xref: /linux/drivers/i2c/busses/i2c-mxs.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale MXS I2C bus driver
4  *
5  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7  *
8  * based on a (non-working) driver which was:
9  *
10  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/mxs-dma.h>
29 
30 #define DRIVER_NAME "mxs-i2c"
31 
32 #define MXS_I2C_CTRL0		(0x00)
33 #define MXS_I2C_CTRL0_SET	(0x04)
34 #define MXS_I2C_CTRL0_CLR	(0x08)
35 
36 #define MXS_I2C_CTRL0_SFTRST			0x80000000
37 #define MXS_I2C_CTRL0_RUN			0x20000000
38 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
39 #define MXS_I2C_CTRL0_PIO_MODE			0x01000000
40 #define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
41 #define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
42 #define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
43 #define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
44 #define MXS_I2C_CTRL0_DIRECTION			0x00010000
45 #define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
46 
47 #define MXS_I2C_TIMING0		(0x10)
48 #define MXS_I2C_TIMING1		(0x20)
49 #define MXS_I2C_TIMING2		(0x30)
50 
51 #define MXS_I2C_CTRL1		(0x40)
52 #define MXS_I2C_CTRL1_SET	(0x44)
53 #define MXS_I2C_CTRL1_CLR	(0x48)
54 
55 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
56 #define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
57 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
58 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
59 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
60 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
61 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
62 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
63 #define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
64 
65 #define MXS_I2C_STAT		(0x50)
66 #define MXS_I2C_STAT_GOT_A_NAK			0x10000000
67 #define MXS_I2C_STAT_BUS_BUSY			0x00000800
68 #define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
69 
70 #define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
71 
72 #define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
73 
74 #define MXS_I2C_DEBUG0_DMAREQ	0x80000000
75 
76 #define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
77 				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
78 				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
79 				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
80 				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
81 				 MXS_I2C_CTRL1_SLAVE_IRQ)
82 
83 
84 #define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
85 				 MXS_I2C_CTRL0_PRE_SEND_START |	\
86 				 MXS_I2C_CTRL0_MASTER_MODE |	\
87 				 MXS_I2C_CTRL0_DIRECTION |	\
88 				 MXS_I2C_CTRL0_XFER_COUNT(1))
89 
90 #define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
91 				 MXS_I2C_CTRL0_MASTER_MODE |	\
92 				 MXS_I2C_CTRL0_DIRECTION)
93 
94 #define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
95 				 MXS_I2C_CTRL0_MASTER_MODE)
96 
97 enum mxs_i2c_devtype {
98 	MXS_I2C_UNKNOWN = 0,
99 	MXS_I2C_V1,
100 	MXS_I2C_V2,
101 };
102 
103 /**
104  * struct mxs_i2c_dev - per device, private MXS-I2C data
105  *
106  * @dev: driver model device node
107  * @dev_type: distinguish i.MX23/i.MX28 features
108  * @regs: IO registers pointer
109  * @cmd_complete: completion object for transaction wait
110  * @cmd_err: error code for last transaction
111  * @adapter: i2c subsystem adapter node
112  */
113 struct mxs_i2c_dev {
114 	struct device *dev;
115 	enum mxs_i2c_devtype dev_type;
116 	void __iomem *regs;
117 	struct completion cmd_complete;
118 	int cmd_err;
119 	struct i2c_adapter adapter;
120 
121 	uint32_t timing0;
122 	uint32_t timing1;
123 	uint32_t timing2;
124 
125 	/* DMA support components */
126 	struct dma_chan			*dmach;
127 	uint32_t			pio_data[2];
128 	uint32_t			addr_data;
129 	struct scatterlist		sg_io[2];
130 	bool				dma_read;
131 };
132 
133 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
134 {
135 	int ret = stmp_reset_block(i2c->regs);
136 	if (ret)
137 		return ret;
138 
139 	/*
140 	 * Configure timing for the I2C block. The I2C TIMING2 register has to
141 	 * be programmed with this particular magic number. The rest is derived
142 	 * from the XTAL speed and requested I2C speed.
143 	 *
144 	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
145 	 */
146 	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
147 	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
148 	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
149 
150 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
151 
152 	return 0;
153 }
154 
155 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
156 {
157 	if (i2c->dma_read) {
158 		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
159 		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
160 	} else {
161 		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
162 	}
163 }
164 
165 static void mxs_i2c_dma_irq_callback(void *param)
166 {
167 	struct mxs_i2c_dev *i2c = param;
168 
169 	complete(&i2c->cmd_complete);
170 	mxs_i2c_dma_finish(i2c);
171 }
172 
173 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
174 			struct i2c_msg *msg, uint32_t flags)
175 {
176 	struct dma_async_tx_descriptor *desc;
177 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
178 
179 	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
180 
181 	if (msg->flags & I2C_M_RD) {
182 		i2c->dma_read = true;
183 
184 		/*
185 		 * SELECT command.
186 		 */
187 
188 		/* Queue the PIO register write transfer. */
189 		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
190 		desc = dmaengine_prep_slave_sg(i2c->dmach,
191 					(struct scatterlist *)&i2c->pio_data[0],
192 					1, DMA_TRANS_NONE, 0);
193 		if (!desc) {
194 			dev_err(i2c->dev,
195 				"Failed to get PIO reg. write descriptor.\n");
196 			goto select_init_pio_fail;
197 		}
198 
199 		/* Queue the DMA data transfer. */
200 		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
201 		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
202 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
203 					DMA_MEM_TO_DEV,
204 					DMA_PREP_INTERRUPT |
205 					MXS_DMA_CTRL_WAIT4END);
206 		if (!desc) {
207 			dev_err(i2c->dev,
208 				"Failed to get DMA data write descriptor.\n");
209 			goto select_init_dma_fail;
210 		}
211 
212 		/*
213 		 * READ command.
214 		 */
215 
216 		/* Queue the PIO register write transfer. */
217 		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
218 				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
219 		desc = dmaengine_prep_slave_sg(i2c->dmach,
220 					(struct scatterlist *)&i2c->pio_data[1],
221 					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
222 		if (!desc) {
223 			dev_err(i2c->dev,
224 				"Failed to get PIO reg. write descriptor.\n");
225 			goto select_init_dma_fail;
226 		}
227 
228 		/* Queue the DMA data transfer. */
229 		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
230 		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
231 		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
232 					DMA_DEV_TO_MEM,
233 					DMA_PREP_INTERRUPT |
234 					MXS_DMA_CTRL_WAIT4END);
235 		if (!desc) {
236 			dev_err(i2c->dev,
237 				"Failed to get DMA data write descriptor.\n");
238 			goto read_init_dma_fail;
239 		}
240 	} else {
241 		i2c->dma_read = false;
242 
243 		/*
244 		 * WRITE command.
245 		 */
246 
247 		/* Queue the PIO register write transfer. */
248 		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
249 				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
250 		desc = dmaengine_prep_slave_sg(i2c->dmach,
251 					(struct scatterlist *)&i2c->pio_data[0],
252 					1, DMA_TRANS_NONE, 0);
253 		if (!desc) {
254 			dev_err(i2c->dev,
255 				"Failed to get PIO reg. write descriptor.\n");
256 			goto write_init_pio_fail;
257 		}
258 
259 		/* Queue the DMA data transfer. */
260 		sg_init_table(i2c->sg_io, 2);
261 		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
262 		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
263 		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
264 		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
265 					DMA_MEM_TO_DEV,
266 					DMA_PREP_INTERRUPT |
267 					MXS_DMA_CTRL_WAIT4END);
268 		if (!desc) {
269 			dev_err(i2c->dev,
270 				"Failed to get DMA data write descriptor.\n");
271 			goto write_init_dma_fail;
272 		}
273 	}
274 
275 	/*
276 	 * The last descriptor must have this callback,
277 	 * to finish the DMA transaction.
278 	 */
279 	desc->callback = mxs_i2c_dma_irq_callback;
280 	desc->callback_param = i2c;
281 
282 	/* Start the transfer. */
283 	dmaengine_submit(desc);
284 	dma_async_issue_pending(i2c->dmach);
285 	return 0;
286 
287 /* Read failpath. */
288 read_init_dma_fail:
289 	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
290 select_init_dma_fail:
291 	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
292 select_init_pio_fail:
293 	dmaengine_terminate_sync(i2c->dmach);
294 	return -EINVAL;
295 
296 /* Write failpath. */
297 write_init_dma_fail:
298 	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
299 write_init_pio_fail:
300 	dmaengine_terminate_sync(i2c->dmach);
301 	return -EINVAL;
302 }
303 
304 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
305 {
306 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
307 
308 	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
309 		if (readl(i2c->regs + MXS_I2C_CTRL1) &
310 				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
311 			return -ENXIO;
312 		if (time_after(jiffies, timeout))
313 			return -ETIMEDOUT;
314 		cond_resched();
315 	}
316 
317 	return 0;
318 }
319 
320 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
321 {
322 	u32 state;
323 
324 	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
325 
326 	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
327 		i2c->cmd_err = -ENXIO;
328 	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
329 			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
330 			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
331 			  MXS_I2C_CTRL1_SLAVE_IRQ))
332 		i2c->cmd_err = -EIO;
333 
334 	return i2c->cmd_err;
335 }
336 
337 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
338 {
339 	u32 reg;
340 
341 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
342 
343 	/* readback makes sure the write is latched into hardware */
344 	reg = readl(i2c->regs + MXS_I2C_CTRL0);
345 	reg |= MXS_I2C_CTRL0_RUN;
346 	writel(reg, i2c->regs + MXS_I2C_CTRL0);
347 }
348 
349 /*
350  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
351  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
352  * must be written during PIO mode operation. First, the CTRL0 register has
353  * to be programmed with all the necessary bits but the RUN bit. Then the
354  * payload has to be written into the DATA register. Finally, the transmission
355  * is executed by setting the RUN bit in CTRL0.
356  */
357 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
358 					  u32 data)
359 {
360 	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
361 
362 	if (i2c->dev_type == MXS_I2C_V1)
363 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
364 
365 	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
366 	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
367 }
368 
369 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
370 			struct i2c_msg *msg, uint32_t flags)
371 {
372 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
373 	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
374 	uint32_t data = 0;
375 	int i, ret, xlen = 0, xmit = 0;
376 	uint32_t start;
377 
378 	/* Mute IRQs coming from this block. */
379 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
380 
381 	/*
382 	 * MX23 idea:
383 	 * - Enable CTRL0::PIO_MODE (1 << 24)
384 	 * - Enable CTRL1::ACK_MODE (1 << 27)
385 	 *
386 	 * WARNING! The MX23 is broken in some way, even if it claims
387 	 * to support PIO, when we try to transfer any amount of data
388 	 * that is not aligned to 4 bytes, the DMA engine will have
389 	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
390 	 * transfer. This in turn will mess up the next transfer as
391 	 * the block it emit one byte write onto the bus terminated
392 	 * with a NAK+STOP. A possible workaround is to reset the IP
393 	 * block after every PIO transmission, which might just work.
394 	 *
395 	 * NOTE: The CTRL0::PIO_MODE description is important, since
396 	 * it outlines how the PIO mode is really supposed to work.
397 	 */
398 	if (msg->flags & I2C_M_RD) {
399 		/*
400 		 * PIO READ transfer:
401 		 *
402 		 * This transfer MUST be limited to 4 bytes maximum. It is not
403 		 * possible to transfer more than four bytes via PIO, since we
404 		 * can not in any way make sure we can read the data from the
405 		 * DATA register fast enough. Besides, the RX FIFO is only four
406 		 * bytes deep, thus we can only really read up to four bytes at
407 		 * time. Finally, there is no bit indicating us that new data
408 		 * arrived at the FIFO and can thus be fetched from the DATA
409 		 * register.
410 		 */
411 		BUG_ON(msg->len > 4);
412 
413 		/* SELECT command. */
414 		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
415 					      addr_data);
416 
417 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
418 		if (ret) {
419 			dev_dbg(i2c->dev,
420 				"PIO: Failed to send SELECT command!\n");
421 			goto cleanup;
422 		}
423 
424 		/* READ command. */
425 		mxs_i2c_pio_trigger_cmd(i2c,
426 					MXS_CMD_I2C_READ | flags |
427 					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
428 
429 		ret = mxs_i2c_pio_wait_xfer_end(i2c);
430 		if (ret) {
431 			dev_dbg(i2c->dev,
432 				"PIO: Failed to send READ command!\n");
433 			goto cleanup;
434 		}
435 
436 		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
437 		for (i = 0; i < msg->len; i++) {
438 			msg->buf[i] = data & 0xff;
439 			data >>= 8;
440 		}
441 	} else {
442 		/*
443 		 * PIO WRITE transfer:
444 		 *
445 		 * The code below implements clock stretching to circumvent
446 		 * the possibility of kernel not being able to supply data
447 		 * fast enough. It is possible to transfer arbitrary amount
448 		 * of data using PIO write.
449 		 */
450 
451 		/*
452 		 * The LSB of data buffer is the first byte blasted across
453 		 * the bus. Higher order bytes follow. Thus the following
454 		 * filling schematic.
455 		 */
456 
457 		data = addr_data << 24;
458 
459 		/* Start the transfer with START condition. */
460 		start = MXS_I2C_CTRL0_PRE_SEND_START;
461 
462 		/* If the transfer is long, use clock stretching. */
463 		if (msg->len > 3)
464 			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
465 
466 		for (i = 0; i < msg->len; i++) {
467 			data >>= 8;
468 			data |= (msg->buf[i] << 24);
469 
470 			xmit = 0;
471 
472 			/* This is the last transfer of the message. */
473 			if (i + 1 == msg->len) {
474 				/* Add optional STOP flag. */
475 				start |= flags;
476 				/* Remove RETAIN_CLOCK bit. */
477 				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
478 				xmit = 1;
479 			}
480 
481 			/* Four bytes are ready in the "data" variable. */
482 			if ((i & 3) == 2)
483 				xmit = 1;
484 
485 			/* Nothing interesting happened, continue stuffing. */
486 			if (!xmit)
487 				continue;
488 
489 			/*
490 			 * Compute the size of the transfer and shift the
491 			 * data accordingly.
492 			 *
493 			 * i = (4k + 0) .... xlen = 2
494 			 * i = (4k + 1) .... xlen = 3
495 			 * i = (4k + 2) .... xlen = 4
496 			 * i = (4k + 3) .... xlen = 1
497 			 */
498 
499 			if ((i % 4) == 3)
500 				xlen = 1;
501 			else
502 				xlen = (i % 4) + 2;
503 
504 			data >>= (4 - xlen) * 8;
505 
506 			dev_dbg(i2c->dev,
507 				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
508 				xlen, i, msg->len,
509 				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
510 				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
511 				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
512 
513 			writel(MXS_I2C_DEBUG0_DMAREQ,
514 			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
515 
516 			mxs_i2c_pio_trigger_write_cmd(i2c,
517 				start | MXS_I2C_CTRL0_MASTER_MODE |
518 				MXS_I2C_CTRL0_DIRECTION |
519 				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
520 
521 			/* The START condition is sent only once. */
522 			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
523 
524 			/* Wait for the end of the transfer. */
525 			ret = mxs_i2c_pio_wait_xfer_end(i2c);
526 			if (ret) {
527 				dev_dbg(i2c->dev,
528 					"PIO: Failed to finish WRITE cmd!\n");
529 				break;
530 			}
531 
532 			/* Check NAK here. */
533 			ret = readl(i2c->regs + MXS_I2C_STAT) &
534 				    MXS_I2C_STAT_GOT_A_NAK;
535 			if (ret) {
536 				ret = -ENXIO;
537 				goto cleanup;
538 			}
539 		}
540 	}
541 
542 	/* make sure we capture any occurred error into cmd_err */
543 	ret = mxs_i2c_pio_check_error_state(i2c);
544 
545 cleanup:
546 	/* Clear any dangling IRQs and re-enable interrupts. */
547 	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
548 	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
549 
550 	/* Clear the PIO_MODE on i.MX23 */
551 	if (i2c->dev_type == MXS_I2C_V1)
552 		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
553 
554 	return ret;
555 }
556 
557 /*
558  * Low level master read/write transaction.
559  */
560 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
561 				int stop)
562 {
563 	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
564 	int ret;
565 	int flags;
566 	int use_pio = 0;
567 	unsigned long time_left;
568 
569 	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570 
571 	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572 		msg->addr, msg->len, msg->flags, stop);
573 
574 	/*
575 	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576 	 * 4 bytes of length. The write transfer is not limited as it can use
577 	 * clock stretching to avoid FIFO underruns.
578 	 */
579 	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580 		use_pio = 1;
581 	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582 		use_pio = 1;
583 
584 	i2c->cmd_err = 0;
585 	if (use_pio) {
586 		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587 		/* No need to reset the block if NAK was received. */
588 		if (ret && (ret != -ENXIO))
589 			mxs_i2c_reset(i2c);
590 	} else {
591 		reinit_completion(&i2c->cmd_complete);
592 		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
593 		if (ret)
594 			return ret;
595 
596 		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
597 						msecs_to_jiffies(1000));
598 		if (!time_left)
599 			goto timeout;
600 
601 		ret = i2c->cmd_err;
602 	}
603 
604 	if (ret == -ENXIO) {
605 		/*
606 		 * If the transfer fails with a NAK from the slave the
607 		 * controller halts until it gets told to return to idle state.
608 		 */
609 		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
610 		       i2c->regs + MXS_I2C_CTRL1_SET);
611 	}
612 
613 	/*
614 	 * WARNING!
615 	 * The i.MX23 is strange. After each and every operation, it's I2C IP
616 	 * block must be reset, otherwise the IP block will misbehave. This can
617 	 * be observed on the bus by the block sending out one single byte onto
618 	 * the bus. In case such an error happens, bit 27 will be set in the
619 	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
620 	 * and is marked as "TBD" instead. To reset this bit to a correct state,
621 	 * reset the whole block. Since the block reset does not take long, do
622 	 * reset the block after every transfer to play safe.
623 	 */
624 	if (i2c->dev_type == MXS_I2C_V1)
625 		mxs_i2c_reset(i2c);
626 
627 	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
628 
629 	return ret;
630 
631 timeout:
632 	dev_dbg(i2c->dev, "Timeout!\n");
633 	mxs_i2c_dma_finish(i2c);
634 	ret = mxs_i2c_reset(i2c);
635 	if (ret)
636 		return ret;
637 
638 	return -ETIMEDOUT;
639 }
640 
641 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
642 			int num)
643 {
644 	int i;
645 	int err;
646 
647 	for (i = 0; i < num; i++) {
648 		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
649 		if (err)
650 			return err;
651 	}
652 
653 	return num;
654 }
655 
656 static u32 mxs_i2c_func(struct i2c_adapter *adap)
657 {
658 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
659 }
660 
661 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
662 {
663 	struct mxs_i2c_dev *i2c = dev_id;
664 	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
665 
666 	if (!stat)
667 		return IRQ_NONE;
668 
669 	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
670 		i2c->cmd_err = -ENXIO;
671 	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
672 		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
673 		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
674 		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
675 		i2c->cmd_err = -EIO;
676 
677 	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
678 
679 	return IRQ_HANDLED;
680 }
681 
682 static const struct i2c_algorithm mxs_i2c_algo = {
683 	.master_xfer = mxs_i2c_xfer,
684 	.functionality = mxs_i2c_func,
685 };
686 
687 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
688 	.flags = I2C_AQ_NO_ZERO_LEN,
689 };
690 
691 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
692 {
693 	/* The I2C block clock runs at 24MHz */
694 	const uint32_t clk = 24000000;
695 	uint32_t divider;
696 	uint16_t high_count, low_count, rcv_count, xmit_count;
697 	uint32_t bus_free, leadin;
698 	struct device *dev = i2c->dev;
699 
700 	divider = DIV_ROUND_UP(clk, speed);
701 
702 	if (divider < 25) {
703 		/*
704 		 * limit the divider, so that min(low_count, high_count)
705 		 * is >= 1
706 		 */
707 		divider = 25;
708 		dev_warn(dev,
709 			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
710 			speed / 1000, speed % 1000,
711 			clk / divider / 1000, clk / divider % 1000);
712 	} else if (divider > 1897) {
713 		/*
714 		 * limit the divider, so that max(low_count, high_count)
715 		 * cannot exceed 1023
716 		 */
717 		divider = 1897;
718 		dev_warn(dev,
719 			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
720 			speed / 1000, speed % 1000,
721 			clk / divider / 1000, clk / divider % 1000);
722 	}
723 
724 	/*
725 	 * The I2C spec specifies the following timing data:
726 	 *                          standard mode  fast mode Bitfield name
727 	 * tLOW (SCL LOW period)     4700 ns        1300 ns
728 	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
729 	 * tSU;DAT (data setup time)  250 ns         100 ns
730 	 * tHD;STA (START hold time) 4000 ns         600 ns
731 	 * tBUF (bus free time)      4700 ns        1300 ns
732 	 *
733 	 * The hardware (of the i.MX28 at least) seems to add 2 additional
734 	 * clock cycles to the low_count and 7 cycles to the high_count.
735 	 * This is compensated for by subtracting the respective constants
736 	 * from the values written to the timing registers.
737 	 */
738 	if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
739 		/* fast mode */
740 		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
741 		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
742 		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
743 		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
744 	} else {
745 		/* normal mode */
746 		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
747 		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
748 		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
749 		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
750 	}
751 	rcv_count = high_count * 3 / 8;
752 	xmit_count = low_count * 3 / 8;
753 
754 	dev_dbg(dev,
755 		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
756 		speed, clk / divider, divider, low_count, high_count,
757 		xmit_count, rcv_count, leadin, bus_free);
758 
759 	low_count -= 2;
760 	high_count -= 7;
761 	i2c->timing0 = (high_count << 16) | rcv_count;
762 	i2c->timing1 = (low_count << 16) | xmit_count;
763 	i2c->timing2 = (bus_free << 16 | leadin);
764 }
765 
766 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
767 {
768 	uint32_t speed;
769 	struct device *dev = i2c->dev;
770 	struct device_node *node = dev->of_node;
771 	int ret;
772 
773 	ret = of_property_read_u32(node, "clock-frequency", &speed);
774 	if (ret) {
775 		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
776 		speed = I2C_MAX_STANDARD_MODE_FREQ;
777 	}
778 
779 	mxs_i2c_derive_timing(i2c, speed);
780 
781 	return 0;
782 }
783 
784 static const struct of_device_id mxs_i2c_dt_ids[] = {
785 	{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
786 	{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
787 	{ /* sentinel */ }
788 };
789 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
790 
791 static int mxs_i2c_probe(struct platform_device *pdev)
792 {
793 	struct device *dev = &pdev->dev;
794 	struct mxs_i2c_dev *i2c;
795 	struct i2c_adapter *adap;
796 	int err, irq;
797 
798 	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
799 	if (!i2c)
800 		return -ENOMEM;
801 
802 	i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
803 
804 	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
805 	if (IS_ERR(i2c->regs))
806 		return PTR_ERR(i2c->regs);
807 
808 	irq = platform_get_irq(pdev, 0);
809 	if (irq < 0)
810 		return irq;
811 
812 	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
813 	if (err)
814 		return err;
815 
816 	i2c->dev = dev;
817 
818 	init_completion(&i2c->cmd_complete);
819 
820 	if (dev->of_node) {
821 		err = mxs_i2c_get_ofdata(i2c);
822 		if (err)
823 			return err;
824 	}
825 
826 	/* Setup the DMA */
827 	i2c->dmach = dma_request_chan(dev, "rx-tx");
828 	if (IS_ERR(i2c->dmach)) {
829 		dev_err(dev, "Failed to request dma\n");
830 		return PTR_ERR(i2c->dmach);
831 	}
832 
833 	platform_set_drvdata(pdev, i2c);
834 
835 	/* Do reset to enforce correct startup after pinmuxing */
836 	err = mxs_i2c_reset(i2c);
837 	if (err)
838 		return err;
839 
840 	adap = &i2c->adapter;
841 	strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
842 	adap->owner = THIS_MODULE;
843 	adap->algo = &mxs_i2c_algo;
844 	adap->quirks = &mxs_i2c_quirks;
845 	adap->dev.parent = dev;
846 	adap->nr = pdev->id;
847 	adap->dev.of_node = pdev->dev.of_node;
848 	i2c_set_adapdata(adap, i2c);
849 	err = i2c_add_numbered_adapter(adap);
850 	if (err) {
851 		writel(MXS_I2C_CTRL0_SFTRST,
852 				i2c->regs + MXS_I2C_CTRL0_SET);
853 		return err;
854 	}
855 
856 	return 0;
857 }
858 
859 static int mxs_i2c_remove(struct platform_device *pdev)
860 {
861 	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
862 
863 	i2c_del_adapter(&i2c->adapter);
864 
865 	if (i2c->dmach)
866 		dma_release_channel(i2c->dmach);
867 
868 	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
869 
870 	return 0;
871 }
872 
873 static struct platform_driver mxs_i2c_driver = {
874 	.driver = {
875 		   .name = DRIVER_NAME,
876 		   .of_match_table = mxs_i2c_dt_ids,
877 		   },
878 	.probe = mxs_i2c_probe,
879 	.remove = mxs_i2c_remove,
880 };
881 
882 static int __init mxs_i2c_init(void)
883 {
884 	return platform_driver_register(&mxs_i2c_driver);
885 }
886 subsys_initcall(mxs_i2c_init);
887 
888 static void __exit mxs_i2c_exit(void)
889 {
890 	platform_driver_unregister(&mxs_i2c_driver);
891 }
892 module_exit(mxs_i2c_exit);
893 
894 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
895 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
896 MODULE_DESCRIPTION("MXS I2C Bus Driver");
897 MODULE_LICENSE("GPL");
898 MODULE_ALIAS("platform:" DRIVER_NAME);
899