xref: /linux/drivers/hv/hv_balloon.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24 
25 #include <linux/hyperv.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include "hv_trace_balloon.h"
29 
30 /*
31  * We begin with definitions supporting the Dynamic Memory protocol
32  * with the host.
33  *
34  * Begin protocol definitions.
35  */
36 
37 
38 
39 /*
40  * Protocol versions. The low word is the minor version, the high word the major
41  * version.
42  *
43  * History:
44  * Initial version 1.0
45  * Changed to 0.1 on 2009/03/25
46  * Changes to 0.2 on 2009/05/14
47  * Changes to 0.3 on 2009/12/03
48  * Changed to 1.0 on 2011/04/05
49  */
50 
51 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
52 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
53 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
54 
55 enum {
56 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
57 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
58 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
59 
60 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
61 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
62 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
63 
64 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
65 };
66 
67 
68 
69 /*
70  * Message Types
71  */
72 
73 enum dm_message_type {
74 	/*
75 	 * Version 0.3
76 	 */
77 	DM_ERROR			= 0,
78 	DM_VERSION_REQUEST		= 1,
79 	DM_VERSION_RESPONSE		= 2,
80 	DM_CAPABILITIES_REPORT		= 3,
81 	DM_CAPABILITIES_RESPONSE	= 4,
82 	DM_STATUS_REPORT		= 5,
83 	DM_BALLOON_REQUEST		= 6,
84 	DM_BALLOON_RESPONSE		= 7,
85 	DM_UNBALLOON_REQUEST		= 8,
86 	DM_UNBALLOON_RESPONSE		= 9,
87 	DM_MEM_HOT_ADD_REQUEST		= 10,
88 	DM_MEM_HOT_ADD_RESPONSE		= 11,
89 	DM_VERSION_03_MAX		= 11,
90 	/*
91 	 * Version 1.0.
92 	 */
93 	DM_INFO_MESSAGE			= 12,
94 	DM_VERSION_1_MAX		= 12
95 };
96 
97 
98 /*
99  * Structures defining the dynamic memory management
100  * protocol.
101  */
102 
103 union dm_version {
104 	struct {
105 		__u16 minor_version;
106 		__u16 major_version;
107 	};
108 	__u32 version;
109 } __packed;
110 
111 
112 union dm_caps {
113 	struct {
114 		__u64 balloon:1;
115 		__u64 hot_add:1;
116 		/*
117 		 * To support guests that may have alignment
118 		 * limitations on hot-add, the guest can specify
119 		 * its alignment requirements; a value of n
120 		 * represents an alignment of 2^n in mega bytes.
121 		 */
122 		__u64 hot_add_alignment:4;
123 		__u64 reservedz:58;
124 	} cap_bits;
125 	__u64 caps;
126 } __packed;
127 
128 union dm_mem_page_range {
129 	struct  {
130 		/*
131 		 * The PFN number of the first page in the range.
132 		 * 40 bits is the architectural limit of a PFN
133 		 * number for AMD64.
134 		 */
135 		__u64 start_page:40;
136 		/*
137 		 * The number of pages in the range.
138 		 */
139 		__u64 page_cnt:24;
140 	} finfo;
141 	__u64  page_range;
142 } __packed;
143 
144 
145 
146 /*
147  * The header for all dynamic memory messages:
148  *
149  * type: Type of the message.
150  * size: Size of the message in bytes; including the header.
151  * trans_id: The guest is responsible for manufacturing this ID.
152  */
153 
154 struct dm_header {
155 	__u16 type;
156 	__u16 size;
157 	__u32 trans_id;
158 } __packed;
159 
160 /*
161  * A generic message format for dynamic memory.
162  * Specific message formats are defined later in the file.
163  */
164 
165 struct dm_message {
166 	struct dm_header hdr;
167 	__u8 data[]; /* enclosed message */
168 } __packed;
169 
170 
171 /*
172  * Specific message types supporting the dynamic memory protocol.
173  */
174 
175 /*
176  * Version negotiation message. Sent from the guest to the host.
177  * The guest is free to try different versions until the host
178  * accepts the version.
179  *
180  * dm_version: The protocol version requested.
181  * is_last_attempt: If TRUE, this is the last version guest will request.
182  * reservedz: Reserved field, set to zero.
183  */
184 
185 struct dm_version_request {
186 	struct dm_header hdr;
187 	union dm_version version;
188 	__u32 is_last_attempt:1;
189 	__u32 reservedz:31;
190 } __packed;
191 
192 /*
193  * Version response message; Host to Guest and indicates
194  * if the host has accepted the version sent by the guest.
195  *
196  * is_accepted: If TRUE, host has accepted the version and the guest
197  * should proceed to the next stage of the protocol. FALSE indicates that
198  * guest should re-try with a different version.
199  *
200  * reservedz: Reserved field, set to zero.
201  */
202 
203 struct dm_version_response {
204 	struct dm_header hdr;
205 	__u64 is_accepted:1;
206 	__u64 reservedz:63;
207 } __packed;
208 
209 /*
210  * Message reporting capabilities. This is sent from the guest to the
211  * host.
212  */
213 
214 struct dm_capabilities {
215 	struct dm_header hdr;
216 	union dm_caps caps;
217 	__u64 min_page_cnt;
218 	__u64 max_page_number;
219 } __packed;
220 
221 /*
222  * Response to the capabilities message. This is sent from the host to the
223  * guest. This message notifies if the host has accepted the guest's
224  * capabilities. If the host has not accepted, the guest must shutdown
225  * the service.
226  *
227  * is_accepted: Indicates if the host has accepted guest's capabilities.
228  * reservedz: Must be 0.
229  */
230 
231 struct dm_capabilities_resp_msg {
232 	struct dm_header hdr;
233 	__u64 is_accepted:1;
234 	__u64 reservedz:63;
235 } __packed;
236 
237 /*
238  * This message is used to report memory pressure from the guest.
239  * This message is not part of any transaction and there is no
240  * response to this message.
241  *
242  * num_avail: Available memory in pages.
243  * num_committed: Committed memory in pages.
244  * page_file_size: The accumulated size of all page files
245  *		   in the system in pages.
246  * zero_free: The nunber of zero and free pages.
247  * page_file_writes: The writes to the page file in pages.
248  * io_diff: An indicator of file cache efficiency or page file activity,
249  *	    calculated as File Cache Page Fault Count - Page Read Count.
250  *	    This value is in pages.
251  *
252  * Some of these metrics are Windows specific and fortunately
253  * the algorithm on the host side that computes the guest memory
254  * pressure only uses num_committed value.
255  */
256 
257 struct dm_status {
258 	struct dm_header hdr;
259 	__u64 num_avail;
260 	__u64 num_committed;
261 	__u64 page_file_size;
262 	__u64 zero_free;
263 	__u32 page_file_writes;
264 	__u32 io_diff;
265 } __packed;
266 
267 
268 /*
269  * Message to ask the guest to allocate memory - balloon up message.
270  * This message is sent from the host to the guest. The guest may not be
271  * able to allocate as much memory as requested.
272  *
273  * num_pages: number of pages to allocate.
274  */
275 
276 struct dm_balloon {
277 	struct dm_header hdr;
278 	__u32 num_pages;
279 	__u32 reservedz;
280 } __packed;
281 
282 
283 /*
284  * Balloon response message; this message is sent from the guest
285  * to the host in response to the balloon message.
286  *
287  * reservedz: Reserved; must be set to zero.
288  * more_pages: If FALSE, this is the last message of the transaction.
289  * if TRUE there will atleast one more message from the guest.
290  *
291  * range_count: The number of ranges in the range array.
292  *
293  * range_array: An array of page ranges returned to the host.
294  *
295  */
296 
297 struct dm_balloon_response {
298 	struct dm_header hdr;
299 	__u32 reservedz;
300 	__u32 more_pages:1;
301 	__u32 range_count:31;
302 	union dm_mem_page_range range_array[];
303 } __packed;
304 
305 /*
306  * Un-balloon message; this message is sent from the host
307  * to the guest to give guest more memory.
308  *
309  * more_pages: If FALSE, this is the last message of the transaction.
310  * if TRUE there will atleast one more message from the guest.
311  *
312  * reservedz: Reserved; must be set to zero.
313  *
314  * range_count: The number of ranges in the range array.
315  *
316  * range_array: An array of page ranges returned to the host.
317  *
318  */
319 
320 struct dm_unballoon_request {
321 	struct dm_header hdr;
322 	__u32 more_pages:1;
323 	__u32 reservedz:31;
324 	__u32 range_count;
325 	union dm_mem_page_range range_array[];
326 } __packed;
327 
328 /*
329  * Un-balloon response message; this message is sent from the guest
330  * to the host in response to an unballoon request.
331  *
332  */
333 
334 struct dm_unballoon_response {
335 	struct dm_header hdr;
336 } __packed;
337 
338 
339 /*
340  * Hot add request message. Message sent from the host to the guest.
341  *
342  * mem_range: Memory range to hot add.
343  *
344  * On Linux we currently don't support this since we cannot hot add
345  * arbitrary granularity of memory.
346  */
347 
348 struct dm_hot_add {
349 	struct dm_header hdr;
350 	union dm_mem_page_range range;
351 } __packed;
352 
353 /*
354  * Hot add response message.
355  * This message is sent by the guest to report the status of a hot add request.
356  * If page_count is less than the requested page count, then the host should
357  * assume all further hot add requests will fail, since this indicates that
358  * the guest has hit an upper physical memory barrier.
359  *
360  * Hot adds may also fail due to low resources; in this case, the guest must
361  * not complete this message until the hot add can succeed, and the host must
362  * not send a new hot add request until the response is sent.
363  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
364  * times it fails the request.
365  *
366  *
367  * page_count: number of pages that were successfully hot added.
368  *
369  * result: result of the operation 1: success, 0: failure.
370  *
371  */
372 
373 struct dm_hot_add_response {
374 	struct dm_header hdr;
375 	__u32 page_count;
376 	__u32 result;
377 } __packed;
378 
379 /*
380  * Types of information sent from host to the guest.
381  */
382 
383 enum dm_info_type {
384 	INFO_TYPE_MAX_PAGE_CNT = 0,
385 	MAX_INFO_TYPE
386 };
387 
388 
389 /*
390  * Header for the information message.
391  */
392 
393 struct dm_info_header {
394 	enum dm_info_type type;
395 	__u32 data_size;
396 } __packed;
397 
398 /*
399  * This message is sent from the host to the guest to pass
400  * some relevant information (win8 addition).
401  *
402  * reserved: no used.
403  * info_size: size of the information blob.
404  * info: information blob.
405  */
406 
407 struct dm_info_msg {
408 	struct dm_header hdr;
409 	__u32 reserved;
410 	__u32 info_size;
411 	__u8  info[];
412 };
413 
414 /*
415  * End protocol definitions.
416  */
417 
418 /*
419  * State to manage hot adding memory into the guest.
420  * The range start_pfn : end_pfn specifies the range
421  * that the host has asked us to hot add. The range
422  * start_pfn : ha_end_pfn specifies the range that we have
423  * currently hot added. We hot add in multiples of 128M
424  * chunks; it is possible that we may not be able to bring
425  * online all the pages in the region. The range
426  * covered_start_pfn:covered_end_pfn defines the pages that can
427  * be brough online.
428  */
429 
430 struct hv_hotadd_state {
431 	struct list_head list;
432 	unsigned long start_pfn;
433 	unsigned long covered_start_pfn;
434 	unsigned long covered_end_pfn;
435 	unsigned long ha_end_pfn;
436 	unsigned long end_pfn;
437 	/*
438 	 * A list of gaps.
439 	 */
440 	struct list_head gap_list;
441 };
442 
443 struct hv_hotadd_gap {
444 	struct list_head list;
445 	unsigned long start_pfn;
446 	unsigned long end_pfn;
447 };
448 
449 struct balloon_state {
450 	__u32 num_pages;
451 	struct work_struct wrk;
452 };
453 
454 struct hot_add_wrk {
455 	union dm_mem_page_range ha_page_range;
456 	union dm_mem_page_range ha_region_range;
457 	struct work_struct wrk;
458 };
459 
460 static bool hot_add = true;
461 static bool do_hot_add;
462 /*
463  * Delay reporting memory pressure by
464  * the specified number of seconds.
465  */
466 static uint pressure_report_delay = 45;
467 
468 /*
469  * The last time we posted a pressure report to host.
470  */
471 static unsigned long last_post_time;
472 
473 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
474 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
475 
476 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
477 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
478 static atomic_t trans_id = ATOMIC_INIT(0);
479 
480 static int dm_ring_size = (5 * PAGE_SIZE);
481 
482 /*
483  * Driver specific state.
484  */
485 
486 enum hv_dm_state {
487 	DM_INITIALIZING = 0,
488 	DM_INITIALIZED,
489 	DM_BALLOON_UP,
490 	DM_BALLOON_DOWN,
491 	DM_HOT_ADD,
492 	DM_INIT_ERROR
493 };
494 
495 
496 static __u8 recv_buffer[PAGE_SIZE];
497 static __u8 *send_buffer;
498 #define PAGES_IN_2M	512
499 #define HA_CHUNK (32 * 1024)
500 
501 struct hv_dynmem_device {
502 	struct hv_device *dev;
503 	enum hv_dm_state state;
504 	struct completion host_event;
505 	struct completion config_event;
506 
507 	/*
508 	 * Number of pages we have currently ballooned out.
509 	 */
510 	unsigned int num_pages_ballooned;
511 	unsigned int num_pages_onlined;
512 	unsigned int num_pages_added;
513 
514 	/*
515 	 * State to manage the ballooning (up) operation.
516 	 */
517 	struct balloon_state balloon_wrk;
518 
519 	/*
520 	 * State to execute the "hot-add" operation.
521 	 */
522 	struct hot_add_wrk ha_wrk;
523 
524 	/*
525 	 * This state tracks if the host has specified a hot-add
526 	 * region.
527 	 */
528 	bool host_specified_ha_region;
529 
530 	/*
531 	 * State to synchronize hot-add.
532 	 */
533 	struct completion  ol_waitevent;
534 	bool ha_waiting;
535 	/*
536 	 * This thread handles hot-add
537 	 * requests from the host as well as notifying
538 	 * the host with regards to memory pressure in
539 	 * the guest.
540 	 */
541 	struct task_struct *thread;
542 
543 	/*
544 	 * Protects ha_region_list, num_pages_onlined counter and individual
545 	 * regions from ha_region_list.
546 	 */
547 	spinlock_t ha_lock;
548 
549 	/*
550 	 * A list of hot-add regions.
551 	 */
552 	struct list_head ha_region_list;
553 
554 	/*
555 	 * We start with the highest version we can support
556 	 * and downgrade based on the host; we save here the
557 	 * next version to try.
558 	 */
559 	__u32 next_version;
560 
561 	/*
562 	 * The negotiated version agreed by host.
563 	 */
564 	__u32 version;
565 };
566 
567 static struct hv_dynmem_device dm_device;
568 
569 static void post_status(struct hv_dynmem_device *dm);
570 
571 #ifdef CONFIG_MEMORY_HOTPLUG
572 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
573 				     unsigned long pfn)
574 {
575 	struct hv_hotadd_gap *gap;
576 
577 	/* The page is not backed. */
578 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
579 		return false;
580 
581 	/* Check for gaps. */
582 	list_for_each_entry(gap, &has->gap_list, list) {
583 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
584 			return false;
585 	}
586 
587 	return true;
588 }
589 
590 static unsigned long hv_page_offline_check(unsigned long start_pfn,
591 					   unsigned long nr_pages)
592 {
593 	unsigned long pfn = start_pfn, count = 0;
594 	struct hv_hotadd_state *has;
595 	bool found;
596 
597 	while (pfn < start_pfn + nr_pages) {
598 		/*
599 		 * Search for HAS which covers the pfn and when we find one
600 		 * count how many consequitive PFNs are covered.
601 		 */
602 		found = false;
603 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
604 			while ((pfn >= has->start_pfn) &&
605 			       (pfn < has->end_pfn) &&
606 			       (pfn < start_pfn + nr_pages)) {
607 				found = true;
608 				if (has_pfn_is_backed(has, pfn))
609 					count++;
610 				pfn++;
611 			}
612 		}
613 
614 		/*
615 		 * This PFN is not in any HAS (e.g. we're offlining a region
616 		 * which was present at boot), no need to account for it. Go
617 		 * to the next one.
618 		 */
619 		if (!found)
620 			pfn++;
621 	}
622 
623 	return count;
624 }
625 
626 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
627 			      void *v)
628 {
629 	struct memory_notify *mem = (struct memory_notify *)v;
630 	unsigned long flags, pfn_count;
631 
632 	switch (val) {
633 	case MEM_ONLINE:
634 	case MEM_CANCEL_ONLINE:
635 		if (dm_device.ha_waiting) {
636 			dm_device.ha_waiting = false;
637 			complete(&dm_device.ol_waitevent);
638 		}
639 		break;
640 
641 	case MEM_OFFLINE:
642 		spin_lock_irqsave(&dm_device.ha_lock, flags);
643 		pfn_count = hv_page_offline_check(mem->start_pfn,
644 						  mem->nr_pages);
645 		if (pfn_count <= dm_device.num_pages_onlined) {
646 			dm_device.num_pages_onlined -= pfn_count;
647 		} else {
648 			/*
649 			 * We're offlining more pages than we managed to online.
650 			 * This is unexpected. In any case don't let
651 			 * num_pages_onlined wrap around zero.
652 			 */
653 			WARN_ON_ONCE(1);
654 			dm_device.num_pages_onlined = 0;
655 		}
656 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
657 		break;
658 	case MEM_GOING_ONLINE:
659 	case MEM_GOING_OFFLINE:
660 	case MEM_CANCEL_OFFLINE:
661 		break;
662 	}
663 	return NOTIFY_OK;
664 }
665 
666 static struct notifier_block hv_memory_nb = {
667 	.notifier_call = hv_memory_notifier,
668 	.priority = 0
669 };
670 
671 /* Check if the particular page is backed and can be onlined and online it. */
672 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
673 {
674 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
675 		if (!PageOffline(pg))
676 			__SetPageOffline(pg);
677 		return;
678 	}
679 	if (PageOffline(pg))
680 		__ClearPageOffline(pg);
681 
682 	/* This frame is currently backed; online the page. */
683 	__online_page_set_limits(pg);
684 	__online_page_increment_counters(pg);
685 	__online_page_free(pg);
686 
687 	lockdep_assert_held(&dm_device.ha_lock);
688 	dm_device.num_pages_onlined++;
689 }
690 
691 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
692 				unsigned long start_pfn, unsigned long size)
693 {
694 	int i;
695 
696 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
697 	for (i = 0; i < size; i++)
698 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
699 }
700 
701 static void hv_mem_hot_add(unsigned long start, unsigned long size,
702 				unsigned long pfn_count,
703 				struct hv_hotadd_state *has)
704 {
705 	int ret = 0;
706 	int i, nid;
707 	unsigned long start_pfn;
708 	unsigned long processed_pfn;
709 	unsigned long total_pfn = pfn_count;
710 	unsigned long flags;
711 
712 	for (i = 0; i < (size/HA_CHUNK); i++) {
713 		start_pfn = start + (i * HA_CHUNK);
714 
715 		spin_lock_irqsave(&dm_device.ha_lock, flags);
716 		has->ha_end_pfn +=  HA_CHUNK;
717 
718 		if (total_pfn > HA_CHUNK) {
719 			processed_pfn = HA_CHUNK;
720 			total_pfn -= HA_CHUNK;
721 		} else {
722 			processed_pfn = total_pfn;
723 			total_pfn = 0;
724 		}
725 
726 		has->covered_end_pfn +=  processed_pfn;
727 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
728 
729 		init_completion(&dm_device.ol_waitevent);
730 		dm_device.ha_waiting = !memhp_auto_online;
731 
732 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
733 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
734 				(HA_CHUNK << PAGE_SHIFT));
735 
736 		if (ret) {
737 			pr_err("hot_add memory failed error is %d\n", ret);
738 			if (ret == -EEXIST) {
739 				/*
740 				 * This error indicates that the error
741 				 * is not a transient failure. This is the
742 				 * case where the guest's physical address map
743 				 * precludes hot adding memory. Stop all further
744 				 * memory hot-add.
745 				 */
746 				do_hot_add = false;
747 			}
748 			spin_lock_irqsave(&dm_device.ha_lock, flags);
749 			has->ha_end_pfn -= HA_CHUNK;
750 			has->covered_end_pfn -=  processed_pfn;
751 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
752 			break;
753 		}
754 
755 		/*
756 		 * Wait for the memory block to be onlined when memory onlining
757 		 * is done outside of kernel (memhp_auto_online). Since the hot
758 		 * add has succeeded, it is ok to proceed even if the pages in
759 		 * the hot added region have not been "onlined" within the
760 		 * allowed time.
761 		 */
762 		if (dm_device.ha_waiting)
763 			wait_for_completion_timeout(&dm_device.ol_waitevent,
764 						    5*HZ);
765 		post_status(&dm_device);
766 	}
767 }
768 
769 static void hv_online_page(struct page *pg, unsigned int order)
770 {
771 	struct hv_hotadd_state *has;
772 	unsigned long flags;
773 	unsigned long pfn = page_to_pfn(pg);
774 
775 	spin_lock_irqsave(&dm_device.ha_lock, flags);
776 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
777 		/* The page belongs to a different HAS. */
778 		if ((pfn < has->start_pfn) ||
779 				(pfn + (1UL << order) > has->end_pfn))
780 			continue;
781 
782 		hv_bring_pgs_online(has, pfn, 1UL << order);
783 		break;
784 	}
785 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
786 }
787 
788 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
789 {
790 	struct hv_hotadd_state *has;
791 	struct hv_hotadd_gap *gap;
792 	unsigned long residual, new_inc;
793 	int ret = 0;
794 	unsigned long flags;
795 
796 	spin_lock_irqsave(&dm_device.ha_lock, flags);
797 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
798 		/*
799 		 * If the pfn range we are dealing with is not in the current
800 		 * "hot add block", move on.
801 		 */
802 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
803 			continue;
804 
805 		/*
806 		 * If the current start pfn is not where the covered_end
807 		 * is, create a gap and update covered_end_pfn.
808 		 */
809 		if (has->covered_end_pfn != start_pfn) {
810 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
811 			if (!gap) {
812 				ret = -ENOMEM;
813 				break;
814 			}
815 
816 			INIT_LIST_HEAD(&gap->list);
817 			gap->start_pfn = has->covered_end_pfn;
818 			gap->end_pfn = start_pfn;
819 			list_add_tail(&gap->list, &has->gap_list);
820 
821 			has->covered_end_pfn = start_pfn;
822 		}
823 
824 		/*
825 		 * If the current hot add-request extends beyond
826 		 * our current limit; extend it.
827 		 */
828 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
829 			residual = (start_pfn + pfn_cnt - has->end_pfn);
830 			/*
831 			 * Extend the region by multiples of HA_CHUNK.
832 			 */
833 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
834 			if (residual % HA_CHUNK)
835 				new_inc += HA_CHUNK;
836 
837 			has->end_pfn += new_inc;
838 		}
839 
840 		ret = 1;
841 		break;
842 	}
843 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
844 
845 	return ret;
846 }
847 
848 static unsigned long handle_pg_range(unsigned long pg_start,
849 					unsigned long pg_count)
850 {
851 	unsigned long start_pfn = pg_start;
852 	unsigned long pfn_cnt = pg_count;
853 	unsigned long size;
854 	struct hv_hotadd_state *has;
855 	unsigned long pgs_ol = 0;
856 	unsigned long old_covered_state;
857 	unsigned long res = 0, flags;
858 
859 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
860 		pg_start);
861 
862 	spin_lock_irqsave(&dm_device.ha_lock, flags);
863 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
864 		/*
865 		 * If the pfn range we are dealing with is not in the current
866 		 * "hot add block", move on.
867 		 */
868 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
869 			continue;
870 
871 		old_covered_state = has->covered_end_pfn;
872 
873 		if (start_pfn < has->ha_end_pfn) {
874 			/*
875 			 * This is the case where we are backing pages
876 			 * in an already hot added region. Bring
877 			 * these pages online first.
878 			 */
879 			pgs_ol = has->ha_end_pfn - start_pfn;
880 			if (pgs_ol > pfn_cnt)
881 				pgs_ol = pfn_cnt;
882 
883 			has->covered_end_pfn +=  pgs_ol;
884 			pfn_cnt -= pgs_ol;
885 			/*
886 			 * Check if the corresponding memory block is already
887 			 * online. It is possible to observe struct pages still
888 			 * being uninitialized here so check section instead.
889 			 * In case the section is online we need to bring the
890 			 * rest of pfns (which were not backed previously)
891 			 * online too.
892 			 */
893 			if (start_pfn > has->start_pfn &&
894 			    online_section_nr(pfn_to_section_nr(start_pfn)))
895 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
896 
897 		}
898 
899 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
900 			/*
901 			 * We have some residual hot add range
902 			 * that needs to be hot added; hot add
903 			 * it now. Hot add a multiple of
904 			 * of HA_CHUNK that fully covers the pages
905 			 * we have.
906 			 */
907 			size = (has->end_pfn - has->ha_end_pfn);
908 			if (pfn_cnt <= size) {
909 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
910 				if (pfn_cnt % HA_CHUNK)
911 					size += HA_CHUNK;
912 			} else {
913 				pfn_cnt = size;
914 			}
915 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
916 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
917 			spin_lock_irqsave(&dm_device.ha_lock, flags);
918 		}
919 		/*
920 		 * If we managed to online any pages that were given to us,
921 		 * we declare success.
922 		 */
923 		res = has->covered_end_pfn - old_covered_state;
924 		break;
925 	}
926 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
927 
928 	return res;
929 }
930 
931 static unsigned long process_hot_add(unsigned long pg_start,
932 					unsigned long pfn_cnt,
933 					unsigned long rg_start,
934 					unsigned long rg_size)
935 {
936 	struct hv_hotadd_state *ha_region = NULL;
937 	int covered;
938 	unsigned long flags;
939 
940 	if (pfn_cnt == 0)
941 		return 0;
942 
943 	if (!dm_device.host_specified_ha_region) {
944 		covered = pfn_covered(pg_start, pfn_cnt);
945 		if (covered < 0)
946 			return 0;
947 
948 		if (covered)
949 			goto do_pg_range;
950 	}
951 
952 	/*
953 	 * If the host has specified a hot-add range; deal with it first.
954 	 */
955 
956 	if (rg_size != 0) {
957 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
958 		if (!ha_region)
959 			return 0;
960 
961 		INIT_LIST_HEAD(&ha_region->list);
962 		INIT_LIST_HEAD(&ha_region->gap_list);
963 
964 		ha_region->start_pfn = rg_start;
965 		ha_region->ha_end_pfn = rg_start;
966 		ha_region->covered_start_pfn = pg_start;
967 		ha_region->covered_end_pfn = pg_start;
968 		ha_region->end_pfn = rg_start + rg_size;
969 
970 		spin_lock_irqsave(&dm_device.ha_lock, flags);
971 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
972 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
973 	}
974 
975 do_pg_range:
976 	/*
977 	 * Process the page range specified; bringing them
978 	 * online if possible.
979 	 */
980 	return handle_pg_range(pg_start, pfn_cnt);
981 }
982 
983 #endif
984 
985 static void hot_add_req(struct work_struct *dummy)
986 {
987 	struct dm_hot_add_response resp;
988 #ifdef CONFIG_MEMORY_HOTPLUG
989 	unsigned long pg_start, pfn_cnt;
990 	unsigned long rg_start, rg_sz;
991 #endif
992 	struct hv_dynmem_device *dm = &dm_device;
993 
994 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
995 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
996 	resp.hdr.size = sizeof(struct dm_hot_add_response);
997 
998 #ifdef CONFIG_MEMORY_HOTPLUG
999 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1000 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1001 
1002 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1003 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1004 
1005 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1006 		unsigned long region_size;
1007 		unsigned long region_start;
1008 
1009 		/*
1010 		 * The host has not specified the hot-add region.
1011 		 * Based on the hot-add page range being specified,
1012 		 * compute a hot-add region that can cover the pages
1013 		 * that need to be hot-added while ensuring the alignment
1014 		 * and size requirements of Linux as it relates to hot-add.
1015 		 */
1016 		region_start = pg_start;
1017 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1018 		if (pfn_cnt % HA_CHUNK)
1019 			region_size += HA_CHUNK;
1020 
1021 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1022 
1023 		rg_start = region_start;
1024 		rg_sz = region_size;
1025 	}
1026 
1027 	if (do_hot_add)
1028 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1029 						rg_start, rg_sz);
1030 
1031 	dm->num_pages_added += resp.page_count;
1032 #endif
1033 	/*
1034 	 * The result field of the response structure has the
1035 	 * following semantics:
1036 	 *
1037 	 * 1. If all or some pages hot-added: Guest should return success.
1038 	 *
1039 	 * 2. If no pages could be hot-added:
1040 	 *
1041 	 * If the guest returns success, then the host
1042 	 * will not attempt any further hot-add operations. This
1043 	 * signifies a permanent failure.
1044 	 *
1045 	 * If the guest returns failure, then this failure will be
1046 	 * treated as a transient failure and the host may retry the
1047 	 * hot-add operation after some delay.
1048 	 */
1049 	if (resp.page_count > 0)
1050 		resp.result = 1;
1051 	else if (!do_hot_add)
1052 		resp.result = 1;
1053 	else
1054 		resp.result = 0;
1055 
1056 	if (!do_hot_add || (resp.page_count == 0))
1057 		pr_err("Memory hot add failed\n");
1058 
1059 	dm->state = DM_INITIALIZED;
1060 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1061 	vmbus_sendpacket(dm->dev->channel, &resp,
1062 			sizeof(struct dm_hot_add_response),
1063 			(unsigned long)NULL,
1064 			VM_PKT_DATA_INBAND, 0);
1065 }
1066 
1067 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1068 {
1069 	struct dm_info_header *info_hdr;
1070 
1071 	info_hdr = (struct dm_info_header *)msg->info;
1072 
1073 	switch (info_hdr->type) {
1074 	case INFO_TYPE_MAX_PAGE_CNT:
1075 		if (info_hdr->data_size == sizeof(__u64)) {
1076 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1077 
1078 			pr_info("Max. dynamic memory size: %llu MB\n",
1079 				(*max_page_count) >> (20 - PAGE_SHIFT));
1080 		}
1081 
1082 		break;
1083 	default:
1084 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1085 	}
1086 }
1087 
1088 static unsigned long compute_balloon_floor(void)
1089 {
1090 	unsigned long min_pages;
1091 	unsigned long nr_pages = totalram_pages();
1092 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1093 	/* Simple continuous piecewiese linear function:
1094 	 *  max MiB -> min MiB  gradient
1095 	 *       0         0
1096 	 *      16        16
1097 	 *      32        24
1098 	 *     128        72    (1/2)
1099 	 *     512       168    (1/4)
1100 	 *    2048       360    (1/8)
1101 	 *    8192       744    (1/16)
1102 	 *   32768      1512	(1/32)
1103 	 */
1104 	if (nr_pages < MB2PAGES(128))
1105 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1106 	else if (nr_pages < MB2PAGES(512))
1107 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1108 	else if (nr_pages < MB2PAGES(2048))
1109 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1110 	else if (nr_pages < MB2PAGES(8192))
1111 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1112 	else
1113 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1114 #undef MB2PAGES
1115 	return min_pages;
1116 }
1117 
1118 /*
1119  * Post our status as it relates memory pressure to the
1120  * host. Host expects the guests to post this status
1121  * periodically at 1 second intervals.
1122  *
1123  * The metrics specified in this protocol are very Windows
1124  * specific and so we cook up numbers here to convey our memory
1125  * pressure.
1126  */
1127 
1128 static void post_status(struct hv_dynmem_device *dm)
1129 {
1130 	struct dm_status status;
1131 	unsigned long now = jiffies;
1132 	unsigned long last_post = last_post_time;
1133 
1134 	if (pressure_report_delay > 0) {
1135 		--pressure_report_delay;
1136 		return;
1137 	}
1138 
1139 	if (!time_after(now, (last_post_time + HZ)))
1140 		return;
1141 
1142 	memset(&status, 0, sizeof(struct dm_status));
1143 	status.hdr.type = DM_STATUS_REPORT;
1144 	status.hdr.size = sizeof(struct dm_status);
1145 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1146 
1147 	/*
1148 	 * The host expects the guest to report free and committed memory.
1149 	 * Furthermore, the host expects the pressure information to include
1150 	 * the ballooned out pages. For a given amount of memory that we are
1151 	 * managing we need to compute a floor below which we should not
1152 	 * balloon. Compute this and add it to the pressure report.
1153 	 * We also need to report all offline pages (num_pages_added -
1154 	 * num_pages_onlined) as committed to the host, otherwise it can try
1155 	 * asking us to balloon them out.
1156 	 */
1157 	status.num_avail = si_mem_available();
1158 	status.num_committed = vm_memory_committed() +
1159 		dm->num_pages_ballooned +
1160 		(dm->num_pages_added > dm->num_pages_onlined ?
1161 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1162 		compute_balloon_floor();
1163 
1164 	trace_balloon_status(status.num_avail, status.num_committed,
1165 			     vm_memory_committed(), dm->num_pages_ballooned,
1166 			     dm->num_pages_added, dm->num_pages_onlined);
1167 	/*
1168 	 * If our transaction ID is no longer current, just don't
1169 	 * send the status. This can happen if we were interrupted
1170 	 * after we picked our transaction ID.
1171 	 */
1172 	if (status.hdr.trans_id != atomic_read(&trans_id))
1173 		return;
1174 
1175 	/*
1176 	 * If the last post time that we sampled has changed,
1177 	 * we have raced, don't post the status.
1178 	 */
1179 	if (last_post != last_post_time)
1180 		return;
1181 
1182 	last_post_time = jiffies;
1183 	vmbus_sendpacket(dm->dev->channel, &status,
1184 				sizeof(struct dm_status),
1185 				(unsigned long)NULL,
1186 				VM_PKT_DATA_INBAND, 0);
1187 
1188 }
1189 
1190 static void free_balloon_pages(struct hv_dynmem_device *dm,
1191 			 union dm_mem_page_range *range_array)
1192 {
1193 	int num_pages = range_array->finfo.page_cnt;
1194 	__u64 start_frame = range_array->finfo.start_page;
1195 	struct page *pg;
1196 	int i;
1197 
1198 	for (i = 0; i < num_pages; i++) {
1199 		pg = pfn_to_page(i + start_frame);
1200 		__ClearPageOffline(pg);
1201 		__free_page(pg);
1202 		dm->num_pages_ballooned--;
1203 	}
1204 }
1205 
1206 
1207 
1208 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1209 					unsigned int num_pages,
1210 					struct dm_balloon_response *bl_resp,
1211 					int alloc_unit)
1212 {
1213 	unsigned int i, j;
1214 	struct page *pg;
1215 
1216 	if (num_pages < alloc_unit)
1217 		return 0;
1218 
1219 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1220 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1221 			PAGE_SIZE)
1222 			return i * alloc_unit;
1223 
1224 		/*
1225 		 * We execute this code in a thread context. Furthermore,
1226 		 * we don't want the kernel to try too hard.
1227 		 */
1228 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1229 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1230 				get_order(alloc_unit << PAGE_SHIFT));
1231 
1232 		if (!pg)
1233 			return i * alloc_unit;
1234 
1235 		dm->num_pages_ballooned += alloc_unit;
1236 
1237 		/*
1238 		 * If we allocatted 2M pages; split them so we
1239 		 * can free them in any order we get.
1240 		 */
1241 
1242 		if (alloc_unit != 1)
1243 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1244 
1245 		/* mark all pages offline */
1246 		for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1247 			__SetPageOffline(pg + j);
1248 
1249 		bl_resp->range_count++;
1250 		bl_resp->range_array[i].finfo.start_page =
1251 			page_to_pfn(pg);
1252 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1253 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1254 
1255 	}
1256 
1257 	return num_pages;
1258 }
1259 
1260 static void balloon_up(struct work_struct *dummy)
1261 {
1262 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1263 	unsigned int num_ballooned = 0;
1264 	struct dm_balloon_response *bl_resp;
1265 	int alloc_unit;
1266 	int ret;
1267 	bool done = false;
1268 	int i;
1269 	long avail_pages;
1270 	unsigned long floor;
1271 
1272 	/* The host balloons pages in 2M granularity. */
1273 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1274 
1275 	/*
1276 	 * We will attempt 2M allocations. However, if we fail to
1277 	 * allocate 2M chunks, we will go back to 4k allocations.
1278 	 */
1279 	alloc_unit = 512;
1280 
1281 	avail_pages = si_mem_available();
1282 	floor = compute_balloon_floor();
1283 
1284 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1285 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1286 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1287 			avail_pages < num_pages ? "Not enough memory." :
1288 			"Balloon floor reached.");
1289 
1290 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1291 		num_pages -= num_pages % PAGES_IN_2M;
1292 	}
1293 
1294 	while (!done) {
1295 		bl_resp = (struct dm_balloon_response *)send_buffer;
1296 		memset(send_buffer, 0, PAGE_SIZE);
1297 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1298 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1299 		bl_resp->more_pages = 1;
1300 
1301 		num_pages -= num_ballooned;
1302 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1303 						    bl_resp, alloc_unit);
1304 
1305 		if (alloc_unit != 1 && num_ballooned == 0) {
1306 			alloc_unit = 1;
1307 			continue;
1308 		}
1309 
1310 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1311 			pr_debug("Ballooned %u out of %u requested pages.\n",
1312 				num_pages, dm_device.balloon_wrk.num_pages);
1313 
1314 			bl_resp->more_pages = 0;
1315 			done = true;
1316 			dm_device.state = DM_INITIALIZED;
1317 		}
1318 
1319 		/*
1320 		 * We are pushing a lot of data through the channel;
1321 		 * deal with transient failures caused because of the
1322 		 * lack of space in the ring buffer.
1323 		 */
1324 
1325 		do {
1326 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1327 			ret = vmbus_sendpacket(dm_device.dev->channel,
1328 						bl_resp,
1329 						bl_resp->hdr.size,
1330 						(unsigned long)NULL,
1331 						VM_PKT_DATA_INBAND, 0);
1332 
1333 			if (ret == -EAGAIN)
1334 				msleep(20);
1335 			post_status(&dm_device);
1336 		} while (ret == -EAGAIN);
1337 
1338 		if (ret) {
1339 			/*
1340 			 * Free up the memory we allocatted.
1341 			 */
1342 			pr_err("Balloon response failed\n");
1343 
1344 			for (i = 0; i < bl_resp->range_count; i++)
1345 				free_balloon_pages(&dm_device,
1346 						 &bl_resp->range_array[i]);
1347 
1348 			done = true;
1349 		}
1350 	}
1351 
1352 }
1353 
1354 static void balloon_down(struct hv_dynmem_device *dm,
1355 			struct dm_unballoon_request *req)
1356 {
1357 	union dm_mem_page_range *range_array = req->range_array;
1358 	int range_count = req->range_count;
1359 	struct dm_unballoon_response resp;
1360 	int i;
1361 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1362 
1363 	for (i = 0; i < range_count; i++) {
1364 		free_balloon_pages(dm, &range_array[i]);
1365 		complete(&dm_device.config_event);
1366 	}
1367 
1368 	pr_debug("Freed %u ballooned pages.\n",
1369 		prev_pages_ballooned - dm->num_pages_ballooned);
1370 
1371 	if (req->more_pages == 1)
1372 		return;
1373 
1374 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1375 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1376 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1377 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1378 
1379 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1380 				sizeof(struct dm_unballoon_response),
1381 				(unsigned long)NULL,
1382 				VM_PKT_DATA_INBAND, 0);
1383 
1384 	dm->state = DM_INITIALIZED;
1385 }
1386 
1387 static void balloon_onchannelcallback(void *context);
1388 
1389 static int dm_thread_func(void *dm_dev)
1390 {
1391 	struct hv_dynmem_device *dm = dm_dev;
1392 
1393 	while (!kthread_should_stop()) {
1394 		wait_for_completion_interruptible_timeout(
1395 						&dm_device.config_event, 1*HZ);
1396 		/*
1397 		 * The host expects us to post information on the memory
1398 		 * pressure every second.
1399 		 */
1400 		reinit_completion(&dm_device.config_event);
1401 		post_status(dm);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 
1408 static void version_resp(struct hv_dynmem_device *dm,
1409 			struct dm_version_response *vresp)
1410 {
1411 	struct dm_version_request version_req;
1412 	int ret;
1413 
1414 	if (vresp->is_accepted) {
1415 		/*
1416 		 * We are done; wakeup the
1417 		 * context waiting for version
1418 		 * negotiation.
1419 		 */
1420 		complete(&dm->host_event);
1421 		return;
1422 	}
1423 	/*
1424 	 * If there are more versions to try, continue
1425 	 * with negotiations; if not
1426 	 * shutdown the service since we are not able
1427 	 * to negotiate a suitable version number
1428 	 * with the host.
1429 	 */
1430 	if (dm->next_version == 0)
1431 		goto version_error;
1432 
1433 	memset(&version_req, 0, sizeof(struct dm_version_request));
1434 	version_req.hdr.type = DM_VERSION_REQUEST;
1435 	version_req.hdr.size = sizeof(struct dm_version_request);
1436 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1437 	version_req.version.version = dm->next_version;
1438 	dm->version = version_req.version.version;
1439 
1440 	/*
1441 	 * Set the next version to try in case current version fails.
1442 	 * Win7 protocol ought to be the last one to try.
1443 	 */
1444 	switch (version_req.version.version) {
1445 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1446 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1447 		version_req.is_last_attempt = 0;
1448 		break;
1449 	default:
1450 		dm->next_version = 0;
1451 		version_req.is_last_attempt = 1;
1452 	}
1453 
1454 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1455 				sizeof(struct dm_version_request),
1456 				(unsigned long)NULL,
1457 				VM_PKT_DATA_INBAND, 0);
1458 
1459 	if (ret)
1460 		goto version_error;
1461 
1462 	return;
1463 
1464 version_error:
1465 	dm->state = DM_INIT_ERROR;
1466 	complete(&dm->host_event);
1467 }
1468 
1469 static void cap_resp(struct hv_dynmem_device *dm,
1470 			struct dm_capabilities_resp_msg *cap_resp)
1471 {
1472 	if (!cap_resp->is_accepted) {
1473 		pr_err("Capabilities not accepted by host\n");
1474 		dm->state = DM_INIT_ERROR;
1475 	}
1476 	complete(&dm->host_event);
1477 }
1478 
1479 static void balloon_onchannelcallback(void *context)
1480 {
1481 	struct hv_device *dev = context;
1482 	u32 recvlen;
1483 	u64 requestid;
1484 	struct dm_message *dm_msg;
1485 	struct dm_header *dm_hdr;
1486 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1487 	struct dm_balloon *bal_msg;
1488 	struct dm_hot_add *ha_msg;
1489 	union dm_mem_page_range *ha_pg_range;
1490 	union dm_mem_page_range *ha_region;
1491 
1492 	memset(recv_buffer, 0, sizeof(recv_buffer));
1493 	vmbus_recvpacket(dev->channel, recv_buffer,
1494 			 PAGE_SIZE, &recvlen, &requestid);
1495 
1496 	if (recvlen > 0) {
1497 		dm_msg = (struct dm_message *)recv_buffer;
1498 		dm_hdr = &dm_msg->hdr;
1499 
1500 		switch (dm_hdr->type) {
1501 		case DM_VERSION_RESPONSE:
1502 			version_resp(dm,
1503 				 (struct dm_version_response *)dm_msg);
1504 			break;
1505 
1506 		case DM_CAPABILITIES_RESPONSE:
1507 			cap_resp(dm,
1508 				 (struct dm_capabilities_resp_msg *)dm_msg);
1509 			break;
1510 
1511 		case DM_BALLOON_REQUEST:
1512 			if (dm->state == DM_BALLOON_UP)
1513 				pr_warn("Currently ballooning\n");
1514 			bal_msg = (struct dm_balloon *)recv_buffer;
1515 			dm->state = DM_BALLOON_UP;
1516 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1517 			schedule_work(&dm_device.balloon_wrk.wrk);
1518 			break;
1519 
1520 		case DM_UNBALLOON_REQUEST:
1521 			dm->state = DM_BALLOON_DOWN;
1522 			balloon_down(dm,
1523 				 (struct dm_unballoon_request *)recv_buffer);
1524 			break;
1525 
1526 		case DM_MEM_HOT_ADD_REQUEST:
1527 			if (dm->state == DM_HOT_ADD)
1528 				pr_warn("Currently hot-adding\n");
1529 			dm->state = DM_HOT_ADD;
1530 			ha_msg = (struct dm_hot_add *)recv_buffer;
1531 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1532 				/*
1533 				 * This is a normal hot-add request specifying
1534 				 * hot-add memory.
1535 				 */
1536 				dm->host_specified_ha_region = false;
1537 				ha_pg_range = &ha_msg->range;
1538 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1539 				dm->ha_wrk.ha_region_range.page_range = 0;
1540 			} else {
1541 				/*
1542 				 * Host is specifying that we first hot-add
1543 				 * a region and then partially populate this
1544 				 * region.
1545 				 */
1546 				dm->host_specified_ha_region = true;
1547 				ha_pg_range = &ha_msg->range;
1548 				ha_region = &ha_pg_range[1];
1549 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1550 				dm->ha_wrk.ha_region_range = *ha_region;
1551 			}
1552 			schedule_work(&dm_device.ha_wrk.wrk);
1553 			break;
1554 
1555 		case DM_INFO_MESSAGE:
1556 			process_info(dm, (struct dm_info_msg *)dm_msg);
1557 			break;
1558 
1559 		default:
1560 			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1561 
1562 		}
1563 	}
1564 
1565 }
1566 
1567 static int balloon_probe(struct hv_device *dev,
1568 			const struct hv_vmbus_device_id *dev_id)
1569 {
1570 	int ret;
1571 	unsigned long t;
1572 	struct dm_version_request version_req;
1573 	struct dm_capabilities cap_msg;
1574 
1575 #ifdef CONFIG_MEMORY_HOTPLUG
1576 	do_hot_add = hot_add;
1577 #else
1578 	do_hot_add = false;
1579 #endif
1580 
1581 	/*
1582 	 * First allocate a send buffer.
1583 	 */
1584 
1585 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1586 	if (!send_buffer)
1587 		return -ENOMEM;
1588 
1589 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1590 			balloon_onchannelcallback, dev);
1591 
1592 	if (ret)
1593 		goto probe_error0;
1594 
1595 	dm_device.dev = dev;
1596 	dm_device.state = DM_INITIALIZING;
1597 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1598 	init_completion(&dm_device.host_event);
1599 	init_completion(&dm_device.config_event);
1600 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1601 	spin_lock_init(&dm_device.ha_lock);
1602 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1603 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1604 	dm_device.host_specified_ha_region = false;
1605 
1606 	dm_device.thread =
1607 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1608 	if (IS_ERR(dm_device.thread)) {
1609 		ret = PTR_ERR(dm_device.thread);
1610 		goto probe_error1;
1611 	}
1612 
1613 #ifdef CONFIG_MEMORY_HOTPLUG
1614 	set_online_page_callback(&hv_online_page);
1615 	register_memory_notifier(&hv_memory_nb);
1616 #endif
1617 
1618 	hv_set_drvdata(dev, &dm_device);
1619 	/*
1620 	 * Initiate the hand shake with the host and negotiate
1621 	 * a version that the host can support. We start with the
1622 	 * highest version number and go down if the host cannot
1623 	 * support it.
1624 	 */
1625 	memset(&version_req, 0, sizeof(struct dm_version_request));
1626 	version_req.hdr.type = DM_VERSION_REQUEST;
1627 	version_req.hdr.size = sizeof(struct dm_version_request);
1628 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1629 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1630 	version_req.is_last_attempt = 0;
1631 	dm_device.version = version_req.version.version;
1632 
1633 	ret = vmbus_sendpacket(dev->channel, &version_req,
1634 				sizeof(struct dm_version_request),
1635 				(unsigned long)NULL,
1636 				VM_PKT_DATA_INBAND, 0);
1637 	if (ret)
1638 		goto probe_error2;
1639 
1640 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1641 	if (t == 0) {
1642 		ret = -ETIMEDOUT;
1643 		goto probe_error2;
1644 	}
1645 
1646 	/*
1647 	 * If we could not negotiate a compatible version with the host
1648 	 * fail the probe function.
1649 	 */
1650 	if (dm_device.state == DM_INIT_ERROR) {
1651 		ret = -ETIMEDOUT;
1652 		goto probe_error2;
1653 	}
1654 
1655 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1656 		DYNMEM_MAJOR_VERSION(dm_device.version),
1657 		DYNMEM_MINOR_VERSION(dm_device.version));
1658 
1659 	/*
1660 	 * Now submit our capabilities to the host.
1661 	 */
1662 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1663 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1664 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1665 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1666 
1667 	cap_msg.caps.cap_bits.balloon = 1;
1668 	cap_msg.caps.cap_bits.hot_add = 1;
1669 
1670 	/*
1671 	 * Specify our alignment requirements as it relates
1672 	 * memory hot-add. Specify 128MB alignment.
1673 	 */
1674 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1675 
1676 	/*
1677 	 * Currently the host does not use these
1678 	 * values and we set them to what is done in the
1679 	 * Windows driver.
1680 	 */
1681 	cap_msg.min_page_cnt = 0;
1682 	cap_msg.max_page_number = -1;
1683 
1684 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1685 				sizeof(struct dm_capabilities),
1686 				(unsigned long)NULL,
1687 				VM_PKT_DATA_INBAND, 0);
1688 	if (ret)
1689 		goto probe_error2;
1690 
1691 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1692 	if (t == 0) {
1693 		ret = -ETIMEDOUT;
1694 		goto probe_error2;
1695 	}
1696 
1697 	/*
1698 	 * If the host does not like our capabilities,
1699 	 * fail the probe function.
1700 	 */
1701 	if (dm_device.state == DM_INIT_ERROR) {
1702 		ret = -ETIMEDOUT;
1703 		goto probe_error2;
1704 	}
1705 
1706 	dm_device.state = DM_INITIALIZED;
1707 	last_post_time = jiffies;
1708 
1709 	return 0;
1710 
1711 probe_error2:
1712 #ifdef CONFIG_MEMORY_HOTPLUG
1713 	restore_online_page_callback(&hv_online_page);
1714 #endif
1715 	kthread_stop(dm_device.thread);
1716 
1717 probe_error1:
1718 	vmbus_close(dev->channel);
1719 probe_error0:
1720 	kfree(send_buffer);
1721 	return ret;
1722 }
1723 
1724 static int balloon_remove(struct hv_device *dev)
1725 {
1726 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1727 	struct hv_hotadd_state *has, *tmp;
1728 	struct hv_hotadd_gap *gap, *tmp_gap;
1729 	unsigned long flags;
1730 
1731 	if (dm->num_pages_ballooned != 0)
1732 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1733 
1734 	cancel_work_sync(&dm->balloon_wrk.wrk);
1735 	cancel_work_sync(&dm->ha_wrk.wrk);
1736 
1737 	vmbus_close(dev->channel);
1738 	kthread_stop(dm->thread);
1739 	kfree(send_buffer);
1740 #ifdef CONFIG_MEMORY_HOTPLUG
1741 	restore_online_page_callback(&hv_online_page);
1742 	unregister_memory_notifier(&hv_memory_nb);
1743 #endif
1744 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1745 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1746 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1747 			list_del(&gap->list);
1748 			kfree(gap);
1749 		}
1750 		list_del(&has->list);
1751 		kfree(has);
1752 	}
1753 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1754 
1755 	return 0;
1756 }
1757 
1758 static const struct hv_vmbus_device_id id_table[] = {
1759 	/* Dynamic Memory Class ID */
1760 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1761 	{ HV_DM_GUID, },
1762 	{ },
1763 };
1764 
1765 MODULE_DEVICE_TABLE(vmbus, id_table);
1766 
1767 static  struct hv_driver balloon_drv = {
1768 	.name = "hv_balloon",
1769 	.id_table = id_table,
1770 	.probe =  balloon_probe,
1771 	.remove =  balloon_remove,
1772 	.driver = {
1773 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1774 	},
1775 };
1776 
1777 static int __init init_balloon_drv(void)
1778 {
1779 
1780 	return vmbus_driver_register(&balloon_drv);
1781 }
1782 
1783 module_init(init_balloon_drv);
1784 
1785 MODULE_DESCRIPTION("Hyper-V Balloon");
1786 MODULE_LICENSE("GPL");
1787