xref: /linux/drivers/hv/ring_buffer.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 
21 #include "hyperv_vmbus.h"
22 
23 #define VMBUS_PKT_TRAILER	8
24 
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *	1. The host guarantees that while it is draining the
30  *	   ring buffer, it will set the interrupt_mask to
31  *	   indicate it does not need to be interrupted when
32  *	   new data is placed.
33  *
34  *	2. The host guarantees that it will completely drain
35  *	   the ring buffer before exiting the read loop. Further,
36  *	   once the ring buffer is empty, it will clear the
37  *	   interrupt_mask and re-check to see if new data has
38  *	   arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49 
50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52 	struct hv_ring_buffer_info *rbi = &channel->outbound;
53 
54 	virt_mb();
55 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56 		return;
57 
58 	/* check interrupt_mask before read_index */
59 	virt_rmb();
60 	/*
61 	 * This is the only case we need to signal when the
62 	 * ring transitions from being empty to non-empty.
63 	 */
64 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65 		++channel->intr_out_empty;
66 		vmbus_setevent(channel);
67 	}
68 }
69 
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74 	u32 next = ring_info->ring_buffer->write_index;
75 
76 	return next;
77 }
78 
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82 		     u32 next_write_location)
83 {
84 	ring_info->ring_buffer->write_index = next_write_location;
85 }
86 
87 /* Set the next read location for the specified ring buffer. */
88 static inline void
89 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
90 		    u32 next_read_location)
91 {
92 	ring_info->ring_buffer->read_index = next_read_location;
93 	ring_info->priv_read_index = next_read_location;
94 }
95 
96 /* Get the size of the ring buffer. */
97 static inline u32
98 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
99 {
100 	return ring_info->ring_datasize;
101 }
102 
103 /* Get the read and write indices as u64 of the specified ring buffer. */
104 static inline u64
105 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106 {
107 	return (u64)ring_info->ring_buffer->write_index << 32;
108 }
109 
110 /*
111  * Helper routine to copy from source to ring buffer.
112  * Assume there is enough room. Handles wrap-around in dest case only!!
113  */
114 static u32 hv_copyto_ringbuffer(
115 	struct hv_ring_buffer_info	*ring_info,
116 	u32				start_write_offset,
117 	const void			*src,
118 	u32				srclen)
119 {
120 	void *ring_buffer = hv_get_ring_buffer(ring_info);
121 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
122 
123 	memcpy(ring_buffer + start_write_offset, src, srclen);
124 
125 	start_write_offset += srclen;
126 	if (start_write_offset >= ring_buffer_size)
127 		start_write_offset -= ring_buffer_size;
128 
129 	return start_write_offset;
130 }
131 
132 /*
133  *
134  * hv_get_ringbuffer_availbytes()
135  *
136  * Get number of bytes available to read and to write to
137  * for the specified ring buffer
138  */
139 static void
140 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141 			     u32 *read, u32 *write)
142 {
143 	u32 read_loc, write_loc, dsize;
144 
145 	/* Capture the read/write indices before they changed */
146 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148 	dsize = rbi->ring_datasize;
149 
150 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151 		read_loc - write_loc;
152 	*read = dsize - *write;
153 }
154 
155 /* Get various debug metrics for the specified ring buffer. */
156 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157 				struct hv_ring_buffer_debug_info *debug_info)
158 {
159 	u32 bytes_avail_towrite;
160 	u32 bytes_avail_toread;
161 
162 	mutex_lock(&ring_info->ring_buffer_mutex);
163 
164 	if (!ring_info->ring_buffer) {
165 		mutex_unlock(&ring_info->ring_buffer_mutex);
166 		return -EINVAL;
167 	}
168 
169 	hv_get_ringbuffer_availbytes(ring_info,
170 				     &bytes_avail_toread,
171 				     &bytes_avail_towrite);
172 	debug_info->bytes_avail_toread = bytes_avail_toread;
173 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
174 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
175 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
176 	debug_info->current_interrupt_mask
177 		= ring_info->ring_buffer->interrupt_mask;
178 	mutex_unlock(&ring_info->ring_buffer_mutex);
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183 
184 /* Initialize a channel's ring buffer info mutex locks */
185 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
186 {
187 	mutex_init(&channel->inbound.ring_buffer_mutex);
188 	mutex_init(&channel->outbound.ring_buffer_mutex);
189 }
190 
191 /* Initialize the ring buffer. */
192 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193 		       struct page *pages, u32 page_cnt)
194 {
195 	int i;
196 	struct page **pages_wraparound;
197 
198 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199 
200 	/*
201 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
202 	 * the rest.
203 	 */
204 	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205 				   GFP_KERNEL);
206 	if (!pages_wraparound)
207 		return -ENOMEM;
208 
209 	pages_wraparound[0] = pages;
210 	for (i = 0; i < 2 * (page_cnt - 1); i++)
211 		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212 
213 	ring_info->ring_buffer = (struct hv_ring_buffer *)
214 		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215 
216 	kfree(pages_wraparound);
217 
218 
219 	if (!ring_info->ring_buffer)
220 		return -ENOMEM;
221 
222 	ring_info->ring_buffer->read_index =
223 		ring_info->ring_buffer->write_index = 0;
224 
225 	/* Set the feature bit for enabling flow control. */
226 	ring_info->ring_buffer->feature_bits.value = 1;
227 
228 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229 	ring_info->ring_size_div10_reciprocal =
230 		reciprocal_value(ring_info->ring_size / 10);
231 	ring_info->ring_datasize = ring_info->ring_size -
232 		sizeof(struct hv_ring_buffer);
233 	ring_info->priv_read_index = 0;
234 
235 	spin_lock_init(&ring_info->ring_lock);
236 
237 	return 0;
238 }
239 
240 /* Cleanup the ring buffer. */
241 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242 {
243 	mutex_lock(&ring_info->ring_buffer_mutex);
244 	vunmap(ring_info->ring_buffer);
245 	ring_info->ring_buffer = NULL;
246 	mutex_unlock(&ring_info->ring_buffer_mutex);
247 }
248 
249 /* Write to the ring buffer. */
250 int hv_ringbuffer_write(struct vmbus_channel *channel,
251 			const struct kvec *kv_list, u32 kv_count)
252 {
253 	int i;
254 	u32 bytes_avail_towrite;
255 	u32 totalbytes_towrite = sizeof(u64);
256 	u32 next_write_location;
257 	u32 old_write;
258 	u64 prev_indices;
259 	unsigned long flags;
260 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
261 
262 	if (channel->rescind)
263 		return -ENODEV;
264 
265 	for (i = 0; i < kv_count; i++)
266 		totalbytes_towrite += kv_list[i].iov_len;
267 
268 	spin_lock_irqsave(&outring_info->ring_lock, flags);
269 
270 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
271 
272 	/*
273 	 * If there is only room for the packet, assume it is full.
274 	 * Otherwise, the next time around, we think the ring buffer
275 	 * is empty since the read index == write index.
276 	 */
277 	if (bytes_avail_towrite <= totalbytes_towrite) {
278 		++channel->out_full_total;
279 
280 		if (!channel->out_full_flag) {
281 			++channel->out_full_first;
282 			channel->out_full_flag = true;
283 		}
284 
285 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
286 		return -EAGAIN;
287 	}
288 
289 	channel->out_full_flag = false;
290 
291 	/* Write to the ring buffer */
292 	next_write_location = hv_get_next_write_location(outring_info);
293 
294 	old_write = next_write_location;
295 
296 	for (i = 0; i < kv_count; i++) {
297 		next_write_location = hv_copyto_ringbuffer(outring_info,
298 						     next_write_location,
299 						     kv_list[i].iov_base,
300 						     kv_list[i].iov_len);
301 	}
302 
303 	/* Set previous packet start */
304 	prev_indices = hv_get_ring_bufferindices(outring_info);
305 
306 	next_write_location = hv_copyto_ringbuffer(outring_info,
307 					     next_write_location,
308 					     &prev_indices,
309 					     sizeof(u64));
310 
311 	/* Issue a full memory barrier before updating the write index */
312 	virt_mb();
313 
314 	/* Now, update the write location */
315 	hv_set_next_write_location(outring_info, next_write_location);
316 
317 
318 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
319 
320 	hv_signal_on_write(old_write, channel);
321 
322 	if (channel->rescind)
323 		return -ENODEV;
324 
325 	return 0;
326 }
327 
328 int hv_ringbuffer_read(struct vmbus_channel *channel,
329 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
330 		       u64 *requestid, bool raw)
331 {
332 	struct vmpacket_descriptor *desc;
333 	u32 packetlen, offset;
334 
335 	if (unlikely(buflen == 0))
336 		return -EINVAL;
337 
338 	*buffer_actual_len = 0;
339 	*requestid = 0;
340 
341 	/* Make sure there is something to read */
342 	desc = hv_pkt_iter_first(channel);
343 	if (desc == NULL) {
344 		/*
345 		 * No error is set when there is even no header, drivers are
346 		 * supposed to analyze buffer_actual_len.
347 		 */
348 		return 0;
349 	}
350 
351 	offset = raw ? 0 : (desc->offset8 << 3);
352 	packetlen = (desc->len8 << 3) - offset;
353 	*buffer_actual_len = packetlen;
354 	*requestid = desc->trans_id;
355 
356 	if (unlikely(packetlen > buflen))
357 		return -ENOBUFS;
358 
359 	/* since ring is double mapped, only one copy is necessary */
360 	memcpy(buffer, (const char *)desc + offset, packetlen);
361 
362 	/* Advance ring index to next packet descriptor */
363 	__hv_pkt_iter_next(channel, desc);
364 
365 	/* Notify host of update */
366 	hv_pkt_iter_close(channel);
367 
368 	return 0;
369 }
370 
371 /*
372  * Determine number of bytes available in ring buffer after
373  * the current iterator (priv_read_index) location.
374  *
375  * This is similar to hv_get_bytes_to_read but with private
376  * read index instead.
377  */
378 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
379 {
380 	u32 priv_read_loc = rbi->priv_read_index;
381 	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
382 
383 	if (write_loc >= priv_read_loc)
384 		return write_loc - priv_read_loc;
385 	else
386 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
387 }
388 
389 /*
390  * Get first vmbus packet from ring buffer after read_index
391  *
392  * If ring buffer is empty, returns NULL and no other action needed.
393  */
394 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
395 {
396 	struct hv_ring_buffer_info *rbi = &channel->inbound;
397 	struct vmpacket_descriptor *desc;
398 
399 	hv_debug_delay_test(channel, MESSAGE_DELAY);
400 	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
401 		return NULL;
402 
403 	desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
404 	if (desc)
405 		prefetch((char *)desc + (desc->len8 << 3));
406 
407 	return desc;
408 }
409 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
410 
411 /*
412  * Get next vmbus packet from ring buffer.
413  *
414  * Advances the current location (priv_read_index) and checks for more
415  * data. If the end of the ring buffer is reached, then return NULL.
416  */
417 struct vmpacket_descriptor *
418 __hv_pkt_iter_next(struct vmbus_channel *channel,
419 		   const struct vmpacket_descriptor *desc)
420 {
421 	struct hv_ring_buffer_info *rbi = &channel->inbound;
422 	u32 packetlen = desc->len8 << 3;
423 	u32 dsize = rbi->ring_datasize;
424 
425 	hv_debug_delay_test(channel, MESSAGE_DELAY);
426 	/* bump offset to next potential packet */
427 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
428 	if (rbi->priv_read_index >= dsize)
429 		rbi->priv_read_index -= dsize;
430 
431 	/* more data? */
432 	return hv_pkt_iter_first(channel);
433 }
434 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
435 
436 /* How many bytes were read in this iterator cycle */
437 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
438 					u32 start_read_index)
439 {
440 	if (rbi->priv_read_index >= start_read_index)
441 		return rbi->priv_read_index - start_read_index;
442 	else
443 		return rbi->ring_datasize - start_read_index +
444 			rbi->priv_read_index;
445 }
446 
447 /*
448  * Update host ring buffer after iterating over packets. If the host has
449  * stopped queuing new entries because it found the ring buffer full, and
450  * sufficient space is being freed up, signal the host. But be careful to
451  * only signal the host when necessary, both for performance reasons and
452  * because Hyper-V protects itself by throttling guests that signal
453  * inappropriately.
454  *
455  * Determining when to signal is tricky. There are three key data inputs
456  * that must be handled in this order to avoid race conditions:
457  *
458  * 1. Update the read_index
459  * 2. Read the pending_send_sz
460  * 3. Read the current write_index
461  *
462  * The interrupt_mask is not used to determine when to signal. The
463  * interrupt_mask is used only on the guest->host ring buffer when
464  * sending requests to the host. The host does not use it on the host->
465  * guest ring buffer to indicate whether it should be signaled.
466  */
467 void hv_pkt_iter_close(struct vmbus_channel *channel)
468 {
469 	struct hv_ring_buffer_info *rbi = &channel->inbound;
470 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
471 
472 	/*
473 	 * Make sure all reads are done before we update the read index since
474 	 * the writer may start writing to the read area once the read index
475 	 * is updated.
476 	 */
477 	virt_rmb();
478 	start_read_index = rbi->ring_buffer->read_index;
479 	rbi->ring_buffer->read_index = rbi->priv_read_index;
480 
481 	/*
482 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
483 	 * implement pending_send_sz and simply poll if the host->guest
484 	 * ring buffer is full.  No signaling is needed or expected.
485 	 */
486 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
487 		return;
488 
489 	/*
490 	 * Issue a full memory barrier before making the signaling decision.
491 	 * If reading pending_send_sz were to be reordered and happen
492 	 * before we commit the new read_index, a race could occur.  If the
493 	 * host were to set the pending_send_sz after we have sampled
494 	 * pending_send_sz, and the ring buffer blocks before we commit the
495 	 * read index, we could miss sending the interrupt. Issue a full
496 	 * memory barrier to address this.
497 	 */
498 	virt_mb();
499 
500 	/*
501 	 * If the pending_send_sz is zero, then the ring buffer is not
502 	 * blocked and there is no need to signal.  This is far by the
503 	 * most common case, so exit quickly for best performance.
504 	 */
505 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
506 	if (!pending_sz)
507 		return;
508 
509 	/*
510 	 * Ensure the read of write_index in hv_get_bytes_to_write()
511 	 * happens after the read of pending_send_sz.
512 	 */
513 	virt_rmb();
514 	curr_write_sz = hv_get_bytes_to_write(rbi);
515 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
516 
517 	/*
518 	 * We want to signal the host only if we're transitioning
519 	 * from a "not enough free space" state to a "enough free
520 	 * space" state.  For example, it's possible that this function
521 	 * could run and free up enough space to signal the host, and then
522 	 * run again and free up additional space before the host has a
523 	 * chance to clear the pending_send_sz.  The 2nd invocation would
524 	 * be a null transition from "enough free space" to "enough free
525 	 * space", which doesn't warrant a signal.
526 	 *
527 	 * Exactly filling the ring buffer is treated as "not enough
528 	 * space". The ring buffer always must have at least one byte
529 	 * empty so the empty and full conditions are distinguishable.
530 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
531 	 * this regard.
532 	 *
533 	 * So first check if we were in the "enough free space" state
534 	 * before we began the iteration. If so, the host was not
535 	 * blocked, and there's no need to signal.
536 	 */
537 	if (curr_write_sz - bytes_read > pending_sz)
538 		return;
539 
540 	/*
541 	 * Similarly, if the new state is "not enough space", then
542 	 * there's no need to signal.
543 	 */
544 	if (curr_write_sz <= pending_sz)
545 		return;
546 
547 	++channel->intr_in_full;
548 	vmbus_setevent(channel);
549 }
550 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
551