xref: /linux/drivers/hwmon/emc1403.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * emc1403.c - SMSC Thermal Driver
4  *
5  * Copyright (C) 2008 Intel Corp
6  *
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/i2c.h>
16 #include <linux/hwmon.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/err.h>
19 #include <linux/sysfs.h>
20 #include <linux/mutex.h>
21 #include <linux/regmap.h>
22 
23 #define THERMAL_PID_REG		0xfd
24 #define THERMAL_SMSC_ID_REG	0xfe
25 #define THERMAL_REVISION_REG	0xff
26 
27 enum emc1403_chip { emc1402, emc1403, emc1404 };
28 
29 struct thermal_data {
30 	struct regmap *regmap;
31 	struct mutex mutex;
32 	const struct attribute_group *groups[4];
33 };
34 
35 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
36 			 char *buf)
37 {
38 	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
39 	struct thermal_data *data = dev_get_drvdata(dev);
40 	unsigned int val;
41 	int retval;
42 
43 	retval = regmap_read(data->regmap, sda->index, &val);
44 	if (retval < 0)
45 		return retval;
46 	return sprintf(buf, "%d000\n", val);
47 }
48 
49 static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
50 			char *buf)
51 {
52 	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
53 	struct thermal_data *data = dev_get_drvdata(dev);
54 	unsigned int val;
55 	int retval;
56 
57 	retval = regmap_read(data->regmap, sda->nr, &val);
58 	if (retval < 0)
59 		return retval;
60 	return sprintf(buf, "%d\n", !!(val & sda->index));
61 }
62 
63 static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
64 			  const char *buf, size_t count)
65 {
66 	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
67 	struct thermal_data *data = dev_get_drvdata(dev);
68 	unsigned long val;
69 	int retval;
70 
71 	if (kstrtoul(buf, 10, &val))
72 		return -EINVAL;
73 	retval = regmap_write(data->regmap, sda->index,
74 			      DIV_ROUND_CLOSEST(val, 1000));
75 	if (retval < 0)
76 		return retval;
77 	return count;
78 }
79 
80 static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
81 			 const char *buf, size_t count)
82 {
83 	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
84 	struct thermal_data *data = dev_get_drvdata(dev);
85 	unsigned long val;
86 	int retval;
87 
88 	if (kstrtoul(buf, 10, &val))
89 		return -EINVAL;
90 
91 	retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
92 				    val ? sda->index : 0);
93 	if (retval < 0)
94 		return retval;
95 	return count;
96 }
97 
98 static ssize_t show_hyst_common(struct device *dev,
99 				struct device_attribute *attr, char *buf,
100 				bool is_min)
101 {
102 	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
103 	struct thermal_data *data = dev_get_drvdata(dev);
104 	struct regmap *regmap = data->regmap;
105 	unsigned int limit;
106 	unsigned int hyst;
107 	int retval;
108 
109 	retval = regmap_read(regmap, sda->index, &limit);
110 	if (retval < 0)
111 		return retval;
112 
113 	retval = regmap_read(regmap, 0x21, &hyst);
114 	if (retval < 0)
115 		return retval;
116 
117 	return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
118 }
119 
120 static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
121 			 char *buf)
122 {
123 	return show_hyst_common(dev, attr, buf, false);
124 }
125 
126 static ssize_t min_hyst_show(struct device *dev,
127 			     struct device_attribute *attr, char *buf)
128 {
129 	return show_hyst_common(dev, attr, buf, true);
130 }
131 
132 static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
133 			  const char *buf, size_t count)
134 {
135 	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
136 	struct thermal_data *data = dev_get_drvdata(dev);
137 	struct regmap *regmap = data->regmap;
138 	unsigned int limit;
139 	int retval;
140 	int hyst;
141 	unsigned long val;
142 
143 	if (kstrtoul(buf, 10, &val))
144 		return -EINVAL;
145 
146 	mutex_lock(&data->mutex);
147 	retval = regmap_read(regmap, sda->index, &limit);
148 	if (retval < 0)
149 		goto fail;
150 
151 	hyst = limit * 1000 - val;
152 	hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
153 	retval = regmap_write(regmap, 0x21, hyst);
154 	if (retval == 0)
155 		retval = count;
156 fail:
157 	mutex_unlock(&data->mutex);
158 	return retval;
159 }
160 
161 /*
162  *	Sensors. We pass the actual i2c register to the methods.
163  */
164 
165 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
166 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
167 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
168 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
169 static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
170 static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
171 static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
172 static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
173 static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
174 static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
175 
176 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
177 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
178 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
179 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
180 static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
181 static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
182 static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
183 static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
184 static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
185 static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
186 static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
187 
188 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
189 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
190 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
191 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
192 static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
193 static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
194 static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
195 static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
196 static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
197 static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
198 static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
199 
200 static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
201 static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
202 static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
203 static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
204 static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
205 static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
206 static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
207 static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
208 static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
209 static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
210 static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
211 
212 static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
213 
214 static struct attribute *emc1402_attrs[] = {
215 	&sensor_dev_attr_temp1_min.dev_attr.attr,
216 	&sensor_dev_attr_temp1_max.dev_attr.attr,
217 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
218 	&sensor_dev_attr_temp1_input.dev_attr.attr,
219 	&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
220 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
221 	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
222 
223 	&sensor_dev_attr_temp2_min.dev_attr.attr,
224 	&sensor_dev_attr_temp2_max.dev_attr.attr,
225 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
226 	&sensor_dev_attr_temp2_input.dev_attr.attr,
227 	&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
228 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
229 	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
230 
231 	&sensor_dev_attr_power_state.dev_attr.attr,
232 	NULL
233 };
234 
235 static const struct attribute_group emc1402_group = {
236 		.attrs = emc1402_attrs,
237 };
238 
239 static struct attribute *emc1403_attrs[] = {
240 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
241 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
242 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
243 
244 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
245 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
246 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
247 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
248 
249 	&sensor_dev_attr_temp3_min.dev_attr.attr,
250 	&sensor_dev_attr_temp3_max.dev_attr.attr,
251 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
252 	&sensor_dev_attr_temp3_input.dev_attr.attr,
253 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
254 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
255 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
256 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
257 	&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
258 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
259 	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
260 	NULL
261 };
262 
263 static const struct attribute_group emc1403_group = {
264 	.attrs = emc1403_attrs,
265 };
266 
267 static struct attribute *emc1404_attrs[] = {
268 	&sensor_dev_attr_temp4_min.dev_attr.attr,
269 	&sensor_dev_attr_temp4_max.dev_attr.attr,
270 	&sensor_dev_attr_temp4_crit.dev_attr.attr,
271 	&sensor_dev_attr_temp4_input.dev_attr.attr,
272 	&sensor_dev_attr_temp4_fault.dev_attr.attr,
273 	&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
274 	&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
275 	&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
276 	&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
277 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
278 	&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
279 	NULL
280 };
281 
282 static const struct attribute_group emc1404_group = {
283 	.attrs = emc1404_attrs,
284 };
285 
286 /*
287  * EMC14x2 uses a different register and different bits to report alarm and
288  * fault status. For simplicity, provide a separate attribute group for this
289  * chip series.
290  * Since we can not re-use the same attribute names, create a separate attribute
291  * array.
292  */
293 static struct sensor_device_attribute_2 emc1402_alarms[] = {
294 	SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
295 	SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
296 	SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
297 
298 	SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
299 	SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
300 	SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
301 	SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
302 };
303 
304 static struct attribute *emc1402_alarm_attrs[] = {
305 	&emc1402_alarms[0].dev_attr.attr,
306 	&emc1402_alarms[1].dev_attr.attr,
307 	&emc1402_alarms[2].dev_attr.attr,
308 	&emc1402_alarms[3].dev_attr.attr,
309 	&emc1402_alarms[4].dev_attr.attr,
310 	&emc1402_alarms[5].dev_attr.attr,
311 	&emc1402_alarms[6].dev_attr.attr,
312 	NULL,
313 };
314 
315 static const struct attribute_group emc1402_alarm_group = {
316 	.attrs = emc1402_alarm_attrs,
317 };
318 
319 static int emc1403_detect(struct i2c_client *client,
320 			struct i2c_board_info *info)
321 {
322 	int id;
323 	/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
324 
325 	id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
326 	if (id != 0x5d)
327 		return -ENODEV;
328 
329 	id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
330 	switch (id) {
331 	case 0x20:
332 		strscpy(info->type, "emc1402", I2C_NAME_SIZE);
333 		break;
334 	case 0x21:
335 		strscpy(info->type, "emc1403", I2C_NAME_SIZE);
336 		break;
337 	case 0x22:
338 		strscpy(info->type, "emc1422", I2C_NAME_SIZE);
339 		break;
340 	case 0x23:
341 		strscpy(info->type, "emc1423", I2C_NAME_SIZE);
342 		break;
343 	case 0x25:
344 		strscpy(info->type, "emc1404", I2C_NAME_SIZE);
345 		break;
346 	case 0x27:
347 		strscpy(info->type, "emc1424", I2C_NAME_SIZE);
348 		break;
349 	default:
350 		return -ENODEV;
351 	}
352 
353 	id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
354 	if (id < 0x01 || id > 0x04)
355 		return -ENODEV;
356 
357 	return 0;
358 }
359 
360 static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
361 {
362 	switch (reg) {
363 	case 0x00:	/* internal diode high byte */
364 	case 0x01:	/* external diode 1 high byte */
365 	case 0x02:	/* status */
366 	case 0x10:	/* external diode 1 low byte */
367 	case 0x1b:	/* external diode fault */
368 	case 0x23:	/* external diode 2 high byte */
369 	case 0x24:	/* external diode 2 low byte */
370 	case 0x29:	/* internal diode low byte */
371 	case 0x2a:	/* externl diode 3 high byte */
372 	case 0x2b:	/* external diode 3 low byte */
373 	case 0x35:	/* high limit status */
374 	case 0x36:	/* low limit status */
375 	case 0x37:	/* therm limit status */
376 		return true;
377 	default:
378 		return false;
379 	}
380 }
381 
382 static const struct regmap_config emc1403_regmap_config = {
383 	.reg_bits = 8,
384 	.val_bits = 8,
385 	.cache_type = REGCACHE_RBTREE,
386 	.volatile_reg = emc1403_regmap_is_volatile,
387 };
388 
389 static const struct i2c_device_id emc1403_idtable[];
390 
391 static int emc1403_probe(struct i2c_client *client)
392 {
393 	struct thermal_data *data;
394 	struct device *hwmon_dev;
395 	const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
396 
397 	data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
398 			    GFP_KERNEL);
399 	if (data == NULL)
400 		return -ENOMEM;
401 
402 	data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
403 	if (IS_ERR(data->regmap))
404 		return PTR_ERR(data->regmap);
405 
406 	mutex_init(&data->mutex);
407 
408 	switch (id->driver_data) {
409 	case emc1404:
410 		data->groups[2] = &emc1404_group;
411 		fallthrough;
412 	case emc1403:
413 		data->groups[1] = &emc1403_group;
414 		fallthrough;
415 	case emc1402:
416 		data->groups[0] = &emc1402_group;
417 	}
418 
419 	if (id->driver_data == emc1402)
420 		data->groups[1] = &emc1402_alarm_group;
421 
422 	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
423 							   client->name, data,
424 							   data->groups);
425 	if (IS_ERR(hwmon_dev))
426 		return PTR_ERR(hwmon_dev);
427 
428 	dev_info(&client->dev, "%s Thermal chip found\n", id->name);
429 	return 0;
430 }
431 
432 static const unsigned short emc1403_address_list[] = {
433 	0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
434 };
435 
436 /* Last digit of chip name indicates number of channels */
437 static const struct i2c_device_id emc1403_idtable[] = {
438 	{ "emc1402", emc1402 },
439 	{ "emc1403", emc1403 },
440 	{ "emc1404", emc1404 },
441 	{ "emc1412", emc1402 },
442 	{ "emc1413", emc1403 },
443 	{ "emc1414", emc1404 },
444 	{ "emc1422", emc1402 },
445 	{ "emc1423", emc1403 },
446 	{ "emc1424", emc1404 },
447 	{ }
448 };
449 MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
450 
451 static struct i2c_driver sensor_emc1403 = {
452 	.class = I2C_CLASS_HWMON,
453 	.driver = {
454 		.name = "emc1403",
455 	},
456 	.detect = emc1403_detect,
457 	.probe_new = emc1403_probe,
458 	.id_table = emc1403_idtable,
459 	.address_list = emc1403_address_list,
460 };
461 
462 module_i2c_driver(sensor_emc1403);
463 
464 MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
465 MODULE_DESCRIPTION("emc1403 Thermal Driver");
466 MODULE_LICENSE("GPL v2");
467