rcu(bo->base.base.resv);
1140 	drm_atomic_set_fence_for_plane(state, fence);
1141 
1142 	if (plane->state->fb == state->fb)
1143 		return 0;
1144 
1145 	ret = vc4_bo_inc_usecnt(bo);
1146 	if (ret)
1147 		return ret;
1148 
1149 	return 0;
1150 }
1151 
1152 static void vc4_cleanup_fb(struct drm_plane *plane,
1153 			   struct drm_plane_state *state)
1154 {
1155 	struct vc4_bo *bo;
1156 
1157 	if (plane->state->fb == state->fb || !state->fb)
1158 		return;
1159 
1160 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1161 	vc4_bo_dec_usecnt(bo);
1162 }
1163 
1164 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1165 	.atomic_check = vc4_plane_atomic_check,
1166 	.atomic_update = vc4_plane_atomic_update,
1167 	.prepare_fb = vc4_prepare_fb,
1168 	.cleanup_fb = vc4_cleanup_fb,
1169 	.atomic_async_check = vc4_plane_atomic_async_check,
1170 	.atomic_async_update = vc4_plane_atomic_async_update,
1171 };
1172 
1173 static void vc4_plane_destroy(struct drm_plane *plane)
1174 {
1175 	drm_plane_cleanup(plane);
1176 }
1177 
1178 static bool vc4_format_mod_supported(struct drm_plane *plane,
1179 				     uint32_t format,
1180 				     uint64_t modifier)
1181 {
1182 	/* Support T_TILING for RGB formats only. */
1183 	switch (format) {
1184 	case DRM_FORMAT_XRGB8888:
1185 	case DRM_FORMAT_ARGB8888:
1186 	case DRM_FORMAT_ABGR8888:
1187 	case DRM_FORMAT_XBGR8888:
1188 	case DRM_FORMAT_RGB565:
1189 	case DRM_FORMAT_BGR565:
1190 	case DRM_FORMAT_ARGB1555:
1191 	case DRM_FORMAT_XRGB1555:
1192 		switch (fourcc_mod_broadcom_mod(modifier)) {
1193 		case DRM_FORMAT_MOD_LINEAR:
1194 		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1195 			return true;
1196 		default:
1197 			return false;
1198 		}
1199 	case DRM_FORMAT_NV12:
1200 	case DRM_FORMAT_NV21:
1201 		switch (fourcc_mod_broadcom_mod(modifier)) {
1202 		case DRM_FORMAT_MOD_LINEAR:
1203 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1204 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1205 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1206 			return true;
1207 		default:
1208 			return false;
1209 		}
1210 	case DRM_FORMAT_YUV422:
1211 	case DRM_FORMAT_YVU422:
1212 	case DRM_FORMAT_YUV420:
1213 	case DRM_FORMAT_YVU420:
1214 	case DRM_FORMAT_NV16:
1215 	case DRM_FORMAT_NV61:
1216 	default:
1217 		return (modifier == DRM_FORMAT_MOD_LINEAR);
1218 	}
1219 }
1220 
1221 static const struct drm_plane_funcs vc4_plane_funcs = {
1222 	.update_plane = drm_atomic_helper_update_plane,
1223 	.disable_plane = drm_atomic_helper_disable_plane,
1224 	.destroy = vc4_plane_destroy,
1225 	.set_property = NULL,
1226 	.reset = vc4_plane_reset,
1227 	.atomic_duplicate_state = vc4_plane_duplicate_state,
1228 	.atomic_destroy_state = vc4_plane_destroy_state,
1229 	.format_mod_supported = vc4_format_mod_supported,
1230 };
1231 
1232 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1233 				 enum drm_plane_type type)
1234 {
1235 	struct drm_plane *plane = NULL;
1236 	struct vc4_plane *vc4_plane;
1237 	u32 formats[ARRAY_SIZE(hvs_formats)];
1238 	int ret = 0;
1239 	unsigned i;
1240 	static const uint64_t modifiers[] = {
1241 		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1242 		DRM_FORMAT_MOD_BROADCOM_SAND128,
1243 		DRM_FORMAT_MOD_BROADCOM_SAND64,
1244 		DRM_FORMAT_MOD_BROADCOM_SAND256,
1245 		DRM_FORMAT_MOD_LINEAR,
1246 		DRM_FORMAT_MOD_INVALID
1247 	};
1248 
1249 	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1250 				 GFP_KERNEL);
1251 	if (!vc4_plane)
1252 		return ERR_PTR(-ENOMEM);
1253 
1254 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1255 		formats[i] = hvs_formats[i].drm;
1256 
1257 	plane = &vc4_plane->base;
1258 	ret = drm_universal_plane_init(dev, plane, 0,
1259 				       &vc4_plane_funcs,
1260 				       formats, ARRAY_SIZE(formats),
1261 				       modifiers, type, NULL);
1262 
1263 	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1264 
1265 	drm_plane_create_alpha_property(plane);
1266 	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1267 					   DRM_MODE_ROTATE_0 |
1268 					   DRM_MODE_ROTATE_180 |
1269 					   DRM_MODE_REFLECT_X |
1270 					   DRM_MODE_REFLECT_Y);
1271 
1272 	return plane;
1273 }
1274