xref: /linux/drivers/hwmon/pmbus/pmbus_core.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/of.h>
23 #include <linux/thermal.h>
24 #include "pmbus.h"
25 
26 /*
27  * Number of additional attribute pointers to allocate
28  * with each call to krealloc
29  */
30 #define PMBUS_ATTR_ALLOC_SIZE	32
31 #define PMBUS_NAME_SIZE		24
32 
33 struct pmbus_sensor {
34 	struct pmbus_sensor *next;
35 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
36 	struct device_attribute attribute;
37 	u8 page;		/* page number */
38 	u8 phase;		/* phase number, 0xff for all phases */
39 	u16 reg;		/* register */
40 	enum pmbus_sensor_classes class;	/* sensor class */
41 	bool update;		/* runtime sensor update needed */
42 	bool convert;		/* Whether or not to apply linear/vid/direct */
43 	int data;		/* Sensor data.
44 				   Negative if there was a read error */
45 };
46 #define to_pmbus_sensor(_attr) \
47 	container_of(_attr, struct pmbus_sensor, attribute)
48 
49 struct pmbus_boolean {
50 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
51 	struct sensor_device_attribute attribute;
52 	struct pmbus_sensor *s1;
53 	struct pmbus_sensor *s2;
54 };
55 #define to_pmbus_boolean(_attr) \
56 	container_of(_attr, struct pmbus_boolean, attribute)
57 
58 struct pmbus_label {
59 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
60 	struct device_attribute attribute;
61 	char label[PMBUS_NAME_SIZE];	/* label */
62 };
63 #define to_pmbus_label(_attr) \
64 	container_of(_attr, struct pmbus_label, attribute)
65 
66 /* Macros for converting between sensor index and register/page/status mask */
67 
68 #define PB_STATUS_MASK	0xffff
69 #define PB_REG_SHIFT	16
70 #define PB_REG_MASK	0x3ff
71 #define PB_PAGE_SHIFT	26
72 #define PB_PAGE_MASK	0x3f
73 
74 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
75 						 ((reg) << PB_REG_SHIFT) | (mask))
76 
77 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
80 
81 struct pmbus_data {
82 	struct device *dev;
83 	struct device *hwmon_dev;
84 
85 	u32 flags;		/* from platform data */
86 
87 	int exponent[PMBUS_PAGES];
88 				/* linear mode: exponent for output voltages */
89 
90 	const struct pmbus_driver_info *info;
91 
92 	int max_attributes;
93 	int num_attributes;
94 	struct attribute_group group;
95 	const struct attribute_group **groups;
96 	struct dentry *debugfs;		/* debugfs device directory */
97 
98 	struct pmbus_sensor *sensors;
99 
100 	struct mutex update_lock;
101 
102 	bool has_status_word;		/* device uses STATUS_WORD register */
103 	int (*read_status)(struct i2c_client *client, int page);
104 
105 	s16 currpage;	/* current page, -1 for unknown/unset */
106 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
107 };
108 
109 struct pmbus_debugfs_entry {
110 	struct i2c_client *client;
111 	u8 page;
112 	u8 reg;
113 };
114 
115 static const int pmbus_fan_rpm_mask[] = {
116 	PB_FAN_1_RPM,
117 	PB_FAN_2_RPM,
118 	PB_FAN_1_RPM,
119 	PB_FAN_2_RPM,
120 };
121 
122 static const int pmbus_fan_config_registers[] = {
123 	PMBUS_FAN_CONFIG_12,
124 	PMBUS_FAN_CONFIG_12,
125 	PMBUS_FAN_CONFIG_34,
126 	PMBUS_FAN_CONFIG_34
127 };
128 
129 static const int pmbus_fan_command_registers[] = {
130 	PMBUS_FAN_COMMAND_1,
131 	PMBUS_FAN_COMMAND_2,
132 	PMBUS_FAN_COMMAND_3,
133 	PMBUS_FAN_COMMAND_4,
134 };
135 
136 void pmbus_clear_cache(struct i2c_client *client)
137 {
138 	struct pmbus_data *data = i2c_get_clientdata(client);
139 	struct pmbus_sensor *sensor;
140 
141 	for (sensor = data->sensors; sensor; sensor = sensor->next)
142 		sensor->data = -ENODATA;
143 }
144 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
145 
146 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
147 {
148 	struct pmbus_data *data = i2c_get_clientdata(client);
149 	struct pmbus_sensor *sensor;
150 
151 	for (sensor = data->sensors; sensor; sensor = sensor->next)
152 		if (sensor->reg == reg)
153 			sensor->update = update;
154 }
155 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
156 
157 int pmbus_set_page(struct i2c_client *client, int page, int phase)
158 {
159 	struct pmbus_data *data = i2c_get_clientdata(client);
160 	int rv;
161 
162 	if (page < 0)
163 		return 0;
164 
165 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
166 	    data->info->pages > 1 && page != data->currpage) {
167 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
168 		if (rv < 0)
169 			return rv;
170 
171 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
172 		if (rv < 0)
173 			return rv;
174 
175 		if (rv != page)
176 			return -EIO;
177 	}
178 	data->currpage = page;
179 
180 	if (data->info->phases[page] && data->currphase != phase &&
181 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
182 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
183 					       phase);
184 		if (rv)
185 			return rv;
186 	}
187 	data->currphase = phase;
188 
189 	return 0;
190 }
191 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
192 
193 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
194 {
195 	int rv;
196 
197 	rv = pmbus_set_page(client, page, 0xff);
198 	if (rv < 0)
199 		return rv;
200 
201 	return i2c_smbus_write_byte(client, value);
202 }
203 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
204 
205 /*
206  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
207  * a device specific mapping function exists and calls it if necessary.
208  */
209 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
210 {
211 	struct pmbus_data *data = i2c_get_clientdata(client);
212 	const struct pmbus_driver_info *info = data->info;
213 	int status;
214 
215 	if (info->write_byte) {
216 		status = info->write_byte(client, page, value);
217 		if (status != -ENODATA)
218 			return status;
219 	}
220 	return pmbus_write_byte(client, page, value);
221 }
222 
223 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
224 			  u16 word)
225 {
226 	int rv;
227 
228 	rv = pmbus_set_page(client, page, 0xff);
229 	if (rv < 0)
230 		return rv;
231 
232 	return i2c_smbus_write_word_data(client, reg, word);
233 }
234 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
235 
236 
237 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
238 				u16 word)
239 {
240 	int bit;
241 	int id;
242 	int rv;
243 
244 	switch (reg) {
245 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
246 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
247 		bit = pmbus_fan_rpm_mask[id];
248 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
249 		break;
250 	default:
251 		rv = -ENXIO;
252 		break;
253 	}
254 
255 	return rv;
256 }
257 
258 /*
259  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
260  * a device specific mapping function exists and calls it if necessary.
261  */
262 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
263 				  u16 word)
264 {
265 	struct pmbus_data *data = i2c_get_clientdata(client);
266 	const struct pmbus_driver_info *info = data->info;
267 	int status;
268 
269 	if (info->write_word_data) {
270 		status = info->write_word_data(client, page, reg, word);
271 		if (status != -ENODATA)
272 			return status;
273 	}
274 
275 	if (reg >= PMBUS_VIRT_BASE)
276 		return pmbus_write_virt_reg(client, page, reg, word);
277 
278 	return pmbus_write_word_data(client, page, reg, word);
279 }
280 
281 /*
282  * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
283  * a device specific mapping function exists and calls it if necessary.
284  */
285 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
286 {
287 	struct pmbus_data *data = i2c_get_clientdata(client);
288 	const struct pmbus_driver_info *info = data->info;
289 	int status;
290 
291 	if (info->write_byte_data) {
292 		status = info->write_byte_data(client, page, reg, value);
293 		if (status != -ENODATA)
294 			return status;
295 	}
296 	return pmbus_write_byte_data(client, page, reg, value);
297 }
298 
299 /*
300  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
301  * a device specific mapping function exists and calls it if necessary.
302  */
303 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
304 {
305 	struct pmbus_data *data = i2c_get_clientdata(client);
306 	const struct pmbus_driver_info *info = data->info;
307 	int status;
308 
309 	if (info->read_byte_data) {
310 		status = info->read_byte_data(client, page, reg);
311 		if (status != -ENODATA)
312 			return status;
313 	}
314 	return pmbus_read_byte_data(client, page, reg);
315 }
316 
317 int pmbus_update_fan(struct i2c_client *client, int page, int id,
318 		     u8 config, u8 mask, u16 command)
319 {
320 	int from;
321 	int rv;
322 	u8 to;
323 
324 	from = _pmbus_read_byte_data(client, page,
325 				    pmbus_fan_config_registers[id]);
326 	if (from < 0)
327 		return from;
328 
329 	to = (from & ~mask) | (config & mask);
330 	if (to != from) {
331 		rv = _pmbus_write_byte_data(client, page,
332 					   pmbus_fan_config_registers[id], to);
333 		if (rv < 0)
334 			return rv;
335 	}
336 
337 	return _pmbus_write_word_data(client, page,
338 				      pmbus_fan_command_registers[id], command);
339 }
340 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
341 
342 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
343 {
344 	int rv;
345 
346 	rv = pmbus_set_page(client, page, phase);
347 	if (rv < 0)
348 		return rv;
349 
350 	return i2c_smbus_read_word_data(client, reg);
351 }
352 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
353 
354 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
355 {
356 	int rv;
357 	int id;
358 
359 	switch (reg) {
360 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
361 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
362 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
363 		break;
364 	default:
365 		rv = -ENXIO;
366 		break;
367 	}
368 
369 	return rv;
370 }
371 
372 /*
373  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
374  * a device specific mapping function exists and calls it if necessary.
375  */
376 static int _pmbus_read_word_data(struct i2c_client *client, int page,
377 				 int phase, int reg)
378 {
379 	struct pmbus_data *data = i2c_get_clientdata(client);
380 	const struct pmbus_driver_info *info = data->info;
381 	int status;
382 
383 	if (info->read_word_data) {
384 		status = info->read_word_data(client, page, phase, reg);
385 		if (status != -ENODATA)
386 			return status;
387 	}
388 
389 	if (reg >= PMBUS_VIRT_BASE)
390 		return pmbus_read_virt_reg(client, page, reg);
391 
392 	return pmbus_read_word_data(client, page, phase, reg);
393 }
394 
395 /* Same as above, but without phase parameter, for use in check functions */
396 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
397 {
398 	return _pmbus_read_word_data(client, page, 0xff, reg);
399 }
400 
401 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
402 {
403 	int rv;
404 
405 	rv = pmbus_set_page(client, page, 0xff);
406 	if (rv < 0)
407 		return rv;
408 
409 	return i2c_smbus_read_byte_data(client, reg);
410 }
411 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
412 
413 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
414 {
415 	int rv;
416 
417 	rv = pmbus_set_page(client, page, 0xff);
418 	if (rv < 0)
419 		return rv;
420 
421 	return i2c_smbus_write_byte_data(client, reg, value);
422 }
423 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
424 
425 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
426 			   u8 mask, u8 value)
427 {
428 	unsigned int tmp;
429 	int rv;
430 
431 	rv = _pmbus_read_byte_data(client, page, reg);
432 	if (rv < 0)
433 		return rv;
434 
435 	tmp = (rv & ~mask) | (value & mask);
436 
437 	if (tmp != rv)
438 		rv = _pmbus_write_byte_data(client, page, reg, tmp);
439 
440 	return rv;
441 }
442 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
443 
444 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
445 					      int reg)
446 {
447 	struct pmbus_sensor *sensor;
448 
449 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
450 		if (sensor->page == page && sensor->reg == reg)
451 			return sensor;
452 	}
453 
454 	return ERR_PTR(-EINVAL);
455 }
456 
457 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
458 			      enum pmbus_fan_mode mode,
459 			      bool from_cache)
460 {
461 	struct pmbus_data *data = i2c_get_clientdata(client);
462 	bool want_rpm, have_rpm;
463 	struct pmbus_sensor *s;
464 	int config;
465 	int reg;
466 
467 	want_rpm = (mode == rpm);
468 
469 	if (from_cache) {
470 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
471 		s = pmbus_find_sensor(data, page, reg + id);
472 		if (IS_ERR(s))
473 			return PTR_ERR(s);
474 
475 		return s->data;
476 	}
477 
478 	config = _pmbus_read_byte_data(client, page,
479 				      pmbus_fan_config_registers[id]);
480 	if (config < 0)
481 		return config;
482 
483 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
484 	if (want_rpm == have_rpm)
485 		return pmbus_read_word_data(client, page, 0xff,
486 					    pmbus_fan_command_registers[id]);
487 
488 	/* Can't sensibly map between RPM and PWM, just return zero */
489 	return 0;
490 }
491 
492 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
493 			      enum pmbus_fan_mode mode)
494 {
495 	return pmbus_get_fan_rate(client, page, id, mode, false);
496 }
497 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
498 
499 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
500 			      enum pmbus_fan_mode mode)
501 {
502 	return pmbus_get_fan_rate(client, page, id, mode, true);
503 }
504 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
505 
506 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
507 {
508 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
509 }
510 
511 void pmbus_clear_faults(struct i2c_client *client)
512 {
513 	struct pmbus_data *data = i2c_get_clientdata(client);
514 	int i;
515 
516 	for (i = 0; i < data->info->pages; i++)
517 		pmbus_clear_fault_page(client, i);
518 }
519 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
520 
521 static int pmbus_check_status_cml(struct i2c_client *client)
522 {
523 	struct pmbus_data *data = i2c_get_clientdata(client);
524 	int status, status2;
525 
526 	status = data->read_status(client, -1);
527 	if (status < 0 || (status & PB_STATUS_CML)) {
528 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
529 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
530 			return -EIO;
531 	}
532 	return 0;
533 }
534 
535 static bool pmbus_check_register(struct i2c_client *client,
536 				 int (*func)(struct i2c_client *client,
537 					     int page, int reg),
538 				 int page, int reg)
539 {
540 	int rv;
541 	struct pmbus_data *data = i2c_get_clientdata(client);
542 
543 	rv = func(client, page, reg);
544 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
545 		rv = pmbus_check_status_cml(client);
546 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
547 		data->read_status(client, -1);
548 	pmbus_clear_fault_page(client, -1);
549 	return rv >= 0;
550 }
551 
552 static bool pmbus_check_status_register(struct i2c_client *client, int page)
553 {
554 	int status;
555 	struct pmbus_data *data = i2c_get_clientdata(client);
556 
557 	status = data->read_status(client, page);
558 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
559 	    (status & PB_STATUS_CML)) {
560 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
561 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
562 			status = -EIO;
563 	}
564 
565 	pmbus_clear_fault_page(client, -1);
566 	return status >= 0;
567 }
568 
569 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
570 {
571 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
572 }
573 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
574 
575 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
576 {
577 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
578 }
579 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
580 
581 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
582 {
583 	struct pmbus_data *data = i2c_get_clientdata(client);
584 
585 	return data->info;
586 }
587 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
588 
589 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
590 {
591 	struct pmbus_data *data = i2c_get_clientdata(client);
592 	int status;
593 
594 	switch (reg) {
595 	case PMBUS_STATUS_WORD:
596 		status = data->read_status(client, page);
597 		break;
598 	default:
599 		status = _pmbus_read_byte_data(client, page, reg);
600 		break;
601 	}
602 	if (status < 0)
603 		pmbus_clear_faults(client);
604 	return status;
605 }
606 
607 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
608 {
609 	if (sensor->data < 0 || sensor->update)
610 		sensor->data = _pmbus_read_word_data(client, sensor->page,
611 						     sensor->phase, sensor->reg);
612 }
613 
614 /*
615  * Convert linear sensor values to milli- or micro-units
616  * depending on sensor type.
617  */
618 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
619 				 struct pmbus_sensor *sensor)
620 {
621 	s16 exponent;
622 	s32 mantissa;
623 	s64 val;
624 
625 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
626 		exponent = data->exponent[sensor->page];
627 		mantissa = (u16) sensor->data;
628 	} else {				/* LINEAR11 */
629 		exponent = ((s16)sensor->data) >> 11;
630 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
631 	}
632 
633 	val = mantissa;
634 
635 	/* scale result to milli-units for all sensors except fans */
636 	if (sensor->class != PSC_FAN)
637 		val = val * 1000LL;
638 
639 	/* scale result to micro-units for power sensors */
640 	if (sensor->class == PSC_POWER)
641 		val = val * 1000LL;
642 
643 	if (exponent >= 0)
644 		val <<= exponent;
645 	else
646 		val >>= -exponent;
647 
648 	return val;
649 }
650 
651 /*
652  * Convert direct sensor values to milli- or micro-units
653  * depending on sensor type.
654  */
655 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
656 				 struct pmbus_sensor *sensor)
657 {
658 	s64 b, val = (s16)sensor->data;
659 	s32 m, R;
660 
661 	m = data->info->m[sensor->class];
662 	b = data->info->b[sensor->class];
663 	R = data->info->R[sensor->class];
664 
665 	if (m == 0)
666 		return 0;
667 
668 	/* X = 1/m * (Y * 10^-R - b) */
669 	R = -R;
670 	/* scale result to milli-units for everything but fans */
671 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
672 		R += 3;
673 		b *= 1000;
674 	}
675 
676 	/* scale result to micro-units for power sensors */
677 	if (sensor->class == PSC_POWER) {
678 		R += 3;
679 		b *= 1000;
680 	}
681 
682 	while (R > 0) {
683 		val *= 10;
684 		R--;
685 	}
686 	while (R < 0) {
687 		val = div_s64(val + 5LL, 10L);  /* round closest */
688 		R++;
689 	}
690 
691 	val = div_s64(val - b, m);
692 	return val;
693 }
694 
695 /*
696  * Convert VID sensor values to milli- or micro-units
697  * depending on sensor type.
698  */
699 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
700 			      struct pmbus_sensor *sensor)
701 {
702 	long val = sensor->data;
703 	long rv = 0;
704 
705 	switch (data->info->vrm_version[sensor->page]) {
706 	case vr11:
707 		if (val >= 0x02 && val <= 0xb2)
708 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
709 		break;
710 	case vr12:
711 		if (val >= 0x01)
712 			rv = 250 + (val - 1) * 5;
713 		break;
714 	case vr13:
715 		if (val >= 0x01)
716 			rv = 500 + (val - 1) * 10;
717 		break;
718 	case imvp9:
719 		if (val >= 0x01)
720 			rv = 200 + (val - 1) * 10;
721 		break;
722 	case amd625mv:
723 		if (val >= 0x0 && val <= 0xd8)
724 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
725 		break;
726 	}
727 	return rv;
728 }
729 
730 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
731 {
732 	s64 val;
733 
734 	if (!sensor->convert)
735 		return sensor->data;
736 
737 	switch (data->info->format[sensor->class]) {
738 	case direct:
739 		val = pmbus_reg2data_direct(data, sensor);
740 		break;
741 	case vid:
742 		val = pmbus_reg2data_vid(data, sensor);
743 		break;
744 	case linear:
745 	default:
746 		val = pmbus_reg2data_linear(data, sensor);
747 		break;
748 	}
749 	return val;
750 }
751 
752 #define MAX_MANTISSA	(1023 * 1000)
753 #define MIN_MANTISSA	(511 * 1000)
754 
755 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
756 				 struct pmbus_sensor *sensor, s64 val)
757 {
758 	s16 exponent = 0, mantissa;
759 	bool negative = false;
760 
761 	/* simple case */
762 	if (val == 0)
763 		return 0;
764 
765 	if (sensor->class == PSC_VOLTAGE_OUT) {
766 		/* LINEAR16 does not support negative voltages */
767 		if (val < 0)
768 			return 0;
769 
770 		/*
771 		 * For a static exponents, we don't have a choice
772 		 * but to adjust the value to it.
773 		 */
774 		if (data->exponent[sensor->page] < 0)
775 			val <<= -data->exponent[sensor->page];
776 		else
777 			val >>= data->exponent[sensor->page];
778 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
779 		return clamp_val(val, 0, 0xffff);
780 	}
781 
782 	if (val < 0) {
783 		negative = true;
784 		val = -val;
785 	}
786 
787 	/* Power is in uW. Convert to mW before converting. */
788 	if (sensor->class == PSC_POWER)
789 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
790 
791 	/*
792 	 * For simplicity, convert fan data to milli-units
793 	 * before calculating the exponent.
794 	 */
795 	if (sensor->class == PSC_FAN)
796 		val = val * 1000LL;
797 
798 	/* Reduce large mantissa until it fits into 10 bit */
799 	while (val >= MAX_MANTISSA && exponent < 15) {
800 		exponent++;
801 		val >>= 1;
802 	}
803 	/* Increase small mantissa to improve precision */
804 	while (val < MIN_MANTISSA && exponent > -15) {
805 		exponent--;
806 		val <<= 1;
807 	}
808 
809 	/* Convert mantissa from milli-units to units */
810 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
811 
812 	/* restore sign */
813 	if (negative)
814 		mantissa = -mantissa;
815 
816 	/* Convert to 5 bit exponent, 11 bit mantissa */
817 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
818 }
819 
820 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
821 				 struct pmbus_sensor *sensor, s64 val)
822 {
823 	s64 b;
824 	s32 m, R;
825 
826 	m = data->info->m[sensor->class];
827 	b = data->info->b[sensor->class];
828 	R = data->info->R[sensor->class];
829 
830 	/* Power is in uW. Adjust R and b. */
831 	if (sensor->class == PSC_POWER) {
832 		R -= 3;
833 		b *= 1000;
834 	}
835 
836 	/* Calculate Y = (m * X + b) * 10^R */
837 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
838 		R -= 3;		/* Adjust R and b for data in milli-units */
839 		b *= 1000;
840 	}
841 	val = val * m + b;
842 
843 	while (R > 0) {
844 		val *= 10;
845 		R--;
846 	}
847 	while (R < 0) {
848 		val = div_s64(val + 5LL, 10L);  /* round closest */
849 		R++;
850 	}
851 
852 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
853 }
854 
855 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
856 			      struct pmbus_sensor *sensor, s64 val)
857 {
858 	val = clamp_val(val, 500, 1600);
859 
860 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
861 }
862 
863 static u16 pmbus_data2reg(struct pmbus_data *data,
864 			  struct pmbus_sensor *sensor, s64 val)
865 {
866 	u16 regval;
867 
868 	if (!sensor->convert)
869 		return val;
870 
871 	switch (data->info->format[sensor->class]) {
872 	case direct:
873 		regval = pmbus_data2reg_direct(data, sensor, val);
874 		break;
875 	case vid:
876 		regval = pmbus_data2reg_vid(data, sensor, val);
877 		break;
878 	case linear:
879 	default:
880 		regval = pmbus_data2reg_linear(data, sensor, val);
881 		break;
882 	}
883 	return regval;
884 }
885 
886 /*
887  * Return boolean calculated from converted data.
888  * <index> defines a status register index and mask.
889  * The mask is in the lower 8 bits, the register index is in bits 8..23.
890  *
891  * The associated pmbus_boolean structure contains optional pointers to two
892  * sensor attributes. If specified, those attributes are compared against each
893  * other to determine if a limit has been exceeded.
894  *
895  * If the sensor attribute pointers are NULL, the function returns true if
896  * (status[reg] & mask) is true.
897  *
898  * If sensor attribute pointers are provided, a comparison against a specified
899  * limit has to be performed to determine the boolean result.
900  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
901  * sensor values referenced by sensor attribute pointers s1 and s2).
902  *
903  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
904  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
905  *
906  * If a negative value is stored in any of the referenced registers, this value
907  * reflects an error code which will be returned.
908  */
909 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
910 			     int index)
911 {
912 	struct pmbus_data *data = i2c_get_clientdata(client);
913 	struct pmbus_sensor *s1 = b->s1;
914 	struct pmbus_sensor *s2 = b->s2;
915 	u16 mask = pb_index_to_mask(index);
916 	u8 page = pb_index_to_page(index);
917 	u16 reg = pb_index_to_reg(index);
918 	int ret, status;
919 	u16 regval;
920 
921 	mutex_lock(&data->update_lock);
922 	status = pmbus_get_status(client, page, reg);
923 	if (status < 0) {
924 		ret = status;
925 		goto unlock;
926 	}
927 
928 	if (s1)
929 		pmbus_update_sensor_data(client, s1);
930 	if (s2)
931 		pmbus_update_sensor_data(client, s2);
932 
933 	regval = status & mask;
934 	if (regval) {
935 		ret = _pmbus_write_byte_data(client, page, reg, regval);
936 		if (ret)
937 			goto unlock;
938 	}
939 	if (s1 && s2) {
940 		s64 v1, v2;
941 
942 		if (s1->data < 0) {
943 			ret = s1->data;
944 			goto unlock;
945 		}
946 		if (s2->data < 0) {
947 			ret = s2->data;
948 			goto unlock;
949 		}
950 
951 		v1 = pmbus_reg2data(data, s1);
952 		v2 = pmbus_reg2data(data, s2);
953 		ret = !!(regval && v1 >= v2);
954 	} else {
955 		ret = !!regval;
956 	}
957 unlock:
958 	mutex_unlock(&data->update_lock);
959 	return ret;
960 }
961 
962 static ssize_t pmbus_show_boolean(struct device *dev,
963 				  struct device_attribute *da, char *buf)
964 {
965 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
966 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
967 	struct i2c_client *client = to_i2c_client(dev->parent);
968 	int val;
969 
970 	val = pmbus_get_boolean(client, boolean, attr->index);
971 	if (val < 0)
972 		return val;
973 	return sysfs_emit(buf, "%d\n", val);
974 }
975 
976 static ssize_t pmbus_show_sensor(struct device *dev,
977 				 struct device_attribute *devattr, char *buf)
978 {
979 	struct i2c_client *client = to_i2c_client(dev->parent);
980 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
981 	struct pmbus_data *data = i2c_get_clientdata(client);
982 	ssize_t ret;
983 
984 	mutex_lock(&data->update_lock);
985 	pmbus_update_sensor_data(client, sensor);
986 	if (sensor->data < 0)
987 		ret = sensor->data;
988 	else
989 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
990 	mutex_unlock(&data->update_lock);
991 	return ret;
992 }
993 
994 static ssize_t pmbus_set_sensor(struct device *dev,
995 				struct device_attribute *devattr,
996 				const char *buf, size_t count)
997 {
998 	struct i2c_client *client = to_i2c_client(dev->parent);
999 	struct pmbus_data *data = i2c_get_clientdata(client);
1000 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1001 	ssize_t rv = count;
1002 	s64 val;
1003 	int ret;
1004 	u16 regval;
1005 
1006 	if (kstrtos64(buf, 10, &val) < 0)
1007 		return -EINVAL;
1008 
1009 	mutex_lock(&data->update_lock);
1010 	regval = pmbus_data2reg(data, sensor, val);
1011 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1012 	if (ret < 0)
1013 		rv = ret;
1014 	else
1015 		sensor->data = -ENODATA;
1016 	mutex_unlock(&data->update_lock);
1017 	return rv;
1018 }
1019 
1020 static ssize_t pmbus_show_label(struct device *dev,
1021 				struct device_attribute *da, char *buf)
1022 {
1023 	struct pmbus_label *label = to_pmbus_label(da);
1024 
1025 	return sysfs_emit(buf, "%s\n", label->label);
1026 }
1027 
1028 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1029 {
1030 	if (data->num_attributes >= data->max_attributes - 1) {
1031 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1032 		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1033 						new_max_attrs * sizeof(void *),
1034 						GFP_KERNEL);
1035 		if (!new_attrs)
1036 			return -ENOMEM;
1037 		data->group.attrs = new_attrs;
1038 		data->max_attributes = new_max_attrs;
1039 	}
1040 
1041 	data->group.attrs[data->num_attributes++] = attr;
1042 	data->group.attrs[data->num_attributes] = NULL;
1043 	return 0;
1044 }
1045 
1046 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1047 				const char *name,
1048 				umode_t mode,
1049 				ssize_t (*show)(struct device *dev,
1050 						struct device_attribute *attr,
1051 						char *buf),
1052 				ssize_t (*store)(struct device *dev,
1053 						 struct device_attribute *attr,
1054 						 const char *buf, size_t count))
1055 {
1056 	sysfs_attr_init(&dev_attr->attr);
1057 	dev_attr->attr.name = name;
1058 	dev_attr->attr.mode = mode;
1059 	dev_attr->show = show;
1060 	dev_attr->store = store;
1061 }
1062 
1063 static void pmbus_attr_init(struct sensor_device_attribute *a,
1064 			    const char *name,
1065 			    umode_t mode,
1066 			    ssize_t (*show)(struct device *dev,
1067 					    struct device_attribute *attr,
1068 					    char *buf),
1069 			    ssize_t (*store)(struct device *dev,
1070 					     struct device_attribute *attr,
1071 					     const char *buf, size_t count),
1072 			    int idx)
1073 {
1074 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1075 	a->index = idx;
1076 }
1077 
1078 static int pmbus_add_boolean(struct pmbus_data *data,
1079 			     const char *name, const char *type, int seq,
1080 			     struct pmbus_sensor *s1,
1081 			     struct pmbus_sensor *s2,
1082 			     u8 page, u16 reg, u16 mask)
1083 {
1084 	struct pmbus_boolean *boolean;
1085 	struct sensor_device_attribute *a;
1086 
1087 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1088 		return -EINVAL;
1089 
1090 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1091 	if (!boolean)
1092 		return -ENOMEM;
1093 
1094 	a = &boolean->attribute;
1095 
1096 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1097 		 name, seq, type);
1098 	boolean->s1 = s1;
1099 	boolean->s2 = s2;
1100 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1101 			pb_reg_to_index(page, reg, mask));
1102 
1103 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1104 }
1105 
1106 /* of thermal for pmbus temperature sensors */
1107 struct pmbus_thermal_data {
1108 	struct pmbus_data *pmbus_data;
1109 	struct pmbus_sensor *sensor;
1110 };
1111 
1112 static int pmbus_thermal_get_temp(void *data, int *temp)
1113 {
1114 	struct pmbus_thermal_data *tdata = data;
1115 	struct pmbus_sensor *sensor = tdata->sensor;
1116 	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1117 	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1118 	struct device *dev = pmbus_data->hwmon_dev;
1119 	int ret = 0;
1120 
1121 	if (!dev) {
1122 		/* May not even get to hwmon yet */
1123 		*temp = 0;
1124 		return 0;
1125 	}
1126 
1127 	mutex_lock(&pmbus_data->update_lock);
1128 	pmbus_update_sensor_data(client, sensor);
1129 	if (sensor->data < 0)
1130 		ret = sensor->data;
1131 	else
1132 		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1133 	mutex_unlock(&pmbus_data->update_lock);
1134 
1135 	return ret;
1136 }
1137 
1138 static const struct thermal_zone_of_device_ops pmbus_thermal_ops = {
1139 	.get_temp = pmbus_thermal_get_temp,
1140 };
1141 
1142 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1143 				    struct pmbus_sensor *sensor, int index)
1144 {
1145 	struct device *dev = pmbus_data->dev;
1146 	struct pmbus_thermal_data *tdata;
1147 	struct thermal_zone_device *tzd;
1148 
1149 	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1150 	if (!tdata)
1151 		return -ENOMEM;
1152 
1153 	tdata->sensor = sensor;
1154 	tdata->pmbus_data = pmbus_data;
1155 
1156 	tzd = devm_thermal_zone_of_sensor_register(dev, index, tdata,
1157 						   &pmbus_thermal_ops);
1158 	/*
1159 	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1160 	 * so ignore that error but forward any other error.
1161 	 */
1162 	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1163 		return PTR_ERR(tzd);
1164 
1165 	return 0;
1166 }
1167 
1168 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1169 					     const char *name, const char *type,
1170 					     int seq, int page, int phase,
1171 					     int reg,
1172 					     enum pmbus_sensor_classes class,
1173 					     bool update, bool readonly,
1174 					     bool convert)
1175 {
1176 	struct pmbus_sensor *sensor;
1177 	struct device_attribute *a;
1178 
1179 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1180 	if (!sensor)
1181 		return NULL;
1182 	a = &sensor->attribute;
1183 
1184 	if (type)
1185 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1186 			 name, seq, type);
1187 	else
1188 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1189 			 name, seq);
1190 
1191 	if (data->flags & PMBUS_WRITE_PROTECTED)
1192 		readonly = true;
1193 
1194 	sensor->page = page;
1195 	sensor->phase = phase;
1196 	sensor->reg = reg;
1197 	sensor->class = class;
1198 	sensor->update = update;
1199 	sensor->convert = convert;
1200 	sensor->data = -ENODATA;
1201 	pmbus_dev_attr_init(a, sensor->name,
1202 			    readonly ? 0444 : 0644,
1203 			    pmbus_show_sensor, pmbus_set_sensor);
1204 
1205 	if (pmbus_add_attribute(data, &a->attr))
1206 		return NULL;
1207 
1208 	sensor->next = data->sensors;
1209 	data->sensors = sensor;
1210 
1211 	/* temperature sensors with _input values are registered with thermal */
1212 	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1213 		pmbus_thermal_add_sensor(data, sensor, seq);
1214 
1215 	return sensor;
1216 }
1217 
1218 static int pmbus_add_label(struct pmbus_data *data,
1219 			   const char *name, int seq,
1220 			   const char *lstring, int index, int phase)
1221 {
1222 	struct pmbus_label *label;
1223 	struct device_attribute *a;
1224 
1225 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1226 	if (!label)
1227 		return -ENOMEM;
1228 
1229 	a = &label->attribute;
1230 
1231 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1232 	if (!index) {
1233 		if (phase == 0xff)
1234 			strncpy(label->label, lstring,
1235 				sizeof(label->label) - 1);
1236 		else
1237 			snprintf(label->label, sizeof(label->label), "%s.%d",
1238 				 lstring, phase);
1239 	} else {
1240 		if (phase == 0xff)
1241 			snprintf(label->label, sizeof(label->label), "%s%d",
1242 				 lstring, index);
1243 		else
1244 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1245 				 lstring, index, phase);
1246 	}
1247 
1248 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1249 	return pmbus_add_attribute(data, &a->attr);
1250 }
1251 
1252 /*
1253  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1254  */
1255 
1256 /*
1257  * The pmbus_limit_attr structure describes a single limit attribute
1258  * and its associated alarm attribute.
1259  */
1260 struct pmbus_limit_attr {
1261 	u16 reg;		/* Limit register */
1262 	u16 sbit;		/* Alarm attribute status bit */
1263 	bool update;		/* True if register needs updates */
1264 	bool low;		/* True if low limit; for limits with compare
1265 				   functions only */
1266 	const char *attr;	/* Attribute name */
1267 	const char *alarm;	/* Alarm attribute name */
1268 };
1269 
1270 /*
1271  * The pmbus_sensor_attr structure describes one sensor attribute. This
1272  * description includes a reference to the associated limit attributes.
1273  */
1274 struct pmbus_sensor_attr {
1275 	u16 reg;			/* sensor register */
1276 	u16 gbit;			/* generic status bit */
1277 	u8 nlimit;			/* # of limit registers */
1278 	enum pmbus_sensor_classes class;/* sensor class */
1279 	const char *label;		/* sensor label */
1280 	bool paged;			/* true if paged sensor */
1281 	bool update;			/* true if update needed */
1282 	bool compare;			/* true if compare function needed */
1283 	u32 func;			/* sensor mask */
1284 	u32 sfunc;			/* sensor status mask */
1285 	int sreg;			/* status register */
1286 	const struct pmbus_limit_attr *limit;/* limit registers */
1287 };
1288 
1289 /*
1290  * Add a set of limit attributes and, if supported, the associated
1291  * alarm attributes.
1292  * returns 0 if no alarm register found, 1 if an alarm register was found,
1293  * < 0 on errors.
1294  */
1295 static int pmbus_add_limit_attrs(struct i2c_client *client,
1296 				 struct pmbus_data *data,
1297 				 const struct pmbus_driver_info *info,
1298 				 const char *name, int index, int page,
1299 				 struct pmbus_sensor *base,
1300 				 const struct pmbus_sensor_attr *attr)
1301 {
1302 	const struct pmbus_limit_attr *l = attr->limit;
1303 	int nlimit = attr->nlimit;
1304 	int have_alarm = 0;
1305 	int i, ret;
1306 	struct pmbus_sensor *curr;
1307 
1308 	for (i = 0; i < nlimit; i++) {
1309 		if (pmbus_check_word_register(client, page, l->reg)) {
1310 			curr = pmbus_add_sensor(data, name, l->attr, index,
1311 						page, 0xff, l->reg, attr->class,
1312 						attr->update || l->update,
1313 						false, true);
1314 			if (!curr)
1315 				return -ENOMEM;
1316 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1317 				ret = pmbus_add_boolean(data, name,
1318 					l->alarm, index,
1319 					attr->compare ?  l->low ? curr : base
1320 						      : NULL,
1321 					attr->compare ? l->low ? base : curr
1322 						      : NULL,
1323 					page, attr->sreg, l->sbit);
1324 				if (ret)
1325 					return ret;
1326 				have_alarm = 1;
1327 			}
1328 		}
1329 		l++;
1330 	}
1331 	return have_alarm;
1332 }
1333 
1334 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1335 				      struct pmbus_data *data,
1336 				      const struct pmbus_driver_info *info,
1337 				      const char *name,
1338 				      int index, int page, int phase,
1339 				      const struct pmbus_sensor_attr *attr,
1340 				      bool paged)
1341 {
1342 	struct pmbus_sensor *base;
1343 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1344 	int ret;
1345 
1346 	if (attr->label) {
1347 		ret = pmbus_add_label(data, name, index, attr->label,
1348 				      paged ? page + 1 : 0, phase);
1349 		if (ret)
1350 			return ret;
1351 	}
1352 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1353 				attr->reg, attr->class, true, true, true);
1354 	if (!base)
1355 		return -ENOMEM;
1356 	/* No limit and alarm attributes for phase specific sensors */
1357 	if (attr->sfunc && phase == 0xff) {
1358 		ret = pmbus_add_limit_attrs(client, data, info, name,
1359 					    index, page, base, attr);
1360 		if (ret < 0)
1361 			return ret;
1362 		/*
1363 		 * Add generic alarm attribute only if there are no individual
1364 		 * alarm attributes, if there is a global alarm bit, and if
1365 		 * the generic status register (word or byte, depending on
1366 		 * which global bit is set) for this page is accessible.
1367 		 */
1368 		if (!ret && attr->gbit &&
1369 		    (!upper || data->has_status_word) &&
1370 		    pmbus_check_status_register(client, page)) {
1371 			ret = pmbus_add_boolean(data, name, "alarm", index,
1372 						NULL, NULL,
1373 						page, PMBUS_STATUS_WORD,
1374 						attr->gbit);
1375 			if (ret)
1376 				return ret;
1377 		}
1378 	}
1379 	return 0;
1380 }
1381 
1382 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1383 				  const struct pmbus_sensor_attr *attr)
1384 {
1385 	int p;
1386 
1387 	if (attr->paged)
1388 		return true;
1389 
1390 	/*
1391 	 * Some attributes may be present on more than one page despite
1392 	 * not being marked with the paged attribute. If that is the case,
1393 	 * then treat the sensor as being paged and add the page suffix to the
1394 	 * attribute name.
1395 	 * We don't just add the paged attribute to all such attributes, in
1396 	 * order to maintain the un-suffixed labels in the case where the
1397 	 * attribute is only on page 0.
1398 	 */
1399 	for (p = 1; p < info->pages; p++) {
1400 		if (info->func[p] & attr->func)
1401 			return true;
1402 	}
1403 	return false;
1404 }
1405 
1406 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1407 				  struct pmbus_data *data,
1408 				  const char *name,
1409 				  const struct pmbus_sensor_attr *attrs,
1410 				  int nattrs)
1411 {
1412 	const struct pmbus_driver_info *info = data->info;
1413 	int index, i;
1414 	int ret;
1415 
1416 	index = 1;
1417 	for (i = 0; i < nattrs; i++) {
1418 		int page, pages;
1419 		bool paged = pmbus_sensor_is_paged(info, attrs);
1420 
1421 		pages = paged ? info->pages : 1;
1422 		for (page = 0; page < pages; page++) {
1423 			if (info->func[page] & attrs->func) {
1424 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1425 								 name, index, page,
1426 								 0xff, attrs, paged);
1427 				if (ret)
1428 					return ret;
1429 				index++;
1430 			}
1431 			if (info->phases[page]) {
1432 				int phase;
1433 
1434 				for (phase = 0; phase < info->phases[page];
1435 				     phase++) {
1436 					if (!(info->pfunc[phase] & attrs->func))
1437 						continue;
1438 					ret = pmbus_add_sensor_attrs_one(client,
1439 						data, info, name, index, page,
1440 						phase, attrs, paged);
1441 					if (ret)
1442 						return ret;
1443 					index++;
1444 				}
1445 			}
1446 		}
1447 		attrs++;
1448 	}
1449 	return 0;
1450 }
1451 
1452 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1453 	{
1454 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1455 		.attr = "min",
1456 		.alarm = "min_alarm",
1457 		.sbit = PB_VOLTAGE_UV_WARNING,
1458 	}, {
1459 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1460 		.attr = "lcrit",
1461 		.alarm = "lcrit_alarm",
1462 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1463 	}, {
1464 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1465 		.attr = "max",
1466 		.alarm = "max_alarm",
1467 		.sbit = PB_VOLTAGE_OV_WARNING,
1468 	}, {
1469 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1470 		.attr = "crit",
1471 		.alarm = "crit_alarm",
1472 		.sbit = PB_VOLTAGE_OV_FAULT,
1473 	}, {
1474 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1475 		.update = true,
1476 		.attr = "average",
1477 	}, {
1478 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1479 		.update = true,
1480 		.attr = "lowest",
1481 	}, {
1482 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1483 		.update = true,
1484 		.attr = "highest",
1485 	}, {
1486 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1487 		.attr = "reset_history",
1488 	}, {
1489 		.reg = PMBUS_MFR_VIN_MIN,
1490 		.attr = "rated_min",
1491 	}, {
1492 		.reg = PMBUS_MFR_VIN_MAX,
1493 		.attr = "rated_max",
1494 	},
1495 };
1496 
1497 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1498 	{
1499 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1500 		.attr = "min",
1501 		.alarm = "min_alarm",
1502 		.sbit = PB_VOLTAGE_UV_WARNING,
1503 	}, {
1504 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1505 		.attr = "lcrit",
1506 		.alarm = "lcrit_alarm",
1507 		.sbit = PB_VOLTAGE_UV_FAULT,
1508 	}, {
1509 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1510 		.attr = "max",
1511 		.alarm = "max_alarm",
1512 		.sbit = PB_VOLTAGE_OV_WARNING,
1513 	}, {
1514 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1515 		.attr = "crit",
1516 		.alarm = "crit_alarm",
1517 		.sbit = PB_VOLTAGE_OV_FAULT,
1518 	}
1519 };
1520 
1521 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1522 	{
1523 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1524 		.attr = "min",
1525 		.alarm = "min_alarm",
1526 		.sbit = PB_VOLTAGE_UV_WARNING,
1527 	}, {
1528 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1529 		.attr = "lcrit",
1530 		.alarm = "lcrit_alarm",
1531 		.sbit = PB_VOLTAGE_UV_FAULT,
1532 	}, {
1533 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1534 		.attr = "max",
1535 		.alarm = "max_alarm",
1536 		.sbit = PB_VOLTAGE_OV_WARNING,
1537 	}, {
1538 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1539 		.attr = "crit",
1540 		.alarm = "crit_alarm",
1541 		.sbit = PB_VOLTAGE_OV_FAULT,
1542 	}, {
1543 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1544 		.update = true,
1545 		.attr = "average",
1546 	}, {
1547 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1548 		.update = true,
1549 		.attr = "lowest",
1550 	}, {
1551 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1552 		.update = true,
1553 		.attr = "highest",
1554 	}, {
1555 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1556 		.attr = "reset_history",
1557 	}, {
1558 		.reg = PMBUS_MFR_VOUT_MIN,
1559 		.attr = "rated_min",
1560 	}, {
1561 		.reg = PMBUS_MFR_VOUT_MAX,
1562 		.attr = "rated_max",
1563 	},
1564 };
1565 
1566 static const struct pmbus_sensor_attr voltage_attributes[] = {
1567 	{
1568 		.reg = PMBUS_READ_VIN,
1569 		.class = PSC_VOLTAGE_IN,
1570 		.label = "vin",
1571 		.func = PMBUS_HAVE_VIN,
1572 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1573 		.sreg = PMBUS_STATUS_INPUT,
1574 		.gbit = PB_STATUS_VIN_UV,
1575 		.limit = vin_limit_attrs,
1576 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1577 	}, {
1578 		.reg = PMBUS_VIRT_READ_VMON,
1579 		.class = PSC_VOLTAGE_IN,
1580 		.label = "vmon",
1581 		.func = PMBUS_HAVE_VMON,
1582 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1583 		.sreg = PMBUS_VIRT_STATUS_VMON,
1584 		.limit = vmon_limit_attrs,
1585 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1586 	}, {
1587 		.reg = PMBUS_READ_VCAP,
1588 		.class = PSC_VOLTAGE_IN,
1589 		.label = "vcap",
1590 		.func = PMBUS_HAVE_VCAP,
1591 	}, {
1592 		.reg = PMBUS_READ_VOUT,
1593 		.class = PSC_VOLTAGE_OUT,
1594 		.label = "vout",
1595 		.paged = true,
1596 		.func = PMBUS_HAVE_VOUT,
1597 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1598 		.sreg = PMBUS_STATUS_VOUT,
1599 		.gbit = PB_STATUS_VOUT_OV,
1600 		.limit = vout_limit_attrs,
1601 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1602 	}
1603 };
1604 
1605 /* Current attributes */
1606 
1607 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1608 	{
1609 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1610 		.attr = "max",
1611 		.alarm = "max_alarm",
1612 		.sbit = PB_IIN_OC_WARNING,
1613 	}, {
1614 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1615 		.attr = "crit",
1616 		.alarm = "crit_alarm",
1617 		.sbit = PB_IIN_OC_FAULT,
1618 	}, {
1619 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1620 		.update = true,
1621 		.attr = "average",
1622 	}, {
1623 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1624 		.update = true,
1625 		.attr = "lowest",
1626 	}, {
1627 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1628 		.update = true,
1629 		.attr = "highest",
1630 	}, {
1631 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1632 		.attr = "reset_history",
1633 	}, {
1634 		.reg = PMBUS_MFR_IIN_MAX,
1635 		.attr = "rated_max",
1636 	},
1637 };
1638 
1639 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1640 	{
1641 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1642 		.attr = "max",
1643 		.alarm = "max_alarm",
1644 		.sbit = PB_IOUT_OC_WARNING,
1645 	}, {
1646 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1647 		.attr = "lcrit",
1648 		.alarm = "lcrit_alarm",
1649 		.sbit = PB_IOUT_UC_FAULT,
1650 	}, {
1651 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1652 		.attr = "crit",
1653 		.alarm = "crit_alarm",
1654 		.sbit = PB_IOUT_OC_FAULT,
1655 	}, {
1656 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1657 		.update = true,
1658 		.attr = "average",
1659 	}, {
1660 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1661 		.update = true,
1662 		.attr = "lowest",
1663 	}, {
1664 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1665 		.update = true,
1666 		.attr = "highest",
1667 	}, {
1668 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1669 		.attr = "reset_history",
1670 	}, {
1671 		.reg = PMBUS_MFR_IOUT_MAX,
1672 		.attr = "rated_max",
1673 	},
1674 };
1675 
1676 static const struct pmbus_sensor_attr current_attributes[] = {
1677 	{
1678 		.reg = PMBUS_READ_IIN,
1679 		.class = PSC_CURRENT_IN,
1680 		.label = "iin",
1681 		.func = PMBUS_HAVE_IIN,
1682 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1683 		.sreg = PMBUS_STATUS_INPUT,
1684 		.gbit = PB_STATUS_INPUT,
1685 		.limit = iin_limit_attrs,
1686 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1687 	}, {
1688 		.reg = PMBUS_READ_IOUT,
1689 		.class = PSC_CURRENT_OUT,
1690 		.label = "iout",
1691 		.paged = true,
1692 		.func = PMBUS_HAVE_IOUT,
1693 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1694 		.sreg = PMBUS_STATUS_IOUT,
1695 		.gbit = PB_STATUS_IOUT_OC,
1696 		.limit = iout_limit_attrs,
1697 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1698 	}
1699 };
1700 
1701 /* Power attributes */
1702 
1703 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1704 	{
1705 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1706 		.attr = "max",
1707 		.alarm = "alarm",
1708 		.sbit = PB_PIN_OP_WARNING,
1709 	}, {
1710 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1711 		.update = true,
1712 		.attr = "average",
1713 	}, {
1714 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1715 		.update = true,
1716 		.attr = "input_lowest",
1717 	}, {
1718 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1719 		.update = true,
1720 		.attr = "input_highest",
1721 	}, {
1722 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1723 		.attr = "reset_history",
1724 	}, {
1725 		.reg = PMBUS_MFR_PIN_MAX,
1726 		.attr = "rated_max",
1727 	},
1728 };
1729 
1730 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1731 	{
1732 		.reg = PMBUS_POUT_MAX,
1733 		.attr = "cap",
1734 		.alarm = "cap_alarm",
1735 		.sbit = PB_POWER_LIMITING,
1736 	}, {
1737 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1738 		.attr = "max",
1739 		.alarm = "max_alarm",
1740 		.sbit = PB_POUT_OP_WARNING,
1741 	}, {
1742 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1743 		.attr = "crit",
1744 		.alarm = "crit_alarm",
1745 		.sbit = PB_POUT_OP_FAULT,
1746 	}, {
1747 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1748 		.update = true,
1749 		.attr = "average",
1750 	}, {
1751 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1752 		.update = true,
1753 		.attr = "input_lowest",
1754 	}, {
1755 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1756 		.update = true,
1757 		.attr = "input_highest",
1758 	}, {
1759 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1760 		.attr = "reset_history",
1761 	}, {
1762 		.reg = PMBUS_MFR_POUT_MAX,
1763 		.attr = "rated_max",
1764 	},
1765 };
1766 
1767 static const struct pmbus_sensor_attr power_attributes[] = {
1768 	{
1769 		.reg = PMBUS_READ_PIN,
1770 		.class = PSC_POWER,
1771 		.label = "pin",
1772 		.func = PMBUS_HAVE_PIN,
1773 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1774 		.sreg = PMBUS_STATUS_INPUT,
1775 		.gbit = PB_STATUS_INPUT,
1776 		.limit = pin_limit_attrs,
1777 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1778 	}, {
1779 		.reg = PMBUS_READ_POUT,
1780 		.class = PSC_POWER,
1781 		.label = "pout",
1782 		.paged = true,
1783 		.func = PMBUS_HAVE_POUT,
1784 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1785 		.sreg = PMBUS_STATUS_IOUT,
1786 		.limit = pout_limit_attrs,
1787 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1788 	}
1789 };
1790 
1791 /* Temperature atributes */
1792 
1793 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1794 	{
1795 		.reg = PMBUS_UT_WARN_LIMIT,
1796 		.low = true,
1797 		.attr = "min",
1798 		.alarm = "min_alarm",
1799 		.sbit = PB_TEMP_UT_WARNING,
1800 	}, {
1801 		.reg = PMBUS_UT_FAULT_LIMIT,
1802 		.low = true,
1803 		.attr = "lcrit",
1804 		.alarm = "lcrit_alarm",
1805 		.sbit = PB_TEMP_UT_FAULT,
1806 	}, {
1807 		.reg = PMBUS_OT_WARN_LIMIT,
1808 		.attr = "max",
1809 		.alarm = "max_alarm",
1810 		.sbit = PB_TEMP_OT_WARNING,
1811 	}, {
1812 		.reg = PMBUS_OT_FAULT_LIMIT,
1813 		.attr = "crit",
1814 		.alarm = "crit_alarm",
1815 		.sbit = PB_TEMP_OT_FAULT,
1816 	}, {
1817 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1818 		.attr = "lowest",
1819 	}, {
1820 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1821 		.attr = "average",
1822 	}, {
1823 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1824 		.attr = "highest",
1825 	}, {
1826 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1827 		.attr = "reset_history",
1828 	}, {
1829 		.reg = PMBUS_MFR_MAX_TEMP_1,
1830 		.attr = "rated_max",
1831 	},
1832 };
1833 
1834 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1835 	{
1836 		.reg = PMBUS_UT_WARN_LIMIT,
1837 		.low = true,
1838 		.attr = "min",
1839 		.alarm = "min_alarm",
1840 		.sbit = PB_TEMP_UT_WARNING,
1841 	}, {
1842 		.reg = PMBUS_UT_FAULT_LIMIT,
1843 		.low = true,
1844 		.attr = "lcrit",
1845 		.alarm = "lcrit_alarm",
1846 		.sbit = PB_TEMP_UT_FAULT,
1847 	}, {
1848 		.reg = PMBUS_OT_WARN_LIMIT,
1849 		.attr = "max",
1850 		.alarm = "max_alarm",
1851 		.sbit = PB_TEMP_OT_WARNING,
1852 	}, {
1853 		.reg = PMBUS_OT_FAULT_LIMIT,
1854 		.attr = "crit",
1855 		.alarm = "crit_alarm",
1856 		.sbit = PB_TEMP_OT_FAULT,
1857 	}, {
1858 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1859 		.attr = "lowest",
1860 	}, {
1861 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1862 		.attr = "average",
1863 	}, {
1864 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1865 		.attr = "highest",
1866 	}, {
1867 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1868 		.attr = "reset_history",
1869 	}, {
1870 		.reg = PMBUS_MFR_MAX_TEMP_2,
1871 		.attr = "rated_max",
1872 	},
1873 };
1874 
1875 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1876 	{
1877 		.reg = PMBUS_UT_WARN_LIMIT,
1878 		.low = true,
1879 		.attr = "min",
1880 		.alarm = "min_alarm",
1881 		.sbit = PB_TEMP_UT_WARNING,
1882 	}, {
1883 		.reg = PMBUS_UT_FAULT_LIMIT,
1884 		.low = true,
1885 		.attr = "lcrit",
1886 		.alarm = "lcrit_alarm",
1887 		.sbit = PB_TEMP_UT_FAULT,
1888 	}, {
1889 		.reg = PMBUS_OT_WARN_LIMIT,
1890 		.attr = "max",
1891 		.alarm = "max_alarm",
1892 		.sbit = PB_TEMP_OT_WARNING,
1893 	}, {
1894 		.reg = PMBUS_OT_FAULT_LIMIT,
1895 		.attr = "crit",
1896 		.alarm = "crit_alarm",
1897 		.sbit = PB_TEMP_OT_FAULT,
1898 	}, {
1899 		.reg = PMBUS_MFR_MAX_TEMP_3,
1900 		.attr = "rated_max",
1901 	},
1902 };
1903 
1904 static const struct pmbus_sensor_attr temp_attributes[] = {
1905 	{
1906 		.reg = PMBUS_READ_TEMPERATURE_1,
1907 		.class = PSC_TEMPERATURE,
1908 		.paged = true,
1909 		.update = true,
1910 		.compare = true,
1911 		.func = PMBUS_HAVE_TEMP,
1912 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1913 		.sreg = PMBUS_STATUS_TEMPERATURE,
1914 		.gbit = PB_STATUS_TEMPERATURE,
1915 		.limit = temp_limit_attrs,
1916 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1917 	}, {
1918 		.reg = PMBUS_READ_TEMPERATURE_2,
1919 		.class = PSC_TEMPERATURE,
1920 		.paged = true,
1921 		.update = true,
1922 		.compare = true,
1923 		.func = PMBUS_HAVE_TEMP2,
1924 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1925 		.sreg = PMBUS_STATUS_TEMPERATURE,
1926 		.gbit = PB_STATUS_TEMPERATURE,
1927 		.limit = temp_limit_attrs2,
1928 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1929 	}, {
1930 		.reg = PMBUS_READ_TEMPERATURE_3,
1931 		.class = PSC_TEMPERATURE,
1932 		.paged = true,
1933 		.update = true,
1934 		.compare = true,
1935 		.func = PMBUS_HAVE_TEMP3,
1936 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1937 		.sreg = PMBUS_STATUS_TEMPERATURE,
1938 		.gbit = PB_STATUS_TEMPERATURE,
1939 		.limit = temp_limit_attrs3,
1940 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1941 	}
1942 };
1943 
1944 static const int pmbus_fan_registers[] = {
1945 	PMBUS_READ_FAN_SPEED_1,
1946 	PMBUS_READ_FAN_SPEED_2,
1947 	PMBUS_READ_FAN_SPEED_3,
1948 	PMBUS_READ_FAN_SPEED_4
1949 };
1950 
1951 static const int pmbus_fan_status_registers[] = {
1952 	PMBUS_STATUS_FAN_12,
1953 	PMBUS_STATUS_FAN_12,
1954 	PMBUS_STATUS_FAN_34,
1955 	PMBUS_STATUS_FAN_34
1956 };
1957 
1958 static const u32 pmbus_fan_flags[] = {
1959 	PMBUS_HAVE_FAN12,
1960 	PMBUS_HAVE_FAN12,
1961 	PMBUS_HAVE_FAN34,
1962 	PMBUS_HAVE_FAN34
1963 };
1964 
1965 static const u32 pmbus_fan_status_flags[] = {
1966 	PMBUS_HAVE_STATUS_FAN12,
1967 	PMBUS_HAVE_STATUS_FAN12,
1968 	PMBUS_HAVE_STATUS_FAN34,
1969 	PMBUS_HAVE_STATUS_FAN34
1970 };
1971 
1972 /* Fans */
1973 
1974 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
1975 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1976 		struct pmbus_data *data, int index, int page, int id,
1977 		u8 config)
1978 {
1979 	struct pmbus_sensor *sensor;
1980 
1981 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1982 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1983 				  false, false, true);
1984 
1985 	if (!sensor)
1986 		return -ENOMEM;
1987 
1988 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1989 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
1990 		return 0;
1991 
1992 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1993 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1994 				  false, false, true);
1995 
1996 	if (!sensor)
1997 		return -ENOMEM;
1998 
1999 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2000 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2001 				  true, false, false);
2002 
2003 	if (!sensor)
2004 		return -ENOMEM;
2005 
2006 	return 0;
2007 }
2008 
2009 static int pmbus_add_fan_attributes(struct i2c_client *client,
2010 				    struct pmbus_data *data)
2011 {
2012 	const struct pmbus_driver_info *info = data->info;
2013 	int index = 1;
2014 	int page;
2015 	int ret;
2016 
2017 	for (page = 0; page < info->pages; page++) {
2018 		int f;
2019 
2020 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2021 			int regval;
2022 
2023 			if (!(info->func[page] & pmbus_fan_flags[f]))
2024 				break;
2025 
2026 			if (!pmbus_check_word_register(client, page,
2027 						       pmbus_fan_registers[f]))
2028 				break;
2029 
2030 			/*
2031 			 * Skip fan if not installed.
2032 			 * Each fan configuration register covers multiple fans,
2033 			 * so we have to do some magic.
2034 			 */
2035 			regval = _pmbus_read_byte_data(client, page,
2036 				pmbus_fan_config_registers[f]);
2037 			if (regval < 0 ||
2038 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2039 				continue;
2040 
2041 			if (pmbus_add_sensor(data, "fan", "input", index,
2042 					     page, 0xff, pmbus_fan_registers[f],
2043 					     PSC_FAN, true, true, true) == NULL)
2044 				return -ENOMEM;
2045 
2046 			/* Fan control */
2047 			if (pmbus_check_word_register(client, page,
2048 					pmbus_fan_command_registers[f])) {
2049 				ret = pmbus_add_fan_ctrl(client, data, index,
2050 							 page, f, regval);
2051 				if (ret < 0)
2052 					return ret;
2053 			}
2054 
2055 			/*
2056 			 * Each fan status register covers multiple fans,
2057 			 * so we have to do some magic.
2058 			 */
2059 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2060 			    pmbus_check_byte_register(client,
2061 					page, pmbus_fan_status_registers[f])) {
2062 				int reg;
2063 
2064 				if (f > 1)	/* fan 3, 4 */
2065 					reg = PMBUS_STATUS_FAN_34;
2066 				else
2067 					reg = PMBUS_STATUS_FAN_12;
2068 				ret = pmbus_add_boolean(data, "fan",
2069 					"alarm", index, NULL, NULL, page, reg,
2070 					PB_FAN_FAN1_WARNING >> (f & 1));
2071 				if (ret)
2072 					return ret;
2073 				ret = pmbus_add_boolean(data, "fan",
2074 					"fault", index, NULL, NULL, page, reg,
2075 					PB_FAN_FAN1_FAULT >> (f & 1));
2076 				if (ret)
2077 					return ret;
2078 			}
2079 			index++;
2080 		}
2081 	}
2082 	return 0;
2083 }
2084 
2085 struct pmbus_samples_attr {
2086 	int reg;
2087 	char *name;
2088 };
2089 
2090 struct pmbus_samples_reg {
2091 	int page;
2092 	struct pmbus_samples_attr *attr;
2093 	struct device_attribute dev_attr;
2094 };
2095 
2096 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2097 	{
2098 		.reg = PMBUS_VIRT_SAMPLES,
2099 		.name = "samples",
2100 	}, {
2101 		.reg = PMBUS_VIRT_IN_SAMPLES,
2102 		.name = "in_samples",
2103 	}, {
2104 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2105 		.name = "curr_samples",
2106 	}, {
2107 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2108 		.name = "power_samples",
2109 	}, {
2110 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2111 		.name = "temp_samples",
2112 	}
2113 };
2114 
2115 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2116 
2117 static ssize_t pmbus_show_samples(struct device *dev,
2118 				  struct device_attribute *devattr, char *buf)
2119 {
2120 	int val;
2121 	struct i2c_client *client = to_i2c_client(dev->parent);
2122 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2123 	struct pmbus_data *data = i2c_get_clientdata(client);
2124 
2125 	mutex_lock(&data->update_lock);
2126 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2127 	mutex_unlock(&data->update_lock);
2128 	if (val < 0)
2129 		return val;
2130 
2131 	return sysfs_emit(buf, "%d\n", val);
2132 }
2133 
2134 static ssize_t pmbus_set_samples(struct device *dev,
2135 				 struct device_attribute *devattr,
2136 				 const char *buf, size_t count)
2137 {
2138 	int ret;
2139 	long val;
2140 	struct i2c_client *client = to_i2c_client(dev->parent);
2141 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2142 	struct pmbus_data *data = i2c_get_clientdata(client);
2143 
2144 	if (kstrtol(buf, 0, &val) < 0)
2145 		return -EINVAL;
2146 
2147 	mutex_lock(&data->update_lock);
2148 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2149 	mutex_unlock(&data->update_lock);
2150 
2151 	return ret ? : count;
2152 }
2153 
2154 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2155 				  struct pmbus_samples_attr *attr)
2156 {
2157 	struct pmbus_samples_reg *reg;
2158 
2159 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2160 	if (!reg)
2161 		return -ENOMEM;
2162 
2163 	reg->attr = attr;
2164 	reg->page = page;
2165 
2166 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2167 			    pmbus_show_samples, pmbus_set_samples);
2168 
2169 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2170 }
2171 
2172 static int pmbus_add_samples_attributes(struct i2c_client *client,
2173 					struct pmbus_data *data)
2174 {
2175 	const struct pmbus_driver_info *info = data->info;
2176 	int s;
2177 
2178 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2179 		return 0;
2180 
2181 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2182 		struct pmbus_samples_attr *attr;
2183 		int ret;
2184 
2185 		attr = &pmbus_samples_registers[s];
2186 		if (!pmbus_check_word_register(client, 0, attr->reg))
2187 			continue;
2188 
2189 		ret = pmbus_add_samples_attr(data, 0, attr);
2190 		if (ret)
2191 			return ret;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static int pmbus_find_attributes(struct i2c_client *client,
2198 				 struct pmbus_data *data)
2199 {
2200 	int ret;
2201 
2202 	/* Voltage sensors */
2203 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2204 				     ARRAY_SIZE(voltage_attributes));
2205 	if (ret)
2206 		return ret;
2207 
2208 	/* Current sensors */
2209 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2210 				     ARRAY_SIZE(current_attributes));
2211 	if (ret)
2212 		return ret;
2213 
2214 	/* Power sensors */
2215 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2216 				     ARRAY_SIZE(power_attributes));
2217 	if (ret)
2218 		return ret;
2219 
2220 	/* Temperature sensors */
2221 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2222 				     ARRAY_SIZE(temp_attributes));
2223 	if (ret)
2224 		return ret;
2225 
2226 	/* Fans */
2227 	ret = pmbus_add_fan_attributes(client, data);
2228 	if (ret)
2229 		return ret;
2230 
2231 	ret = pmbus_add_samples_attributes(client, data);
2232 	return ret;
2233 }
2234 
2235 /*
2236  * The pmbus_class_attr_map structure maps one sensor class to
2237  * it's corresponding sensor attributes array.
2238  */
2239 struct pmbus_class_attr_map {
2240 	enum pmbus_sensor_classes class;
2241 	int nattr;
2242 	const struct pmbus_sensor_attr *attr;
2243 };
2244 
2245 static const struct pmbus_class_attr_map class_attr_map[] = {
2246 	{
2247 		.class = PSC_VOLTAGE_IN,
2248 		.attr = voltage_attributes,
2249 		.nattr = ARRAY_SIZE(voltage_attributes),
2250 	}, {
2251 		.class = PSC_VOLTAGE_OUT,
2252 		.attr = voltage_attributes,
2253 		.nattr = ARRAY_SIZE(voltage_attributes),
2254 	}, {
2255 		.class = PSC_CURRENT_IN,
2256 		.attr = current_attributes,
2257 		.nattr = ARRAY_SIZE(current_attributes),
2258 	}, {
2259 		.class = PSC_CURRENT_OUT,
2260 		.attr = current_attributes,
2261 		.nattr = ARRAY_SIZE(current_attributes),
2262 	}, {
2263 		.class = PSC_POWER,
2264 		.attr = power_attributes,
2265 		.nattr = ARRAY_SIZE(power_attributes),
2266 	}, {
2267 		.class = PSC_TEMPERATURE,
2268 		.attr = temp_attributes,
2269 		.nattr = ARRAY_SIZE(temp_attributes),
2270 	}
2271 };
2272 
2273 /*
2274  * Read the coefficients for direct mode.
2275  */
2276 static int pmbus_read_coefficients(struct i2c_client *client,
2277 				   struct pmbus_driver_info *info,
2278 				   const struct pmbus_sensor_attr *attr)
2279 {
2280 	int rv;
2281 	union i2c_smbus_data data;
2282 	enum pmbus_sensor_classes class = attr->class;
2283 	s8 R;
2284 	s16 m, b;
2285 
2286 	data.block[0] = 2;
2287 	data.block[1] = attr->reg;
2288 	data.block[2] = 0x01;
2289 
2290 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2291 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2292 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2293 
2294 	if (rv < 0)
2295 		return rv;
2296 
2297 	if (data.block[0] != 5)
2298 		return -EIO;
2299 
2300 	m = data.block[1] | (data.block[2] << 8);
2301 	b = data.block[3] | (data.block[4] << 8);
2302 	R = data.block[5];
2303 	info->m[class] = m;
2304 	info->b[class] = b;
2305 	info->R[class] = R;
2306 
2307 	return rv;
2308 }
2309 
2310 static int pmbus_init_coefficients(struct i2c_client *client,
2311 				   struct pmbus_driver_info *info)
2312 {
2313 	int i, n, ret = -EINVAL;
2314 	const struct pmbus_class_attr_map *map;
2315 	const struct pmbus_sensor_attr *attr;
2316 
2317 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2318 		map = &class_attr_map[i];
2319 		if (info->format[map->class] != direct)
2320 			continue;
2321 		for (n = 0; n < map->nattr; n++) {
2322 			attr = &map->attr[n];
2323 			if (map->class != attr->class)
2324 				continue;
2325 			ret = pmbus_read_coefficients(client, info, attr);
2326 			if (ret >= 0)
2327 				break;
2328 		}
2329 		if (ret < 0) {
2330 			dev_err(&client->dev,
2331 				"No coefficients found for sensor class %d\n",
2332 				map->class);
2333 			return -EINVAL;
2334 		}
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 /*
2341  * Identify chip parameters.
2342  * This function is called for all chips.
2343  */
2344 static int pmbus_identify_common(struct i2c_client *client,
2345 				 struct pmbus_data *data, int page)
2346 {
2347 	int vout_mode = -1;
2348 
2349 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2350 		vout_mode = _pmbus_read_byte_data(client, page,
2351 						  PMBUS_VOUT_MODE);
2352 	if (vout_mode >= 0 && vout_mode != 0xff) {
2353 		/*
2354 		 * Not all chips support the VOUT_MODE command,
2355 		 * so a failure to read it is not an error.
2356 		 */
2357 		switch (vout_mode >> 5) {
2358 		case 0:	/* linear mode      */
2359 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2360 				return -ENODEV;
2361 
2362 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2363 			break;
2364 		case 1: /* VID mode         */
2365 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2366 				return -ENODEV;
2367 			break;
2368 		case 2:	/* direct mode      */
2369 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2370 				return -ENODEV;
2371 			break;
2372 		default:
2373 			return -ENODEV;
2374 		}
2375 	}
2376 
2377 	pmbus_clear_fault_page(client, page);
2378 	return 0;
2379 }
2380 
2381 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2382 {
2383 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2384 }
2385 
2386 static int pmbus_read_status_word(struct i2c_client *client, int page)
2387 {
2388 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2389 }
2390 
2391 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2392 			     struct pmbus_driver_info *info)
2393 {
2394 	struct device *dev = &client->dev;
2395 	int page, ret;
2396 
2397 	/*
2398 	 * Figure out if PEC is enabled before accessing any other register.
2399 	 * Make sure PEC is disabled, will be enabled later if needed.
2400 	 */
2401 	client->flags &= ~I2C_CLIENT_PEC;
2402 
2403 	/* Enable PEC if the controller and bus supports it */
2404 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2405 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2406 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2407 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2408 				client->flags |= I2C_CLIENT_PEC;
2409 		}
2410 	}
2411 
2412 	/*
2413 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2414 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2415 	 * Bail out if both registers are not supported.
2416 	 */
2417 	data->read_status = pmbus_read_status_word;
2418 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2419 	if (ret < 0 || ret == 0xffff) {
2420 		data->read_status = pmbus_read_status_byte;
2421 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2422 		if (ret < 0 || ret == 0xff) {
2423 			dev_err(dev, "PMBus status register not found\n");
2424 			return -ENODEV;
2425 		}
2426 	} else {
2427 		data->has_status_word = true;
2428 	}
2429 
2430 	/*
2431 	 * Check if the chip is write protected. If it is, we can not clear
2432 	 * faults, and we should not try it. Also, in that case, writes into
2433 	 * limit registers need to be disabled.
2434 	 */
2435 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2436 		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2437 		if (ret > 0 && (ret & PB_WP_ANY))
2438 			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2439 	}
2440 
2441 	if (data->info->pages)
2442 		pmbus_clear_faults(client);
2443 	else
2444 		pmbus_clear_fault_page(client, -1);
2445 
2446 	if (info->identify) {
2447 		ret = (*info->identify)(client, info);
2448 		if (ret < 0) {
2449 			dev_err(dev, "Chip identification failed\n");
2450 			return ret;
2451 		}
2452 	}
2453 
2454 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2455 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2456 		return -ENODEV;
2457 	}
2458 
2459 	for (page = 0; page < info->pages; page++) {
2460 		ret = pmbus_identify_common(client, data, page);
2461 		if (ret < 0) {
2462 			dev_err(dev, "Failed to identify chip capabilities\n");
2463 			return ret;
2464 		}
2465 	}
2466 
2467 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2468 		if (!i2c_check_functionality(client->adapter,
2469 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2470 			return -ENODEV;
2471 
2472 		ret = pmbus_init_coefficients(client, info);
2473 		if (ret < 0)
2474 			return ret;
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 #if IS_ENABLED(CONFIG_REGULATOR)
2481 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2482 {
2483 	struct device *dev = rdev_get_dev(rdev);
2484 	struct i2c_client *client = to_i2c_client(dev->parent);
2485 	struct pmbus_data *data = i2c_get_clientdata(client);
2486 	u8 page = rdev_get_id(rdev);
2487 	int ret;
2488 
2489 	mutex_lock(&data->update_lock);
2490 	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2491 	mutex_unlock(&data->update_lock);
2492 
2493 	if (ret < 0)
2494 		return ret;
2495 
2496 	return !!(ret & PB_OPERATION_CONTROL_ON);
2497 }
2498 
2499 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2500 {
2501 	struct device *dev = rdev_get_dev(rdev);
2502 	struct i2c_client *client = to_i2c_client(dev->parent);
2503 	struct pmbus_data *data = i2c_get_clientdata(client);
2504 	u8 page = rdev_get_id(rdev);
2505 	int ret;
2506 
2507 	mutex_lock(&data->update_lock);
2508 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2509 				     PB_OPERATION_CONTROL_ON,
2510 				     enable ? PB_OPERATION_CONTROL_ON : 0);
2511 	mutex_unlock(&data->update_lock);
2512 
2513 	return ret;
2514 }
2515 
2516 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2517 {
2518 	return _pmbus_regulator_on_off(rdev, 1);
2519 }
2520 
2521 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2522 {
2523 	return _pmbus_regulator_on_off(rdev, 0);
2524 }
2525 
2526 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* flag */
2527 struct pmbus_regulator_status_assoc {
2528 	int pflag, rflag;
2529 };
2530 
2531 /* PMBus->regulator bit mappings for a PMBus status register */
2532 struct pmbus_regulator_status_category {
2533 	int func;
2534 	int reg;
2535 	const struct pmbus_regulator_status_assoc *bits; /* zero-terminated */
2536 };
2537 
2538 static const struct pmbus_regulator_status_category pmbus_regulator_flag_map[] = {
2539 	{
2540 		.func = PMBUS_HAVE_STATUS_VOUT,
2541 		.reg = PMBUS_STATUS_VOUT,
2542 		.bits = (const struct pmbus_regulator_status_assoc[]) {
2543 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN },
2544 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE },
2545 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN },
2546 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT },
2547 			{ },
2548 		},
2549 	}, {
2550 		.func = PMBUS_HAVE_STATUS_IOUT,
2551 		.reg = PMBUS_STATUS_IOUT,
2552 		.bits = (const struct pmbus_regulator_status_assoc[]) {
2553 			{ PB_IOUT_OC_WARNING,    REGULATOR_ERROR_OVER_CURRENT_WARN },
2554 			{ PB_IOUT_OC_FAULT,      REGULATOR_ERROR_OVER_CURRENT },
2555 			{ PB_IOUT_OC_LV_FAULT,   REGULATOR_ERROR_OVER_CURRENT },
2556 			{ },
2557 		},
2558 	}, {
2559 		.func = PMBUS_HAVE_STATUS_TEMP,
2560 		.reg = PMBUS_STATUS_TEMPERATURE,
2561 		.bits = (const struct pmbus_regulator_status_assoc[]) {
2562 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN },
2563 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP },
2564 			{ },
2565 		},
2566 	},
2567 };
2568 
2569 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2570 {
2571 	int i, status;
2572 	const struct pmbus_regulator_status_category *cat;
2573 	const struct pmbus_regulator_status_assoc *bit;
2574 	struct device *dev = rdev_get_dev(rdev);
2575 	struct i2c_client *client = to_i2c_client(dev->parent);
2576 	struct pmbus_data *data = i2c_get_clientdata(client);
2577 	u8 page = rdev_get_id(rdev);
2578 	int func = data->info->func[page];
2579 
2580 	*flags = 0;
2581 
2582 	mutex_lock(&data->update_lock);
2583 
2584 	for (i = 0; i < ARRAY_SIZE(pmbus_regulator_flag_map); i++) {
2585 		cat = &pmbus_regulator_flag_map[i];
2586 		if (!(func & cat->func))
2587 			continue;
2588 
2589 		status = _pmbus_read_byte_data(client, page, cat->reg);
2590 		if (status < 0) {
2591 			mutex_unlock(&data->update_lock);
2592 			return status;
2593 		}
2594 
2595 		for (bit = cat->bits; bit->pflag; bit++) {
2596 			if (status & bit->pflag)
2597 				*flags |= bit->rflag;
2598 		}
2599 	}
2600 
2601 	/*
2602 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2603 	 * bits.  Some of the other bits are tempting (especially for cases
2604 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2605 	 * functionality), but there's an unfortunate ambiguity in that
2606 	 * they're defined as indicating a fault *or* a warning, so we can't
2607 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2608 	 * REGULATOR_ERROR_<foo>_WARN.
2609 	 */
2610 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2611 	mutex_unlock(&data->update_lock);
2612 	if (status < 0)
2613 		return status;
2614 
2615 	if (pmbus_regulator_is_enabled(rdev) && (status & PB_STATUS_OFF))
2616 		*flags |= REGULATOR_ERROR_FAIL;
2617 
2618 	/*
2619 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2620 	 * defined strictly as fault indicators (not warnings).
2621 	 */
2622 	if (status & PB_STATUS_IOUT_OC)
2623 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2624 	if (status & PB_STATUS_VOUT_OV)
2625 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2626 
2627 	/*
2628 	 * If we haven't discovered any thermal faults or warnings via
2629 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2630 	 * a (conservative) best-effort interpretation.
2631 	 */
2632 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2633 	    (status & PB_STATUS_TEMPERATURE))
2634 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2635 
2636 	return 0;
2637 }
2638 
2639 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
2640 {
2641 	struct device *dev = rdev_get_dev(rdev);
2642 	struct i2c_client *client = to_i2c_client(dev->parent);
2643 	struct pmbus_data *data = i2c_get_clientdata(client);
2644 	struct pmbus_sensor s = {
2645 		.page = rdev_get_id(rdev),
2646 		.class = PSC_VOLTAGE_OUT,
2647 		.convert = true,
2648 	};
2649 
2650 	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
2651 	if (s.data < 0)
2652 		return s.data;
2653 
2654 	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
2655 }
2656 
2657 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
2658 				       int max_uv, unsigned int *selector)
2659 {
2660 	struct device *dev = rdev_get_dev(rdev);
2661 	struct i2c_client *client = to_i2c_client(dev->parent);
2662 	struct pmbus_data *data = i2c_get_clientdata(client);
2663 	struct pmbus_sensor s = {
2664 		.page = rdev_get_id(rdev),
2665 		.class = PSC_VOLTAGE_OUT,
2666 		.convert = true,
2667 		.data = -1,
2668 	};
2669 	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
2670 	int low, high;
2671 
2672 	*selector = 0;
2673 
2674 	if (pmbus_check_word_register(client, s.page, PMBUS_MFR_VOUT_MIN))
2675 		s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_MFR_VOUT_MIN);
2676 	if (s.data < 0) {
2677 		s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_VOUT_MARGIN_LOW);
2678 		if (s.data < 0)
2679 			return s.data;
2680 	}
2681 	low = pmbus_reg2data(data, &s);
2682 
2683 	s.data = -1;
2684 	if (pmbus_check_word_register(client, s.page, PMBUS_MFR_VOUT_MAX))
2685 		s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_MFR_VOUT_MAX);
2686 	if (s.data < 0) {
2687 		s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_VOUT_MARGIN_HIGH);
2688 		if (s.data < 0)
2689 			return s.data;
2690 	}
2691 	high = pmbus_reg2data(data, &s);
2692 
2693 	/* Make sure we are within margins */
2694 	if (low > val)
2695 		val = low;
2696 	if (high < val)
2697 		val = high;
2698 
2699 	val = pmbus_data2reg(data, &s, val);
2700 
2701 	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
2702 }
2703 
2704 const struct regulator_ops pmbus_regulator_ops = {
2705 	.enable = pmbus_regulator_enable,
2706 	.disable = pmbus_regulator_disable,
2707 	.is_enabled = pmbus_regulator_is_enabled,
2708 	.get_error_flags = pmbus_regulator_get_error_flags,
2709 	.get_voltage = pmbus_regulator_get_voltage,
2710 	.set_voltage = pmbus_regulator_set_voltage,
2711 };
2712 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
2713 
2714 static int pmbus_regulator_register(struct pmbus_data *data)
2715 {
2716 	struct device *dev = data->dev;
2717 	const struct pmbus_driver_info *info = data->info;
2718 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2719 	struct regulator_dev *rdev;
2720 	int i;
2721 
2722 	for (i = 0; i < info->num_regulators; i++) {
2723 		struct regulator_config config = { };
2724 
2725 		config.dev = dev;
2726 		config.driver_data = data;
2727 
2728 		if (pdata && pdata->reg_init_data)
2729 			config.init_data = &pdata->reg_init_data[i];
2730 
2731 		rdev = devm_regulator_register(dev, &info->reg_desc[i],
2732 					       &config);
2733 		if (IS_ERR(rdev)) {
2734 			dev_err(dev, "Failed to register %s regulator\n",
2735 				info->reg_desc[i].name);
2736 			return PTR_ERR(rdev);
2737 		}
2738 	}
2739 
2740 	return 0;
2741 }
2742 #else
2743 static int pmbus_regulator_register(struct pmbus_data *data)
2744 {
2745 	return 0;
2746 }
2747 #endif
2748 
2749 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
2750 
2751 #if IS_ENABLED(CONFIG_DEBUG_FS)
2752 static int pmbus_debugfs_get(void *data, u64 *val)
2753 {
2754 	int rc;
2755 	struct pmbus_debugfs_entry *entry = data;
2756 
2757 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2758 	if (rc < 0)
2759 		return rc;
2760 
2761 	*val = rc;
2762 
2763 	return 0;
2764 }
2765 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2766 			 "0x%02llx\n");
2767 
2768 static int pmbus_debugfs_get_status(void *data, u64 *val)
2769 {
2770 	int rc;
2771 	struct pmbus_debugfs_entry *entry = data;
2772 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2773 
2774 	rc = pdata->read_status(entry->client, entry->page);
2775 	if (rc < 0)
2776 		return rc;
2777 
2778 	*val = rc;
2779 
2780 	return 0;
2781 }
2782 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2783 			 NULL, "0x%04llx\n");
2784 
2785 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2786 {
2787 	struct i2c_client *client = data;
2788 
2789 	*val = !!(client->flags & I2C_CLIENT_PEC);
2790 
2791 	return 0;
2792 }
2793 
2794 static int pmbus_debugfs_set_pec(void *data, u64 val)
2795 {
2796 	int rc;
2797 	struct i2c_client *client = data;
2798 
2799 	if (!val) {
2800 		client->flags &= ~I2C_CLIENT_PEC;
2801 		return 0;
2802 	}
2803 
2804 	if (val != 1)
2805 		return -EINVAL;
2806 
2807 	rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2808 	if (rc < 0)
2809 		return rc;
2810 
2811 	if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2812 		return -EOPNOTSUPP;
2813 
2814 	client->flags |= I2C_CLIENT_PEC;
2815 
2816 	return 0;
2817 }
2818 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2819 			 pmbus_debugfs_set_pec, "%llu\n");
2820 
2821 static void pmbus_remove_debugfs(void *data)
2822 {
2823 	struct dentry *entry = data;
2824 
2825 	debugfs_remove_recursive(entry);
2826 }
2827 
2828 static int pmbus_init_debugfs(struct i2c_client *client,
2829 			      struct pmbus_data *data)
2830 {
2831 	int i, idx = 0;
2832 	char name[PMBUS_NAME_SIZE];
2833 	struct pmbus_debugfs_entry *entries;
2834 
2835 	if (!pmbus_debugfs_dir)
2836 		return -ENODEV;
2837 
2838 	/*
2839 	 * Create the debugfs directory for this device. Use the hwmon device
2840 	 * name to avoid conflicts (hwmon numbers are globally unique).
2841 	 */
2842 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2843 					   pmbus_debugfs_dir);
2844 	if (IS_ERR_OR_NULL(data->debugfs)) {
2845 		data->debugfs = NULL;
2846 		return -ENODEV;
2847 	}
2848 
2849 	/* Allocate the max possible entries we need. */
2850 	entries = devm_kcalloc(data->dev,
2851 			       data->info->pages * 10, sizeof(*entries),
2852 			       GFP_KERNEL);
2853 	if (!entries)
2854 		return -ENOMEM;
2855 
2856 	debugfs_create_file("pec", 0664, data->debugfs, client,
2857 			    &pmbus_debugfs_ops_pec);
2858 
2859 	for (i = 0; i < data->info->pages; ++i) {
2860 		/* Check accessibility of status register if it's not page 0 */
2861 		if (!i || pmbus_check_status_register(client, i)) {
2862 			/* No need to set reg as we have special read op. */
2863 			entries[idx].client = client;
2864 			entries[idx].page = i;
2865 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2866 			debugfs_create_file(name, 0444, data->debugfs,
2867 					    &entries[idx++],
2868 					    &pmbus_debugfs_ops_status);
2869 		}
2870 
2871 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2872 			entries[idx].client = client;
2873 			entries[idx].page = i;
2874 			entries[idx].reg = PMBUS_STATUS_VOUT;
2875 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2876 			debugfs_create_file(name, 0444, data->debugfs,
2877 					    &entries[idx++],
2878 					    &pmbus_debugfs_ops);
2879 		}
2880 
2881 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2882 			entries[idx].client = client;
2883 			entries[idx].page = i;
2884 			entries[idx].reg = PMBUS_STATUS_IOUT;
2885 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2886 			debugfs_create_file(name, 0444, data->debugfs,
2887 					    &entries[idx++],
2888 					    &pmbus_debugfs_ops);
2889 		}
2890 
2891 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2892 			entries[idx].client = client;
2893 			entries[idx].page = i;
2894 			entries[idx].reg = PMBUS_STATUS_INPUT;
2895 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2896 			debugfs_create_file(name, 0444, data->debugfs,
2897 					    &entries[idx++],
2898 					    &pmbus_debugfs_ops);
2899 		}
2900 
2901 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2902 			entries[idx].client = client;
2903 			entries[idx].page = i;
2904 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2905 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2906 			debugfs_create_file(name, 0444, data->debugfs,
2907 					    &entries[idx++],
2908 					    &pmbus_debugfs_ops);
2909 		}
2910 
2911 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2912 			entries[idx].client = client;
2913 			entries[idx].page = i;
2914 			entries[idx].reg = PMBUS_STATUS_CML;
2915 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2916 			debugfs_create_file(name, 0444, data->debugfs,
2917 					    &entries[idx++],
2918 					    &pmbus_debugfs_ops);
2919 		}
2920 
2921 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2922 			entries[idx].client = client;
2923 			entries[idx].page = i;
2924 			entries[idx].reg = PMBUS_STATUS_OTHER;
2925 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2926 			debugfs_create_file(name, 0444, data->debugfs,
2927 					    &entries[idx++],
2928 					    &pmbus_debugfs_ops);
2929 		}
2930 
2931 		if (pmbus_check_byte_register(client, i,
2932 					      PMBUS_STATUS_MFR_SPECIFIC)) {
2933 			entries[idx].client = client;
2934 			entries[idx].page = i;
2935 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2936 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2937 			debugfs_create_file(name, 0444, data->debugfs,
2938 					    &entries[idx++],
2939 					    &pmbus_debugfs_ops);
2940 		}
2941 
2942 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2943 			entries[idx].client = client;
2944 			entries[idx].page = i;
2945 			entries[idx].reg = PMBUS_STATUS_FAN_12;
2946 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2947 			debugfs_create_file(name, 0444, data->debugfs,
2948 					    &entries[idx++],
2949 					    &pmbus_debugfs_ops);
2950 		}
2951 
2952 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2953 			entries[idx].client = client;
2954 			entries[idx].page = i;
2955 			entries[idx].reg = PMBUS_STATUS_FAN_34;
2956 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2957 			debugfs_create_file(name, 0444, data->debugfs,
2958 					    &entries[idx++],
2959 					    &pmbus_debugfs_ops);
2960 		}
2961 	}
2962 
2963 	return devm_add_action_or_reset(data->dev,
2964 					pmbus_remove_debugfs, data->debugfs);
2965 }
2966 #else
2967 static int pmbus_init_debugfs(struct i2c_client *client,
2968 			      struct pmbus_data *data)
2969 {
2970 	return 0;
2971 }
2972 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
2973 
2974 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2975 {
2976 	struct device *dev = &client->dev;
2977 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2978 	struct pmbus_data *data;
2979 	size_t groups_num = 0;
2980 	int ret;
2981 	char *name;
2982 
2983 	if (!info)
2984 		return -ENODEV;
2985 
2986 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2987 				     | I2C_FUNC_SMBUS_BYTE_DATA
2988 				     | I2C_FUNC_SMBUS_WORD_DATA))
2989 		return -ENODEV;
2990 
2991 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2992 	if (!data)
2993 		return -ENOMEM;
2994 
2995 	if (info->groups)
2996 		while (info->groups[groups_num])
2997 			groups_num++;
2998 
2999 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3000 				    GFP_KERNEL);
3001 	if (!data->groups)
3002 		return -ENOMEM;
3003 
3004 	i2c_set_clientdata(client, data);
3005 	mutex_init(&data->update_lock);
3006 	data->dev = dev;
3007 
3008 	if (pdata)
3009 		data->flags = pdata->flags;
3010 	data->info = info;
3011 	data->currpage = -1;
3012 	data->currphase = -1;
3013 
3014 	ret = pmbus_init_common(client, data, info);
3015 	if (ret < 0)
3016 		return ret;
3017 
3018 	ret = pmbus_find_attributes(client, data);
3019 	if (ret)
3020 		return ret;
3021 
3022 	/*
3023 	 * If there are no attributes, something is wrong.
3024 	 * Bail out instead of trying to register nothing.
3025 	 */
3026 	if (!data->num_attributes) {
3027 		dev_err(dev, "No attributes found\n");
3028 		return -ENODEV;
3029 	}
3030 
3031 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3032 	if (!name)
3033 		return -ENOMEM;
3034 	strreplace(name, '-', '_');
3035 
3036 	data->groups[0] = &data->group;
3037 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3038 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3039 					name, data, data->groups);
3040 	if (IS_ERR(data->hwmon_dev)) {
3041 		dev_err(dev, "Failed to register hwmon device\n");
3042 		return PTR_ERR(data->hwmon_dev);
3043 	}
3044 
3045 	ret = pmbus_regulator_register(data);
3046 	if (ret)
3047 		return ret;
3048 
3049 	ret = pmbus_init_debugfs(client, data);
3050 	if (ret)
3051 		dev_warn(dev, "Failed to register debugfs\n");
3052 
3053 	return 0;
3054 }
3055 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3056 
3057 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3058 {
3059 	struct pmbus_data *data = i2c_get_clientdata(client);
3060 
3061 	return data->debugfs;
3062 }
3063 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3064 
3065 static int __init pmbus_core_init(void)
3066 {
3067 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3068 	if (IS_ERR(pmbus_debugfs_dir))
3069 		pmbus_debugfs_dir = NULL;
3070 
3071 	return 0;
3072 }
3073 
3074 static void __exit pmbus_core_exit(void)
3075 {
3076 	debugfs_remove_recursive(pmbus_debugfs_dir);
3077 }
3078 
3079 module_init(pmbus_core_init);
3080 module_exit(pmbus_core_exit);
3081 
3082 MODULE_AUTHOR("Guenter Roeck");
3083 MODULE_DESCRIPTION("PMBus core driver");
3084 MODULE_LICENSE("GPL");
3085