xref: /linux/drivers/hwmon/peci/dimmtemp.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (c) 2018-2021 Intel Corporation
3 
4 #include <linux/auxiliary_bus.h>
5 #include <linux/bitfield.h>
6 #include <linux/bitops.h>
7 #include <linux/hwmon.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/peci.h>
11 #include <linux/peci-cpu.h>
12 #include <linux/units.h>
13 #include <linux/workqueue.h>
14 
15 #include "common.h"
16 
17 #define DIMM_MASK_CHECK_DELAY_JIFFIES	msecs_to_jiffies(5000)
18 
19 /* Max number of channel ranks and DIMM index per channel */
20 #define CHAN_RANK_MAX_ON_HSX	8
21 #define DIMM_IDX_MAX_ON_HSX	3
22 #define CHAN_RANK_MAX_ON_BDX	4
23 #define DIMM_IDX_MAX_ON_BDX	3
24 #define CHAN_RANK_MAX_ON_BDXD	2
25 #define DIMM_IDX_MAX_ON_BDXD	2
26 #define CHAN_RANK_MAX_ON_SKX	6
27 #define DIMM_IDX_MAX_ON_SKX	2
28 #define CHAN_RANK_MAX_ON_ICX	8
29 #define DIMM_IDX_MAX_ON_ICX	2
30 #define CHAN_RANK_MAX_ON_ICXD	4
31 #define DIMM_IDX_MAX_ON_ICXD	2
32 
33 #define CHAN_RANK_MAX		CHAN_RANK_MAX_ON_HSX
34 #define DIMM_IDX_MAX		DIMM_IDX_MAX_ON_HSX
35 #define DIMM_NUMS_MAX		(CHAN_RANK_MAX * DIMM_IDX_MAX)
36 
37 #define CPU_SEG_MASK		GENMASK(23, 16)
38 #define GET_CPU_SEG(x)		(((x) & CPU_SEG_MASK) >> 16)
39 #define CPU_BUS_MASK		GENMASK(7, 0)
40 #define GET_CPU_BUS(x)		((x) & CPU_BUS_MASK)
41 
42 #define DIMM_TEMP_MAX		GENMASK(15, 8)
43 #define DIMM_TEMP_CRIT		GENMASK(23, 16)
44 #define GET_TEMP_MAX(x)		(((x) & DIMM_TEMP_MAX) >> 8)
45 #define GET_TEMP_CRIT(x)	(((x) & DIMM_TEMP_CRIT) >> 16)
46 
47 #define NO_DIMM_RETRY_COUNT_MAX	5
48 
49 struct peci_dimmtemp;
50 
51 struct dimm_info {
52 	int chan_rank_max;
53 	int dimm_idx_max;
54 	u8 min_peci_revision;
55 	int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order,
56 			       int chan_rank, u32 *data);
57 };
58 
59 struct peci_dimm_thresholds {
60 	long temp_max;
61 	long temp_crit;
62 	struct peci_sensor_state state;
63 };
64 
65 enum peci_dimm_threshold_type {
66 	temp_max_type,
67 	temp_crit_type,
68 };
69 
70 struct peci_dimmtemp {
71 	struct peci_device *peci_dev;
72 	struct device *dev;
73 	const char *name;
74 	const struct dimm_info *gen_info;
75 	struct delayed_work detect_work;
76 	struct {
77 		struct peci_sensor_data temp;
78 		struct peci_dimm_thresholds thresholds;
79 	} dimm[DIMM_NUMS_MAX];
80 	char **dimmtemp_label;
81 	DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX);
82 	u8 no_dimm_retry_count;
83 };
84 
85 static u8 __dimm_temp(u32 reg, int dimm_order)
86 {
87 	return (reg >> (dimm_order * 8)) & 0xff;
88 }
89 
90 static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val)
91 {
92 	int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
93 	int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
94 	int ret = 0;
95 	u32 data;
96 
97 	mutex_lock(&priv->dimm[dimm_no].temp.state.lock);
98 	if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state))
99 		goto skip_update;
100 
101 	ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data);
102 	if (ret)
103 		goto unlock;
104 
105 	priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE;
106 
107 	peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state);
108 
109 skip_update:
110 	*val = priv->dimm[dimm_no].temp.value;
111 unlock:
112 	mutex_unlock(&priv->dimm[dimm_no].temp.state.lock);
113 	return ret;
114 }
115 
116 static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no)
117 {
118 	int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
119 	int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
120 	u32 data;
121 	int ret;
122 
123 	if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state))
124 		return 0;
125 
126 	ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data);
127 	if (ret == -ENODATA) /* Use default or previous value */
128 		return 0;
129 	if (ret)
130 		return ret;
131 
132 	priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE;
133 	priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE;
134 
135 	peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state);
136 
137 	return 0;
138 }
139 
140 static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type,
141 			       int dimm_no, long *val)
142 {
143 	int ret;
144 
145 	mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock);
146 	ret = update_thresholds(priv, dimm_no);
147 	if (ret)
148 		goto unlock;
149 
150 	switch (type) {
151 	case temp_max_type:
152 		*val = priv->dimm[dimm_no].thresholds.temp_max;
153 		break;
154 	case temp_crit_type:
155 		*val = priv->dimm[dimm_no].thresholds.temp_crit;
156 		break;
157 	default:
158 		ret = -EOPNOTSUPP;
159 		break;
160 	}
161 unlock:
162 	mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock);
163 
164 	return ret;
165 }
166 
167 static int dimmtemp_read_string(struct device *dev,
168 				enum hwmon_sensor_types type,
169 				u32 attr, int channel, const char **str)
170 {
171 	struct peci_dimmtemp *priv = dev_get_drvdata(dev);
172 
173 	if (attr != hwmon_temp_label)
174 		return -EOPNOTSUPP;
175 
176 	*str = (const char *)priv->dimmtemp_label[channel];
177 
178 	return 0;
179 }
180 
181 static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type,
182 			 u32 attr, int channel, long *val)
183 {
184 	struct peci_dimmtemp *priv = dev_get_drvdata(dev);
185 
186 	switch (attr) {
187 	case hwmon_temp_input:
188 		return get_dimm_temp(priv, channel, val);
189 	case hwmon_temp_max:
190 		return get_dimm_thresholds(priv, temp_max_type, channel, val);
191 	case hwmon_temp_crit:
192 		return get_dimm_thresholds(priv, temp_crit_type, channel, val);
193 	default:
194 		break;
195 	}
196 
197 	return -EOPNOTSUPP;
198 }
199 
200 static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type,
201 				   u32 attr, int channel)
202 {
203 	const struct peci_dimmtemp *priv = data;
204 
205 	if (test_bit(channel, priv->dimm_mask))
206 		return 0444;
207 
208 	return 0;
209 }
210 
211 static const struct hwmon_ops peci_dimmtemp_ops = {
212 	.is_visible = dimmtemp_is_visible,
213 	.read_string = dimmtemp_read_string,
214 	.read = dimmtemp_read,
215 };
216 
217 static int check_populated_dimms(struct peci_dimmtemp *priv)
218 {
219 	int chan_rank_max = priv->gen_info->chan_rank_max;
220 	int dimm_idx_max = priv->gen_info->dimm_idx_max;
221 	u32 chan_rank_empty = 0;
222 	u64 dimm_mask = 0;
223 	int chan_rank, dimm_idx, ret;
224 	u32 pcs;
225 
226 	BUILD_BUG_ON(BITS_PER_TYPE(chan_rank_empty) < CHAN_RANK_MAX);
227 	BUILD_BUG_ON(BITS_PER_TYPE(dimm_mask) < DIMM_NUMS_MAX);
228 	if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) {
229 		WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d",
230 			  chan_rank_max, dimm_idx_max);
231 		return -EINVAL;
232 	}
233 
234 	for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) {
235 		ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs);
236 		if (ret) {
237 			/*
238 			 * Overall, we expect either success or -EINVAL in
239 			 * order to determine whether DIMM is populated or not.
240 			 * For anything else we fall back to deferring the
241 			 * detection to be performed at a later point in time.
242 			 */
243 			if (ret == -EINVAL) {
244 				chan_rank_empty |= BIT(chan_rank);
245 				continue;
246 			}
247 
248 			return -EAGAIN;
249 		}
250 
251 		for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++)
252 			if (__dimm_temp(pcs, dimm_idx))
253 				dimm_mask |= BIT(chan_rank * dimm_idx_max + dimm_idx);
254 	}
255 
256 	/*
257 	 * If we got all -EINVALs, it means that the CPU doesn't have any
258 	 * DIMMs. Unfortunately, it may also happen at the very start of
259 	 * host platform boot. Retrying a couple of times lets us make sure
260 	 * that the state is persistent.
261 	 */
262 	if (chan_rank_empty == GENMASK(chan_rank_max - 1, 0)) {
263 		if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) {
264 			priv->no_dimm_retry_count++;
265 
266 			return -EAGAIN;
267 		}
268 
269 		return -ENODEV;
270 	}
271 
272 	/*
273 	 * It's possible that memory training is not done yet. In this case we
274 	 * defer the detection to be performed at a later point in time.
275 	 */
276 	if (!dimm_mask) {
277 		priv->no_dimm_retry_count = 0;
278 		return -EAGAIN;
279 	}
280 
281 	dev_dbg(priv->dev, "Scanned populated DIMMs: %#llx\n", dimm_mask);
282 
283 	bitmap_from_u64(priv->dimm_mask, dimm_mask);
284 
285 	return 0;
286 }
287 
288 static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan)
289 {
290 	int rank = chan / priv->gen_info->dimm_idx_max;
291 	int idx = chan % priv->gen_info->dimm_idx_max;
292 
293 	priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL,
294 						    "DIMM %c%d", 'A' + rank,
295 						    idx + 1);
296 	if (!priv->dimmtemp_label[chan])
297 		return -ENOMEM;
298 
299 	return 0;
300 }
301 
302 static const u32 peci_dimmtemp_temp_channel_config[] = {
303 	[0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT,
304 	0
305 };
306 
307 static const struct hwmon_channel_info peci_dimmtemp_temp_channel = {
308 	.type = hwmon_temp,
309 	.config = peci_dimmtemp_temp_channel_config,
310 };
311 
312 static const struct hwmon_channel_info *peci_dimmtemp_temp_info[] = {
313 	&peci_dimmtemp_temp_channel,
314 	NULL
315 };
316 
317 static const struct hwmon_chip_info peci_dimmtemp_chip_info = {
318 	.ops = &peci_dimmtemp_ops,
319 	.info = peci_dimmtemp_temp_info,
320 };
321 
322 static int create_dimm_temp_info(struct peci_dimmtemp *priv)
323 {
324 	int ret, i, channels;
325 	struct device *dev;
326 
327 	/*
328 	 * We expect to either find populated DIMMs and carry on with creating
329 	 * sensors, or find out that there are no DIMMs populated.
330 	 * All other states mean that the platform never reached the state that
331 	 * allows to check DIMM state - causing us to retry later on.
332 	 */
333 	ret = check_populated_dimms(priv);
334 	if (ret == -ENODEV) {
335 		dev_dbg(priv->dev, "No DIMMs found\n");
336 		return 0;
337 	} else if (ret) {
338 		schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES);
339 		dev_dbg(priv->dev, "Deferred populating DIMM temp info\n");
340 		return ret;
341 	}
342 
343 	channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max;
344 
345 	priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL);
346 	if (!priv->dimmtemp_label)
347 		return -ENOMEM;
348 
349 	for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) {
350 		ret = create_dimm_temp_label(priv, i);
351 		if (ret)
352 			return ret;
353 		mutex_init(&priv->dimm[i].thresholds.state.lock);
354 		mutex_init(&priv->dimm[i].temp.state.lock);
355 	}
356 
357 	dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv,
358 						   &peci_dimmtemp_chip_info, NULL);
359 	if (IS_ERR(dev)) {
360 		dev_err(priv->dev, "Failed to register hwmon device\n");
361 		return PTR_ERR(dev);
362 	}
363 
364 	dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name);
365 
366 	return 0;
367 }
368 
369 static void create_dimm_temp_info_delayed(struct work_struct *work)
370 {
371 	struct peci_dimmtemp *priv = container_of(to_delayed_work(work),
372 						  struct peci_dimmtemp,
373 						  detect_work);
374 	int ret;
375 
376 	ret = create_dimm_temp_info(priv);
377 	if (ret && ret != -EAGAIN)
378 		dev_err(priv->dev, "Failed to populate DIMM temp info\n");
379 }
380 
381 static void remove_delayed_work(void *_priv)
382 {
383 	struct peci_dimmtemp *priv = _priv;
384 
385 	cancel_delayed_work_sync(&priv->detect_work);
386 }
387 
388 static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id)
389 {
390 	struct device *dev = &adev->dev;
391 	struct peci_device *peci_dev = to_peci_device(dev->parent);
392 	struct peci_dimmtemp *priv;
393 	int ret;
394 
395 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
396 	if (!priv)
397 		return -ENOMEM;
398 
399 	priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d",
400 				    peci_dev->info.socket_id);
401 	if (!priv->name)
402 		return -ENOMEM;
403 
404 	priv->dev = dev;
405 	priv->peci_dev = peci_dev;
406 	priv->gen_info = (const struct dimm_info *)id->driver_data;
407 
408 	/*
409 	 * This is just a sanity check. Since we're using commands that are
410 	 * guaranteed to be supported on a given platform, we should never see
411 	 * revision lower than expected.
412 	 */
413 	if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision)
414 		dev_warn(priv->dev,
415 			 "Unexpected PECI revision %#x, some features may be unavailable\n",
416 			 peci_dev->info.peci_revision);
417 
418 	INIT_DELAYED_WORK(&priv->detect_work, create_dimm_temp_info_delayed);
419 
420 	ret = devm_add_action_or_reset(priv->dev, remove_delayed_work, priv);
421 	if (ret)
422 		return ret;
423 
424 	ret = create_dimm_temp_info(priv);
425 	if (ret && ret != -EAGAIN) {
426 		dev_err(dev, "Failed to populate DIMM temp info\n");
427 		return ret;
428 	}
429 
430 	return 0;
431 }
432 
433 static int
434 read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
435 {
436 	u8 dev, func;
437 	u16 reg;
438 	int ret;
439 
440 	/*
441 	 * Device 20, Function 0: IMC 0 channel 0 -> rank 0
442 	 * Device 20, Function 1: IMC 0 channel 1 -> rank 1
443 	 * Device 21, Function 0: IMC 0 channel 2 -> rank 2
444 	 * Device 21, Function 1: IMC 0 channel 3 -> rank 3
445 	 * Device 23, Function 0: IMC 1 channel 0 -> rank 4
446 	 * Device 23, Function 1: IMC 1 channel 1 -> rank 5
447 	 * Device 24, Function 0: IMC 1 channel 2 -> rank 6
448 	 * Device 24, Function 1: IMC 1 channel 3 -> rank 7
449 	 */
450 	dev = 20 + chan_rank / 2 + chan_rank / 4;
451 	func = chan_rank % 2;
452 	reg = 0x120 + dimm_order * 4;
453 
454 	ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data);
455 	if (ret)
456 		return ret;
457 
458 	return 0;
459 }
460 
461 static int
462 read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
463 {
464 	u8 dev, func;
465 	u16 reg;
466 	int ret;
467 
468 	/*
469 	 * Device 10, Function 2: IMC 0 channel 0 -> rank 0
470 	 * Device 10, Function 6: IMC 0 channel 1 -> rank 1
471 	 * Device 12, Function 2: IMC 1 channel 0 -> rank 2
472 	 * Device 12, Function 6: IMC 1 channel 1 -> rank 3
473 	 */
474 	dev = 10 + chan_rank / 2 * 2;
475 	func = (chan_rank % 2) ? 6 : 2;
476 	reg = 0x120 + dimm_order * 4;
477 
478 	ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data);
479 	if (ret)
480 		return ret;
481 
482 	return 0;
483 }
484 
485 static int
486 read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
487 {
488 	u8 dev, func;
489 	u16 reg;
490 	int ret;
491 
492 	/*
493 	 * Device 10, Function 2: IMC 0 channel 0 -> rank 0
494 	 * Device 10, Function 6: IMC 0 channel 1 -> rank 1
495 	 * Device 11, Function 2: IMC 0 channel 2 -> rank 2
496 	 * Device 12, Function 2: IMC 1 channel 0 -> rank 3
497 	 * Device 12, Function 6: IMC 1 channel 1 -> rank 4
498 	 * Device 13, Function 2: IMC 1 channel 2 -> rank 5
499 	 */
500 	dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0);
501 	func = chan_rank % 3 == 1 ? 6 : 2;
502 	reg = 0x120 + dimm_order * 4;
503 
504 	ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data);
505 	if (ret)
506 		return ret;
507 
508 	return 0;
509 }
510 
511 static int
512 read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
513 {
514 	u32 reg_val;
515 	u64 offset;
516 	int ret;
517 	u8 dev;
518 
519 	ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, &reg_val);
520 	if (ret || !(reg_val & BIT(31)))
521 		return -ENODATA; /* Use default or previous value */
522 
523 	ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, &reg_val);
524 	if (ret)
525 		return -ENODATA; /* Use default or previous value */
526 
527 	/*
528 	 * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0
529 	 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1
530 	 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2
531 	 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3
532 	 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4
533 	 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5
534 	 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6
535 	 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7
536 	 */
537 	dev = 26 + chan_rank / 2;
538 	offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000;
539 
540 	ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val),
541 			     dev, 0, offset, data);
542 	if (ret)
543 		return ret;
544 
545 	return 0;
546 }
547 
548 static const struct dimm_info dimm_hsx = {
549 	.chan_rank_max	= CHAN_RANK_MAX_ON_HSX,
550 	.dimm_idx_max	= DIMM_IDX_MAX_ON_HSX,
551 	.min_peci_revision = 0x33,
552 	.read_thresholds = &read_thresholds_hsx,
553 };
554 
555 static const struct dimm_info dimm_bdx = {
556 	.chan_rank_max	= CHAN_RANK_MAX_ON_BDX,
557 	.dimm_idx_max	= DIMM_IDX_MAX_ON_BDX,
558 	.min_peci_revision = 0x33,
559 	.read_thresholds = &read_thresholds_hsx,
560 };
561 
562 static const struct dimm_info dimm_bdxd = {
563 	.chan_rank_max	= CHAN_RANK_MAX_ON_BDXD,
564 	.dimm_idx_max	= DIMM_IDX_MAX_ON_BDXD,
565 	.min_peci_revision = 0x33,
566 	.read_thresholds = &read_thresholds_bdxd,
567 };
568 
569 static const struct dimm_info dimm_skx = {
570 	.chan_rank_max	= CHAN_RANK_MAX_ON_SKX,
571 	.dimm_idx_max	= DIMM_IDX_MAX_ON_SKX,
572 	.min_peci_revision = 0x33,
573 	.read_thresholds = &read_thresholds_skx,
574 };
575 
576 static const struct dimm_info dimm_icx = {
577 	.chan_rank_max	= CHAN_RANK_MAX_ON_ICX,
578 	.dimm_idx_max	= DIMM_IDX_MAX_ON_ICX,
579 	.min_peci_revision = 0x40,
580 	.read_thresholds = &read_thresholds_icx,
581 };
582 
583 static const struct dimm_info dimm_icxd = {
584 	.chan_rank_max	= CHAN_RANK_MAX_ON_ICXD,
585 	.dimm_idx_max	= DIMM_IDX_MAX_ON_ICXD,
586 	.min_peci_revision = 0x40,
587 	.read_thresholds = &read_thresholds_icx,
588 };
589 
590 static const struct auxiliary_device_id peci_dimmtemp_ids[] = {
591 	{
592 		.name = "peci_cpu.dimmtemp.hsx",
593 		.driver_data = (kernel_ulong_t)&dimm_hsx,
594 	},
595 	{
596 		.name = "peci_cpu.dimmtemp.bdx",
597 		.driver_data = (kernel_ulong_t)&dimm_bdx,
598 	},
599 	{
600 		.name = "peci_cpu.dimmtemp.bdxd",
601 		.driver_data = (kernel_ulong_t)&dimm_bdxd,
602 	},
603 	{
604 		.name = "peci_cpu.dimmtemp.skx",
605 		.driver_data = (kernel_ulong_t)&dimm_skx,
606 	},
607 	{
608 		.name = "peci_cpu.dimmtemp.icx",
609 		.driver_data = (kernel_ulong_t)&dimm_icx,
610 	},
611 	{
612 		.name = "peci_cpu.dimmtemp.icxd",
613 		.driver_data = (kernel_ulong_t)&dimm_icxd,
614 	},
615 	{ }
616 };
617 MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids);
618 
619 static struct auxiliary_driver peci_dimmtemp_driver = {
620 	.probe		= peci_dimmtemp_probe,
621 	.id_table	= peci_dimmtemp_ids,
622 };
623 
624 module_auxiliary_driver(peci_dimmtemp_driver);
625 
626 MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
627 MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>");
628 MODULE_DESCRIPTION("PECI dimmtemp driver");
629 MODULE_LICENSE("GPL");
630 MODULE_IMPORT_NS(PECI_CPU);
631