xref: /linux/drivers/gpu/drm/vc4/vc4_plane.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 plane module
8  *
9  * Each DRM plane is a layer of pixels being scanned out by the HVS.
10  *
11  * At atomic modeset check time, we compute the HVS display element
12  * state that would be necessary for displaying the plane (giving us a
13  * chance to figure out if a plane configuration is invalid), then at
14  * atomic flush time the CRTC will ask us to write our element state
15  * into the region of the HVS that it has allocated for us.
16  */
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_atomic_uapi.h>
21 #include <drm/drm_blend.h>
22 #include <drm/drm_drv.h>
23 #include <drm/drm_fb_dma_helper.h>
24 #include <drm/drm_fourcc.h>
25 #include <drm/drm_framebuffer.h>
26 #include <drm/drm_gem_atomic_helper.h>
27 
28 #include "uapi/drm/vc4_drm.h"
29 
30 #include "vc4_drv.h"
31 #include "vc4_regs.h"
32 
33 static const struct hvs_format {
34 	u32 drm; /* DRM_FORMAT_* */
35 	u32 hvs; /* HVS_FORMAT_* */
36 	u32 pixel_order;
37 	u32 pixel_order_hvs5;
38 	bool hvs5_only;
39 } hvs_formats[] = {
40 	{
41 		.drm = DRM_FORMAT_XRGB8888,
42 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
43 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
44 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
45 	},
46 	{
47 		.drm = DRM_FORMAT_ARGB8888,
48 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
49 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
50 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
51 	},
52 	{
53 		.drm = DRM_FORMAT_ABGR8888,
54 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
55 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
56 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
57 	},
58 	{
59 		.drm = DRM_FORMAT_XBGR8888,
60 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
61 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
62 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
63 	},
64 	{
65 		.drm = DRM_FORMAT_RGB565,
66 		.hvs = HVS_PIXEL_FORMAT_RGB565,
67 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
68 	},
69 	{
70 		.drm = DRM_FORMAT_BGR565,
71 		.hvs = HVS_PIXEL_FORMAT_RGB565,
72 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
73 	},
74 	{
75 		.drm = DRM_FORMAT_ARGB1555,
76 		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
77 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
78 	},
79 	{
80 		.drm = DRM_FORMAT_XRGB1555,
81 		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
82 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
83 	},
84 	{
85 		.drm = DRM_FORMAT_RGB888,
86 		.hvs = HVS_PIXEL_FORMAT_RGB888,
87 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
88 	},
89 	{
90 		.drm = DRM_FORMAT_BGR888,
91 		.hvs = HVS_PIXEL_FORMAT_RGB888,
92 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
93 	},
94 	{
95 		.drm = DRM_FORMAT_YUV422,
96 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
97 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
98 	},
99 	{
100 		.drm = DRM_FORMAT_YVU422,
101 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
102 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
103 	},
104 	{
105 		.drm = DRM_FORMAT_YUV420,
106 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
107 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
108 	},
109 	{
110 		.drm = DRM_FORMAT_YVU420,
111 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
112 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
113 	},
114 	{
115 		.drm = DRM_FORMAT_NV12,
116 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
117 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
118 	},
119 	{
120 		.drm = DRM_FORMAT_NV21,
121 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
122 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
123 	},
124 	{
125 		.drm = DRM_FORMAT_NV16,
126 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
127 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
128 	},
129 	{
130 		.drm = DRM_FORMAT_NV61,
131 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
132 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
133 	},
134 	{
135 		.drm = DRM_FORMAT_P030,
136 		.hvs = HVS_PIXEL_FORMAT_YCBCR_10BIT,
137 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
138 		.hvs5_only = true,
139 	},
140 };
141 
142 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
143 {
144 	unsigned i;
145 
146 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
147 		if (hvs_formats[i].drm == drm_format)
148 			return &hvs_formats[i];
149 	}
150 
151 	return NULL;
152 }
153 
154 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
155 {
156 	if (dst == src)
157 		return VC4_SCALING_NONE;
158 	if (3 * dst >= 2 * src)
159 		return VC4_SCALING_PPF;
160 	else
161 		return VC4_SCALING_TPZ;
162 }
163 
164 static bool plane_enabled(struct drm_plane_state *state)
165 {
166 	return state->fb && !WARN_ON(!state->crtc);
167 }
168 
169 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
170 {
171 	struct vc4_plane_state *vc4_state;
172 
173 	if (WARN_ON(!plane->state))
174 		return NULL;
175 
176 	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
177 	if (!vc4_state)
178 		return NULL;
179 
180 	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
181 	vc4_state->dlist_initialized = 0;
182 
183 	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
184 
185 	if (vc4_state->dlist) {
186 		vc4_state->dlist = kmemdup(vc4_state->dlist,
187 					   vc4_state->dlist_count * 4,
188 					   GFP_KERNEL);
189 		if (!vc4_state->dlist) {
190 			kfree(vc4_state);
191 			return NULL;
192 		}
193 		vc4_state->dlist_size = vc4_state->dlist_count;
194 	}
195 
196 	return &vc4_state->base;
197 }
198 
199 static void vc4_plane_destroy_state(struct drm_plane *plane,
200 				    struct drm_plane_state *state)
201 {
202 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
203 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
204 
205 	if (drm_mm_node_allocated(&vc4_state->lbm)) {
206 		unsigned long irqflags;
207 
208 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
209 		drm_mm_remove_node(&vc4_state->lbm);
210 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
211 	}
212 
213 	kfree(vc4_state->dlist);
214 	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
215 	kfree(state);
216 }
217 
218 /* Called during init to allocate the plane's atomic state. */
219 static void vc4_plane_reset(struct drm_plane *plane)
220 {
221 	struct vc4_plane_state *vc4_state;
222 
223 	WARN_ON(plane->state);
224 
225 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
226 	if (!vc4_state)
227 		return;
228 
229 	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
230 }
231 
232 static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
233 {
234 	if (vc4_state->dlist_count == vc4_state->dlist_size) {
235 		u32 new_size = max(4u, vc4_state->dlist_count * 2);
236 		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
237 
238 		if (!new_dlist)
239 			return;
240 		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
241 
242 		kfree(vc4_state->dlist);
243 		vc4_state->dlist = new_dlist;
244 		vc4_state->dlist_size = new_size;
245 	}
246 
247 	vc4_state->dlist_count++;
248 }
249 
250 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
251 {
252 	unsigned int idx = vc4_state->dlist_count;
253 
254 	vc4_dlist_counter_increment(vc4_state);
255 	vc4_state->dlist[idx] = val;
256 }
257 
258 /* Returns the scl0/scl1 field based on whether the dimensions need to
259  * be up/down/non-scaled.
260  *
261  * This is a replication of a table from the spec.
262  */
263 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
264 {
265 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
266 
267 	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
268 	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
269 		return SCALER_CTL0_SCL_H_PPF_V_PPF;
270 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
271 		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
272 	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
273 		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
274 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
275 		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
276 	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
277 		return SCALER_CTL0_SCL_H_PPF_V_NONE;
278 	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
279 		return SCALER_CTL0_SCL_H_NONE_V_PPF;
280 	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
281 		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
282 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
283 		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
284 	default:
285 	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
286 		/* The unity case is independently handled by
287 		 * SCALER_CTL0_UNITY.
288 		 */
289 		return 0;
290 	}
291 }
292 
293 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
294 {
295 	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
296 	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
297 	struct drm_crtc_state *crtc_state;
298 
299 	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
300 						   pstate->crtc);
301 
302 	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
303 	if (!left && !right && !top && !bottom)
304 		return 0;
305 
306 	if (left + right >= crtc_state->mode.hdisplay ||
307 	    top + bottom >= crtc_state->mode.vdisplay)
308 		return -EINVAL;
309 
310 	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
311 	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
312 					       adjhdisplay,
313 					       crtc_state->mode.hdisplay);
314 	vc4_pstate->crtc_x += left;
315 	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
316 		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
317 
318 	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
319 	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
320 					       adjvdisplay,
321 					       crtc_state->mode.vdisplay);
322 	vc4_pstate->crtc_y += top;
323 	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
324 		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
325 
326 	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
327 					       adjhdisplay,
328 					       crtc_state->mode.hdisplay);
329 	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
330 					       adjvdisplay,
331 					       crtc_state->mode.vdisplay);
332 
333 	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
334 		return -EINVAL;
335 
336 	return 0;
337 }
338 
339 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
340 {
341 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
342 	struct drm_framebuffer *fb = state->fb;
343 	struct drm_gem_dma_object *bo;
344 	int num_planes = fb->format->num_planes;
345 	struct drm_crtc_state *crtc_state;
346 	u32 h_subsample = fb->format->hsub;
347 	u32 v_subsample = fb->format->vsub;
348 	int i, ret;
349 
350 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
351 							state->crtc);
352 	if (!crtc_state) {
353 		DRM_DEBUG_KMS("Invalid crtc state\n");
354 		return -EINVAL;
355 	}
356 
357 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
358 						  INT_MAX, true, true);
359 	if (ret)
360 		return ret;
361 
362 	for (i = 0; i < num_planes; i++) {
363 		bo = drm_fb_dma_get_gem_obj(fb, i);
364 		vc4_state->offsets[i] = bo->dma_addr + fb->offsets[i];
365 	}
366 
367 	/*
368 	 * We don't support subpixel source positioning for scaling,
369 	 * but fractional coordinates can be generated by clipping
370 	 * so just round for now
371 	 */
372 	vc4_state->src_x = DIV_ROUND_CLOSEST(state->src.x1, 1 << 16);
373 	vc4_state->src_y = DIV_ROUND_CLOSEST(state->src.y1, 1 << 16);
374 	vc4_state->src_w[0] = DIV_ROUND_CLOSEST(state->src.x2, 1 << 16) - vc4_state->src_x;
375 	vc4_state->src_h[0] = DIV_ROUND_CLOSEST(state->src.y2, 1 << 16) - vc4_state->src_y;
376 
377 	vc4_state->crtc_x = state->dst.x1;
378 	vc4_state->crtc_y = state->dst.y1;
379 	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
380 	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
381 
382 	ret = vc4_plane_margins_adj(state);
383 	if (ret)
384 		return ret;
385 
386 	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
387 						       vc4_state->crtc_w);
388 	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
389 						       vc4_state->crtc_h);
390 
391 	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
392 			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
393 
394 	if (num_planes > 1) {
395 		vc4_state->is_yuv = true;
396 
397 		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
398 		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
399 
400 		vc4_state->x_scaling[1] =
401 			vc4_get_scaling_mode(vc4_state->src_w[1],
402 					     vc4_state->crtc_w);
403 		vc4_state->y_scaling[1] =
404 			vc4_get_scaling_mode(vc4_state->src_h[1],
405 					     vc4_state->crtc_h);
406 
407 		/* YUV conversion requires that horizontal scaling be enabled
408 		 * on the UV plane even if vc4_get_scaling_mode() returned
409 		 * VC4_SCALING_NONE (which can happen when the down-scaling
410 		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
411 		 * case.
412 		 */
413 		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
414 			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
415 	} else {
416 		vc4_state->is_yuv = false;
417 		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
418 		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
419 	}
420 
421 	return 0;
422 }
423 
424 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
425 {
426 	u32 scale, recip;
427 
428 	scale = (1 << 16) * src / dst;
429 
430 	/* The specs note that while the reciprocal would be defined
431 	 * as (1<<32)/scale, ~0 is close enough.
432 	 */
433 	recip = ~0 / scale;
434 
435 	vc4_dlist_write(vc4_state,
436 			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
437 			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
438 	vc4_dlist_write(vc4_state,
439 			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
440 }
441 
442 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
443 {
444 	u32 scale = (1 << 16) * src / dst;
445 
446 	vc4_dlist_write(vc4_state,
447 			SCALER_PPF_AGC |
448 			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
449 			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
450 }
451 
452 static u32 vc4_lbm_size(struct drm_plane_state *state)
453 {
454 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
455 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
456 	u32 pix_per_line;
457 	u32 lbm;
458 
459 	/* LBM is not needed when there's no vertical scaling. */
460 	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
461 	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
462 		return 0;
463 
464 	/*
465 	 * This can be further optimized in the RGB/YUV444 case if the PPF
466 	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
467 	 *
468 	 * It's not an issue though, since in that case since src_w[0] is going
469 	 * to be greater than or equal to crtc_w.
470 	 */
471 	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
472 		pix_per_line = vc4_state->crtc_w;
473 	else
474 		pix_per_line = vc4_state->src_w[0];
475 
476 	if (!vc4_state->is_yuv) {
477 		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
478 			lbm = pix_per_line * 8;
479 		else {
480 			/* In special cases, this multiplier might be 12. */
481 			lbm = pix_per_line * 16;
482 		}
483 	} else {
484 		/* There are cases for this going down to a multiplier
485 		 * of 2, but according to the firmware source, the
486 		 * table in the docs is somewhat wrong.
487 		 */
488 		lbm = pix_per_line * 16;
489 	}
490 
491 	/* Align it to 64 or 128 (hvs5) bytes */
492 	lbm = roundup(lbm, vc4->is_vc5 ? 128 : 64);
493 
494 	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
495 	lbm /= vc4->is_vc5 ? 4 : 2;
496 
497 	return lbm;
498 }
499 
500 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
501 					 int channel)
502 {
503 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
504 
505 	/* Ch0 H-PPF Word 0: Scaling Parameters */
506 	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
507 		vc4_write_ppf(vc4_state,
508 			      vc4_state->src_w[channel], vc4_state->crtc_w);
509 	}
510 
511 	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
512 	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
513 		vc4_write_ppf(vc4_state,
514 			      vc4_state->src_h[channel], vc4_state->crtc_h);
515 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
516 	}
517 
518 	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
519 	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
520 		vc4_write_tpz(vc4_state,
521 			      vc4_state->src_w[channel], vc4_state->crtc_w);
522 	}
523 
524 	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
525 	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
526 		vc4_write_tpz(vc4_state,
527 			      vc4_state->src_h[channel], vc4_state->crtc_h);
528 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
529 	}
530 }
531 
532 static void vc4_plane_calc_load(struct drm_plane_state *state)
533 {
534 	unsigned int hvs_load_shift, vrefresh, i;
535 	struct drm_framebuffer *fb = state->fb;
536 	struct vc4_plane_state *vc4_state;
537 	struct drm_crtc_state *crtc_state;
538 	unsigned int vscale_factor;
539 
540 	vc4_state = to_vc4_plane_state(state);
541 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
542 							state->crtc);
543 	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
544 
545 	/* The HVS is able to process 2 pixels/cycle when scaling the source,
546 	 * 4 pixels/cycle otherwise.
547 	 * Alpha blending step seems to be pipelined and it's always operating
548 	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
549 	 * scaler block.
550 	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
551 	 */
552 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
553 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
554 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
555 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
556 		hvs_load_shift = 1;
557 	else
558 		hvs_load_shift = 2;
559 
560 	vc4_state->membus_load = 0;
561 	vc4_state->hvs_load = 0;
562 	for (i = 0; i < fb->format->num_planes; i++) {
563 		/* Even if the bandwidth/plane required for a single frame is
564 		 *
565 		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
566 		 *
567 		 * when downscaling, we have to read more pixels per line in
568 		 * the time frame reserved for a single line, so the bandwidth
569 		 * demand can be punctually higher. To account for that, we
570 		 * calculate the down-scaling factor and multiply the plane
571 		 * load by this number. We're likely over-estimating the read
572 		 * demand, but that's better than under-estimating it.
573 		 */
574 		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
575 					     vc4_state->crtc_h);
576 		vc4_state->membus_load += vc4_state->src_w[i] *
577 					  vc4_state->src_h[i] * vscale_factor *
578 					  fb->format->cpp[i];
579 		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
580 	}
581 
582 	vc4_state->hvs_load *= vrefresh;
583 	vc4_state->hvs_load >>= hvs_load_shift;
584 	vc4_state->membus_load *= vrefresh;
585 }
586 
587 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
588 {
589 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
590 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
591 	unsigned long irqflags;
592 	u32 lbm_size;
593 
594 	lbm_size = vc4_lbm_size(state);
595 	if (!lbm_size)
596 		return 0;
597 
598 	if (WARN_ON(!vc4_state->lbm_offset))
599 		return -EINVAL;
600 
601 	/* Allocate the LBM memory that the HVS will use for temporary
602 	 * storage due to our scaling/format conversion.
603 	 */
604 	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
605 		int ret;
606 
607 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
608 		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
609 						 &vc4_state->lbm,
610 						 lbm_size,
611 						 vc4->is_vc5 ? 64 : 32,
612 						 0, 0);
613 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
614 
615 		if (ret)
616 			return ret;
617 	} else {
618 		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
619 	}
620 
621 	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
622 
623 	return 0;
624 }
625 
626 /*
627  * The colorspace conversion matrices are held in 3 entries in the dlist.
628  * Create an array of them, with entries for each full and limited mode, and
629  * each supported colorspace.
630  */
631 static const u32 colorspace_coeffs[2][DRM_COLOR_ENCODING_MAX][3] = {
632 	{
633 		/* Limited range */
634 		{
635 			/* BT601 */
636 			SCALER_CSC0_ITR_R_601_5,
637 			SCALER_CSC1_ITR_R_601_5,
638 			SCALER_CSC2_ITR_R_601_5,
639 		}, {
640 			/* BT709 */
641 			SCALER_CSC0_ITR_R_709_3,
642 			SCALER_CSC1_ITR_R_709_3,
643 			SCALER_CSC2_ITR_R_709_3,
644 		}, {
645 			/* BT2020 */
646 			SCALER_CSC0_ITR_R_2020,
647 			SCALER_CSC1_ITR_R_2020,
648 			SCALER_CSC2_ITR_R_2020,
649 		}
650 	}, {
651 		/* Full range */
652 		{
653 			/* JFIF */
654 			SCALER_CSC0_JPEG_JFIF,
655 			SCALER_CSC1_JPEG_JFIF,
656 			SCALER_CSC2_JPEG_JFIF,
657 		}, {
658 			/* BT709 */
659 			SCALER_CSC0_ITR_R_709_3_FR,
660 			SCALER_CSC1_ITR_R_709_3_FR,
661 			SCALER_CSC2_ITR_R_709_3_FR,
662 		}, {
663 			/* BT2020 */
664 			SCALER_CSC0_ITR_R_2020_FR,
665 			SCALER_CSC1_ITR_R_2020_FR,
666 			SCALER_CSC2_ITR_R_2020_FR,
667 		}
668 	}
669 };
670 
671 static u32 vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state *state)
672 {
673 	if (!state->fb->format->has_alpha)
674 		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
675 				     SCALER_POS2_ALPHA_MODE);
676 
677 	switch (state->pixel_blend_mode) {
678 	case DRM_MODE_BLEND_PIXEL_NONE:
679 		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
680 				     SCALER_POS2_ALPHA_MODE);
681 	default:
682 	case DRM_MODE_BLEND_PREMULTI:
683 		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
684 				     SCALER_POS2_ALPHA_MODE) |
685 			SCALER_POS2_ALPHA_PREMULT;
686 	case DRM_MODE_BLEND_COVERAGE:
687 		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
688 				     SCALER_POS2_ALPHA_MODE);
689 	}
690 }
691 
692 static u32 vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state *state)
693 {
694 	if (!state->fb->format->has_alpha)
695 		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
696 				     SCALER5_CTL2_ALPHA_MODE);
697 
698 	switch (state->pixel_blend_mode) {
699 	case DRM_MODE_BLEND_PIXEL_NONE:
700 		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
701 				     SCALER5_CTL2_ALPHA_MODE);
702 	default:
703 	case DRM_MODE_BLEND_PREMULTI:
704 		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
705 				     SCALER5_CTL2_ALPHA_MODE) |
706 			SCALER5_CTL2_ALPHA_PREMULT;
707 	case DRM_MODE_BLEND_COVERAGE:
708 		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
709 				     SCALER5_CTL2_ALPHA_MODE);
710 	}
711 }
712 
713 /* Writes out a full display list for an active plane to the plane's
714  * private dlist state.
715  */
716 static int vc4_plane_mode_set(struct drm_plane *plane,
717 			      struct drm_plane_state *state)
718 {
719 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
720 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
721 	struct drm_framebuffer *fb = state->fb;
722 	u32 ctl0_offset = vc4_state->dlist_count;
723 	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
724 	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
725 	int num_planes = fb->format->num_planes;
726 	u32 h_subsample = fb->format->hsub;
727 	u32 v_subsample = fb->format->vsub;
728 	bool mix_plane_alpha;
729 	bool covers_screen;
730 	u32 scl0, scl1, pitch0;
731 	u32 tiling, src_y;
732 	u32 hvs_format = format->hvs;
733 	unsigned int rotation;
734 	int ret, i;
735 
736 	if (vc4_state->dlist_initialized)
737 		return 0;
738 
739 	ret = vc4_plane_setup_clipping_and_scaling(state);
740 	if (ret)
741 		return ret;
742 
743 	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
744 	 * and 4:4:4, scl1 should be set to scl0 so both channels of
745 	 * the scaler do the same thing.  For YUV, the Y plane needs
746 	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
747 	 * the scl fields here.
748 	 */
749 	if (num_planes == 1) {
750 		scl0 = vc4_get_scl_field(state, 0);
751 		scl1 = scl0;
752 	} else {
753 		scl0 = vc4_get_scl_field(state, 1);
754 		scl1 = vc4_get_scl_field(state, 0);
755 	}
756 
757 	rotation = drm_rotation_simplify(state->rotation,
758 					 DRM_MODE_ROTATE_0 |
759 					 DRM_MODE_REFLECT_X |
760 					 DRM_MODE_REFLECT_Y);
761 
762 	/* We must point to the last line when Y reflection is enabled. */
763 	src_y = vc4_state->src_y;
764 	if (rotation & DRM_MODE_REFLECT_Y)
765 		src_y += vc4_state->src_h[0] - 1;
766 
767 	switch (base_format_mod) {
768 	case DRM_FORMAT_MOD_LINEAR:
769 		tiling = SCALER_CTL0_TILING_LINEAR;
770 		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
771 
772 		/* Adjust the base pointer to the first pixel to be scanned
773 		 * out.
774 		 */
775 		for (i = 0; i < num_planes; i++) {
776 			vc4_state->offsets[i] += src_y /
777 						 (i ? v_subsample : 1) *
778 						 fb->pitches[i];
779 
780 			vc4_state->offsets[i] += vc4_state->src_x /
781 						 (i ? h_subsample : 1) *
782 						 fb->format->cpp[i];
783 		}
784 
785 		break;
786 
787 	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
788 		u32 tile_size_shift = 12; /* T tiles are 4kb */
789 		/* Whole-tile offsets, mostly for setting the pitch. */
790 		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
791 		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
792 		u32 tile_w_mask = (1 << tile_w_shift) - 1;
793 		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
794 		 * the height (in pixels) of a 4k tile.
795 		 */
796 		u32 tile_h_mask = (2 << tile_h_shift) - 1;
797 		/* For T-tiled, the FB pitch is "how many bytes from one row to
798 		 * the next, such that
799 		 *
800 		 *	pitch * tile_h == tile_size * tiles_per_row
801 		 */
802 		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
803 		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
804 		u32 tiles_r = tiles_w - tiles_l;
805 		u32 tiles_t = src_y >> tile_h_shift;
806 		/* Intra-tile offsets, which modify the base address (the
807 		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
808 		 * base address).
809 		 */
810 		u32 tile_y = (src_y >> 4) & 1;
811 		u32 subtile_y = (src_y >> 2) & 3;
812 		u32 utile_y = src_y & 3;
813 		u32 x_off = vc4_state->src_x & tile_w_mask;
814 		u32 y_off = src_y & tile_h_mask;
815 
816 		/* When Y reflection is requested we must set the
817 		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
818 		 * after the initial one should be fetched in descending order,
819 		 * which makes sense since we start from the last line and go
820 		 * backward.
821 		 * Don't know why we need y_off = max_y_off - y_off, but it's
822 		 * definitely required (I guess it's also related to the "going
823 		 * backward" situation).
824 		 */
825 		if (rotation & DRM_MODE_REFLECT_Y) {
826 			y_off = tile_h_mask - y_off;
827 			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
828 		} else {
829 			pitch0 = 0;
830 		}
831 
832 		tiling = SCALER_CTL0_TILING_256B_OR_T;
833 		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
834 			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
835 			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
836 			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
837 		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
838 		vc4_state->offsets[0] += subtile_y << 8;
839 		vc4_state->offsets[0] += utile_y << 4;
840 
841 		/* Rows of tiles alternate left-to-right and right-to-left. */
842 		if (tiles_t & 1) {
843 			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
844 			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
845 						 tile_size_shift;
846 			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
847 		} else {
848 			vc4_state->offsets[0] += tiles_l << tile_size_shift;
849 			vc4_state->offsets[0] += tile_y << 10;
850 		}
851 
852 		break;
853 	}
854 
855 	case DRM_FORMAT_MOD_BROADCOM_SAND64:
856 	case DRM_FORMAT_MOD_BROADCOM_SAND128:
857 	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
858 		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
859 
860 		if (param > SCALER_TILE_HEIGHT_MASK) {
861 			DRM_DEBUG_KMS("SAND height too large (%d)\n",
862 				      param);
863 			return -EINVAL;
864 		}
865 
866 		if (fb->format->format == DRM_FORMAT_P030) {
867 			hvs_format = HVS_PIXEL_FORMAT_YCBCR_10BIT;
868 			tiling = SCALER_CTL0_TILING_128B;
869 		} else {
870 			hvs_format = HVS_PIXEL_FORMAT_H264;
871 
872 			switch (base_format_mod) {
873 			case DRM_FORMAT_MOD_BROADCOM_SAND64:
874 				tiling = SCALER_CTL0_TILING_64B;
875 				break;
876 			case DRM_FORMAT_MOD_BROADCOM_SAND128:
877 				tiling = SCALER_CTL0_TILING_128B;
878 				break;
879 			case DRM_FORMAT_MOD_BROADCOM_SAND256:
880 				tiling = SCALER_CTL0_TILING_256B_OR_T;
881 				break;
882 			default:
883 				return -EINVAL;
884 			}
885 		}
886 
887 		/* Adjust the base pointer to the first pixel to be scanned
888 		 * out.
889 		 *
890 		 * For P030, y_ptr [31:4] is the 128bit word for the start pixel
891 		 * y_ptr [3:0] is the pixel (0-11) contained within that 128bit
892 		 * word that should be taken as the first pixel.
893 		 * Ditto uv_ptr [31:4] vs [3:0], however [3:0] contains the
894 		 * element within the 128bit word, eg for pixel 3 the value
895 		 * should be 6.
896 		 */
897 		for (i = 0; i < num_planes; i++) {
898 			u32 tile_w, tile, x_off, pix_per_tile;
899 
900 			if (fb->format->format == DRM_FORMAT_P030) {
901 				/*
902 				 * Spec says: bits [31:4] of the given address
903 				 * should point to the 128-bit word containing
904 				 * the desired starting pixel, and bits[3:0]
905 				 * should be between 0 and 11, indicating which
906 				 * of the 12-pixels in that 128-bit word is the
907 				 * first pixel to be used
908 				 */
909 				u32 remaining_pixels = vc4_state->src_x % 96;
910 				u32 aligned = remaining_pixels / 12;
911 				u32 last_bits = remaining_pixels % 12;
912 
913 				x_off = aligned * 16 + last_bits;
914 				tile_w = 128;
915 				pix_per_tile = 96;
916 			} else {
917 				switch (base_format_mod) {
918 				case DRM_FORMAT_MOD_BROADCOM_SAND64:
919 					tile_w = 64;
920 					break;
921 				case DRM_FORMAT_MOD_BROADCOM_SAND128:
922 					tile_w = 128;
923 					break;
924 				case DRM_FORMAT_MOD_BROADCOM_SAND256:
925 					tile_w = 256;
926 					break;
927 				default:
928 					return -EINVAL;
929 				}
930 				pix_per_tile = tile_w / fb->format->cpp[0];
931 				x_off = (vc4_state->src_x % pix_per_tile) /
932 					(i ? h_subsample : 1) *
933 					fb->format->cpp[i];
934 			}
935 
936 			tile = vc4_state->src_x / pix_per_tile;
937 
938 			vc4_state->offsets[i] += param * tile_w * tile;
939 			vc4_state->offsets[i] += src_y /
940 						 (i ? v_subsample : 1) *
941 						 tile_w;
942 			vc4_state->offsets[i] += x_off & ~(i ? 1 : 0);
943 		}
944 
945 		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
946 		break;
947 	}
948 
949 	default:
950 		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
951 			      (long long)fb->modifier);
952 		return -EINVAL;
953 	}
954 
955 	/* Don't waste cycles mixing with plane alpha if the set alpha
956 	 * is opaque or there is no per-pixel alpha information.
957 	 * In any case we use the alpha property value as the fixed alpha.
958 	 */
959 	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
960 			  fb->format->has_alpha;
961 
962 	if (!vc4->is_vc5) {
963 	/* Control word */
964 		vc4_dlist_write(vc4_state,
965 				SCALER_CTL0_VALID |
966 				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
967 				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
968 				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
969 				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
970 				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
971 				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
972 				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
973 				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
974 				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
975 
976 		/* Position Word 0: Image Positions and Alpha Value */
977 		vc4_state->pos0_offset = vc4_state->dlist_count;
978 		vc4_dlist_write(vc4_state,
979 				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
980 				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
981 				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
982 
983 		/* Position Word 1: Scaled Image Dimensions. */
984 		if (!vc4_state->is_unity) {
985 			vc4_dlist_write(vc4_state,
986 					VC4_SET_FIELD(vc4_state->crtc_w,
987 						      SCALER_POS1_SCL_WIDTH) |
988 					VC4_SET_FIELD(vc4_state->crtc_h,
989 						      SCALER_POS1_SCL_HEIGHT));
990 		}
991 
992 		/* Position Word 2: Source Image Size, Alpha */
993 		vc4_state->pos2_offset = vc4_state->dlist_count;
994 		vc4_dlist_write(vc4_state,
995 				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
996 				vc4_hvs4_get_alpha_blend_mode(state) |
997 				VC4_SET_FIELD(vc4_state->src_w[0],
998 					      SCALER_POS2_WIDTH) |
999 				VC4_SET_FIELD(vc4_state->src_h[0],
1000 					      SCALER_POS2_HEIGHT));
1001 
1002 		/* Position Word 3: Context.  Written by the HVS. */
1003 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1004 
1005 	} else {
1006 		u32 hvs_pixel_order = format->pixel_order;
1007 
1008 		if (format->pixel_order_hvs5)
1009 			hvs_pixel_order = format->pixel_order_hvs5;
1010 
1011 		/* Control word */
1012 		vc4_dlist_write(vc4_state,
1013 				SCALER_CTL0_VALID |
1014 				(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
1015 				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1016 				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1017 				(vc4_state->is_unity ?
1018 						SCALER5_CTL0_UNITY : 0) |
1019 				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1020 				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
1021 				SCALER5_CTL0_ALPHA_EXPAND |
1022 				SCALER5_CTL0_RGB_EXPAND);
1023 
1024 		/* Position Word 0: Image Positions and Alpha Value */
1025 		vc4_state->pos0_offset = vc4_state->dlist_count;
1026 		vc4_dlist_write(vc4_state,
1027 				(rotation & DRM_MODE_REFLECT_Y ?
1028 						SCALER5_POS0_VFLIP : 0) |
1029 				VC4_SET_FIELD(vc4_state->crtc_x,
1030 					      SCALER_POS0_START_X) |
1031 				(rotation & DRM_MODE_REFLECT_X ?
1032 					      SCALER5_POS0_HFLIP : 0) |
1033 				VC4_SET_FIELD(vc4_state->crtc_y,
1034 					      SCALER5_POS0_START_Y)
1035 			       );
1036 
1037 		/* Control Word 2 */
1038 		vc4_dlist_write(vc4_state,
1039 				VC4_SET_FIELD(state->alpha >> 4,
1040 					      SCALER5_CTL2_ALPHA) |
1041 				vc4_hvs5_get_alpha_blend_mode(state) |
1042 				(mix_plane_alpha ?
1043 					SCALER5_CTL2_ALPHA_MIX : 0)
1044 			       );
1045 
1046 		/* Position Word 1: Scaled Image Dimensions. */
1047 		if (!vc4_state->is_unity) {
1048 			vc4_dlist_write(vc4_state,
1049 					VC4_SET_FIELD(vc4_state->crtc_w,
1050 						      SCALER5_POS1_SCL_WIDTH) |
1051 					VC4_SET_FIELD(vc4_state->crtc_h,
1052 						      SCALER5_POS1_SCL_HEIGHT));
1053 		}
1054 
1055 		/* Position Word 2: Source Image Size */
1056 		vc4_state->pos2_offset = vc4_state->dlist_count;
1057 		vc4_dlist_write(vc4_state,
1058 				VC4_SET_FIELD(vc4_state->src_w[0],
1059 					      SCALER5_POS2_WIDTH) |
1060 				VC4_SET_FIELD(vc4_state->src_h[0],
1061 					      SCALER5_POS2_HEIGHT));
1062 
1063 		/* Position Word 3: Context.  Written by the HVS. */
1064 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1065 	}
1066 
1067 
1068 	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
1069 	 *
1070 	 * The pointers may be any byte address.
1071 	 */
1072 	vc4_state->ptr0_offset = vc4_state->dlist_count;
1073 	for (i = 0; i < num_planes; i++)
1074 		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
1075 
1076 	/* Pointer Context Word 0/1/2: Written by the HVS */
1077 	for (i = 0; i < num_planes; i++)
1078 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1079 
1080 	/* Pitch word 0 */
1081 	vc4_dlist_write(vc4_state, pitch0);
1082 
1083 	/* Pitch word 1/2 */
1084 	for (i = 1; i < num_planes; i++) {
1085 		if (hvs_format != HVS_PIXEL_FORMAT_H264 &&
1086 		    hvs_format != HVS_PIXEL_FORMAT_YCBCR_10BIT) {
1087 			vc4_dlist_write(vc4_state,
1088 					VC4_SET_FIELD(fb->pitches[i],
1089 						      SCALER_SRC_PITCH));
1090 		} else {
1091 			vc4_dlist_write(vc4_state, pitch0);
1092 		}
1093 	}
1094 
1095 	/* Colorspace conversion words */
1096 	if (vc4_state->is_yuv) {
1097 		enum drm_color_encoding color_encoding = state->color_encoding;
1098 		enum drm_color_range color_range = state->color_range;
1099 		const u32 *ccm;
1100 
1101 		if (color_encoding >= DRM_COLOR_ENCODING_MAX)
1102 			color_encoding = DRM_COLOR_YCBCR_BT601;
1103 		if (color_range >= DRM_COLOR_RANGE_MAX)
1104 			color_range = DRM_COLOR_YCBCR_LIMITED_RANGE;
1105 
1106 		ccm = colorspace_coeffs[color_range][color_encoding];
1107 
1108 		vc4_dlist_write(vc4_state, ccm[0]);
1109 		vc4_dlist_write(vc4_state, ccm[1]);
1110 		vc4_dlist_write(vc4_state, ccm[2]);
1111 	}
1112 
1113 	vc4_state->lbm_offset = 0;
1114 
1115 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
1116 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
1117 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1118 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1119 		/* Reserve a slot for the LBM Base Address. The real value will
1120 		 * be set when calling vc4_plane_allocate_lbm().
1121 		 */
1122 		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1123 		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1124 			vc4_state->lbm_offset = vc4_state->dlist_count;
1125 			vc4_dlist_counter_increment(vc4_state);
1126 		}
1127 
1128 		if (num_planes > 1) {
1129 			/* Emit Cb/Cr as channel 0 and Y as channel
1130 			 * 1. This matches how we set up scl0/scl1
1131 			 * above.
1132 			 */
1133 			vc4_write_scaling_parameters(state, 1);
1134 		}
1135 		vc4_write_scaling_parameters(state, 0);
1136 
1137 		/* If any PPF setup was done, then all the kernel
1138 		 * pointers get uploaded.
1139 		 */
1140 		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1141 		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1142 		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1143 		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1144 			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1145 						   SCALER_PPF_KERNEL_OFFSET);
1146 
1147 			/* HPPF plane 0 */
1148 			vc4_dlist_write(vc4_state, kernel);
1149 			/* VPPF plane 0 */
1150 			vc4_dlist_write(vc4_state, kernel);
1151 			/* HPPF plane 1 */
1152 			vc4_dlist_write(vc4_state, kernel);
1153 			/* VPPF plane 1 */
1154 			vc4_dlist_write(vc4_state, kernel);
1155 		}
1156 	}
1157 
1158 	vc4_state->dlist[ctl0_offset] |=
1159 		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1160 
1161 	/* crtc_* are already clipped coordinates. */
1162 	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1163 			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1164 			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1165 	/* Background fill might be necessary when the plane has per-pixel
1166 	 * alpha content or a non-opaque plane alpha and could blend from the
1167 	 * background or does not cover the entire screen.
1168 	 */
1169 	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1170 				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1171 
1172 	/* Flag the dlist as initialized to avoid checking it twice in case
1173 	 * the async update check already called vc4_plane_mode_set() and
1174 	 * decided to fallback to sync update because async update was not
1175 	 * possible.
1176 	 */
1177 	vc4_state->dlist_initialized = 1;
1178 
1179 	vc4_plane_calc_load(state);
1180 
1181 	return 0;
1182 }
1183 
1184 /* If a modeset involves changing the setup of a plane, the atomic
1185  * infrastructure will call this to validate a proposed plane setup.
1186  * However, if a plane isn't getting updated, this (and the
1187  * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1188  * compute the dlist here and have all active plane dlists get updated
1189  * in the CRTC's flush.
1190  */
1191 static int vc4_plane_atomic_check(struct drm_plane *plane,
1192 				  struct drm_atomic_state *state)
1193 {
1194 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1195 										 plane);
1196 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1197 	int ret;
1198 
1199 	vc4_state->dlist_count = 0;
1200 
1201 	if (!plane_enabled(new_plane_state))
1202 		return 0;
1203 
1204 	ret = vc4_plane_mode_set(plane, new_plane_state);
1205 	if (ret)
1206 		return ret;
1207 
1208 	return vc4_plane_allocate_lbm(new_plane_state);
1209 }
1210 
1211 static void vc4_plane_atomic_update(struct drm_plane *plane,
1212 				    struct drm_atomic_state *state)
1213 {
1214 	/* No contents here.  Since we don't know where in the CRTC's
1215 	 * dlist we should be stored, our dlist is uploaded to the
1216 	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1217 	 * time.
1218 	 */
1219 }
1220 
1221 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1222 {
1223 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1224 	int i;
1225 	int idx;
1226 
1227 	if (!drm_dev_enter(plane->dev, &idx))
1228 		goto out;
1229 
1230 	vc4_state->hw_dlist = dlist;
1231 
1232 	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1233 	for (i = 0; i < vc4_state->dlist_count; i++)
1234 		writel(vc4_state->dlist[i], &dlist[i]);
1235 
1236 	drm_dev_exit(idx);
1237 
1238 out:
1239 	return vc4_state->dlist_count;
1240 }
1241 
1242 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1243 {
1244 	const struct vc4_plane_state *vc4_state =
1245 		container_of(state, typeof(*vc4_state), base);
1246 
1247 	return vc4_state->dlist_count;
1248 }
1249 
1250 /* Updates the plane to immediately (well, once the FIFO needs
1251  * refilling) scan out from at a new framebuffer.
1252  */
1253 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1254 {
1255 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1256 	struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
1257 	uint32_t addr;
1258 	int idx;
1259 
1260 	if (!drm_dev_enter(plane->dev, &idx))
1261 		return;
1262 
1263 	/* We're skipping the address adjustment for negative origin,
1264 	 * because this is only called on the primary plane.
1265 	 */
1266 	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1267 	addr = bo->dma_addr + fb->offsets[0];
1268 
1269 	/* Write the new address into the hardware immediately.  The
1270 	 * scanout will start from this address as soon as the FIFO
1271 	 * needs to refill with pixels.
1272 	 */
1273 	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1274 
1275 	/* Also update the CPU-side dlist copy, so that any later
1276 	 * atomic updates that don't do a new modeset on our plane
1277 	 * also use our updated address.
1278 	 */
1279 	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1280 
1281 	drm_dev_exit(idx);
1282 }
1283 
1284 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1285 					  struct drm_atomic_state *state)
1286 {
1287 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1288 										 plane);
1289 	struct vc4_plane_state *vc4_state, *new_vc4_state;
1290 	int idx;
1291 
1292 	if (!drm_dev_enter(plane->dev, &idx))
1293 		return;
1294 
1295 	swap(plane->state->fb, new_plane_state->fb);
1296 	plane->state->crtc_x = new_plane_state->crtc_x;
1297 	plane->state->crtc_y = new_plane_state->crtc_y;
1298 	plane->state->crtc_w = new_plane_state->crtc_w;
1299 	plane->state->crtc_h = new_plane_state->crtc_h;
1300 	plane->state->src_x = new_plane_state->src_x;
1301 	plane->state->src_y = new_plane_state->src_y;
1302 	plane->state->src_w = new_plane_state->src_w;
1303 	plane->state->src_h = new_plane_state->src_h;
1304 	plane->state->alpha = new_plane_state->alpha;
1305 	plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1306 	plane->state->rotation = new_plane_state->rotation;
1307 	plane->state->zpos = new_plane_state->zpos;
1308 	plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1309 	plane->state->color_encoding = new_plane_state->color_encoding;
1310 	plane->state->color_range = new_plane_state->color_range;
1311 	plane->state->src = new_plane_state->src;
1312 	plane->state->dst = new_plane_state->dst;
1313 	plane->state->visible = new_plane_state->visible;
1314 
1315 	new_vc4_state = to_vc4_plane_state(new_plane_state);
1316 	vc4_state = to_vc4_plane_state(plane->state);
1317 
1318 	vc4_state->crtc_x = new_vc4_state->crtc_x;
1319 	vc4_state->crtc_y = new_vc4_state->crtc_y;
1320 	vc4_state->crtc_h = new_vc4_state->crtc_h;
1321 	vc4_state->crtc_w = new_vc4_state->crtc_w;
1322 	vc4_state->src_x = new_vc4_state->src_x;
1323 	vc4_state->src_y = new_vc4_state->src_y;
1324 	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1325 	       sizeof(vc4_state->src_w));
1326 	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1327 	       sizeof(vc4_state->src_h));
1328 	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1329 	       sizeof(vc4_state->x_scaling));
1330 	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1331 	       sizeof(vc4_state->y_scaling));
1332 	vc4_state->is_unity = new_vc4_state->is_unity;
1333 	vc4_state->is_yuv = new_vc4_state->is_yuv;
1334 	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1335 	       sizeof(vc4_state->offsets));
1336 	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1337 
1338 	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1339 	vc4_state->dlist[vc4_state->pos0_offset] =
1340 		new_vc4_state->dlist[vc4_state->pos0_offset];
1341 	vc4_state->dlist[vc4_state->pos2_offset] =
1342 		new_vc4_state->dlist[vc4_state->pos2_offset];
1343 	vc4_state->dlist[vc4_state->ptr0_offset] =
1344 		new_vc4_state->dlist[vc4_state->ptr0_offset];
1345 
1346 	/* Note that we can't just call vc4_plane_write_dlist()
1347 	 * because that would smash the context data that the HVS is
1348 	 * currently using.
1349 	 */
1350 	writel(vc4_state->dlist[vc4_state->pos0_offset],
1351 	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1352 	writel(vc4_state->dlist[vc4_state->pos2_offset],
1353 	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1354 	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1355 	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1356 
1357 	drm_dev_exit(idx);
1358 }
1359 
1360 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1361 					struct drm_atomic_state *state)
1362 {
1363 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1364 										 plane);
1365 	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1366 	int ret;
1367 	u32 i;
1368 
1369 	ret = vc4_plane_mode_set(plane, new_plane_state);
1370 	if (ret)
1371 		return ret;
1372 
1373 	old_vc4_state = to_vc4_plane_state(plane->state);
1374 	new_vc4_state = to_vc4_plane_state(new_plane_state);
1375 
1376 	if (!new_vc4_state->hw_dlist)
1377 		return -EINVAL;
1378 
1379 	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1380 	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1381 	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1382 	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1383 	    vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1384 		return -EINVAL;
1385 
1386 	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1387 	 * if anything else has changed, fallback to a sync update.
1388 	 */
1389 	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1390 		if (i == new_vc4_state->pos0_offset ||
1391 		    i == new_vc4_state->pos2_offset ||
1392 		    i == new_vc4_state->ptr0_offset ||
1393 		    (new_vc4_state->lbm_offset &&
1394 		     i == new_vc4_state->lbm_offset))
1395 			continue;
1396 
1397 		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1398 			return -EINVAL;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int vc4_prepare_fb(struct drm_plane *plane,
1405 			  struct drm_plane_state *state)
1406 {
1407 	struct vc4_bo *bo;
1408 
1409 	if (!state->fb)
1410 		return 0;
1411 
1412 	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1413 
1414 	drm_gem_plane_helper_prepare_fb(plane, state);
1415 
1416 	if (plane->state->fb == state->fb)
1417 		return 0;
1418 
1419 	return vc4_bo_inc_usecnt(bo);
1420 }
1421 
1422 static void vc4_cleanup_fb(struct drm_plane *plane,
1423 			   struct drm_plane_state *state)
1424 {
1425 	struct vc4_bo *bo;
1426 
1427 	if (plane->state->fb == state->fb || !state->fb)
1428 		return;
1429 
1430 	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1431 	vc4_bo_dec_usecnt(bo);
1432 }
1433 
1434 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1435 	.atomic_check = vc4_plane_atomic_check,
1436 	.atomic_update = vc4_plane_atomic_update,
1437 	.prepare_fb = vc4_prepare_fb,
1438 	.cleanup_fb = vc4_cleanup_fb,
1439 	.atomic_async_check = vc4_plane_atomic_async_check,
1440 	.atomic_async_update = vc4_plane_atomic_async_update,
1441 };
1442 
1443 static const struct drm_plane_helper_funcs vc5_plane_helper_funcs = {
1444 	.atomic_check = vc4_plane_atomic_check,
1445 	.atomic_update = vc4_plane_atomic_update,
1446 	.atomic_async_check = vc4_plane_atomic_async_check,
1447 	.atomic_async_update = vc4_plane_atomic_async_update,
1448 };
1449 
1450 static bool vc4_format_mod_supported(struct drm_plane *plane,
1451 				     uint32_t format,
1452 				     uint64_t modifier)
1453 {
1454 	/* Support T_TILING for RGB formats only. */
1455 	switch (format) {
1456 	case DRM_FORMAT_XRGB8888:
1457 	case DRM_FORMAT_ARGB8888:
1458 	case DRM_FORMAT_ABGR8888:
1459 	case DRM_FORMAT_XBGR8888:
1460 	case DRM_FORMAT_RGB565:
1461 	case DRM_FORMAT_BGR565:
1462 	case DRM_FORMAT_ARGB1555:
1463 	case DRM_FORMAT_XRGB1555:
1464 		switch (fourcc_mod_broadcom_mod(modifier)) {
1465 		case DRM_FORMAT_MOD_LINEAR:
1466 		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1467 			return true;
1468 		default:
1469 			return false;
1470 		}
1471 	case DRM_FORMAT_NV12:
1472 	case DRM_FORMAT_NV21:
1473 		switch (fourcc_mod_broadcom_mod(modifier)) {
1474 		case DRM_FORMAT_MOD_LINEAR:
1475 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1476 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1477 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1478 			return true;
1479 		default:
1480 			return false;
1481 		}
1482 	case DRM_FORMAT_P030:
1483 		switch (fourcc_mod_broadcom_mod(modifier)) {
1484 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1485 			return true;
1486 		default:
1487 			return false;
1488 		}
1489 	case DRM_FORMAT_RGBX1010102:
1490 	case DRM_FORMAT_BGRX1010102:
1491 	case DRM_FORMAT_RGBA1010102:
1492 	case DRM_FORMAT_BGRA1010102:
1493 	case DRM_FORMAT_YUV422:
1494 	case DRM_FORMAT_YVU422:
1495 	case DRM_FORMAT_YUV420:
1496 	case DRM_FORMAT_YVU420:
1497 	case DRM_FORMAT_NV16:
1498 	case DRM_FORMAT_NV61:
1499 	default:
1500 		return (modifier == DRM_FORMAT_MOD_LINEAR);
1501 	}
1502 }
1503 
1504 static const struct drm_plane_funcs vc4_plane_funcs = {
1505 	.update_plane = drm_atomic_helper_update_plane,
1506 	.disable_plane = drm_atomic_helper_disable_plane,
1507 	.reset = vc4_plane_reset,
1508 	.atomic_duplicate_state = vc4_plane_duplicate_state,
1509 	.atomic_destroy_state = vc4_plane_destroy_state,
1510 	.format_mod_supported = vc4_format_mod_supported,
1511 };
1512 
1513 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1514 				 enum drm_plane_type type,
1515 				 uint32_t possible_crtcs)
1516 {
1517 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1518 	struct drm_plane *plane;
1519 	struct vc4_plane *vc4_plane;
1520 	u32 formats[ARRAY_SIZE(hvs_formats)];
1521 	int num_formats = 0;
1522 	unsigned i;
1523 	static const uint64_t modifiers[] = {
1524 		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1525 		DRM_FORMAT_MOD_BROADCOM_SAND128,
1526 		DRM_FORMAT_MOD_BROADCOM_SAND64,
1527 		DRM_FORMAT_MOD_BROADCOM_SAND256,
1528 		DRM_FORMAT_MOD_LINEAR,
1529 		DRM_FORMAT_MOD_INVALID
1530 	};
1531 
1532 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
1533 		if (!hvs_formats[i].hvs5_only || vc4->is_vc5) {
1534 			formats[num_formats] = hvs_formats[i].drm;
1535 			num_formats++;
1536 		}
1537 	}
1538 
1539 	vc4_plane = drmm_universal_plane_alloc(dev, struct vc4_plane, base,
1540 					       possible_crtcs,
1541 					       &vc4_plane_funcs,
1542 					       formats, num_formats,
1543 					       modifiers, type, NULL);
1544 	if (IS_ERR(vc4_plane))
1545 		return ERR_CAST(vc4_plane);
1546 	plane = &vc4_plane->base;
1547 
1548 	if (vc4->is_vc5)
1549 		drm_plane_helper_add(plane, &vc5_plane_helper_funcs);
1550 	else
1551 		drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1552 
1553 	drm_plane_create_alpha_property(plane);
1554 	drm_plane_create_blend_mode_property(plane,
1555 					     BIT(DRM_MODE_BLEND_PIXEL_NONE) |
1556 					     BIT(DRM_MODE_BLEND_PREMULTI) |
1557 					     BIT(DRM_MODE_BLEND_COVERAGE));
1558 	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1559 					   DRM_MODE_ROTATE_0 |
1560 					   DRM_MODE_ROTATE_180 |
1561 					   DRM_MODE_REFLECT_X |
1562 					   DRM_MODE_REFLECT_Y);
1563 
1564 	drm_plane_create_color_properties(plane,
1565 					  BIT(DRM_COLOR_YCBCR_BT601) |
1566 					  BIT(DRM_COLOR_YCBCR_BT709) |
1567 					  BIT(DRM_COLOR_YCBCR_BT2020),
1568 					  BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
1569 					  BIT(DRM_COLOR_YCBCR_FULL_RANGE),
1570 					  DRM_COLOR_YCBCR_BT709,
1571 					  DRM_COLOR_YCBCR_LIMITED_RANGE);
1572 
1573 	return plane;
1574 }
1575 
1576 int vc4_plane_create_additional_planes(struct drm_device *drm)
1577 {
1578 	struct drm_plane *cursor_plane;
1579 	struct drm_crtc *crtc;
1580 	unsigned int i;
1581 
1582 	/* Set up some arbitrary number of planes.  We're not limited
1583 	 * by a set number of physical registers, just the space in
1584 	 * the HVS (16k) and how small an plane can be (28 bytes).
1585 	 * However, each plane we set up takes up some memory, and
1586 	 * increases the cost of looping over planes, which atomic
1587 	 * modesetting does quite a bit.  As a result, we pick a
1588 	 * modest number of planes to expose, that should hopefully
1589 	 * still cover any sane usecase.
1590 	 */
1591 	for (i = 0; i < 16; i++) {
1592 		struct drm_plane *plane =
1593 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY,
1594 				       GENMASK(drm->mode_config.num_crtc - 1, 0));
1595 
1596 		if (IS_ERR(plane))
1597 			continue;
1598 	}
1599 
1600 	drm_for_each_crtc(crtc, drm) {
1601 		/* Set up the legacy cursor after overlay initialization,
1602 		 * since we overlay planes on the CRTC in the order they were
1603 		 * initialized.
1604 		 */
1605 		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR,
1606 					      drm_crtc_mask(crtc));
1607 		if (!IS_ERR(cursor_plane)) {
1608 			crtc->cursor = cursor_plane;
1609 		}
1610 	}
1611 
1612 	return 0;
1613 }
1614