xref: /linux/drivers/hv/hv_balloon.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24 
25 #include <linux/hyperv.h>
26 #include <asm/hyperv-tlfs.h>
27 
28 #include <asm/mshyperv.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "hv_trace_balloon.h"
32 
33 /*
34  * We begin with definitions supporting the Dynamic Memory protocol
35  * with the host.
36  *
37  * Begin protocol definitions.
38  */
39 
40 
41 
42 /*
43  * Protocol versions. The low word is the minor version, the high word the major
44  * version.
45  *
46  * History:
47  * Initial version 1.0
48  * Changed to 0.1 on 2009/03/25
49  * Changes to 0.2 on 2009/05/14
50  * Changes to 0.3 on 2009/12/03
51  * Changed to 1.0 on 2011/04/05
52  */
53 
54 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
55 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
56 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
57 
58 enum {
59 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
60 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
61 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
62 
63 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
64 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
65 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
66 
67 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
68 };
69 
70 
71 
72 /*
73  * Message Types
74  */
75 
76 enum dm_message_type {
77 	/*
78 	 * Version 0.3
79 	 */
80 	DM_ERROR			= 0,
81 	DM_VERSION_REQUEST		= 1,
82 	DM_VERSION_RESPONSE		= 2,
83 	DM_CAPABILITIES_REPORT		= 3,
84 	DM_CAPABILITIES_RESPONSE	= 4,
85 	DM_STATUS_REPORT		= 5,
86 	DM_BALLOON_REQUEST		= 6,
87 	DM_BALLOON_RESPONSE		= 7,
88 	DM_UNBALLOON_REQUEST		= 8,
89 	DM_UNBALLOON_RESPONSE		= 9,
90 	DM_MEM_HOT_ADD_REQUEST		= 10,
91 	DM_MEM_HOT_ADD_RESPONSE		= 11,
92 	DM_VERSION_03_MAX		= 11,
93 	/*
94 	 * Version 1.0.
95 	 */
96 	DM_INFO_MESSAGE			= 12,
97 	DM_VERSION_1_MAX		= 12
98 };
99 
100 
101 /*
102  * Structures defining the dynamic memory management
103  * protocol.
104  */
105 
106 union dm_version {
107 	struct {
108 		__u16 minor_version;
109 		__u16 major_version;
110 	};
111 	__u32 version;
112 } __packed;
113 
114 
115 union dm_caps {
116 	struct {
117 		__u64 balloon:1;
118 		__u64 hot_add:1;
119 		/*
120 		 * To support guests that may have alignment
121 		 * limitations on hot-add, the guest can specify
122 		 * its alignment requirements; a value of n
123 		 * represents an alignment of 2^n in mega bytes.
124 		 */
125 		__u64 hot_add_alignment:4;
126 		__u64 reservedz:58;
127 	} cap_bits;
128 	__u64 caps;
129 } __packed;
130 
131 union dm_mem_page_range {
132 	struct  {
133 		/*
134 		 * The PFN number of the first page in the range.
135 		 * 40 bits is the architectural limit of a PFN
136 		 * number for AMD64.
137 		 */
138 		__u64 start_page:40;
139 		/*
140 		 * The number of pages in the range.
141 		 */
142 		__u64 page_cnt:24;
143 	} finfo;
144 	__u64  page_range;
145 } __packed;
146 
147 
148 
149 /*
150  * The header for all dynamic memory messages:
151  *
152  * type: Type of the message.
153  * size: Size of the message in bytes; including the header.
154  * trans_id: The guest is responsible for manufacturing this ID.
155  */
156 
157 struct dm_header {
158 	__u16 type;
159 	__u16 size;
160 	__u32 trans_id;
161 } __packed;
162 
163 /*
164  * A generic message format for dynamic memory.
165  * Specific message formats are defined later in the file.
166  */
167 
168 struct dm_message {
169 	struct dm_header hdr;
170 	__u8 data[]; /* enclosed message */
171 } __packed;
172 
173 
174 /*
175  * Specific message types supporting the dynamic memory protocol.
176  */
177 
178 /*
179  * Version negotiation message. Sent from the guest to the host.
180  * The guest is free to try different versions until the host
181  * accepts the version.
182  *
183  * dm_version: The protocol version requested.
184  * is_last_attempt: If TRUE, this is the last version guest will request.
185  * reservedz: Reserved field, set to zero.
186  */
187 
188 struct dm_version_request {
189 	struct dm_header hdr;
190 	union dm_version version;
191 	__u32 is_last_attempt:1;
192 	__u32 reservedz:31;
193 } __packed;
194 
195 /*
196  * Version response message; Host to Guest and indicates
197  * if the host has accepted the version sent by the guest.
198  *
199  * is_accepted: If TRUE, host has accepted the version and the guest
200  * should proceed to the next stage of the protocol. FALSE indicates that
201  * guest should re-try with a different version.
202  *
203  * reservedz: Reserved field, set to zero.
204  */
205 
206 struct dm_version_response {
207 	struct dm_header hdr;
208 	__u64 is_accepted:1;
209 	__u64 reservedz:63;
210 } __packed;
211 
212 /*
213  * Message reporting capabilities. This is sent from the guest to the
214  * host.
215  */
216 
217 struct dm_capabilities {
218 	struct dm_header hdr;
219 	union dm_caps caps;
220 	__u64 min_page_cnt;
221 	__u64 max_page_number;
222 } __packed;
223 
224 /*
225  * Response to the capabilities message. This is sent from the host to the
226  * guest. This message notifies if the host has accepted the guest's
227  * capabilities. If the host has not accepted, the guest must shutdown
228  * the service.
229  *
230  * is_accepted: Indicates if the host has accepted guest's capabilities.
231  * reservedz: Must be 0.
232  */
233 
234 struct dm_capabilities_resp_msg {
235 	struct dm_header hdr;
236 	__u64 is_accepted:1;
237 	__u64 reservedz:63;
238 } __packed;
239 
240 /*
241  * This message is used to report memory pressure from the guest.
242  * This message is not part of any transaction and there is no
243  * response to this message.
244  *
245  * num_avail: Available memory in pages.
246  * num_committed: Committed memory in pages.
247  * page_file_size: The accumulated size of all page files
248  *		   in the system in pages.
249  * zero_free: The nunber of zero and free pages.
250  * page_file_writes: The writes to the page file in pages.
251  * io_diff: An indicator of file cache efficiency or page file activity,
252  *	    calculated as File Cache Page Fault Count - Page Read Count.
253  *	    This value is in pages.
254  *
255  * Some of these metrics are Windows specific and fortunately
256  * the algorithm on the host side that computes the guest memory
257  * pressure only uses num_committed value.
258  */
259 
260 struct dm_status {
261 	struct dm_header hdr;
262 	__u64 num_avail;
263 	__u64 num_committed;
264 	__u64 page_file_size;
265 	__u64 zero_free;
266 	__u32 page_file_writes;
267 	__u32 io_diff;
268 } __packed;
269 
270 
271 /*
272  * Message to ask the guest to allocate memory - balloon up message.
273  * This message is sent from the host to the guest. The guest may not be
274  * able to allocate as much memory as requested.
275  *
276  * num_pages: number of pages to allocate.
277  */
278 
279 struct dm_balloon {
280 	struct dm_header hdr;
281 	__u32 num_pages;
282 	__u32 reservedz;
283 } __packed;
284 
285 
286 /*
287  * Balloon response message; this message is sent from the guest
288  * to the host in response to the balloon message.
289  *
290  * reservedz: Reserved; must be set to zero.
291  * more_pages: If FALSE, this is the last message of the transaction.
292  * if TRUE there will atleast one more message from the guest.
293  *
294  * range_count: The number of ranges in the range array.
295  *
296  * range_array: An array of page ranges returned to the host.
297  *
298  */
299 
300 struct dm_balloon_response {
301 	struct dm_header hdr;
302 	__u32 reservedz;
303 	__u32 more_pages:1;
304 	__u32 range_count:31;
305 	union dm_mem_page_range range_array[];
306 } __packed;
307 
308 /*
309  * Un-balloon message; this message is sent from the host
310  * to the guest to give guest more memory.
311  *
312  * more_pages: If FALSE, this is the last message of the transaction.
313  * if TRUE there will atleast one more message from the guest.
314  *
315  * reservedz: Reserved; must be set to zero.
316  *
317  * range_count: The number of ranges in the range array.
318  *
319  * range_array: An array of page ranges returned to the host.
320  *
321  */
322 
323 struct dm_unballoon_request {
324 	struct dm_header hdr;
325 	__u32 more_pages:1;
326 	__u32 reservedz:31;
327 	__u32 range_count;
328 	union dm_mem_page_range range_array[];
329 } __packed;
330 
331 /*
332  * Un-balloon response message; this message is sent from the guest
333  * to the host in response to an unballoon request.
334  *
335  */
336 
337 struct dm_unballoon_response {
338 	struct dm_header hdr;
339 } __packed;
340 
341 
342 /*
343  * Hot add request message. Message sent from the host to the guest.
344  *
345  * mem_range: Memory range to hot add.
346  *
347  */
348 
349 struct dm_hot_add {
350 	struct dm_header hdr;
351 	union dm_mem_page_range range;
352 } __packed;
353 
354 /*
355  * Hot add response message.
356  * This message is sent by the guest to report the status of a hot add request.
357  * If page_count is less than the requested page count, then the host should
358  * assume all further hot add requests will fail, since this indicates that
359  * the guest has hit an upper physical memory barrier.
360  *
361  * Hot adds may also fail due to low resources; in this case, the guest must
362  * not complete this message until the hot add can succeed, and the host must
363  * not send a new hot add request until the response is sent.
364  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
365  * times it fails the request.
366  *
367  *
368  * page_count: number of pages that were successfully hot added.
369  *
370  * result: result of the operation 1: success, 0: failure.
371  *
372  */
373 
374 struct dm_hot_add_response {
375 	struct dm_header hdr;
376 	__u32 page_count;
377 	__u32 result;
378 } __packed;
379 
380 /*
381  * Types of information sent from host to the guest.
382  */
383 
384 enum dm_info_type {
385 	INFO_TYPE_MAX_PAGE_CNT = 0,
386 	MAX_INFO_TYPE
387 };
388 
389 
390 /*
391  * Header for the information message.
392  */
393 
394 struct dm_info_header {
395 	enum dm_info_type type;
396 	__u32 data_size;
397 } __packed;
398 
399 /*
400  * This message is sent from the host to the guest to pass
401  * some relevant information (win8 addition).
402  *
403  * reserved: no used.
404  * info_size: size of the information blob.
405  * info: information blob.
406  */
407 
408 struct dm_info_msg {
409 	struct dm_header hdr;
410 	__u32 reserved;
411 	__u32 info_size;
412 	__u8  info[];
413 };
414 
415 /*
416  * End protocol definitions.
417  */
418 
419 /*
420  * State to manage hot adding memory into the guest.
421  * The range start_pfn : end_pfn specifies the range
422  * that the host has asked us to hot add. The range
423  * start_pfn : ha_end_pfn specifies the range that we have
424  * currently hot added. We hot add in multiples of 128M
425  * chunks; it is possible that we may not be able to bring
426  * online all the pages in the region. The range
427  * covered_start_pfn:covered_end_pfn defines the pages that can
428  * be brough online.
429  */
430 
431 struct hv_hotadd_state {
432 	struct list_head list;
433 	unsigned long start_pfn;
434 	unsigned long covered_start_pfn;
435 	unsigned long covered_end_pfn;
436 	unsigned long ha_end_pfn;
437 	unsigned long end_pfn;
438 	/*
439 	 * A list of gaps.
440 	 */
441 	struct list_head gap_list;
442 };
443 
444 struct hv_hotadd_gap {
445 	struct list_head list;
446 	unsigned long start_pfn;
447 	unsigned long end_pfn;
448 };
449 
450 struct balloon_state {
451 	__u32 num_pages;
452 	struct work_struct wrk;
453 };
454 
455 struct hot_add_wrk {
456 	union dm_mem_page_range ha_page_range;
457 	union dm_mem_page_range ha_region_range;
458 	struct work_struct wrk;
459 };
460 
461 static bool allow_hibernation;
462 static bool hot_add = true;
463 static bool do_hot_add;
464 /*
465  * Delay reporting memory pressure by
466  * the specified number of seconds.
467  */
468 static uint pressure_report_delay = 45;
469 
470 /*
471  * The last time we posted a pressure report to host.
472  */
473 static unsigned long last_post_time;
474 
475 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
476 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
477 
478 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
480 static atomic_t trans_id = ATOMIC_INIT(0);
481 
482 static int dm_ring_size = 20 * 1024;
483 
484 /*
485  * Driver specific state.
486  */
487 
488 enum hv_dm_state {
489 	DM_INITIALIZING = 0,
490 	DM_INITIALIZED,
491 	DM_BALLOON_UP,
492 	DM_BALLOON_DOWN,
493 	DM_HOT_ADD,
494 	DM_INIT_ERROR
495 };
496 
497 
498 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
499 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
500 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
501 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
502 
503 struct hv_dynmem_device {
504 	struct hv_device *dev;
505 	enum hv_dm_state state;
506 	struct completion host_event;
507 	struct completion config_event;
508 
509 	/*
510 	 * Number of pages we have currently ballooned out.
511 	 */
512 	unsigned int num_pages_ballooned;
513 	unsigned int num_pages_onlined;
514 	unsigned int num_pages_added;
515 
516 	/*
517 	 * State to manage the ballooning (up) operation.
518 	 */
519 	struct balloon_state balloon_wrk;
520 
521 	/*
522 	 * State to execute the "hot-add" operation.
523 	 */
524 	struct hot_add_wrk ha_wrk;
525 
526 	/*
527 	 * This state tracks if the host has specified a hot-add
528 	 * region.
529 	 */
530 	bool host_specified_ha_region;
531 
532 	/*
533 	 * State to synchronize hot-add.
534 	 */
535 	struct completion  ol_waitevent;
536 	bool ha_waiting;
537 	/*
538 	 * This thread handles hot-add
539 	 * requests from the host as well as notifying
540 	 * the host with regards to memory pressure in
541 	 * the guest.
542 	 */
543 	struct task_struct *thread;
544 
545 	/*
546 	 * Protects ha_region_list, num_pages_onlined counter and individual
547 	 * regions from ha_region_list.
548 	 */
549 	spinlock_t ha_lock;
550 
551 	/*
552 	 * A list of hot-add regions.
553 	 */
554 	struct list_head ha_region_list;
555 
556 	/*
557 	 * We start with the highest version we can support
558 	 * and downgrade based on the host; we save here the
559 	 * next version to try.
560 	 */
561 	__u32 next_version;
562 
563 	/*
564 	 * The negotiated version agreed by host.
565 	 */
566 	__u32 version;
567 };
568 
569 static struct hv_dynmem_device dm_device;
570 
571 static void post_status(struct hv_dynmem_device *dm);
572 
573 #ifdef CONFIG_MEMORY_HOTPLUG
574 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
575 				     unsigned long pfn)
576 {
577 	struct hv_hotadd_gap *gap;
578 
579 	/* The page is not backed. */
580 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
581 		return false;
582 
583 	/* Check for gaps. */
584 	list_for_each_entry(gap, &has->gap_list, list) {
585 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
586 			return false;
587 	}
588 
589 	return true;
590 }
591 
592 static unsigned long hv_page_offline_check(unsigned long start_pfn,
593 					   unsigned long nr_pages)
594 {
595 	unsigned long pfn = start_pfn, count = 0;
596 	struct hv_hotadd_state *has;
597 	bool found;
598 
599 	while (pfn < start_pfn + nr_pages) {
600 		/*
601 		 * Search for HAS which covers the pfn and when we find one
602 		 * count how many consequitive PFNs are covered.
603 		 */
604 		found = false;
605 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
606 			while ((pfn >= has->start_pfn) &&
607 			       (pfn < has->end_pfn) &&
608 			       (pfn < start_pfn + nr_pages)) {
609 				found = true;
610 				if (has_pfn_is_backed(has, pfn))
611 					count++;
612 				pfn++;
613 			}
614 		}
615 
616 		/*
617 		 * This PFN is not in any HAS (e.g. we're offlining a region
618 		 * which was present at boot), no need to account for it. Go
619 		 * to the next one.
620 		 */
621 		if (!found)
622 			pfn++;
623 	}
624 
625 	return count;
626 }
627 
628 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
629 			      void *v)
630 {
631 	struct memory_notify *mem = (struct memory_notify *)v;
632 	unsigned long flags, pfn_count;
633 
634 	switch (val) {
635 	case MEM_ONLINE:
636 	case MEM_CANCEL_ONLINE:
637 		if (dm_device.ha_waiting) {
638 			dm_device.ha_waiting = false;
639 			complete(&dm_device.ol_waitevent);
640 		}
641 		break;
642 
643 	case MEM_OFFLINE:
644 		spin_lock_irqsave(&dm_device.ha_lock, flags);
645 		pfn_count = hv_page_offline_check(mem->start_pfn,
646 						  mem->nr_pages);
647 		if (pfn_count <= dm_device.num_pages_onlined) {
648 			dm_device.num_pages_onlined -= pfn_count;
649 		} else {
650 			/*
651 			 * We're offlining more pages than we managed to online.
652 			 * This is unexpected. In any case don't let
653 			 * num_pages_onlined wrap around zero.
654 			 */
655 			WARN_ON_ONCE(1);
656 			dm_device.num_pages_onlined = 0;
657 		}
658 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
659 		break;
660 	case MEM_GOING_ONLINE:
661 	case MEM_GOING_OFFLINE:
662 	case MEM_CANCEL_OFFLINE:
663 		break;
664 	}
665 	return NOTIFY_OK;
666 }
667 
668 static struct notifier_block hv_memory_nb = {
669 	.notifier_call = hv_memory_notifier,
670 	.priority = 0
671 };
672 
673 /* Check if the particular page is backed and can be onlined and online it. */
674 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
675 {
676 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
677 		if (!PageOffline(pg))
678 			__SetPageOffline(pg);
679 		return;
680 	}
681 	if (PageOffline(pg))
682 		__ClearPageOffline(pg);
683 
684 	/* This frame is currently backed; online the page. */
685 	generic_online_page(pg, 0);
686 
687 	lockdep_assert_held(&dm_device.ha_lock);
688 	dm_device.num_pages_onlined++;
689 }
690 
691 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
692 				unsigned long start_pfn, unsigned long size)
693 {
694 	int i;
695 
696 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
697 	for (i = 0; i < size; i++)
698 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
699 }
700 
701 static void hv_mem_hot_add(unsigned long start, unsigned long size,
702 				unsigned long pfn_count,
703 				struct hv_hotadd_state *has)
704 {
705 	int ret = 0;
706 	int i, nid;
707 	unsigned long start_pfn;
708 	unsigned long processed_pfn;
709 	unsigned long total_pfn = pfn_count;
710 	unsigned long flags;
711 
712 	for (i = 0; i < (size/HA_CHUNK); i++) {
713 		start_pfn = start + (i * HA_CHUNK);
714 
715 		spin_lock_irqsave(&dm_device.ha_lock, flags);
716 		has->ha_end_pfn +=  HA_CHUNK;
717 
718 		if (total_pfn > HA_CHUNK) {
719 			processed_pfn = HA_CHUNK;
720 			total_pfn -= HA_CHUNK;
721 		} else {
722 			processed_pfn = total_pfn;
723 			total_pfn = 0;
724 		}
725 
726 		has->covered_end_pfn +=  processed_pfn;
727 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
728 
729 		init_completion(&dm_device.ol_waitevent);
730 		dm_device.ha_waiting = !memhp_auto_online;
731 
732 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
733 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
734 				(HA_CHUNK << PAGE_SHIFT));
735 
736 		if (ret) {
737 			pr_err("hot_add memory failed error is %d\n", ret);
738 			if (ret == -EEXIST) {
739 				/*
740 				 * This error indicates that the error
741 				 * is not a transient failure. This is the
742 				 * case where the guest's physical address map
743 				 * precludes hot adding memory. Stop all further
744 				 * memory hot-add.
745 				 */
746 				do_hot_add = false;
747 			}
748 			spin_lock_irqsave(&dm_device.ha_lock, flags);
749 			has->ha_end_pfn -= HA_CHUNK;
750 			has->covered_end_pfn -=  processed_pfn;
751 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
752 			break;
753 		}
754 
755 		/*
756 		 * Wait for the memory block to be onlined when memory onlining
757 		 * is done outside of kernel (memhp_auto_online). Since the hot
758 		 * add has succeeded, it is ok to proceed even if the pages in
759 		 * the hot added region have not been "onlined" within the
760 		 * allowed time.
761 		 */
762 		if (dm_device.ha_waiting)
763 			wait_for_completion_timeout(&dm_device.ol_waitevent,
764 						    5*HZ);
765 		post_status(&dm_device);
766 	}
767 }
768 
769 static void hv_online_page(struct page *pg, unsigned int order)
770 {
771 	struct hv_hotadd_state *has;
772 	unsigned long flags;
773 	unsigned long pfn = page_to_pfn(pg);
774 
775 	spin_lock_irqsave(&dm_device.ha_lock, flags);
776 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
777 		/* The page belongs to a different HAS. */
778 		if ((pfn < has->start_pfn) ||
779 				(pfn + (1UL << order) > has->end_pfn))
780 			continue;
781 
782 		hv_bring_pgs_online(has, pfn, 1UL << order);
783 		break;
784 	}
785 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
786 }
787 
788 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
789 {
790 	struct hv_hotadd_state *has;
791 	struct hv_hotadd_gap *gap;
792 	unsigned long residual, new_inc;
793 	int ret = 0;
794 	unsigned long flags;
795 
796 	spin_lock_irqsave(&dm_device.ha_lock, flags);
797 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
798 		/*
799 		 * If the pfn range we are dealing with is not in the current
800 		 * "hot add block", move on.
801 		 */
802 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
803 			continue;
804 
805 		/*
806 		 * If the current start pfn is not where the covered_end
807 		 * is, create a gap and update covered_end_pfn.
808 		 */
809 		if (has->covered_end_pfn != start_pfn) {
810 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
811 			if (!gap) {
812 				ret = -ENOMEM;
813 				break;
814 			}
815 
816 			INIT_LIST_HEAD(&gap->list);
817 			gap->start_pfn = has->covered_end_pfn;
818 			gap->end_pfn = start_pfn;
819 			list_add_tail(&gap->list, &has->gap_list);
820 
821 			has->covered_end_pfn = start_pfn;
822 		}
823 
824 		/*
825 		 * If the current hot add-request extends beyond
826 		 * our current limit; extend it.
827 		 */
828 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
829 			residual = (start_pfn + pfn_cnt - has->end_pfn);
830 			/*
831 			 * Extend the region by multiples of HA_CHUNK.
832 			 */
833 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
834 			if (residual % HA_CHUNK)
835 				new_inc += HA_CHUNK;
836 
837 			has->end_pfn += new_inc;
838 		}
839 
840 		ret = 1;
841 		break;
842 	}
843 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
844 
845 	return ret;
846 }
847 
848 static unsigned long handle_pg_range(unsigned long pg_start,
849 					unsigned long pg_count)
850 {
851 	unsigned long start_pfn = pg_start;
852 	unsigned long pfn_cnt = pg_count;
853 	unsigned long size;
854 	struct hv_hotadd_state *has;
855 	unsigned long pgs_ol = 0;
856 	unsigned long old_covered_state;
857 	unsigned long res = 0, flags;
858 
859 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
860 		pg_start);
861 
862 	spin_lock_irqsave(&dm_device.ha_lock, flags);
863 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
864 		/*
865 		 * If the pfn range we are dealing with is not in the current
866 		 * "hot add block", move on.
867 		 */
868 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
869 			continue;
870 
871 		old_covered_state = has->covered_end_pfn;
872 
873 		if (start_pfn < has->ha_end_pfn) {
874 			/*
875 			 * This is the case where we are backing pages
876 			 * in an already hot added region. Bring
877 			 * these pages online first.
878 			 */
879 			pgs_ol = has->ha_end_pfn - start_pfn;
880 			if (pgs_ol > pfn_cnt)
881 				pgs_ol = pfn_cnt;
882 
883 			has->covered_end_pfn +=  pgs_ol;
884 			pfn_cnt -= pgs_ol;
885 			/*
886 			 * Check if the corresponding memory block is already
887 			 * online. It is possible to observe struct pages still
888 			 * being uninitialized here so check section instead.
889 			 * In case the section is online we need to bring the
890 			 * rest of pfns (which were not backed previously)
891 			 * online too.
892 			 */
893 			if (start_pfn > has->start_pfn &&
894 			    online_section_nr(pfn_to_section_nr(start_pfn)))
895 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
896 
897 		}
898 
899 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
900 			/*
901 			 * We have some residual hot add range
902 			 * that needs to be hot added; hot add
903 			 * it now. Hot add a multiple of
904 			 * of HA_CHUNK that fully covers the pages
905 			 * we have.
906 			 */
907 			size = (has->end_pfn - has->ha_end_pfn);
908 			if (pfn_cnt <= size) {
909 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
910 				if (pfn_cnt % HA_CHUNK)
911 					size += HA_CHUNK;
912 			} else {
913 				pfn_cnt = size;
914 			}
915 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
916 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
917 			spin_lock_irqsave(&dm_device.ha_lock, flags);
918 		}
919 		/*
920 		 * If we managed to online any pages that were given to us,
921 		 * we declare success.
922 		 */
923 		res = has->covered_end_pfn - old_covered_state;
924 		break;
925 	}
926 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
927 
928 	return res;
929 }
930 
931 static unsigned long process_hot_add(unsigned long pg_start,
932 					unsigned long pfn_cnt,
933 					unsigned long rg_start,
934 					unsigned long rg_size)
935 {
936 	struct hv_hotadd_state *ha_region = NULL;
937 	int covered;
938 	unsigned long flags;
939 
940 	if (pfn_cnt == 0)
941 		return 0;
942 
943 	if (!dm_device.host_specified_ha_region) {
944 		covered = pfn_covered(pg_start, pfn_cnt);
945 		if (covered < 0)
946 			return 0;
947 
948 		if (covered)
949 			goto do_pg_range;
950 	}
951 
952 	/*
953 	 * If the host has specified a hot-add range; deal with it first.
954 	 */
955 
956 	if (rg_size != 0) {
957 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
958 		if (!ha_region)
959 			return 0;
960 
961 		INIT_LIST_HEAD(&ha_region->list);
962 		INIT_LIST_HEAD(&ha_region->gap_list);
963 
964 		ha_region->start_pfn = rg_start;
965 		ha_region->ha_end_pfn = rg_start;
966 		ha_region->covered_start_pfn = pg_start;
967 		ha_region->covered_end_pfn = pg_start;
968 		ha_region->end_pfn = rg_start + rg_size;
969 
970 		spin_lock_irqsave(&dm_device.ha_lock, flags);
971 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
972 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
973 	}
974 
975 do_pg_range:
976 	/*
977 	 * Process the page range specified; bringing them
978 	 * online if possible.
979 	 */
980 	return handle_pg_range(pg_start, pfn_cnt);
981 }
982 
983 #endif
984 
985 static void hot_add_req(struct work_struct *dummy)
986 {
987 	struct dm_hot_add_response resp;
988 #ifdef CONFIG_MEMORY_HOTPLUG
989 	unsigned long pg_start, pfn_cnt;
990 	unsigned long rg_start, rg_sz;
991 #endif
992 	struct hv_dynmem_device *dm = &dm_device;
993 
994 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
995 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
996 	resp.hdr.size = sizeof(struct dm_hot_add_response);
997 
998 #ifdef CONFIG_MEMORY_HOTPLUG
999 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1000 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1001 
1002 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1003 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1004 
1005 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1006 		unsigned long region_size;
1007 		unsigned long region_start;
1008 
1009 		/*
1010 		 * The host has not specified the hot-add region.
1011 		 * Based on the hot-add page range being specified,
1012 		 * compute a hot-add region that can cover the pages
1013 		 * that need to be hot-added while ensuring the alignment
1014 		 * and size requirements of Linux as it relates to hot-add.
1015 		 */
1016 		region_start = pg_start;
1017 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1018 		if (pfn_cnt % HA_CHUNK)
1019 			region_size += HA_CHUNK;
1020 
1021 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1022 
1023 		rg_start = region_start;
1024 		rg_sz = region_size;
1025 	}
1026 
1027 	if (do_hot_add)
1028 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1029 						rg_start, rg_sz);
1030 
1031 	dm->num_pages_added += resp.page_count;
1032 #endif
1033 	/*
1034 	 * The result field of the response structure has the
1035 	 * following semantics:
1036 	 *
1037 	 * 1. If all or some pages hot-added: Guest should return success.
1038 	 *
1039 	 * 2. If no pages could be hot-added:
1040 	 *
1041 	 * If the guest returns success, then the host
1042 	 * will not attempt any further hot-add operations. This
1043 	 * signifies a permanent failure.
1044 	 *
1045 	 * If the guest returns failure, then this failure will be
1046 	 * treated as a transient failure and the host may retry the
1047 	 * hot-add operation after some delay.
1048 	 */
1049 	if (resp.page_count > 0)
1050 		resp.result = 1;
1051 	else if (!do_hot_add)
1052 		resp.result = 1;
1053 	else
1054 		resp.result = 0;
1055 
1056 	if (!do_hot_add || resp.page_count == 0) {
1057 		if (!allow_hibernation)
1058 			pr_err("Memory hot add failed\n");
1059 		else
1060 			pr_info("Ignore hot-add request!\n");
1061 	}
1062 
1063 	dm->state = DM_INITIALIZED;
1064 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1065 	vmbus_sendpacket(dm->dev->channel, &resp,
1066 			sizeof(struct dm_hot_add_response),
1067 			(unsigned long)NULL,
1068 			VM_PKT_DATA_INBAND, 0);
1069 }
1070 
1071 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1072 {
1073 	struct dm_info_header *info_hdr;
1074 
1075 	info_hdr = (struct dm_info_header *)msg->info;
1076 
1077 	switch (info_hdr->type) {
1078 	case INFO_TYPE_MAX_PAGE_CNT:
1079 		if (info_hdr->data_size == sizeof(__u64)) {
1080 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1081 
1082 			pr_info("Max. dynamic memory size: %llu MB\n",
1083 				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1084 		}
1085 
1086 		break;
1087 	default:
1088 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1089 	}
1090 }
1091 
1092 static unsigned long compute_balloon_floor(void)
1093 {
1094 	unsigned long min_pages;
1095 	unsigned long nr_pages = totalram_pages();
1096 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1097 	/* Simple continuous piecewiese linear function:
1098 	 *  max MiB -> min MiB  gradient
1099 	 *       0         0
1100 	 *      16        16
1101 	 *      32        24
1102 	 *     128        72    (1/2)
1103 	 *     512       168    (1/4)
1104 	 *    2048       360    (1/8)
1105 	 *    8192       744    (1/16)
1106 	 *   32768      1512	(1/32)
1107 	 */
1108 	if (nr_pages < MB2PAGES(128))
1109 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1110 	else if (nr_pages < MB2PAGES(512))
1111 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1112 	else if (nr_pages < MB2PAGES(2048))
1113 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1114 	else if (nr_pages < MB2PAGES(8192))
1115 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1116 	else
1117 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1118 #undef MB2PAGES
1119 	return min_pages;
1120 }
1121 
1122 /*
1123  * Post our status as it relates memory pressure to the
1124  * host. Host expects the guests to post this status
1125  * periodically at 1 second intervals.
1126  *
1127  * The metrics specified in this protocol are very Windows
1128  * specific and so we cook up numbers here to convey our memory
1129  * pressure.
1130  */
1131 
1132 static void post_status(struct hv_dynmem_device *dm)
1133 {
1134 	struct dm_status status;
1135 	unsigned long now = jiffies;
1136 	unsigned long last_post = last_post_time;
1137 
1138 	if (pressure_report_delay > 0) {
1139 		--pressure_report_delay;
1140 		return;
1141 	}
1142 
1143 	if (!time_after(now, (last_post_time + HZ)))
1144 		return;
1145 
1146 	memset(&status, 0, sizeof(struct dm_status));
1147 	status.hdr.type = DM_STATUS_REPORT;
1148 	status.hdr.size = sizeof(struct dm_status);
1149 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1150 
1151 	/*
1152 	 * The host expects the guest to report free and committed memory.
1153 	 * Furthermore, the host expects the pressure information to include
1154 	 * the ballooned out pages. For a given amount of memory that we are
1155 	 * managing we need to compute a floor below which we should not
1156 	 * balloon. Compute this and add it to the pressure report.
1157 	 * We also need to report all offline pages (num_pages_added -
1158 	 * num_pages_onlined) as committed to the host, otherwise it can try
1159 	 * asking us to balloon them out.
1160 	 */
1161 	status.num_avail = si_mem_available();
1162 	status.num_committed = vm_memory_committed() +
1163 		dm->num_pages_ballooned +
1164 		(dm->num_pages_added > dm->num_pages_onlined ?
1165 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1166 		compute_balloon_floor();
1167 
1168 	trace_balloon_status(status.num_avail, status.num_committed,
1169 			     vm_memory_committed(), dm->num_pages_ballooned,
1170 			     dm->num_pages_added, dm->num_pages_onlined);
1171 	/*
1172 	 * If our transaction ID is no longer current, just don't
1173 	 * send the status. This can happen if we were interrupted
1174 	 * after we picked our transaction ID.
1175 	 */
1176 	if (status.hdr.trans_id != atomic_read(&trans_id))
1177 		return;
1178 
1179 	/*
1180 	 * If the last post time that we sampled has changed,
1181 	 * we have raced, don't post the status.
1182 	 */
1183 	if (last_post != last_post_time)
1184 		return;
1185 
1186 	last_post_time = jiffies;
1187 	vmbus_sendpacket(dm->dev->channel, &status,
1188 				sizeof(struct dm_status),
1189 				(unsigned long)NULL,
1190 				VM_PKT_DATA_INBAND, 0);
1191 
1192 }
1193 
1194 static void free_balloon_pages(struct hv_dynmem_device *dm,
1195 			 union dm_mem_page_range *range_array)
1196 {
1197 	int num_pages = range_array->finfo.page_cnt;
1198 	__u64 start_frame = range_array->finfo.start_page;
1199 	struct page *pg;
1200 	int i;
1201 
1202 	for (i = 0; i < num_pages; i++) {
1203 		pg = pfn_to_page(i + start_frame);
1204 		__ClearPageOffline(pg);
1205 		__free_page(pg);
1206 		dm->num_pages_ballooned--;
1207 	}
1208 }
1209 
1210 
1211 
1212 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1213 					unsigned int num_pages,
1214 					struct dm_balloon_response *bl_resp,
1215 					int alloc_unit)
1216 {
1217 	unsigned int i, j;
1218 	struct page *pg;
1219 
1220 	if (num_pages < alloc_unit)
1221 		return 0;
1222 
1223 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1224 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1225 			HV_HYP_PAGE_SIZE)
1226 			return i * alloc_unit;
1227 
1228 		/*
1229 		 * We execute this code in a thread context. Furthermore,
1230 		 * we don't want the kernel to try too hard.
1231 		 */
1232 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1233 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1234 				get_order(alloc_unit << PAGE_SHIFT));
1235 
1236 		if (!pg)
1237 			return i * alloc_unit;
1238 
1239 		dm->num_pages_ballooned += alloc_unit;
1240 
1241 		/*
1242 		 * If we allocatted 2M pages; split them so we
1243 		 * can free them in any order we get.
1244 		 */
1245 
1246 		if (alloc_unit != 1)
1247 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1248 
1249 		/* mark all pages offline */
1250 		for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1251 			__SetPageOffline(pg + j);
1252 
1253 		bl_resp->range_count++;
1254 		bl_resp->range_array[i].finfo.start_page =
1255 			page_to_pfn(pg);
1256 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1257 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1258 
1259 	}
1260 
1261 	return num_pages;
1262 }
1263 
1264 static void balloon_up(struct work_struct *dummy)
1265 {
1266 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1267 	unsigned int num_ballooned = 0;
1268 	struct dm_balloon_response *bl_resp;
1269 	int alloc_unit;
1270 	int ret;
1271 	bool done = false;
1272 	int i;
1273 	long avail_pages;
1274 	unsigned long floor;
1275 
1276 	/* The host balloons pages in 2M granularity. */
1277 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1278 
1279 	/*
1280 	 * We will attempt 2M allocations. However, if we fail to
1281 	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1282 	 */
1283 	alloc_unit = PAGES_IN_2M;
1284 
1285 	avail_pages = si_mem_available();
1286 	floor = compute_balloon_floor();
1287 
1288 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1289 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1290 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1291 			avail_pages < num_pages ? "Not enough memory." :
1292 			"Balloon floor reached.");
1293 
1294 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1295 		num_pages -= num_pages % PAGES_IN_2M;
1296 	}
1297 
1298 	while (!done) {
1299 		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1300 		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1301 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1302 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1303 		bl_resp->more_pages = 1;
1304 
1305 		num_pages -= num_ballooned;
1306 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1307 						    bl_resp, alloc_unit);
1308 
1309 		if (alloc_unit != 1 && num_ballooned == 0) {
1310 			alloc_unit = 1;
1311 			continue;
1312 		}
1313 
1314 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1315 			pr_debug("Ballooned %u out of %u requested pages.\n",
1316 				num_pages, dm_device.balloon_wrk.num_pages);
1317 
1318 			bl_resp->more_pages = 0;
1319 			done = true;
1320 			dm_device.state = DM_INITIALIZED;
1321 		}
1322 
1323 		/*
1324 		 * We are pushing a lot of data through the channel;
1325 		 * deal with transient failures caused because of the
1326 		 * lack of space in the ring buffer.
1327 		 */
1328 
1329 		do {
1330 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1331 			ret = vmbus_sendpacket(dm_device.dev->channel,
1332 						bl_resp,
1333 						bl_resp->hdr.size,
1334 						(unsigned long)NULL,
1335 						VM_PKT_DATA_INBAND, 0);
1336 
1337 			if (ret == -EAGAIN)
1338 				msleep(20);
1339 			post_status(&dm_device);
1340 		} while (ret == -EAGAIN);
1341 
1342 		if (ret) {
1343 			/*
1344 			 * Free up the memory we allocatted.
1345 			 */
1346 			pr_err("Balloon response failed\n");
1347 
1348 			for (i = 0; i < bl_resp->range_count; i++)
1349 				free_balloon_pages(&dm_device,
1350 						 &bl_resp->range_array[i]);
1351 
1352 			done = true;
1353 		}
1354 	}
1355 
1356 }
1357 
1358 static void balloon_down(struct hv_dynmem_device *dm,
1359 			struct dm_unballoon_request *req)
1360 {
1361 	union dm_mem_page_range *range_array = req->range_array;
1362 	int range_count = req->range_count;
1363 	struct dm_unballoon_response resp;
1364 	int i;
1365 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1366 
1367 	for (i = 0; i < range_count; i++) {
1368 		free_balloon_pages(dm, &range_array[i]);
1369 		complete(&dm_device.config_event);
1370 	}
1371 
1372 	pr_debug("Freed %u ballooned pages.\n",
1373 		prev_pages_ballooned - dm->num_pages_ballooned);
1374 
1375 	if (req->more_pages == 1)
1376 		return;
1377 
1378 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1379 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1380 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1381 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1382 
1383 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1384 				sizeof(struct dm_unballoon_response),
1385 				(unsigned long)NULL,
1386 				VM_PKT_DATA_INBAND, 0);
1387 
1388 	dm->state = DM_INITIALIZED;
1389 }
1390 
1391 static void balloon_onchannelcallback(void *context);
1392 
1393 static int dm_thread_func(void *dm_dev)
1394 {
1395 	struct hv_dynmem_device *dm = dm_dev;
1396 
1397 	while (!kthread_should_stop()) {
1398 		wait_for_completion_interruptible_timeout(
1399 						&dm_device.config_event, 1*HZ);
1400 		/*
1401 		 * The host expects us to post information on the memory
1402 		 * pressure every second.
1403 		 */
1404 		reinit_completion(&dm_device.config_event);
1405 		post_status(dm);
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 
1412 static void version_resp(struct hv_dynmem_device *dm,
1413 			struct dm_version_response *vresp)
1414 {
1415 	struct dm_version_request version_req;
1416 	int ret;
1417 
1418 	if (vresp->is_accepted) {
1419 		/*
1420 		 * We are done; wakeup the
1421 		 * context waiting for version
1422 		 * negotiation.
1423 		 */
1424 		complete(&dm->host_event);
1425 		return;
1426 	}
1427 	/*
1428 	 * If there are more versions to try, continue
1429 	 * with negotiations; if not
1430 	 * shutdown the service since we are not able
1431 	 * to negotiate a suitable version number
1432 	 * with the host.
1433 	 */
1434 	if (dm->next_version == 0)
1435 		goto version_error;
1436 
1437 	memset(&version_req, 0, sizeof(struct dm_version_request));
1438 	version_req.hdr.type = DM_VERSION_REQUEST;
1439 	version_req.hdr.size = sizeof(struct dm_version_request);
1440 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1441 	version_req.version.version = dm->next_version;
1442 	dm->version = version_req.version.version;
1443 
1444 	/*
1445 	 * Set the next version to try in case current version fails.
1446 	 * Win7 protocol ought to be the last one to try.
1447 	 */
1448 	switch (version_req.version.version) {
1449 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1450 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1451 		version_req.is_last_attempt = 0;
1452 		break;
1453 	default:
1454 		dm->next_version = 0;
1455 		version_req.is_last_attempt = 1;
1456 	}
1457 
1458 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1459 				sizeof(struct dm_version_request),
1460 				(unsigned long)NULL,
1461 				VM_PKT_DATA_INBAND, 0);
1462 
1463 	if (ret)
1464 		goto version_error;
1465 
1466 	return;
1467 
1468 version_error:
1469 	dm->state = DM_INIT_ERROR;
1470 	complete(&dm->host_event);
1471 }
1472 
1473 static void cap_resp(struct hv_dynmem_device *dm,
1474 			struct dm_capabilities_resp_msg *cap_resp)
1475 {
1476 	if (!cap_resp->is_accepted) {
1477 		pr_err("Capabilities not accepted by host\n");
1478 		dm->state = DM_INIT_ERROR;
1479 	}
1480 	complete(&dm->host_event);
1481 }
1482 
1483 static void balloon_onchannelcallback(void *context)
1484 {
1485 	struct hv_device *dev = context;
1486 	u32 recvlen;
1487 	u64 requestid;
1488 	struct dm_message *dm_msg;
1489 	struct dm_header *dm_hdr;
1490 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1491 	struct dm_balloon *bal_msg;
1492 	struct dm_hot_add *ha_msg;
1493 	union dm_mem_page_range *ha_pg_range;
1494 	union dm_mem_page_range *ha_region;
1495 
1496 	memset(recv_buffer, 0, sizeof(recv_buffer));
1497 	vmbus_recvpacket(dev->channel, recv_buffer,
1498 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1499 
1500 	if (recvlen > 0) {
1501 		dm_msg = (struct dm_message *)recv_buffer;
1502 		dm_hdr = &dm_msg->hdr;
1503 
1504 		switch (dm_hdr->type) {
1505 		case DM_VERSION_RESPONSE:
1506 			version_resp(dm,
1507 				 (struct dm_version_response *)dm_msg);
1508 			break;
1509 
1510 		case DM_CAPABILITIES_RESPONSE:
1511 			cap_resp(dm,
1512 				 (struct dm_capabilities_resp_msg *)dm_msg);
1513 			break;
1514 
1515 		case DM_BALLOON_REQUEST:
1516 			if (allow_hibernation) {
1517 				pr_info("Ignore balloon-up request!\n");
1518 				break;
1519 			}
1520 
1521 			if (dm->state == DM_BALLOON_UP)
1522 				pr_warn("Currently ballooning\n");
1523 			bal_msg = (struct dm_balloon *)recv_buffer;
1524 			dm->state = DM_BALLOON_UP;
1525 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1526 			schedule_work(&dm_device.balloon_wrk.wrk);
1527 			break;
1528 
1529 		case DM_UNBALLOON_REQUEST:
1530 			if (allow_hibernation) {
1531 				pr_info("Ignore balloon-down request!\n");
1532 				break;
1533 			}
1534 
1535 			dm->state = DM_BALLOON_DOWN;
1536 			balloon_down(dm,
1537 				 (struct dm_unballoon_request *)recv_buffer);
1538 			break;
1539 
1540 		case DM_MEM_HOT_ADD_REQUEST:
1541 			if (dm->state == DM_HOT_ADD)
1542 				pr_warn("Currently hot-adding\n");
1543 			dm->state = DM_HOT_ADD;
1544 			ha_msg = (struct dm_hot_add *)recv_buffer;
1545 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1546 				/*
1547 				 * This is a normal hot-add request specifying
1548 				 * hot-add memory.
1549 				 */
1550 				dm->host_specified_ha_region = false;
1551 				ha_pg_range = &ha_msg->range;
1552 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1553 				dm->ha_wrk.ha_region_range.page_range = 0;
1554 			} else {
1555 				/*
1556 				 * Host is specifying that we first hot-add
1557 				 * a region and then partially populate this
1558 				 * region.
1559 				 */
1560 				dm->host_specified_ha_region = true;
1561 				ha_pg_range = &ha_msg->range;
1562 				ha_region = &ha_pg_range[1];
1563 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1564 				dm->ha_wrk.ha_region_range = *ha_region;
1565 			}
1566 			schedule_work(&dm_device.ha_wrk.wrk);
1567 			break;
1568 
1569 		case DM_INFO_MESSAGE:
1570 			process_info(dm, (struct dm_info_msg *)dm_msg);
1571 			break;
1572 
1573 		default:
1574 			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1575 
1576 		}
1577 	}
1578 
1579 }
1580 
1581 static int balloon_connect_vsp(struct hv_device *dev)
1582 {
1583 	struct dm_version_request version_req;
1584 	struct dm_capabilities cap_msg;
1585 	unsigned long t;
1586 	int ret;
1587 
1588 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1589 			 balloon_onchannelcallback, dev);
1590 	if (ret)
1591 		return ret;
1592 
1593 	/*
1594 	 * Initiate the hand shake with the host and negotiate
1595 	 * a version that the host can support. We start with the
1596 	 * highest version number and go down if the host cannot
1597 	 * support it.
1598 	 */
1599 	memset(&version_req, 0, sizeof(struct dm_version_request));
1600 	version_req.hdr.type = DM_VERSION_REQUEST;
1601 	version_req.hdr.size = sizeof(struct dm_version_request);
1602 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1603 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1604 	version_req.is_last_attempt = 0;
1605 	dm_device.version = version_req.version.version;
1606 
1607 	ret = vmbus_sendpacket(dev->channel, &version_req,
1608 			       sizeof(struct dm_version_request),
1609 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1610 	if (ret)
1611 		goto out;
1612 
1613 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1614 	if (t == 0) {
1615 		ret = -ETIMEDOUT;
1616 		goto out;
1617 	}
1618 
1619 	/*
1620 	 * If we could not negotiate a compatible version with the host
1621 	 * fail the probe function.
1622 	 */
1623 	if (dm_device.state == DM_INIT_ERROR) {
1624 		ret = -EPROTO;
1625 		goto out;
1626 	}
1627 
1628 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1629 		DYNMEM_MAJOR_VERSION(dm_device.version),
1630 		DYNMEM_MINOR_VERSION(dm_device.version));
1631 
1632 	/*
1633 	 * Now submit our capabilities to the host.
1634 	 */
1635 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1636 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1637 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1638 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1639 
1640 	/*
1641 	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1642 	 * currently still requires the bits to be set, so we have to add code
1643 	 * to fail the host's hot-add and balloon up/down requests, if any.
1644 	 */
1645 	cap_msg.caps.cap_bits.balloon = 1;
1646 	cap_msg.caps.cap_bits.hot_add = 1;
1647 
1648 	/*
1649 	 * Specify our alignment requirements as it relates
1650 	 * memory hot-add. Specify 128MB alignment.
1651 	 */
1652 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1653 
1654 	/*
1655 	 * Currently the host does not use these
1656 	 * values and we set them to what is done in the
1657 	 * Windows driver.
1658 	 */
1659 	cap_msg.min_page_cnt = 0;
1660 	cap_msg.max_page_number = -1;
1661 
1662 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1663 			       sizeof(struct dm_capabilities),
1664 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1665 	if (ret)
1666 		goto out;
1667 
1668 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1669 	if (t == 0) {
1670 		ret = -ETIMEDOUT;
1671 		goto out;
1672 	}
1673 
1674 	/*
1675 	 * If the host does not like our capabilities,
1676 	 * fail the probe function.
1677 	 */
1678 	if (dm_device.state == DM_INIT_ERROR) {
1679 		ret = -EPROTO;
1680 		goto out;
1681 	}
1682 
1683 	return 0;
1684 out:
1685 	vmbus_close(dev->channel);
1686 	return ret;
1687 }
1688 
1689 static int balloon_probe(struct hv_device *dev,
1690 			 const struct hv_vmbus_device_id *dev_id)
1691 {
1692 	int ret;
1693 
1694 	allow_hibernation = hv_is_hibernation_supported();
1695 	if (allow_hibernation)
1696 		hot_add = false;
1697 
1698 #ifdef CONFIG_MEMORY_HOTPLUG
1699 	do_hot_add = hot_add;
1700 #else
1701 	do_hot_add = false;
1702 #endif
1703 	dm_device.dev = dev;
1704 	dm_device.state = DM_INITIALIZING;
1705 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1706 	init_completion(&dm_device.host_event);
1707 	init_completion(&dm_device.config_event);
1708 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1709 	spin_lock_init(&dm_device.ha_lock);
1710 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1711 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1712 	dm_device.host_specified_ha_region = false;
1713 
1714 #ifdef CONFIG_MEMORY_HOTPLUG
1715 	set_online_page_callback(&hv_online_page);
1716 	register_memory_notifier(&hv_memory_nb);
1717 #endif
1718 
1719 	hv_set_drvdata(dev, &dm_device);
1720 
1721 	ret = balloon_connect_vsp(dev);
1722 	if (ret != 0)
1723 		return ret;
1724 
1725 	dm_device.state = DM_INITIALIZED;
1726 
1727 	dm_device.thread =
1728 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1729 	if (IS_ERR(dm_device.thread)) {
1730 		ret = PTR_ERR(dm_device.thread);
1731 		goto probe_error;
1732 	}
1733 
1734 	return 0;
1735 
1736 probe_error:
1737 	dm_device.state = DM_INIT_ERROR;
1738 	dm_device.thread  = NULL;
1739 	vmbus_close(dev->channel);
1740 #ifdef CONFIG_MEMORY_HOTPLUG
1741 	unregister_memory_notifier(&hv_memory_nb);
1742 	restore_online_page_callback(&hv_online_page);
1743 #endif
1744 	return ret;
1745 }
1746 
1747 static int balloon_remove(struct hv_device *dev)
1748 {
1749 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1750 	struct hv_hotadd_state *has, *tmp;
1751 	struct hv_hotadd_gap *gap, *tmp_gap;
1752 	unsigned long flags;
1753 
1754 	if (dm->num_pages_ballooned != 0)
1755 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1756 
1757 	cancel_work_sync(&dm->balloon_wrk.wrk);
1758 	cancel_work_sync(&dm->ha_wrk.wrk);
1759 
1760 	kthread_stop(dm->thread);
1761 	vmbus_close(dev->channel);
1762 #ifdef CONFIG_MEMORY_HOTPLUG
1763 	unregister_memory_notifier(&hv_memory_nb);
1764 	restore_online_page_callback(&hv_online_page);
1765 #endif
1766 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1767 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1768 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1769 			list_del(&gap->list);
1770 			kfree(gap);
1771 		}
1772 		list_del(&has->list);
1773 		kfree(has);
1774 	}
1775 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1776 
1777 	return 0;
1778 }
1779 
1780 static int balloon_suspend(struct hv_device *hv_dev)
1781 {
1782 	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1783 
1784 	tasklet_disable(&hv_dev->channel->callback_event);
1785 
1786 	cancel_work_sync(&dm->balloon_wrk.wrk);
1787 	cancel_work_sync(&dm->ha_wrk.wrk);
1788 
1789 	if (dm->thread) {
1790 		kthread_stop(dm->thread);
1791 		dm->thread = NULL;
1792 		vmbus_close(hv_dev->channel);
1793 	}
1794 
1795 	tasklet_enable(&hv_dev->channel->callback_event);
1796 
1797 	return 0;
1798 
1799 }
1800 
1801 static int balloon_resume(struct hv_device *dev)
1802 {
1803 	int ret;
1804 
1805 	dm_device.state = DM_INITIALIZING;
1806 
1807 	ret = balloon_connect_vsp(dev);
1808 
1809 	if (ret != 0)
1810 		goto out;
1811 
1812 	dm_device.thread =
1813 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1814 	if (IS_ERR(dm_device.thread)) {
1815 		ret = PTR_ERR(dm_device.thread);
1816 		dm_device.thread = NULL;
1817 		goto close_channel;
1818 	}
1819 
1820 	dm_device.state = DM_INITIALIZED;
1821 	return 0;
1822 close_channel:
1823 	vmbus_close(dev->channel);
1824 out:
1825 	dm_device.state = DM_INIT_ERROR;
1826 #ifdef CONFIG_MEMORY_HOTPLUG
1827 	unregister_memory_notifier(&hv_memory_nb);
1828 	restore_online_page_callback(&hv_online_page);
1829 #endif
1830 	return ret;
1831 }
1832 
1833 static const struct hv_vmbus_device_id id_table[] = {
1834 	/* Dynamic Memory Class ID */
1835 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1836 	{ HV_DM_GUID, },
1837 	{ },
1838 };
1839 
1840 MODULE_DEVICE_TABLE(vmbus, id_table);
1841 
1842 static  struct hv_driver balloon_drv = {
1843 	.name = "hv_balloon",
1844 	.id_table = id_table,
1845 	.probe =  balloon_probe,
1846 	.remove =  balloon_remove,
1847 	.suspend = balloon_suspend,
1848 	.resume = balloon_resume,
1849 	.driver = {
1850 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1851 	},
1852 };
1853 
1854 static int __init init_balloon_drv(void)
1855 {
1856 
1857 	return vmbus_driver_register(&balloon_drv);
1858 }
1859 
1860 module_init(init_balloon_drv);
1861 
1862 MODULE_DESCRIPTION("Hyper-V Balloon");
1863 MODULE_LICENSE("GPL");
1864