xref: /linux/drivers/gpu/drm/xe/xe_gt_pagefault.c (revision 021bc4b9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_pagefault.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 
11 #include <drm/drm_exec.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_execbuf_util.h>
14 
15 #include "abi/guc_actions_abi.h"
16 #include "xe_bo.h"
17 #include "xe_gt.h"
18 #include "xe_gt_tlb_invalidation.h"
19 #include "xe_guc.h"
20 #include "xe_guc_ct.h"
21 #include "xe_migrate.h"
22 #include "xe_pt.h"
23 #include "xe_trace.h"
24 #include "xe_vm.h"
25 
26 struct pagefault {
27 	u64 page_addr;
28 	u32 asid;
29 	u16 pdata;
30 	u8 vfid;
31 	u8 access_type;
32 	u8 fault_type;
33 	u8 fault_level;
34 	u8 engine_class;
35 	u8 engine_instance;
36 	u8 fault_unsuccessful;
37 	bool trva_fault;
38 };
39 
40 enum access_type {
41 	ACCESS_TYPE_READ = 0,
42 	ACCESS_TYPE_WRITE = 1,
43 	ACCESS_TYPE_ATOMIC = 2,
44 	ACCESS_TYPE_RESERVED = 3,
45 };
46 
47 enum fault_type {
48 	NOT_PRESENT = 0,
49 	WRITE_ACCESS_VIOLATION = 1,
50 	ATOMIC_ACCESS_VIOLATION = 2,
51 };
52 
53 struct acc {
54 	u64 va_range_base;
55 	u32 asid;
56 	u32 sub_granularity;
57 	u8 granularity;
58 	u8 vfid;
59 	u8 access_type;
60 	u8 engine_class;
61 	u8 engine_instance;
62 };
63 
64 static bool access_is_atomic(enum access_type access_type)
65 {
66 	return access_type == ACCESS_TYPE_ATOMIC;
67 }
68 
69 static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
70 {
71 	return BIT(tile->id) & vma->tile_present &&
72 		!(BIT(tile->id) & vma->usm.tile_invalidated);
73 }
74 
75 static bool vma_matches(struct xe_vma *vma, u64 page_addr)
76 {
77 	if (page_addr > xe_vma_end(vma) - 1 ||
78 	    page_addr + SZ_4K - 1 < xe_vma_start(vma))
79 		return false;
80 
81 	return true;
82 }
83 
84 static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
85 {
86 	struct xe_vma *vma = NULL;
87 
88 	if (vm->usm.last_fault_vma) {   /* Fast lookup */
89 		if (vma_matches(vm->usm.last_fault_vma, page_addr))
90 			vma = vm->usm.last_fault_vma;
91 	}
92 	if (!vma)
93 		vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);
94 
95 	return vma;
96 }
97 
98 static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
99 		       bool atomic, unsigned int id)
100 {
101 	struct xe_bo *bo = xe_vma_bo(vma);
102 	struct xe_vm *vm = xe_vma_vm(vma);
103 	unsigned int num_shared = 2; /* slots for bind + move */
104 	int err;
105 
106 	err = xe_vm_prepare_vma(exec, vma, num_shared);
107 	if (err)
108 		return err;
109 
110 	if (atomic && IS_DGFX(vm->xe)) {
111 		if (xe_vma_is_userptr(vma)) {
112 			err = -EACCES;
113 			return err;
114 		}
115 
116 		/* Migrate to VRAM, move should invalidate the VMA first */
117 		err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
118 		if (err)
119 			return err;
120 	} else if (bo) {
121 		/* Create backing store if needed */
122 		err = xe_bo_validate(bo, vm, true);
123 		if (err)
124 			return err;
125 	}
126 
127 	return 0;
128 }
129 
130 static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
131 {
132 	struct xe_device *xe = gt_to_xe(gt);
133 	struct xe_tile *tile = gt_to_tile(gt);
134 	struct drm_exec exec;
135 	struct xe_vm *vm;
136 	struct xe_vma *vma = NULL;
137 	struct dma_fence *fence;
138 	bool write_locked;
139 	int ret = 0;
140 	bool atomic;
141 
142 	/* SW isn't expected to handle TRTT faults */
143 	if (pf->trva_fault)
144 		return -EFAULT;
145 
146 	/* ASID to VM */
147 	mutex_lock(&xe->usm.lock);
148 	vm = xa_load(&xe->usm.asid_to_vm, pf->asid);
149 	if (vm)
150 		xe_vm_get(vm);
151 	mutex_unlock(&xe->usm.lock);
152 	if (!vm || !xe_vm_in_fault_mode(vm))
153 		return -EINVAL;
154 
155 retry_userptr:
156 	/*
157 	 * TODO: Avoid exclusive lock if VM doesn't have userptrs, or
158 	 * start out read-locked?
159 	 */
160 	down_write(&vm->lock);
161 	write_locked = true;
162 	vma = lookup_vma(vm, pf->page_addr);
163 	if (!vma) {
164 		ret = -EINVAL;
165 		goto unlock_vm;
166 	}
167 
168 	if (!xe_vma_is_userptr(vma) ||
169 	    !xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
170 		downgrade_write(&vm->lock);
171 		write_locked = false;
172 	}
173 
174 	trace_xe_vma_pagefault(vma);
175 
176 	atomic = access_is_atomic(pf->access_type);
177 
178 	/* Check if VMA is valid */
179 	if (vma_is_valid(tile, vma) && !atomic)
180 		goto unlock_vm;
181 
182 	/* TODO: Validate fault */
183 
184 	if (xe_vma_is_userptr(vma) && write_locked) {
185 		struct xe_userptr_vma *uvma = to_userptr_vma(vma);
186 
187 		spin_lock(&vm->userptr.invalidated_lock);
188 		list_del_init(&uvma->userptr.invalidate_link);
189 		spin_unlock(&vm->userptr.invalidated_lock);
190 
191 		ret = xe_vma_userptr_pin_pages(uvma);
192 		if (ret)
193 			goto unlock_vm;
194 
195 		downgrade_write(&vm->lock);
196 		write_locked = false;
197 	}
198 
199 	/* Lock VM and BOs dma-resv */
200 	drm_exec_init(&exec, 0, 0);
201 	drm_exec_until_all_locked(&exec) {
202 		ret = xe_pf_begin(&exec, vma, atomic, tile->id);
203 		drm_exec_retry_on_contention(&exec);
204 		if (ret)
205 			goto unlock_dma_resv;
206 	}
207 
208 	/* Bind VMA only to the GT that has faulted */
209 	trace_xe_vma_pf_bind(vma);
210 	fence = __xe_pt_bind_vma(tile, vma, xe_tile_migrate_engine(tile), NULL, 0,
211 				 vma->tile_present & BIT(tile->id));
212 	if (IS_ERR(fence)) {
213 		ret = PTR_ERR(fence);
214 		goto unlock_dma_resv;
215 	}
216 
217 	/*
218 	 * XXX: Should we drop the lock before waiting? This only helps if doing
219 	 * GPU binds which is currently only done if we have to wait for more
220 	 * than 10ms on a move.
221 	 */
222 	dma_fence_wait(fence, false);
223 	dma_fence_put(fence);
224 
225 	if (xe_vma_is_userptr(vma))
226 		ret = xe_vma_userptr_check_repin(to_userptr_vma(vma));
227 	vma->usm.tile_invalidated &= ~BIT(tile->id);
228 
229 unlock_dma_resv:
230 	drm_exec_fini(&exec);
231 unlock_vm:
232 	if (!ret)
233 		vm->usm.last_fault_vma = vma;
234 	if (write_locked)
235 		up_write(&vm->lock);
236 	else
237 		up_read(&vm->lock);
238 	if (ret == -EAGAIN)
239 		goto retry_userptr;
240 
241 	if (!ret) {
242 		ret = xe_gt_tlb_invalidation_vma(gt, NULL, vma);
243 		if (ret >= 0)
244 			ret = 0;
245 	}
246 	xe_vm_put(vm);
247 
248 	return ret;
249 }
250 
251 static int send_pagefault_reply(struct xe_guc *guc,
252 				struct xe_guc_pagefault_reply *reply)
253 {
254 	u32 action[] = {
255 		XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
256 		reply->dw0,
257 		reply->dw1,
258 	};
259 
260 	return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
261 }
262 
263 static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
264 {
265 	drm_dbg(&xe->drm, "\n\tASID: %d\n"
266 		 "\tVFID: %d\n"
267 		 "\tPDATA: 0x%04x\n"
268 		 "\tFaulted Address: 0x%08x%08x\n"
269 		 "\tFaultType: %d\n"
270 		 "\tAccessType: %d\n"
271 		 "\tFaultLevel: %d\n"
272 		 "\tEngineClass: %d\n"
273 		 "\tEngineInstance: %d\n",
274 		 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
275 		 lower_32_bits(pf->page_addr),
276 		 pf->fault_type, pf->access_type, pf->fault_level,
277 		 pf->engine_class, pf->engine_instance);
278 }
279 
280 #define PF_MSG_LEN_DW	4
281 
282 static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
283 {
284 	const struct xe_guc_pagefault_desc *desc;
285 	bool ret = false;
286 
287 	spin_lock_irq(&pf_queue->lock);
288 	if (pf_queue->head != pf_queue->tail) {
289 		desc = (const struct xe_guc_pagefault_desc *)
290 			(pf_queue->data + pf_queue->head);
291 
292 		pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
293 		pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
294 		pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
295 		pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
296 		pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
297 			PFD_PDATA_HI_SHIFT;
298 		pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
299 		pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
300 		pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
301 		pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
302 		pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
303 		pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
304 			PFD_VIRTUAL_ADDR_HI_SHIFT;
305 		pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
306 			PFD_VIRTUAL_ADDR_LO_SHIFT;
307 
308 		pf_queue->head = (pf_queue->head + PF_MSG_LEN_DW) %
309 			PF_QUEUE_NUM_DW;
310 		ret = true;
311 	}
312 	spin_unlock_irq(&pf_queue->lock);
313 
314 	return ret;
315 }
316 
317 static bool pf_queue_full(struct pf_queue *pf_queue)
318 {
319 	lockdep_assert_held(&pf_queue->lock);
320 
321 	return CIRC_SPACE(pf_queue->tail, pf_queue->head, PF_QUEUE_NUM_DW) <=
322 		PF_MSG_LEN_DW;
323 }
324 
325 int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
326 {
327 	struct xe_gt *gt = guc_to_gt(guc);
328 	struct xe_device *xe = gt_to_xe(gt);
329 	struct pf_queue *pf_queue;
330 	unsigned long flags;
331 	u32 asid;
332 	bool full;
333 
334 	if (unlikely(len != PF_MSG_LEN_DW))
335 		return -EPROTO;
336 
337 	asid = FIELD_GET(PFD_ASID, msg[1]);
338 	pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);
339 
340 	spin_lock_irqsave(&pf_queue->lock, flags);
341 	full = pf_queue_full(pf_queue);
342 	if (!full) {
343 		memcpy(pf_queue->data + pf_queue->tail, msg, len * sizeof(u32));
344 		pf_queue->tail = (pf_queue->tail + len) % PF_QUEUE_NUM_DW;
345 		queue_work(gt->usm.pf_wq, &pf_queue->worker);
346 	} else {
347 		drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
348 	}
349 	spin_unlock_irqrestore(&pf_queue->lock, flags);
350 
351 	return full ? -ENOSPC : 0;
352 }
353 
354 #define USM_QUEUE_MAX_RUNTIME_MS	20
355 
356 static void pf_queue_work_func(struct work_struct *w)
357 {
358 	struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
359 	struct xe_gt *gt = pf_queue->gt;
360 	struct xe_device *xe = gt_to_xe(gt);
361 	struct xe_guc_pagefault_reply reply = {};
362 	struct pagefault pf = {};
363 	unsigned long threshold;
364 	int ret;
365 
366 	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
367 
368 	while (get_pagefault(pf_queue, &pf)) {
369 		ret = handle_pagefault(gt, &pf);
370 		if (unlikely(ret)) {
371 			print_pagefault(xe, &pf);
372 			pf.fault_unsuccessful = 1;
373 			drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
374 		}
375 
376 		reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
377 			FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
378 			FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
379 			FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
380 			FIELD_PREP(PFR_ASID, pf.asid);
381 
382 		reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
383 			FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
384 			FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
385 			FIELD_PREP(PFR_PDATA, pf.pdata);
386 
387 		send_pagefault_reply(&gt->uc.guc, &reply);
388 
389 		if (time_after(jiffies, threshold) &&
390 		    pf_queue->head != pf_queue->tail) {
391 			queue_work(gt->usm.pf_wq, w);
392 			break;
393 		}
394 	}
395 }
396 
397 static void acc_queue_work_func(struct work_struct *w);
398 
399 int xe_gt_pagefault_init(struct xe_gt *gt)
400 {
401 	struct xe_device *xe = gt_to_xe(gt);
402 	int i;
403 
404 	if (!xe->info.has_usm)
405 		return 0;
406 
407 	for (i = 0; i < NUM_PF_QUEUE; ++i) {
408 		gt->usm.pf_queue[i].gt = gt;
409 		spin_lock_init(&gt->usm.pf_queue[i].lock);
410 		INIT_WORK(&gt->usm.pf_queue[i].worker, pf_queue_work_func);
411 	}
412 	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
413 		gt->usm.acc_queue[i].gt = gt;
414 		spin_lock_init(&gt->usm.acc_queue[i].lock);
415 		INIT_WORK(&gt->usm.acc_queue[i].worker, acc_queue_work_func);
416 	}
417 
418 	gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
419 					WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
420 	if (!gt->usm.pf_wq)
421 		return -ENOMEM;
422 
423 	gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
424 					 WQ_UNBOUND | WQ_HIGHPRI,
425 					 NUM_ACC_QUEUE);
426 	if (!gt->usm.acc_wq)
427 		return -ENOMEM;
428 
429 	return 0;
430 }
431 
432 void xe_gt_pagefault_reset(struct xe_gt *gt)
433 {
434 	struct xe_device *xe = gt_to_xe(gt);
435 	int i;
436 
437 	if (!xe->info.has_usm)
438 		return;
439 
440 	for (i = 0; i < NUM_PF_QUEUE; ++i) {
441 		spin_lock_irq(&gt->usm.pf_queue[i].lock);
442 		gt->usm.pf_queue[i].head = 0;
443 		gt->usm.pf_queue[i].tail = 0;
444 		spin_unlock_irq(&gt->usm.pf_queue[i].lock);
445 	}
446 
447 	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
448 		spin_lock(&gt->usm.acc_queue[i].lock);
449 		gt->usm.acc_queue[i].head = 0;
450 		gt->usm.acc_queue[i].tail = 0;
451 		spin_unlock(&gt->usm.acc_queue[i].lock);
452 	}
453 }
454 
455 static int granularity_in_byte(int val)
456 {
457 	switch (val) {
458 	case 0:
459 		return SZ_128K;
460 	case 1:
461 		return SZ_2M;
462 	case 2:
463 		return SZ_16M;
464 	case 3:
465 		return SZ_64M;
466 	default:
467 		return 0;
468 	}
469 }
470 
471 static int sub_granularity_in_byte(int val)
472 {
473 	return (granularity_in_byte(val) / 32);
474 }
475 
476 static void print_acc(struct xe_device *xe, struct acc *acc)
477 {
478 	drm_warn(&xe->drm, "Access counter request:\n"
479 		 "\tType: %s\n"
480 		 "\tASID: %d\n"
481 		 "\tVFID: %d\n"
482 		 "\tEngine: %d:%d\n"
483 		 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
484 		 "\tSub_Granularity Vector: 0x%08x\n"
485 		 "\tVA Range base: 0x%016llx\n",
486 		 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
487 		 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
488 		 granularity_in_byte(acc->granularity) / SZ_1K,
489 		 sub_granularity_in_byte(acc->granularity) / SZ_1K,
490 		 acc->sub_granularity, acc->va_range_base);
491 }
492 
493 static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
494 {
495 	u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
496 		sub_granularity_in_byte(acc->granularity);
497 
498 	return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
499 }
500 
501 static int handle_acc(struct xe_gt *gt, struct acc *acc)
502 {
503 	struct xe_device *xe = gt_to_xe(gt);
504 	struct xe_tile *tile = gt_to_tile(gt);
505 	struct drm_exec exec;
506 	struct xe_vm *vm;
507 	struct xe_vma *vma;
508 	int ret = 0;
509 
510 	/* We only support ACC_TRIGGER at the moment */
511 	if (acc->access_type != ACC_TRIGGER)
512 		return -EINVAL;
513 
514 	/* ASID to VM */
515 	mutex_lock(&xe->usm.lock);
516 	vm = xa_load(&xe->usm.asid_to_vm, acc->asid);
517 	if (vm)
518 		xe_vm_get(vm);
519 	mutex_unlock(&xe->usm.lock);
520 	if (!vm || !xe_vm_in_fault_mode(vm))
521 		return -EINVAL;
522 
523 	down_read(&vm->lock);
524 
525 	/* Lookup VMA */
526 	vma = get_acc_vma(vm, acc);
527 	if (!vma) {
528 		ret = -EINVAL;
529 		goto unlock_vm;
530 	}
531 
532 	trace_xe_vma_acc(vma);
533 
534 	/* Userptr or null can't be migrated, nothing to do */
535 	if (xe_vma_has_no_bo(vma))
536 		goto unlock_vm;
537 
538 	/* Lock VM and BOs dma-resv */
539 	drm_exec_init(&exec, 0, 0);
540 	drm_exec_until_all_locked(&exec) {
541 		ret = xe_pf_begin(&exec, vma, true, tile->id);
542 		drm_exec_retry_on_contention(&exec);
543 		if (ret)
544 			break;
545 	}
546 
547 	drm_exec_fini(&exec);
548 unlock_vm:
549 	up_read(&vm->lock);
550 	xe_vm_put(vm);
551 
552 	return ret;
553 }
554 
555 #define make_u64(hi__, low__)  ((u64)(hi__) << 32 | (u64)(low__))
556 
557 #define ACC_MSG_LEN_DW        4
558 
559 static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
560 {
561 	const struct xe_guc_acc_desc *desc;
562 	bool ret = false;
563 
564 	spin_lock(&acc_queue->lock);
565 	if (acc_queue->head != acc_queue->tail) {
566 		desc = (const struct xe_guc_acc_desc *)
567 			(acc_queue->data + acc_queue->head);
568 
569 		acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
570 		acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
571 			FIELD_GET(ACC_SUBG_LO, desc->dw0);
572 		acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
573 		acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
574 		acc->asid =  FIELD_GET(ACC_ASID, desc->dw1);
575 		acc->vfid =  FIELD_GET(ACC_VFID, desc->dw2);
576 		acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
577 		acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
578 					      desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
579 
580 		acc_queue->head = (acc_queue->head + ACC_MSG_LEN_DW) %
581 				  ACC_QUEUE_NUM_DW;
582 		ret = true;
583 	}
584 	spin_unlock(&acc_queue->lock);
585 
586 	return ret;
587 }
588 
589 static void acc_queue_work_func(struct work_struct *w)
590 {
591 	struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
592 	struct xe_gt *gt = acc_queue->gt;
593 	struct xe_device *xe = gt_to_xe(gt);
594 	struct acc acc = {};
595 	unsigned long threshold;
596 	int ret;
597 
598 	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
599 
600 	while (get_acc(acc_queue, &acc)) {
601 		ret = handle_acc(gt, &acc);
602 		if (unlikely(ret)) {
603 			print_acc(xe, &acc);
604 			drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
605 		}
606 
607 		if (time_after(jiffies, threshold) &&
608 		    acc_queue->head != acc_queue->tail) {
609 			queue_work(gt->usm.acc_wq, w);
610 			break;
611 		}
612 	}
613 }
614 
615 static bool acc_queue_full(struct acc_queue *acc_queue)
616 {
617 	lockdep_assert_held(&acc_queue->lock);
618 
619 	return CIRC_SPACE(acc_queue->tail, acc_queue->head, ACC_QUEUE_NUM_DW) <=
620 		ACC_MSG_LEN_DW;
621 }
622 
623 int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
624 {
625 	struct xe_gt *gt = guc_to_gt(guc);
626 	struct acc_queue *acc_queue;
627 	u32 asid;
628 	bool full;
629 
630 	if (unlikely(len != ACC_MSG_LEN_DW))
631 		return -EPROTO;
632 
633 	asid = FIELD_GET(ACC_ASID, msg[1]);
634 	acc_queue = &gt->usm.acc_queue[asid % NUM_ACC_QUEUE];
635 
636 	spin_lock(&acc_queue->lock);
637 	full = acc_queue_full(acc_queue);
638 	if (!full) {
639 		memcpy(acc_queue->data + acc_queue->tail, msg,
640 		       len * sizeof(u32));
641 		acc_queue->tail = (acc_queue->tail + len) % ACC_QUEUE_NUM_DW;
642 		queue_work(gt->usm.acc_wq, &acc_queue->worker);
643 	} else {
644 		drm_warn(&gt_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
645 	}
646 	spin_unlock(&acc_queue->lock);
647 
648 	return full ? -ENOSPC : 0;
649 }
650