xref: /linux/drivers/i2c/busses/i2c-at91-master.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4  *
5  *  Copyright (C) 2011 Weinmann Medical GmbH
6  *  Author: Nikolaus Voss <n.voss@weinmann.de>
7  *
8  *  Evolved from original work by:
9  *  Copyright (C) 2004 Rick Bronson
10  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11  *
12  *  Borrowed heavily from original work by:
13  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/platform_data/dma-atmel.h>
28 #include <linux/pm_runtime.h>
29 
30 #include "i2c-at91.h"
31 
32 void at91_init_twi_bus_master(struct at91_twi_dev *dev)
33 {
34 	/* FIFO should be enabled immediately after the software reset */
35 	if (dev->fifo_size)
36 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
37 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
38 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
39 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
40 }
41 
42 /*
43  * Calculate symmetric clock as stated in datasheet:
44  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
45  */
46 static void at91_calc_twi_clock(struct at91_twi_dev *dev)
47 {
48 	int ckdiv, cdiv, div, hold = 0;
49 	struct at91_twi_pdata *pdata = dev->pdata;
50 	int offset = pdata->clk_offset;
51 	int max_ckdiv = pdata->clk_max_div;
52 	struct i2c_timings timings, *t = &timings;
53 
54 	i2c_parse_fw_timings(dev->dev, t, true);
55 
56 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
57 				       2 * t->bus_freq_hz) - offset);
58 	ckdiv = fls(div >> 8);
59 	cdiv = div >> ckdiv;
60 
61 	if (ckdiv > max_ckdiv) {
62 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
63 			 ckdiv, max_ckdiv);
64 		ckdiv = max_ckdiv;
65 		cdiv = 255;
66 	}
67 
68 	if (pdata->has_hold_field) {
69 		/*
70 		 * hold time = HOLD + 3 x T_peripheral_clock
71 		 * Use clk rate in kHz to prevent overflows when computing
72 		 * hold.
73 		 */
74 		hold = DIV_ROUND_UP(t->sda_hold_ns
75 				    * (clk_get_rate(dev->clk) / 1000), 1000000);
76 		hold -= 3;
77 		if (hold < 0)
78 			hold = 0;
79 		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
80 			dev_warn(dev->dev,
81 				 "HOLD field set to its maximum value (%d instead of %d)\n",
82 				 AT91_TWI_CWGR_HOLD_MAX, hold);
83 			hold = AT91_TWI_CWGR_HOLD_MAX;
84 		}
85 	}
86 
87 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
88 			    | AT91_TWI_CWGR_HOLD(hold);
89 
90 	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
91 		cdiv, ckdiv, hold, t->sda_hold_ns);
92 }
93 
94 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
95 {
96 	struct at91_twi_dma *dma = &dev->dma;
97 
98 	at91_twi_irq_save(dev);
99 
100 	if (dma->xfer_in_progress) {
101 		if (dma->direction == DMA_FROM_DEVICE)
102 			dmaengine_terminate_all(dma->chan_rx);
103 		else
104 			dmaengine_terminate_all(dma->chan_tx);
105 		dma->xfer_in_progress = false;
106 	}
107 	if (dma->buf_mapped) {
108 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
109 				 dev->buf_len, dma->direction);
110 		dma->buf_mapped = false;
111 	}
112 
113 	at91_twi_irq_restore(dev);
114 }
115 
116 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
117 {
118 	if (!dev->buf_len)
119 		return;
120 
121 	/* 8bit write works with and without FIFO */
122 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
123 
124 	/* send stop when last byte has been written */
125 	if (--dev->buf_len == 0) {
126 		if (!dev->use_alt_cmd)
127 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
128 		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
129 	}
130 
131 	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
132 
133 	++dev->buf;
134 }
135 
136 static void at91_twi_write_data_dma_callback(void *data)
137 {
138 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
139 
140 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
141 			 dev->buf_len, DMA_TO_DEVICE);
142 
143 	/*
144 	 * When this callback is called, THR/TX FIFO is likely not to be empty
145 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
146 	 * Status Register to be sure that the STOP bit has been sent and the
147 	 * transfer is completed. The NACK interrupt has already been enabled,
148 	 * we just have to enable TXCOMP one.
149 	 */
150 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
151 	if (!dev->use_alt_cmd)
152 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
153 }
154 
155 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
156 {
157 	dma_addr_t dma_addr;
158 	struct dma_async_tx_descriptor *txdesc;
159 	struct at91_twi_dma *dma = &dev->dma;
160 	struct dma_chan *chan_tx = dma->chan_tx;
161 	unsigned int sg_len = 1;
162 
163 	if (!dev->buf_len)
164 		return;
165 
166 	dma->direction = DMA_TO_DEVICE;
167 
168 	at91_twi_irq_save(dev);
169 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
170 				  DMA_TO_DEVICE);
171 	if (dma_mapping_error(dev->dev, dma_addr)) {
172 		dev_err(dev->dev, "dma map failed\n");
173 		return;
174 	}
175 	dma->buf_mapped = true;
176 	at91_twi_irq_restore(dev);
177 
178 	if (dev->fifo_size) {
179 		size_t part1_len, part2_len;
180 		struct scatterlist *sg;
181 		unsigned fifo_mr;
182 
183 		sg_len = 0;
184 
185 		part1_len = dev->buf_len & ~0x3;
186 		if (part1_len) {
187 			sg = &dma->sg[sg_len++];
188 			sg_dma_len(sg) = part1_len;
189 			sg_dma_address(sg) = dma_addr;
190 		}
191 
192 		part2_len = dev->buf_len & 0x3;
193 		if (part2_len) {
194 			sg = &dma->sg[sg_len++];
195 			sg_dma_len(sg) = part2_len;
196 			sg_dma_address(sg) = dma_addr + part1_len;
197 		}
198 
199 		/*
200 		 * DMA controller is triggered when at least 4 data can be
201 		 * written into the TX FIFO
202 		 */
203 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
204 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
205 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
206 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
207 	} else {
208 		sg_dma_len(&dma->sg[0]) = dev->buf_len;
209 		sg_dma_address(&dma->sg[0]) = dma_addr;
210 	}
211 
212 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
213 					 DMA_MEM_TO_DEV,
214 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
215 	if (!txdesc) {
216 		dev_err(dev->dev, "dma prep slave sg failed\n");
217 		goto error;
218 	}
219 
220 	txdesc->callback = at91_twi_write_data_dma_callback;
221 	txdesc->callback_param = dev;
222 
223 	dma->xfer_in_progress = true;
224 	dmaengine_submit(txdesc);
225 	dma_async_issue_pending(chan_tx);
226 
227 	return;
228 
229 error:
230 	at91_twi_dma_cleanup(dev);
231 }
232 
233 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
234 {
235 	/*
236 	 * If we are in this case, it means there is garbage data in RHR, so
237 	 * delete them.
238 	 */
239 	if (!dev->buf_len) {
240 		at91_twi_read(dev, AT91_TWI_RHR);
241 		return;
242 	}
243 
244 	/* 8bit read works with and without FIFO */
245 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
246 	--dev->buf_len;
247 
248 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
249 	if (dev->recv_len_abort)
250 		return;
251 
252 	/* handle I2C_SMBUS_BLOCK_DATA */
253 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
254 		/* ensure length byte is a valid value */
255 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
256 			dev->msg->flags &= ~I2C_M_RECV_LEN;
257 			dev->buf_len += *dev->buf;
258 			dev->msg->len = dev->buf_len + 1;
259 			dev_dbg(dev->dev, "received block length %zu\n",
260 					 dev->buf_len);
261 		} else {
262 			/* abort and send the stop by reading one more byte */
263 			dev->recv_len_abort = true;
264 			dev->buf_len = 1;
265 		}
266 	}
267 
268 	/* send stop if second but last byte has been read */
269 	if (!dev->use_alt_cmd && dev->buf_len == 1)
270 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
271 
272 	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
273 
274 	++dev->buf;
275 }
276 
277 static void at91_twi_read_data_dma_callback(void *data)
278 {
279 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
280 	unsigned ier = AT91_TWI_TXCOMP;
281 
282 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
283 			 dev->buf_len, DMA_FROM_DEVICE);
284 
285 	if (!dev->use_alt_cmd) {
286 		/* The last two bytes have to be read without using dma */
287 		dev->buf += dev->buf_len - 2;
288 		dev->buf_len = 2;
289 		ier |= AT91_TWI_RXRDY;
290 	}
291 	at91_twi_write(dev, AT91_TWI_IER, ier);
292 }
293 
294 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
295 {
296 	dma_addr_t dma_addr;
297 	struct dma_async_tx_descriptor *rxdesc;
298 	struct at91_twi_dma *dma = &dev->dma;
299 	struct dma_chan *chan_rx = dma->chan_rx;
300 	size_t buf_len;
301 
302 	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
303 	dma->direction = DMA_FROM_DEVICE;
304 
305 	/* Keep in mind that we won't use dma to read the last two bytes */
306 	at91_twi_irq_save(dev);
307 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
308 	if (dma_mapping_error(dev->dev, dma_addr)) {
309 		dev_err(dev->dev, "dma map failed\n");
310 		return;
311 	}
312 	dma->buf_mapped = true;
313 	at91_twi_irq_restore(dev);
314 
315 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
316 		unsigned fifo_mr;
317 
318 		/*
319 		 * DMA controller is triggered when at least 4 data can be
320 		 * read from the RX FIFO
321 		 */
322 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
323 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
324 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
325 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
326 	}
327 
328 	sg_dma_len(&dma->sg[0]) = buf_len;
329 	sg_dma_address(&dma->sg[0]) = dma_addr;
330 
331 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
332 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
333 	if (!rxdesc) {
334 		dev_err(dev->dev, "dma prep slave sg failed\n");
335 		goto error;
336 	}
337 
338 	rxdesc->callback = at91_twi_read_data_dma_callback;
339 	rxdesc->callback_param = dev;
340 
341 	dma->xfer_in_progress = true;
342 	dmaengine_submit(rxdesc);
343 	dma_async_issue_pending(dma->chan_rx);
344 
345 	return;
346 
347 error:
348 	at91_twi_dma_cleanup(dev);
349 }
350 
351 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
352 {
353 	struct at91_twi_dev *dev = dev_id;
354 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
355 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
356 
357 	if (!irqstatus)
358 		return IRQ_NONE;
359 	/*
360 	 * In reception, the behavior of the twi device (before sama5d2) is
361 	 * weird. There is some magic about RXRDY flag! When a data has been
362 	 * almost received, the reception of a new one is anticipated if there
363 	 * is no stop command to send. That is the reason why ask for sending
364 	 * the stop command not on the last data but on the second last one.
365 	 *
366 	 * Unfortunately, we could still have the RXRDY flag set even if the
367 	 * transfer is done and we have read the last data. It might happen
368 	 * when the i2c slave device sends too quickly data after receiving the
369 	 * ack from the master. The data has been almost received before having
370 	 * the order to send stop. In this case, sending the stop command could
371 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
372 	 * the RXRDY interrupt first in order to not keep garbage data in the
373 	 * Receive Holding Register for the next transfer.
374 	 */
375 	if (irqstatus & AT91_TWI_RXRDY) {
376 		/*
377 		 * Read all available bytes at once by polling RXRDY usable w/
378 		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
379 		 * avoid polling RXRDY.
380 		 */
381 		do {
382 			at91_twi_read_next_byte(dev);
383 		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
384 	}
385 
386 	/*
387 	 * When a NACK condition is detected, the I2C controller sets the NACK,
388 	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
389 	 *
390 	 * 1 - Handling NACK errors with CPU write transfer.
391 	 *
392 	 * In such case, we should not write the next byte into the Transmit
393 	 * Holding Register (THR) otherwise the I2C controller would start a new
394 	 * transfer and the I2C slave is likely to reply by another NACK.
395 	 *
396 	 * 2 - Handling NACK errors with DMA write transfer.
397 	 *
398 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
399 	 * the DMA controller to write the next data into the THR. Then the
400 	 * result depends on the hardware version of the I2C controller.
401 	 *
402 	 * 2a - Without support of the Alternative Command mode.
403 	 *
404 	 * This is the worst case: the DMA controller is triggered to write the
405 	 * next data into the THR, hence starting a new transfer: the I2C slave
406 	 * is likely to reply by another NACK.
407 	 * Concurrently, this interrupt handler is likely to be called to manage
408 	 * the first NACK before the I2C controller detects the second NACK and
409 	 * sets once again the NACK bit into the SR.
410 	 * When handling the first NACK, this interrupt handler disables the I2C
411 	 * controller interruptions, especially the NACK interrupt.
412 	 * Hence, the NACK bit is pending into the SR. This is why we should
413 	 * read the SR to clear all pending interrupts at the beginning of
414 	 * at91_do_twi_transfer() before actually starting a new transfer.
415 	 *
416 	 * 2b - With support of the Alternative Command mode.
417 	 *
418 	 * When a NACK condition is detected, the I2C controller also locks the
419 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
420 	 * is triggered by the TXRDY bit to write the next data into the THR,
421 	 * this data actually won't go on the I2C bus hence a second NACK is not
422 	 * generated.
423 	 */
424 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
425 		at91_disable_twi_interrupts(dev);
426 		complete(&dev->cmd_complete);
427 	} else if (irqstatus & AT91_TWI_TXRDY) {
428 		at91_twi_write_next_byte(dev);
429 	}
430 
431 	/* catch error flags */
432 	dev->transfer_status |= status;
433 
434 	return IRQ_HANDLED;
435 }
436 
437 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
438 {
439 	int ret;
440 	unsigned long time_left;
441 	bool has_unre_flag = dev->pdata->has_unre_flag;
442 	bool has_alt_cmd = dev->pdata->has_alt_cmd;
443 
444 	/*
445 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
446 	 * read flag but shows the state of the transmission at the time the
447 	 * Status Register is read. According to the programmer datasheet,
448 	 * TXCOMP is set when both holding register and internal shifter are
449 	 * empty and STOP condition has been sent.
450 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
451 	 * detect transmission failure.
452 	 * Indeed let's take the case of an i2c write command using DMA.
453 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
454 	 * TXCOMP bits are set together into the Status Register.
455 	 * LOCK is a clear on write bit, which is set to prevent the DMA
456 	 * controller from sending new data on the i2c bus after a NACK
457 	 * condition has happened. Once locked, this i2c peripheral stops
458 	 * triggering the DMA controller for new data but it is more than
459 	 * likely that a new DMA transaction is already in progress, writing
460 	 * into the Transmit Holding Register. Since the peripheral is locked,
461 	 * these new data won't be sent to the i2c bus but they will remain
462 	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
463 	 * Then when the interrupt handler is called, the Status Register is
464 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
465 	 * manage the error properly, without waiting for timeout.
466 	 * This case can be reproduced easyly when writing into an at24 eeprom.
467 	 *
468 	 * Besides, the TXCOMP bit is already set before the i2c transaction
469 	 * has been started. For read transactions, this bit is cleared when
470 	 * writing the START bit into the Control Register. So the
471 	 * corresponding interrupt can safely be enabled just after.
472 	 * However for write transactions managed by the CPU, we first write
473 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
474 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
475 	 * the interrupt handler would be called immediately and the i2c command
476 	 * would be reported as completed.
477 	 * Also when a write transaction is managed by the DMA controller,
478 	 * enabling the TXCOMP interrupt in this function may lead to a race
479 	 * condition since we don't know whether the TXCOMP interrupt is enabled
480 	 * before or after the DMA has started to write into THR. So the TXCOMP
481 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
482 	 * Immediately after in that DMA callback, if the alternative command
483 	 * mode is not used, we still need to send the STOP condition manually
484 	 * writing the corresponding bit into the Control Register.
485 	 */
486 
487 	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
488 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
489 
490 	reinit_completion(&dev->cmd_complete);
491 	dev->transfer_status = 0;
492 
493 	/* Clear pending interrupts, such as NACK. */
494 	at91_twi_read(dev, AT91_TWI_SR);
495 
496 	if (dev->fifo_size) {
497 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
498 
499 		/* Reset FIFO mode register */
500 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
501 			     AT91_TWI_FMR_RXRDYM_MASK);
502 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
503 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
504 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
505 
506 		/* Flush FIFOs */
507 		at91_twi_write(dev, AT91_TWI_CR,
508 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
509 	}
510 
511 	if (!dev->buf_len) {
512 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
513 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
514 	} else if (dev->msg->flags & I2C_M_RD) {
515 		unsigned start_flags = AT91_TWI_START;
516 
517 		/* if only one byte is to be read, immediately stop transfer */
518 		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
519 		    !(dev->msg->flags & I2C_M_RECV_LEN))
520 			start_flags |= AT91_TWI_STOP;
521 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
522 		/*
523 		 * When using dma without alternative command mode, the last
524 		 * byte has to be read manually in order to not send the stop
525 		 * command too late and then to receive extra data.
526 		 * In practice, there are some issues if you use the dma to
527 		 * read n-1 bytes because of latency.
528 		 * Reading n-2 bytes with dma and the two last ones manually
529 		 * seems to be the best solution.
530 		 */
531 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
532 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
533 			at91_twi_read_data_dma(dev);
534 		} else {
535 			at91_twi_write(dev, AT91_TWI_IER,
536 				       AT91_TWI_TXCOMP |
537 				       AT91_TWI_NACK |
538 				       AT91_TWI_RXRDY);
539 		}
540 	} else {
541 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
542 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
543 			at91_twi_write_data_dma(dev);
544 		} else {
545 			at91_twi_write_next_byte(dev);
546 			at91_twi_write(dev, AT91_TWI_IER,
547 				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
548 				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
549 		}
550 	}
551 
552 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
553 					      dev->adapter.timeout);
554 	if (time_left == 0) {
555 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
556 		dev_err(dev->dev, "controller timed out\n");
557 		at91_init_twi_bus(dev);
558 		ret = -ETIMEDOUT;
559 		goto error;
560 	}
561 	if (dev->transfer_status & AT91_TWI_NACK) {
562 		dev_dbg(dev->dev, "received nack\n");
563 		ret = -EREMOTEIO;
564 		goto error;
565 	}
566 	if (dev->transfer_status & AT91_TWI_OVRE) {
567 		dev_err(dev->dev, "overrun while reading\n");
568 		ret = -EIO;
569 		goto error;
570 	}
571 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
572 		dev_err(dev->dev, "underrun while writing\n");
573 		ret = -EIO;
574 		goto error;
575 	}
576 	if ((has_alt_cmd || dev->fifo_size) &&
577 	    (dev->transfer_status & AT91_TWI_LOCK)) {
578 		dev_err(dev->dev, "tx locked\n");
579 		ret = -EIO;
580 		goto error;
581 	}
582 	if (dev->recv_len_abort) {
583 		dev_err(dev->dev, "invalid smbus block length recvd\n");
584 		ret = -EPROTO;
585 		goto error;
586 	}
587 
588 	dev_dbg(dev->dev, "transfer complete\n");
589 
590 	return 0;
591 
592 error:
593 	/* first stop DMA transfer if still in progress */
594 	at91_twi_dma_cleanup(dev);
595 	/* then flush THR/FIFO and unlock TX if locked */
596 	if ((has_alt_cmd || dev->fifo_size) &&
597 	    (dev->transfer_status & AT91_TWI_LOCK)) {
598 		dev_dbg(dev->dev, "unlock tx\n");
599 		at91_twi_write(dev, AT91_TWI_CR,
600 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
601 	}
602 	return ret;
603 }
604 
605 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
606 {
607 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
608 	int ret;
609 	unsigned int_addr_flag = 0;
610 	struct i2c_msg *m_start = msg;
611 	bool is_read;
612 
613 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
614 
615 	ret = pm_runtime_get_sync(dev->dev);
616 	if (ret < 0)
617 		goto out;
618 
619 	if (num == 2) {
620 		int internal_address = 0;
621 		int i;
622 
623 		/* 1st msg is put into the internal address, start with 2nd */
624 		m_start = &msg[1];
625 		for (i = 0; i < msg->len; ++i) {
626 			const unsigned addr = msg->buf[msg->len - 1 - i];
627 
628 			internal_address |= addr << (8 * i);
629 			int_addr_flag += AT91_TWI_IADRSZ_1;
630 		}
631 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
632 	}
633 
634 	dev->use_alt_cmd = false;
635 	is_read = (m_start->flags & I2C_M_RD);
636 	if (dev->pdata->has_alt_cmd) {
637 		if (m_start->len > 0 &&
638 		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
639 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
640 			at91_twi_write(dev, AT91_TWI_ACR,
641 				       AT91_TWI_ACR_DATAL(m_start->len) |
642 				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
643 			dev->use_alt_cmd = true;
644 		} else {
645 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
646 		}
647 	}
648 
649 	at91_twi_write(dev, AT91_TWI_MMR,
650 		       (m_start->addr << 16) |
651 		       int_addr_flag |
652 		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
653 
654 	dev->buf_len = m_start->len;
655 	dev->buf = m_start->buf;
656 	dev->msg = m_start;
657 	dev->recv_len_abort = false;
658 
659 	ret = at91_do_twi_transfer(dev);
660 
661 	ret = (ret < 0) ? ret : num;
662 out:
663 	pm_runtime_mark_last_busy(dev->dev);
664 	pm_runtime_put_autosuspend(dev->dev);
665 
666 	return ret;
667 }
668 
669 /*
670  * The hardware can handle at most two messages concatenated by a
671  * repeated start via it's internal address feature.
672  */
673 static const struct i2c_adapter_quirks at91_twi_quirks = {
674 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
675 	.max_comb_1st_msg_len = 3,
676 };
677 
678 static u32 at91_twi_func(struct i2c_adapter *adapter)
679 {
680 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
681 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
682 }
683 
684 static const struct i2c_algorithm at91_twi_algorithm = {
685 	.master_xfer	= at91_twi_xfer,
686 	.functionality	= at91_twi_func,
687 };
688 
689 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
690 {
691 	int ret = 0;
692 	struct dma_slave_config slave_config;
693 	struct at91_twi_dma *dma = &dev->dma;
694 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
695 
696 	/*
697 	 * The actual width of the access will be chosen in
698 	 * dmaengine_prep_slave_sg():
699 	 * for each buffer in the scatter-gather list, if its size is aligned
700 	 * to addr_width then addr_width accesses will be performed to transfer
701 	 * the buffer. On the other hand, if the buffer size is not aligned to
702 	 * addr_width then the buffer is transferred using single byte accesses.
703 	 * Please refer to the Atmel eXtended DMA controller driver.
704 	 * When FIFOs are used, the TXRDYM threshold can always be set to
705 	 * trigger the XDMAC when at least 4 data can be written into the TX
706 	 * FIFO, even if single byte accesses are performed.
707 	 * However the RXRDYM threshold must be set to fit the access width,
708 	 * deduced from buffer length, so the XDMAC is triggered properly to
709 	 * read data from the RX FIFO.
710 	 */
711 	if (dev->fifo_size)
712 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
713 
714 	memset(&slave_config, 0, sizeof(slave_config));
715 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
716 	slave_config.src_addr_width = addr_width;
717 	slave_config.src_maxburst = 1;
718 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
719 	slave_config.dst_addr_width = addr_width;
720 	slave_config.dst_maxburst = 1;
721 	slave_config.device_fc = false;
722 
723 	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
724 	if (IS_ERR(dma->chan_tx)) {
725 		ret = PTR_ERR(dma->chan_tx);
726 		dma->chan_tx = NULL;
727 		goto error;
728 	}
729 
730 	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
731 	if (IS_ERR(dma->chan_rx)) {
732 		ret = PTR_ERR(dma->chan_rx);
733 		dma->chan_rx = NULL;
734 		goto error;
735 	}
736 
737 	slave_config.direction = DMA_MEM_TO_DEV;
738 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
739 		dev_err(dev->dev, "failed to configure tx channel\n");
740 		ret = -EINVAL;
741 		goto error;
742 	}
743 
744 	slave_config.direction = DMA_DEV_TO_MEM;
745 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
746 		dev_err(dev->dev, "failed to configure rx channel\n");
747 		ret = -EINVAL;
748 		goto error;
749 	}
750 
751 	sg_init_table(dma->sg, 2);
752 	dma->buf_mapped = false;
753 	dma->xfer_in_progress = false;
754 	dev->use_dma = true;
755 
756 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
757 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
758 
759 	return ret;
760 
761 error:
762 	if (ret != -EPROBE_DEFER)
763 		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
764 	if (dma->chan_rx)
765 		dma_release_channel(dma->chan_rx);
766 	if (dma->chan_tx)
767 		dma_release_channel(dma->chan_tx);
768 	return ret;
769 }
770 
771 int at91_twi_probe_master(struct platform_device *pdev,
772 			  u32 phy_addr, struct at91_twi_dev *dev)
773 {
774 	int rc;
775 
776 	init_completion(&dev->cmd_complete);
777 
778 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
779 			      dev_name(dev->dev), dev);
780 	if (rc) {
781 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
782 		return rc;
783 	}
784 
785 	if (dev->dev->of_node) {
786 		rc = at91_twi_configure_dma(dev, phy_addr);
787 		if (rc == -EPROBE_DEFER)
788 			return rc;
789 	}
790 
791 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
792 				  &dev->fifo_size)) {
793 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
794 	}
795 
796 	at91_calc_twi_clock(dev);
797 
798 	dev->adapter.algo = &at91_twi_algorithm;
799 	dev->adapter.quirks = &at91_twi_quirks;
800 
801 	return 0;
802 }
803