xref: /linux/drivers/gpu/drm/xe/xe_gt_types.h (revision 1e525507)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2022-2023 Intel Corporation
4  */
5 
6 #ifndef _XE_GT_TYPES_H_
7 #define _XE_GT_TYPES_H_
8 
9 #include "xe_force_wake_types.h"
10 #include "xe_gt_idle_types.h"
11 #include "xe_hw_engine_types.h"
12 #include "xe_hw_fence_types.h"
13 #include "xe_reg_sr_types.h"
14 #include "xe_sa_types.h"
15 #include "xe_uc_types.h"
16 
17 struct xe_exec_queue_ops;
18 struct xe_migrate;
19 struct xe_ring_ops;
20 
21 enum xe_gt_type {
22 	XE_GT_TYPE_UNINITIALIZED,
23 	XE_GT_TYPE_MAIN,
24 	XE_GT_TYPE_MEDIA,
25 };
26 
27 #define XE_MAX_DSS_FUSE_REGS	3
28 #define XE_MAX_EU_FUSE_REGS	1
29 
30 typedef unsigned long xe_dss_mask_t[BITS_TO_LONGS(32 * XE_MAX_DSS_FUSE_REGS)];
31 typedef unsigned long xe_eu_mask_t[BITS_TO_LONGS(32 * XE_MAX_EU_FUSE_REGS)];
32 
33 struct xe_mmio_range {
34 	u32 start;
35 	u32 end;
36 };
37 
38 /*
39  * The hardware has multiple kinds of multicast register ranges that need
40  * special register steering (and future platforms are expected to add
41  * additional types).
42  *
43  * During driver startup, we initialize the steering control register to
44  * direct reads to a slice/subslice that are valid for the 'subslice' class
45  * of multicast registers.  If another type of steering does not have any
46  * overlap in valid steering targets with 'subslice' style registers, we will
47  * need to explicitly re-steer reads of registers of the other type.
48  *
49  * Only the replication types that may need additional non-default steering
50  * are listed here.
51  */
52 enum xe_steering_type {
53 	L3BANK,
54 	MSLICE,
55 	LNCF,
56 	DSS,
57 	OADDRM,
58 	SQIDI_PSMI,
59 
60 	/*
61 	 * On some platforms there are multiple types of MCR registers that
62 	 * will always return a non-terminated value at instance (0, 0).  We'll
63 	 * lump those all into a single category to keep things simple.
64 	 */
65 	INSTANCE0,
66 
67 	/*
68 	 * Register ranges that don't need special steering for each register:
69 	 * it's sufficient to keep the HW-default for the selector, or only
70 	 * change it once, on GT initialization. This needs to be the last
71 	 * steering type.
72 	 */
73 	IMPLICIT_STEERING,
74 	NUM_STEERING_TYPES
75 };
76 
77 #define gt_to_tile(gt__)							\
78 	_Generic(gt__,								\
79 		 const struct xe_gt * : (const struct xe_tile *)((gt__)->tile),	\
80 		 struct xe_gt * : (gt__)->tile)
81 
82 #define gt_to_xe(gt__)										\
83 	_Generic(gt__,										\
84 		 const struct xe_gt * : (const struct xe_device *)(gt_to_tile(gt__)->xe),	\
85 		 struct xe_gt * : gt_to_tile(gt__)->xe)
86 
87 /**
88  * struct xe_gt - A "Graphics Technology" unit of the GPU
89  *
90  * A GT ("Graphics Technology") is the subset of a GPU primarily responsible
91  * for implementing the graphics, compute, and/or media IP.  It encapsulates
92  * the hardware engines, programmable execution units, and GuC.   Each GT has
93  * its own handling of power management (RC6+forcewake) and multicast register
94  * steering.
95  *
96  * A GPU/tile may have a single GT that supplies all graphics, compute, and
97  * media functionality, or the graphics/compute and media may be split into
98  * separate GTs within a tile.
99  */
100 struct xe_gt {
101 	/** @tile: Backpointer to GT's tile */
102 	struct xe_tile *tile;
103 
104 	/** @info: GT info */
105 	struct {
106 		/** @info.type: type of GT */
107 		enum xe_gt_type type;
108 		/** @info.id: Unique ID of this GT within the PCI Device */
109 		u8 id;
110 		/** @info.reference_clock: clock frequency */
111 		u32 reference_clock;
112 		/** @info.engine_mask: mask of engines present on GT */
113 		u64 engine_mask;
114 		/**
115 		 * @info.__engine_mask: mask of engines present on GT read from
116 		 * xe_pci.c, used to fake reading the engine_mask from the
117 		 * hwconfig blob.
118 		 */
119 		u64 __engine_mask;
120 		/** @info.gmdid: raw GMD_ID value from hardware */
121 		u32 gmdid;
122 	} info;
123 
124 	/**
125 	 * @mmio: mmio info for GT.  All GTs within a tile share the same
126 	 * register space, but have their own copy of GSI registers at a
127 	 * specific offset, as well as their own forcewake handling.
128 	 */
129 	struct {
130 		/** @mmio.fw: force wake for GT */
131 		struct xe_force_wake fw;
132 		/**
133 		 * @mmio.adj_limit: adjust MMIO address if address is below this
134 		 * value
135 		 */
136 		u32 adj_limit;
137 		/** @mmio.adj_offset: offect to add to MMIO address when adjusting */
138 		u32 adj_offset;
139 	} mmio;
140 
141 	/**
142 	 * @reg_sr: table with registers to be restored on GT init/resume/reset
143 	 */
144 	struct xe_reg_sr reg_sr;
145 
146 	/** @reset: state for GT resets */
147 	struct {
148 		/**
149 		 * @reset.worker: work so GT resets can done async allowing to reset
150 		 * code to safely flush all code paths
151 		 */
152 		struct work_struct worker;
153 	} reset;
154 
155 	/** @tlb_invalidation: TLB invalidation state */
156 	struct {
157 		/** @tlb_invalidation.seqno: TLB invalidation seqno, protected by CT lock */
158 #define TLB_INVALIDATION_SEQNO_MAX	0x100000
159 		int seqno;
160 		/**
161 		 * @tlb_invalidation.seqno_recv: last received TLB invalidation seqno,
162 		 * protected by CT lock
163 		 */
164 		int seqno_recv;
165 		/**
166 		 * @tlb_invalidation.pending_fences: list of pending fences waiting TLB
167 		 * invaliations, protected by CT lock
168 		 */
169 		struct list_head pending_fences;
170 		/**
171 		 * @tlb_invalidation.pending_lock: protects @tlb_invalidation.pending_fences
172 		 * and updating @tlb_invalidation.seqno_recv.
173 		 */
174 		spinlock_t pending_lock;
175 		/**
176 		 * @tlb_invalidation.fence_tdr: schedules a delayed call to
177 		 * xe_gt_tlb_fence_timeout after the timeut interval is over.
178 		 */
179 		struct delayed_work fence_tdr;
180 		/** @tlb_invalidation.lock: protects TLB invalidation fences */
181 		spinlock_t lock;
182 	} tlb_invalidation;
183 
184 	/**
185 	 * @ccs_mode: Number of compute engines enabled.
186 	 * Allows fixed mapping of available compute slices to compute engines.
187 	 * By default only the first available compute engine is enabled and all
188 	 * available compute slices are allocated to it.
189 	 */
190 	u32 ccs_mode;
191 
192 	/** @usm: unified shared memory state */
193 	struct {
194 		/**
195 		 * @usm.bb_pool: Pool from which batchbuffers, for USM operations
196 		 * (e.g. migrations, fixing page tables), are allocated.
197 		 * Dedicated pool needed so USM operations to not get blocked
198 		 * behind any user operations which may have resulted in a
199 		 * fault.
200 		 */
201 		struct xe_sa_manager *bb_pool;
202 		/**
203 		 * @usm.reserved_bcs_instance: reserved BCS instance used for USM
204 		 * operations (e.g. mmigrations, fixing page tables)
205 		 */
206 		u16 reserved_bcs_instance;
207 		/** @usm.pf_wq: page fault work queue, unbound, high priority */
208 		struct workqueue_struct *pf_wq;
209 		/** @usm.acc_wq: access counter work queue, unbound, high priority */
210 		struct workqueue_struct *acc_wq;
211 		/**
212 		 * @usm.pf_queue: Page fault queue used to sync faults so faults can
213 		 * be processed not under the GuC CT lock. The queue is sized so
214 		 * it can sync all possible faults (1 per physical engine).
215 		 * Multiple queues exists for page faults from different VMs are
216 		 * be processed in parallel.
217 		 */
218 		struct pf_queue {
219 			/** @usm.pf_queue.gt: back pointer to GT */
220 			struct xe_gt *gt;
221 #define PF_QUEUE_NUM_DW	128
222 			/** @usm.pf_queue.data: data in the page fault queue */
223 			u32 data[PF_QUEUE_NUM_DW];
224 			/**
225 			 * @usm.pf_queue.tail: tail pointer in DWs for page fault queue,
226 			 * moved by worker which processes faults (consumer).
227 			 */
228 			u16 tail;
229 			/**
230 			 * @usm.pf_queue.head: head pointer in DWs for page fault queue,
231 			 * moved by G2H handler (producer).
232 			 */
233 			u16 head;
234 			/** @usm.pf_queue.lock: protects page fault queue */
235 			spinlock_t lock;
236 			/** @usm.pf_queue.worker: to process page faults */
237 			struct work_struct worker;
238 #define NUM_PF_QUEUE	4
239 		} pf_queue[NUM_PF_QUEUE];
240 		/**
241 		 * @usm.acc_queue: Same as page fault queue, cannot process access
242 		 * counters under CT lock.
243 		 */
244 		struct acc_queue {
245 			/** @usm.acc_queue.gt: back pointer to GT */
246 			struct xe_gt *gt;
247 #define ACC_QUEUE_NUM_DW	128
248 			/** @usm.acc_queue.data: data in the page fault queue */
249 			u32 data[ACC_QUEUE_NUM_DW];
250 			/**
251 			 * @usm.acc_queue.tail: tail pointer in DWs for access counter queue,
252 			 * moved by worker which processes counters
253 			 * (consumer).
254 			 */
255 			u16 tail;
256 			/**
257 			 * @usm.acc_queue.head: head pointer in DWs for access counter queue,
258 			 * moved by G2H handler (producer).
259 			 */
260 			u16 head;
261 			/** @usm.acc_queue.lock: protects page fault queue */
262 			spinlock_t lock;
263 			/** @usm.acc_queue.worker: to process access counters */
264 			struct work_struct worker;
265 #define NUM_ACC_QUEUE	4
266 		} acc_queue[NUM_ACC_QUEUE];
267 	} usm;
268 
269 	/** @ordered_wq: used to serialize GT resets and TDRs */
270 	struct workqueue_struct *ordered_wq;
271 
272 	/** @uc: micro controllers on the GT */
273 	struct xe_uc uc;
274 
275 	/** @gtidle: idle properties of GT */
276 	struct xe_gt_idle gtidle;
277 
278 	/** @exec_queue_ops: submission backend exec queue operations */
279 	const struct xe_exec_queue_ops *exec_queue_ops;
280 
281 	/**
282 	 * @ring_ops: ring operations for this hw engine (1 per engine class)
283 	 */
284 	const struct xe_ring_ops *ring_ops[XE_ENGINE_CLASS_MAX];
285 
286 	/** @fence_irq: fence IRQs (1 per engine class) */
287 	struct xe_hw_fence_irq fence_irq[XE_ENGINE_CLASS_MAX];
288 
289 	/** @default_lrc: default LRC state */
290 	void *default_lrc[XE_ENGINE_CLASS_MAX];
291 
292 	/** @hw_engines: hardware engines on the GT */
293 	struct xe_hw_engine hw_engines[XE_NUM_HW_ENGINES];
294 
295 	/** @eclass: per hardware engine class interface on the GT */
296 	struct xe_hw_engine_class_intf  eclass[XE_ENGINE_CLASS_MAX];
297 
298 	/** @pcode: GT's PCODE */
299 	struct {
300 		/** @pcode.lock: protecting GT's PCODE mailbox data */
301 		struct mutex lock;
302 	} pcode;
303 
304 	/** @sysfs: sysfs' kobj used by xe_gt_sysfs */
305 	struct kobject *sysfs;
306 
307 	/** @freq: Main GT freq sysfs control */
308 	struct kobject *freq;
309 
310 	/** @mocs: info */
311 	struct {
312 		/** @mocs.uc_index: UC index */
313 		u8 uc_index;
314 		/** @mocs.wb_index: WB index, only used on L3_CCS platforms */
315 		u8 wb_index;
316 	} mocs;
317 
318 	/** @fuse_topo: GT topology reported by fuse registers */
319 	struct {
320 		/** @fuse_topo.g_dss_mask: dual-subslices usable by geometry */
321 		xe_dss_mask_t g_dss_mask;
322 
323 		/** @fuse_topo.c_dss_mask: dual-subslices usable by compute */
324 		xe_dss_mask_t c_dss_mask;
325 
326 		/** @fuse_topo.eu_mask_per_dss: EU mask per DSS*/
327 		xe_eu_mask_t eu_mask_per_dss;
328 	} fuse_topo;
329 
330 	/** @steering: register steering for individual HW units */
331 	struct {
332 		/** @steering.ranges: register ranges used for this steering type */
333 		const struct xe_mmio_range *ranges;
334 
335 		/** @steering.group_target: target to steer accesses to */
336 		u16 group_target;
337 		/** @steering.instance_target: instance to steer accesses to */
338 		u16 instance_target;
339 	} steering[NUM_STEERING_TYPES];
340 
341 	/**
342 	 * @mcr_lock: protects the MCR_SELECTOR register for the duration
343 	 *    of a steered operation
344 	 */
345 	spinlock_t mcr_lock;
346 
347 	/** @wa_active: keep track of active workarounds */
348 	struct {
349 		/** @wa_active.gt: bitmap with active GT workarounds */
350 		unsigned long *gt;
351 		/** @wa_active.engine: bitmap with active engine workarounds */
352 		unsigned long *engine;
353 		/** @wa_active.lrc: bitmap with active LRC workarounds */
354 		unsigned long *lrc;
355 		/** @wa_active.oob: bitmap with active OOB workaroudns */
356 		unsigned long *oob;
357 	} wa_active;
358 };
359 
360 #endif
361