xref: /linux/drivers/iio/accel/kionix-kx022a.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2022 ROHM Semiconductors
4  *
5  * ROHM/KIONIX accelerometer driver
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/mutex.h>
14 #include <linux/property.h>
15 #include <linux/regmap.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/units.h>
20 
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 
27 #include "kionix-kx022a.h"
28 
29 /*
30  * The KX022A has FIFO which can store 43 samples of HiRes data from 2
31  * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to
32  * 258 bytes of sample data. The quirk to know is that the amount of bytes in
33  * the FIFO is advertised via 8 bit register (max value 255). The thing to note
34  * is that full 258 bytes of data is indicated using the max value 255.
35  */
36 #define KX022A_FIFO_LENGTH			43
37 #define KX022A_FIFO_FULL_VALUE			255
38 #define KX022A_SOFT_RESET_WAIT_TIME_US		(5 * USEC_PER_MSEC)
39 #define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US	(500 * USEC_PER_MSEC)
40 
41 /* 3 axis, 2 bytes of data for each of the axis */
42 #define KX022A_FIFO_SAMPLES_SIZE_BYTES		6
43 #define KX022A_FIFO_MAX_BYTES					\
44 	(KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES)
45 
46 enum {
47 	KX022A_STATE_SAMPLE,
48 	KX022A_STATE_FIFO,
49 };
50 
51 /* kx022a Regmap configs */
52 static const struct regmap_range kx022a_volatile_ranges[] = {
53 	{
54 		.range_min = KX022A_REG_XHP_L,
55 		.range_max = KX022A_REG_COTR,
56 	}, {
57 		.range_min = KX022A_REG_TSCP,
58 		.range_max = KX022A_REG_INT_REL,
59 	}, {
60 		/* The reset bit will be cleared by sensor */
61 		.range_min = KX022A_REG_CNTL2,
62 		.range_max = KX022A_REG_CNTL2,
63 	}, {
64 		.range_min = KX022A_REG_BUF_STATUS_1,
65 		.range_max = KX022A_REG_BUF_READ,
66 	},
67 };
68 
69 static const struct regmap_access_table kx022a_volatile_regs = {
70 	.yes_ranges = &kx022a_volatile_ranges[0],
71 	.n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges),
72 };
73 
74 static const struct regmap_range kx022a_precious_ranges[] = {
75 	{
76 		.range_min = KX022A_REG_INT_REL,
77 		.range_max = KX022A_REG_INT_REL,
78 	},
79 };
80 
81 static const struct regmap_access_table kx022a_precious_regs = {
82 	.yes_ranges = &kx022a_precious_ranges[0],
83 	.n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges),
84 };
85 
86 /*
87  * The HW does not set WHO_AM_I reg as read-only but we don't want to write it
88  * so we still include it in the read-only ranges.
89  */
90 static const struct regmap_range kx022a_read_only_ranges[] = {
91 	{
92 		.range_min = KX022A_REG_XHP_L,
93 		.range_max = KX022A_REG_INT_REL,
94 	}, {
95 		.range_min = KX022A_REG_BUF_STATUS_1,
96 		.range_max = KX022A_REG_BUF_STATUS_2,
97 	}, {
98 		.range_min = KX022A_REG_BUF_READ,
99 		.range_max = KX022A_REG_BUF_READ,
100 	},
101 };
102 
103 static const struct regmap_access_table kx022a_ro_regs = {
104 	.no_ranges = &kx022a_read_only_ranges[0],
105 	.n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges),
106 };
107 
108 static const struct regmap_range kx022a_write_only_ranges[] = {
109 	{
110 		.range_min = KX022A_REG_BTS_WUF_TH,
111 		.range_max = KX022A_REG_BTS_WUF_TH,
112 	}, {
113 		.range_min = KX022A_REG_MAN_WAKE,
114 		.range_max = KX022A_REG_MAN_WAKE,
115 	}, {
116 		.range_min = KX022A_REG_SELF_TEST,
117 		.range_max = KX022A_REG_SELF_TEST,
118 	}, {
119 		.range_min = KX022A_REG_BUF_CLEAR,
120 		.range_max = KX022A_REG_BUF_CLEAR,
121 	},
122 };
123 
124 static const struct regmap_access_table kx022a_wo_regs = {
125 	.no_ranges = &kx022a_write_only_ranges[0],
126 	.n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges),
127 };
128 
129 static const struct regmap_range kx022a_noinc_read_ranges[] = {
130 	{
131 		.range_min = KX022A_REG_BUF_READ,
132 		.range_max = KX022A_REG_BUF_READ,
133 	},
134 };
135 
136 static const struct regmap_access_table kx022a_nir_regs = {
137 	.yes_ranges = &kx022a_noinc_read_ranges[0],
138 	.n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges),
139 };
140 
141 static const struct regmap_config kx022a_regmap_config = {
142 	.reg_bits = 8,
143 	.val_bits = 8,
144 	.volatile_table = &kx022a_volatile_regs,
145 	.rd_table = &kx022a_wo_regs,
146 	.wr_table = &kx022a_ro_regs,
147 	.rd_noinc_table = &kx022a_nir_regs,
148 	.precious_table = &kx022a_precious_regs,
149 	.max_register = KX022A_MAX_REGISTER,
150 	.cache_type = REGCACHE_RBTREE,
151 };
152 
153 /* Regmap configs kx132 */
154 static const struct regmap_range kx132_volatile_ranges[] = {
155 	{
156 		.range_min = KX132_REG_XADP_L,
157 		.range_max = KX132_REG_COTR,
158 	}, {
159 		.range_min = KX132_REG_TSCP,
160 		.range_max = KX132_REG_INT_REL,
161 	}, {
162 		/* The reset bit will be cleared by sensor */
163 		.range_min = KX132_REG_CNTL2,
164 		.range_max = KX132_REG_CNTL2,
165 	}, {
166 		.range_min = KX132_REG_CNTL5,
167 		.range_max = KX132_REG_CNTL5,
168 	}, {
169 		.range_min = KX132_REG_BUF_STATUS_1,
170 		.range_max = KX132_REG_BUF_READ,
171 	},
172 };
173 
174 static const struct regmap_access_table kx132_volatile_regs = {
175 	.yes_ranges = &kx132_volatile_ranges[0],
176 	.n_yes_ranges = ARRAY_SIZE(kx132_volatile_ranges),
177 };
178 
179 static const struct regmap_range kx132_precious_ranges[] = {
180 	{
181 		.range_min = KX132_REG_INT_REL,
182 		.range_max = KX132_REG_INT_REL,
183 	},
184 };
185 
186 static const struct regmap_access_table kx132_precious_regs = {
187 	.yes_ranges = &kx132_precious_ranges[0],
188 	.n_yes_ranges = ARRAY_SIZE(kx132_precious_ranges),
189 };
190 
191 static const struct regmap_range kx132_read_only_ranges[] = {
192 	{
193 		.range_min = KX132_REG_XADP_L,
194 		.range_max = KX132_REG_INT_REL,
195 	}, {
196 		.range_min = KX132_REG_BUF_STATUS_1,
197 		.range_max = KX132_REG_BUF_STATUS_2,
198 	}, {
199 		.range_min = KX132_REG_BUF_READ,
200 		.range_max = KX132_REG_BUF_READ,
201 	}, {
202 		/* Kionix reserved registers: should not be written */
203 		.range_min = 0x28,
204 		.range_max = 0x28,
205 	}, {
206 		.range_min = 0x35,
207 		.range_max = 0x36,
208 	}, {
209 		.range_min = 0x3c,
210 		.range_max = 0x48,
211 	}, {
212 		.range_min = 0x4e,
213 		.range_max = 0x5c,
214 	}, {
215 		.range_min = 0x77,
216 		.range_max = 0x7f,
217 	},
218 };
219 
220 static const struct regmap_access_table kx132_ro_regs = {
221 	.no_ranges = &kx132_read_only_ranges[0],
222 	.n_no_ranges = ARRAY_SIZE(kx132_read_only_ranges),
223 };
224 
225 static const struct regmap_range kx132_write_only_ranges[] = {
226 	{
227 		.range_min = KX132_REG_SELF_TEST,
228 		.range_max = KX132_REG_SELF_TEST,
229 	}, {
230 		.range_min = KX132_REG_BUF_CLEAR,
231 		.range_max = KX132_REG_BUF_CLEAR,
232 	},
233 };
234 
235 static const struct regmap_access_table kx132_wo_regs = {
236 	.no_ranges = &kx132_write_only_ranges[0],
237 	.n_no_ranges = ARRAY_SIZE(kx132_write_only_ranges),
238 };
239 
240 static const struct regmap_range kx132_noinc_read_ranges[] = {
241 	{
242 		.range_min = KX132_REG_BUF_READ,
243 		.range_max = KX132_REG_BUF_READ,
244 	},
245 };
246 
247 static const struct regmap_access_table kx132_nir_regs = {
248 	.yes_ranges = &kx132_noinc_read_ranges[0],
249 	.n_yes_ranges = ARRAY_SIZE(kx132_noinc_read_ranges),
250 };
251 
252 static const struct regmap_config kx132_regmap_config = {
253 	.reg_bits = 8,
254 	.val_bits = 8,
255 	.volatile_table = &kx132_volatile_regs,
256 	.rd_table = &kx132_wo_regs,
257 	.wr_table = &kx132_ro_regs,
258 	.rd_noinc_table = &kx132_nir_regs,
259 	.precious_table = &kx132_precious_regs,
260 	.max_register = KX132_MAX_REGISTER,
261 	.cache_type = REGCACHE_RBTREE,
262 };
263 
264 struct kx022a_data {
265 	struct regmap *regmap;
266 	const struct kx022a_chip_info *chip_info;
267 	struct iio_trigger *trig;
268 	struct device *dev;
269 	struct iio_mount_matrix orientation;
270 	int64_t timestamp, old_timestamp;
271 
272 	int irq;
273 	int inc_reg;
274 	int ien_reg;
275 
276 	unsigned int state;
277 	unsigned int odr_ns;
278 
279 	bool trigger_enabled;
280 	/*
281 	 * Prevent toggling the sensor stby/active state (PC1 bit) in the
282 	 * middle of a configuration, or when the fifo is enabled. Also,
283 	 * protect the data stored/retrieved from this structure from
284 	 * concurrent accesses.
285 	 */
286 	struct mutex mutex;
287 	u8 watermark;
288 
289 	__le16 *fifo_buffer;
290 
291 	/* 3 x 16bit accel data + timestamp */
292 	__le16 buffer[8] __aligned(IIO_DMA_MINALIGN);
293 	struct {
294 		__le16 channels[3];
295 		s64 ts __aligned(8);
296 	} scan;
297 };
298 
299 static const struct iio_mount_matrix *
300 kx022a_get_mount_matrix(const struct iio_dev *idev,
301 			const struct iio_chan_spec *chan)
302 {
303 	struct kx022a_data *data = iio_priv(idev);
304 
305 	return &data->orientation;
306 }
307 
308 enum {
309 	AXIS_X,
310 	AXIS_Y,
311 	AXIS_Z,
312 	AXIS_MAX
313 };
314 
315 static const unsigned long kx022a_scan_masks[] = {
316 	BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0
317 };
318 
319 static const struct iio_chan_spec_ext_info kx022a_ext_info[] = {
320 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix),
321 	{ }
322 };
323 
324 #define KX022A_ACCEL_CHAN(axis, reg, index)			\
325 {								\
326 	.type = IIO_ACCEL,					\
327 	.modified = 1,						\
328 	.channel2 = IIO_MOD_##axis,				\
329 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
330 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
331 				BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
332 	.info_mask_shared_by_type_available =			\
333 				BIT(IIO_CHAN_INFO_SCALE) |	\
334 				BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
335 	.ext_info = kx022a_ext_info,				\
336 	.address = reg,						\
337 	.scan_index = index,					\
338 	.scan_type = {                                          \
339 		.sign = 's',					\
340 		.realbits = 16,					\
341 		.storagebits = 16,				\
342 		.endianness = IIO_LE,				\
343 	},							\
344 }
345 
346 static const struct iio_chan_spec kx022a_channels[] = {
347 	KX022A_ACCEL_CHAN(X, KX022A_REG_XOUT_L, 0),
348 	KX022A_ACCEL_CHAN(Y, KX022A_REG_YOUT_L, 1),
349 	KX022A_ACCEL_CHAN(Z, KX022A_REG_ZOUT_L, 2),
350 	IIO_CHAN_SOFT_TIMESTAMP(3),
351 };
352 
353 static const struct iio_chan_spec kx132_channels[] = {
354 	KX022A_ACCEL_CHAN(X, KX132_REG_XOUT_L, 0),
355 	KX022A_ACCEL_CHAN(Y, KX132_REG_YOUT_L, 1),
356 	KX022A_ACCEL_CHAN(Z, KX132_REG_ZOUT_L, 2),
357 	IIO_CHAN_SOFT_TIMESTAMP(3),
358 };
359 
360 /*
361  * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the
362  * Linux CPUs can handle without dropping samples. Also, the low power mode is
363  * not available for higher sample rates. Thus, the driver only supports 200 Hz
364  * and slower ODRs. The slowest is 0.78 Hz.
365  */
366 static const int kx022a_accel_samp_freq_table[][2] = {
367 	{ 0, 780000 },
368 	{ 1, 563000 },
369 	{ 3, 125000 },
370 	{ 6, 250000 },
371 	{ 12, 500000 },
372 	{ 25, 0 },
373 	{ 50, 0 },
374 	{ 100, 0 },
375 	{ 200, 0 },
376 };
377 
378 static const unsigned int kx022a_odrs[] = {
379 	1282051282,
380 	639795266,
381 	320 * MEGA,
382 	160 * MEGA,
383 	80 * MEGA,
384 	40 * MEGA,
385 	20 * MEGA,
386 	10 * MEGA,
387 	5 * MEGA,
388 };
389 
390 /*
391  * range is typically +-2G/4G/8G/16G, distributed over the amount of bits.
392  * The scale table can be calculated using
393  *	(range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
394  *	=> KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed
395  *	in low-power mode(?) )
396  *	=> +/-2G  => 4 / 2^16 * 9,80665 * 10^6 (to scale to micro)
397  *	=> +/-2G  - 598.550415
398  *	   +/-4G  - 1197.10083
399  *	   +/-8G  - 2394.20166
400  *	   +/-16G - 4788.40332
401  */
402 static const int kx022a_scale_table[][2] = {
403 	{ 598, 550415 },
404 	{ 1197, 100830 },
405 	{ 2394, 201660 },
406 	{ 4788, 403320 },
407 };
408 
409 static int kx022a_read_avail(struct iio_dev *indio_dev,
410 			     struct iio_chan_spec const *chan,
411 			     const int **vals, int *type, int *length,
412 			     long mask)
413 {
414 	switch (mask) {
415 	case IIO_CHAN_INFO_SAMP_FREQ:
416 		*vals = (const int *)kx022a_accel_samp_freq_table;
417 		*length = ARRAY_SIZE(kx022a_accel_samp_freq_table) *
418 			  ARRAY_SIZE(kx022a_accel_samp_freq_table[0]);
419 		*type = IIO_VAL_INT_PLUS_MICRO;
420 		return IIO_AVAIL_LIST;
421 	case IIO_CHAN_INFO_SCALE:
422 		*vals = (const int *)kx022a_scale_table;
423 		*length = ARRAY_SIZE(kx022a_scale_table) *
424 			  ARRAY_SIZE(kx022a_scale_table[0]);
425 		*type = IIO_VAL_INT_PLUS_MICRO;
426 		return IIO_AVAIL_LIST;
427 	default:
428 		return -EINVAL;
429 	}
430 }
431 
432 #define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC)
433 
434 static void kx022a_reg2freq(unsigned int val,  int *val1, int *val2)
435 {
436 	*val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0];
437 	*val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1];
438 }
439 
440 static void kx022a_reg2scale(unsigned int val, unsigned int *val1,
441 			     unsigned int *val2)
442 {
443 	val &= KX022A_MASK_GSEL;
444 	val >>= KX022A_GSEL_SHIFT;
445 
446 	*val1 = kx022a_scale_table[val][0];
447 	*val2 = kx022a_scale_table[val][1];
448 }
449 
450 static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on)
451 {
452 	int ret;
453 
454 	if (on)
455 		ret = regmap_set_bits(data->regmap, data->chip_info->cntl,
456 				      KX022A_MASK_PC1);
457 	else
458 		ret = regmap_clear_bits(data->regmap, data->chip_info->cntl,
459 					KX022A_MASK_PC1);
460 	if (ret)
461 		dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret);
462 
463 	return ret;
464 }
465 
466 static int kx022a_turn_off_lock(struct kx022a_data *data)
467 {
468 	int ret;
469 
470 	mutex_lock(&data->mutex);
471 	ret = kx022a_turn_on_off_unlocked(data, false);
472 	if (ret)
473 		mutex_unlock(&data->mutex);
474 
475 	return ret;
476 }
477 
478 static int kx022a_turn_on_unlock(struct kx022a_data *data)
479 {
480 	int ret;
481 
482 	ret = kx022a_turn_on_off_unlocked(data, true);
483 	mutex_unlock(&data->mutex);
484 
485 	return ret;
486 }
487 
488 static int kx022a_write_raw(struct iio_dev *idev,
489 			    struct iio_chan_spec const *chan,
490 			    int val, int val2, long mask)
491 {
492 	struct kx022a_data *data = iio_priv(idev);
493 	int ret, n;
494 
495 	/*
496 	 * We should not allow changing scale or frequency when FIFO is running
497 	 * as it will mess the timestamp/scale for samples existing in the
498 	 * buffer. If this turns out to be an issue we can later change logic
499 	 * to internally flush the fifo before reconfiguring so the samples in
500 	 * fifo keep matching the freq/scale settings. (Such setup could cause
501 	 * issues if users trust the watermark to be reached within known
502 	 * time-limit).
503 	 */
504 	ret = iio_device_claim_direct_mode(idev);
505 	if (ret)
506 		return ret;
507 
508 	switch (mask) {
509 	case IIO_CHAN_INFO_SAMP_FREQ:
510 		n = ARRAY_SIZE(kx022a_accel_samp_freq_table);
511 
512 		while (n--)
513 			if (val == kx022a_accel_samp_freq_table[n][0] &&
514 			    val2 == kx022a_accel_samp_freq_table[n][1])
515 				break;
516 		if (n < 0) {
517 			ret = -EINVAL;
518 			goto unlock_out;
519 		}
520 		ret = kx022a_turn_off_lock(data);
521 		if (ret)
522 			break;
523 
524 		ret = regmap_update_bits(data->regmap,
525 					 data->chip_info->odcntl,
526 					 KX022A_MASK_ODR, n);
527 		data->odr_ns = kx022a_odrs[n];
528 		kx022a_turn_on_unlock(data);
529 		break;
530 	case IIO_CHAN_INFO_SCALE:
531 		n = ARRAY_SIZE(kx022a_scale_table);
532 
533 		while (n-- > 0)
534 			if (val == kx022a_scale_table[n][0] &&
535 			    val2 == kx022a_scale_table[n][1])
536 				break;
537 		if (n < 0) {
538 			ret = -EINVAL;
539 			goto unlock_out;
540 		}
541 
542 		ret = kx022a_turn_off_lock(data);
543 		if (ret)
544 			break;
545 
546 		ret = regmap_update_bits(data->regmap, data->chip_info->cntl,
547 					 KX022A_MASK_GSEL,
548 					 n << KX022A_GSEL_SHIFT);
549 		kx022a_turn_on_unlock(data);
550 		break;
551 	default:
552 		ret = -EINVAL;
553 		break;
554 	}
555 
556 unlock_out:
557 	iio_device_release_direct_mode(idev);
558 
559 	return ret;
560 }
561 
562 static int kx022a_fifo_set_wmi(struct kx022a_data *data)
563 {
564 	u8 threshold;
565 
566 	threshold = data->watermark;
567 
568 	return regmap_update_bits(data->regmap, data->chip_info->buf_cntl1,
569 				  KX022A_MASK_WM_TH, threshold);
570 }
571 
572 static int kx022a_get_axis(struct kx022a_data *data,
573 			   struct iio_chan_spec const *chan,
574 			   int *val)
575 {
576 	int ret;
577 
578 	ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0],
579 			       sizeof(__le16));
580 	if (ret)
581 		return ret;
582 
583 	*val = le16_to_cpu(data->buffer[0]);
584 
585 	return IIO_VAL_INT;
586 }
587 
588 static int kx022a_read_raw(struct iio_dev *idev,
589 			   struct iio_chan_spec const *chan,
590 			   int *val, int *val2, long mask)
591 {
592 	struct kx022a_data *data = iio_priv(idev);
593 	unsigned int regval;
594 	int ret;
595 
596 	switch (mask) {
597 	case IIO_CHAN_INFO_RAW:
598 		ret = iio_device_claim_direct_mode(idev);
599 		if (ret)
600 			return ret;
601 
602 		mutex_lock(&data->mutex);
603 		ret = kx022a_get_axis(data, chan, val);
604 		mutex_unlock(&data->mutex);
605 
606 		iio_device_release_direct_mode(idev);
607 
608 		return ret;
609 
610 	case IIO_CHAN_INFO_SAMP_FREQ:
611 		ret = regmap_read(data->regmap, data->chip_info->odcntl, &regval);
612 		if (ret)
613 			return ret;
614 
615 		if ((regval & KX022A_MASK_ODR) >
616 		    ARRAY_SIZE(kx022a_accel_samp_freq_table)) {
617 			dev_err(data->dev, "Invalid ODR\n");
618 			return -EINVAL;
619 		}
620 
621 		kx022a_reg2freq(regval, val, val2);
622 
623 		return IIO_VAL_INT_PLUS_MICRO;
624 
625 	case IIO_CHAN_INFO_SCALE:
626 		ret = regmap_read(data->regmap, data->chip_info->cntl, &regval);
627 		if (ret < 0)
628 			return ret;
629 
630 		kx022a_reg2scale(regval, val, val2);
631 
632 		return IIO_VAL_INT_PLUS_MICRO;
633 	}
634 
635 	return -EINVAL;
636 };
637 
638 static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val)
639 {
640 	struct kx022a_data *data = iio_priv(idev);
641 
642 	val = min(data->chip_info->fifo_length, val);
643 
644 	mutex_lock(&data->mutex);
645 	data->watermark = val;
646 	mutex_unlock(&data->mutex);
647 
648 	return 0;
649 }
650 
651 static ssize_t hwfifo_enabled_show(struct device *dev,
652 				   struct device_attribute *attr,
653 				   char *buf)
654 {
655 	struct iio_dev *idev = dev_to_iio_dev(dev);
656 	struct kx022a_data *data = iio_priv(idev);
657 	bool state;
658 
659 	mutex_lock(&data->mutex);
660 	state = data->state;
661 	mutex_unlock(&data->mutex);
662 
663 	return sysfs_emit(buf, "%d\n", state);
664 }
665 
666 static ssize_t hwfifo_watermark_show(struct device *dev,
667 				     struct device_attribute *attr,
668 				     char *buf)
669 {
670 	struct iio_dev *idev = dev_to_iio_dev(dev);
671 	struct kx022a_data *data = iio_priv(idev);
672 	int wm;
673 
674 	mutex_lock(&data->mutex);
675 	wm = data->watermark;
676 	mutex_unlock(&data->mutex);
677 
678 	return sysfs_emit(buf, "%d\n", wm);
679 }
680 
681 static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
682 static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
683 
684 static const struct iio_dev_attr *kx022a_fifo_attributes[] = {
685 	&iio_dev_attr_hwfifo_watermark,
686 	&iio_dev_attr_hwfifo_enabled,
687 	NULL
688 };
689 
690 static int kx022a_drop_fifo_contents(struct kx022a_data *data)
691 {
692 	/*
693 	 * We must clear the old time-stamp to avoid computing the timestamps
694 	 * based on samples acquired when buffer was last enabled.
695 	 *
696 	 * We don't need to protect the timestamp as long as we are only
697 	 * called from fifo-disable where we can guarantee the sensor is not
698 	 * triggering interrupts and where the mutex is locked to prevent the
699 	 * user-space access.
700 	 */
701 	data->timestamp = 0;
702 
703 	return regmap_write(data->regmap, data->chip_info->buf_clear, 0x0);
704 }
705 
706 static int kx022a_get_fifo_bytes_available(struct kx022a_data *data)
707 {
708 	int ret, fifo_bytes;
709 
710 	ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes);
711 	if (ret) {
712 		dev_err(data->dev, "Error reading buffer status\n");
713 		return ret;
714 	}
715 
716 	if (fifo_bytes == KX022A_FIFO_FULL_VALUE)
717 		return KX022A_FIFO_MAX_BYTES;
718 
719 	return fifo_bytes;
720 }
721 
722 static int kx132_get_fifo_bytes_available(struct kx022a_data *data)
723 {
724 	__le16 buf_status;
725 	int ret, fifo_bytes;
726 
727 	ret = regmap_bulk_read(data->regmap, data->chip_info->buf_status1,
728 			       &buf_status, sizeof(buf_status));
729 	if (ret) {
730 		dev_err(data->dev, "Error reading buffer status\n");
731 		return ret;
732 	}
733 
734 	fifo_bytes = le16_to_cpu(buf_status);
735 	fifo_bytes &= data->chip_info->buf_smp_lvl_mask;
736 	fifo_bytes = min((unsigned int)fifo_bytes, data->chip_info->fifo_length *
737 			 KX022A_FIFO_SAMPLES_SIZE_BYTES);
738 
739 	return fifo_bytes;
740 }
741 
742 static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples,
743 			       bool irq)
744 {
745 	struct kx022a_data *data = iio_priv(idev);
746 	uint64_t sample_period;
747 	int count, fifo_bytes;
748 	bool renable = false;
749 	int64_t tstamp;
750 	int ret, i;
751 
752 	fifo_bytes = data->chip_info->get_fifo_bytes_available(data);
753 
754 	if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES)
755 		dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n");
756 
757 	count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES;
758 	if (!count)
759 		return 0;
760 
761 	/*
762 	 * If we are being called from IRQ handler we know the stored timestamp
763 	 * is fairly accurate for the last stored sample. Otherwise, if we are
764 	 * called as a result of a read operation from userspace and hence
765 	 * before the watermark interrupt was triggered, take a timestamp
766 	 * now. We can fall anywhere in between two samples so the error in this
767 	 * case is at most one sample period.
768 	 */
769 	if (!irq) {
770 		/*
771 		 * We need to have the IRQ disabled or we risk of messing-up
772 		 * the timestamps. If we are ran from IRQ, then the
773 		 * IRQF_ONESHOT has us covered - but if we are ran by the
774 		 * user-space read we need to disable the IRQ to be on a safe
775 		 * side. We do this usng synchronous disable so that if the
776 		 * IRQ thread is being ran on other CPU we wait for it to be
777 		 * finished.
778 		 */
779 		disable_irq(data->irq);
780 		renable = true;
781 
782 		data->old_timestamp = data->timestamp;
783 		data->timestamp = iio_get_time_ns(idev);
784 	}
785 
786 	/*
787 	 * Approximate timestamps for each of the sample based on the sampling
788 	 * frequency, timestamp for last sample and number of samples.
789 	 *
790 	 * We'd better not use the current bandwidth settings to compute the
791 	 * sample period. The real sample rate varies with the device and
792 	 * small variation adds when we store a large number of samples.
793 	 *
794 	 * To avoid this issue we compute the actual sample period ourselves
795 	 * based on the timestamp delta between the last two flush operations.
796 	 */
797 	if (data->old_timestamp) {
798 		sample_period = data->timestamp - data->old_timestamp;
799 		do_div(sample_period, count);
800 	} else {
801 		sample_period = data->odr_ns;
802 	}
803 	tstamp = data->timestamp - (count - 1) * sample_period;
804 
805 	if (samples && count > samples) {
806 		/*
807 		 * Here we leave some old samples to the buffer. We need to
808 		 * adjust the timestamp to match the first sample in the buffer
809 		 * or we will miscalculate the sample_period at next round.
810 		 */
811 		data->timestamp -= (count - samples) * sample_period;
812 		count = samples;
813 	}
814 
815 	fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES;
816 	ret = regmap_noinc_read(data->regmap, data->chip_info->buf_read,
817 				data->fifo_buffer, fifo_bytes);
818 	if (ret)
819 		goto renable_out;
820 
821 	for (i = 0; i < count; i++) {
822 		__le16 *sam = &data->fifo_buffer[i * 3];
823 		__le16 *chs;
824 		int bit;
825 
826 		chs = &data->scan.channels[0];
827 		for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX)
828 			chs[bit] = sam[bit];
829 
830 		iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
831 
832 		tstamp += sample_period;
833 	}
834 
835 	ret = count;
836 
837 renable_out:
838 	if (renable)
839 		enable_irq(data->irq);
840 
841 	return ret;
842 }
843 
844 static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples)
845 {
846 	struct kx022a_data *data = iio_priv(idev);
847 	int ret;
848 
849 	mutex_lock(&data->mutex);
850 	ret = __kx022a_fifo_flush(idev, samples, false);
851 	mutex_unlock(&data->mutex);
852 
853 	return ret;
854 }
855 
856 static const struct iio_info kx022a_info = {
857 	.read_raw = &kx022a_read_raw,
858 	.write_raw = &kx022a_write_raw,
859 	.read_avail = &kx022a_read_avail,
860 
861 	.validate_trigger	= iio_validate_own_trigger,
862 	.hwfifo_set_watermark	= kx022a_set_watermark,
863 	.hwfifo_flush_to_buffer	= kx022a_fifo_flush,
864 };
865 
866 static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en)
867 {
868 	if (en)
869 		return regmap_set_bits(data->regmap, data->chip_info->cntl,
870 				       KX022A_MASK_DRDY);
871 
872 	return regmap_clear_bits(data->regmap, data->chip_info->cntl,
873 				 KX022A_MASK_DRDY);
874 }
875 
876 static int kx022a_prepare_irq_pin(struct kx022a_data *data)
877 {
878 	/* Enable IRQ1 pin. Set polarity to active low */
879 	int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL |
880 		   KX022A_MASK_ITYP;
881 	int val = KX022A_MASK_IEN | KX022A_IPOL_LOW |
882 		  KX022A_ITYP_LEVEL;
883 	int ret;
884 
885 	ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val);
886 	if (ret)
887 		return ret;
888 
889 	/* We enable WMI to IRQ pin only at buffer_enable */
890 	mask = KX022A_MASK_INS2_DRDY;
891 
892 	return regmap_set_bits(data->regmap, data->ien_reg, mask);
893 }
894 
895 static int kx022a_fifo_disable(struct kx022a_data *data)
896 {
897 	int ret = 0;
898 
899 	ret = kx022a_turn_off_lock(data);
900 	if (ret)
901 		return ret;
902 
903 	ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI);
904 	if (ret)
905 		goto unlock_out;
906 
907 	ret = regmap_clear_bits(data->regmap, data->chip_info->buf_cntl2,
908 				KX022A_MASK_BUF_EN);
909 	if (ret)
910 		goto unlock_out;
911 
912 	data->state &= ~KX022A_STATE_FIFO;
913 
914 	kx022a_drop_fifo_contents(data);
915 
916 	kfree(data->fifo_buffer);
917 
918 	return kx022a_turn_on_unlock(data);
919 
920 unlock_out:
921 	mutex_unlock(&data->mutex);
922 
923 	return ret;
924 }
925 
926 static int kx022a_buffer_predisable(struct iio_dev *idev)
927 {
928 	struct kx022a_data *data = iio_priv(idev);
929 
930 	if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
931 		return 0;
932 
933 	return kx022a_fifo_disable(data);
934 }
935 
936 static int kx022a_fifo_enable(struct kx022a_data *data)
937 {
938 	int ret;
939 
940 	data->fifo_buffer = kmalloc_array(data->chip_info->fifo_length,
941 					  KX022A_FIFO_SAMPLES_SIZE_BYTES,
942 					  GFP_KERNEL);
943 	if (!data->fifo_buffer)
944 		return -ENOMEM;
945 
946 	ret = kx022a_turn_off_lock(data);
947 	if (ret)
948 		return ret;
949 
950 	/* Update watermark to HW */
951 	ret = kx022a_fifo_set_wmi(data);
952 	if (ret)
953 		goto unlock_out;
954 
955 	/* Enable buffer */
956 	ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2,
957 			      KX022A_MASK_BUF_EN);
958 	if (ret)
959 		goto unlock_out;
960 
961 	data->state |= KX022A_STATE_FIFO;
962 	ret = regmap_set_bits(data->regmap, data->ien_reg,
963 			      KX022A_MASK_WMI);
964 	if (ret)
965 		goto unlock_out;
966 
967 	return kx022a_turn_on_unlock(data);
968 
969 unlock_out:
970 	mutex_unlock(&data->mutex);
971 
972 	return ret;
973 }
974 
975 static int kx022a_buffer_postenable(struct iio_dev *idev)
976 {
977 	struct kx022a_data *data = iio_priv(idev);
978 
979 	/*
980 	 * If we use data-ready trigger, then the IRQ masks should be handled by
981 	 * trigger enable and the hardware buffer is not used but we just update
982 	 * results to the IIO fifo when data-ready triggers.
983 	 */
984 	if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
985 		return 0;
986 
987 	return kx022a_fifo_enable(data);
988 }
989 
990 static const struct iio_buffer_setup_ops kx022a_buffer_ops = {
991 	.postenable = kx022a_buffer_postenable,
992 	.predisable = kx022a_buffer_predisable,
993 };
994 
995 static irqreturn_t kx022a_trigger_handler(int irq, void *p)
996 {
997 	struct iio_poll_func *pf = p;
998 	struct iio_dev *idev = pf->indio_dev;
999 	struct kx022a_data *data = iio_priv(idev);
1000 	int ret;
1001 
1002 	ret = regmap_bulk_read(data->regmap, data->chip_info->xout_l, data->buffer,
1003 			       KX022A_FIFO_SAMPLES_SIZE_BYTES);
1004 	if (ret < 0)
1005 		goto err_read;
1006 
1007 	iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp);
1008 err_read:
1009 	iio_trigger_notify_done(idev->trig);
1010 
1011 	return IRQ_HANDLED;
1012 }
1013 
1014 /* Get timestamps and wake the thread if we need to read data */
1015 static irqreturn_t kx022a_irq_handler(int irq, void *private)
1016 {
1017 	struct iio_dev *idev = private;
1018 	struct kx022a_data *data = iio_priv(idev);
1019 
1020 	data->old_timestamp = data->timestamp;
1021 	data->timestamp = iio_get_time_ns(idev);
1022 
1023 	if (data->state & KX022A_STATE_FIFO || data->trigger_enabled)
1024 		return IRQ_WAKE_THREAD;
1025 
1026 	return IRQ_NONE;
1027 }
1028 
1029 /*
1030  * WMI and data-ready IRQs are acked when results are read. If we add
1031  * TILT/WAKE or other IRQs - then we may need to implement the acking
1032  * (which is racy).
1033  */
1034 static irqreturn_t kx022a_irq_thread_handler(int irq, void *private)
1035 {
1036 	struct iio_dev *idev = private;
1037 	struct kx022a_data *data = iio_priv(idev);
1038 	irqreturn_t ret = IRQ_NONE;
1039 
1040 	mutex_lock(&data->mutex);
1041 
1042 	if (data->trigger_enabled) {
1043 		iio_trigger_poll_nested(data->trig);
1044 		ret = IRQ_HANDLED;
1045 	}
1046 
1047 	if (data->state & KX022A_STATE_FIFO) {
1048 		int ok;
1049 
1050 		ok = __kx022a_fifo_flush(idev, data->chip_info->fifo_length, true);
1051 		if (ok > 0)
1052 			ret = IRQ_HANDLED;
1053 	}
1054 
1055 	mutex_unlock(&data->mutex);
1056 
1057 	return ret;
1058 }
1059 
1060 static int kx022a_trigger_set_state(struct iio_trigger *trig,
1061 				    bool state)
1062 {
1063 	struct kx022a_data *data = iio_trigger_get_drvdata(trig);
1064 	int ret = 0;
1065 
1066 	mutex_lock(&data->mutex);
1067 
1068 	if (data->trigger_enabled == state)
1069 		goto unlock_out;
1070 
1071 	if (data->state & KX022A_STATE_FIFO) {
1072 		dev_warn(data->dev, "Can't set trigger when FIFO enabled\n");
1073 		ret = -EBUSY;
1074 		goto unlock_out;
1075 	}
1076 
1077 	ret = kx022a_turn_on_off_unlocked(data, false);
1078 	if (ret)
1079 		goto unlock_out;
1080 
1081 	data->trigger_enabled = state;
1082 	ret = kx022a_set_drdy_irq(data, state);
1083 	if (ret)
1084 		goto unlock_out;
1085 
1086 	ret = kx022a_turn_on_off_unlocked(data, true);
1087 
1088 unlock_out:
1089 	mutex_unlock(&data->mutex);
1090 
1091 	return ret;
1092 }
1093 
1094 static const struct iio_trigger_ops kx022a_trigger_ops = {
1095 	.set_trigger_state = kx022a_trigger_set_state,
1096 };
1097 
1098 static int kx022a_chip_init(struct kx022a_data *data)
1099 {
1100 	int ret, val;
1101 
1102 	/* Reset the senor */
1103 	ret = regmap_write(data->regmap, data->chip_info->cntl2, KX022A_MASK_SRST);
1104 	if (ret)
1105 		return ret;
1106 
1107 	/*
1108 	 * I've seen I2C read failures if we poll too fast after the sensor
1109 	 * reset. Slight delay gives I2C block the time to recover.
1110 	 */
1111 	msleep(1);
1112 
1113 	ret = regmap_read_poll_timeout(data->regmap, data->chip_info->cntl2, val,
1114 				       !(val & KX022A_MASK_SRST),
1115 				       KX022A_SOFT_RESET_WAIT_TIME_US,
1116 				       KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US);
1117 	if (ret) {
1118 		dev_err(data->dev, "Sensor reset %s\n",
1119 			val & KX022A_MASK_SRST ? "timeout" : "fail#");
1120 		return ret;
1121 	}
1122 
1123 	ret = regmap_reinit_cache(data->regmap, data->chip_info->regmap_config);
1124 	if (ret) {
1125 		dev_err(data->dev, "Failed to reinit reg cache\n");
1126 		return ret;
1127 	}
1128 
1129 	/* set data res 16bit */
1130 	ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2,
1131 			      KX022A_MASK_BRES16);
1132 	if (ret) {
1133 		dev_err(data->dev, "Failed to set data resolution\n");
1134 		return ret;
1135 	}
1136 
1137 	return kx022a_prepare_irq_pin(data);
1138 }
1139 
1140 const struct kx022a_chip_info kx022a_chip_info = {
1141 	.name				= "kx022-accel",
1142 	.regmap_config			= &kx022a_regmap_config,
1143 	.channels			= kx022a_channels,
1144 	.num_channels			= ARRAY_SIZE(kx022a_channels),
1145 	.fifo_length			= KX022A_FIFO_LENGTH,
1146 	.who				= KX022A_REG_WHO,
1147 	.id				= KX022A_ID,
1148 	.cntl				= KX022A_REG_CNTL,
1149 	.cntl2				= KX022A_REG_CNTL2,
1150 	.odcntl				= KX022A_REG_ODCNTL,
1151 	.buf_cntl1			= KX022A_REG_BUF_CNTL1,
1152 	.buf_cntl2			= KX022A_REG_BUF_CNTL2,
1153 	.buf_clear			= KX022A_REG_BUF_CLEAR,
1154 	.buf_status1			= KX022A_REG_BUF_STATUS_1,
1155 	.buf_read			= KX022A_REG_BUF_READ,
1156 	.inc1				= KX022A_REG_INC1,
1157 	.inc4				= KX022A_REG_INC4,
1158 	.inc5				= KX022A_REG_INC5,
1159 	.inc6				= KX022A_REG_INC6,
1160 	.xout_l				= KX022A_REG_XOUT_L,
1161 	.get_fifo_bytes_available	= kx022a_get_fifo_bytes_available,
1162 };
1163 EXPORT_SYMBOL_NS_GPL(kx022a_chip_info, IIO_KX022A);
1164 
1165 const struct kx022a_chip_info kx132_chip_info = {
1166 	.name			  = "kx132-1211",
1167 	.regmap_config		  = &kx132_regmap_config,
1168 	.channels		  = kx132_channels,
1169 	.num_channels		  = ARRAY_SIZE(kx132_channels),
1170 	.fifo_length		  = KX132_FIFO_LENGTH,
1171 	.who			  = KX132_REG_WHO,
1172 	.id			  = KX132_ID,
1173 	.cntl			  = KX132_REG_CNTL,
1174 	.cntl2			  = KX132_REG_CNTL2,
1175 	.odcntl			  = KX132_REG_ODCNTL,
1176 	.buf_cntl1		  = KX132_REG_BUF_CNTL1,
1177 	.buf_cntl2		  = KX132_REG_BUF_CNTL2,
1178 	.buf_clear		  = KX132_REG_BUF_CLEAR,
1179 	.buf_status1		  = KX132_REG_BUF_STATUS_1,
1180 	.buf_smp_lvl_mask	  = KX132_MASK_BUF_SMP_LVL,
1181 	.buf_read		  = KX132_REG_BUF_READ,
1182 	.inc1			  = KX132_REG_INC1,
1183 	.inc4			  = KX132_REG_INC4,
1184 	.inc5			  = KX132_REG_INC5,
1185 	.inc6			  = KX132_REG_INC6,
1186 	.xout_l			  = KX132_REG_XOUT_L,
1187 	.get_fifo_bytes_available = kx132_get_fifo_bytes_available,
1188 };
1189 EXPORT_SYMBOL_NS_GPL(kx132_chip_info, IIO_KX022A);
1190 
1191 /*
1192  * Despite the naming, KX132ACR-LBZ is not similar to KX132-1211 but it is
1193  * exact subset of KX022A. KX132ACR-LBZ is meant to be used for industrial
1194  * applications and the tap/double tap, free fall and tilt engines were
1195  * removed. Rest of the registers and functionalities (excluding the ID
1196  * register) are exact match to what is found in KX022.
1197  */
1198 const struct kx022a_chip_info kx132acr_chip_info = {
1199 	.name				= "kx132acr-lbz",
1200 	.regmap_config			= &kx022a_regmap_config,
1201 	.channels			= kx022a_channels,
1202 	.num_channels			= ARRAY_SIZE(kx022a_channels),
1203 	.fifo_length			= KX022A_FIFO_LENGTH,
1204 	.who				= KX022A_REG_WHO,
1205 	.id				= KX132ACR_LBZ_ID,
1206 	.cntl				= KX022A_REG_CNTL,
1207 	.cntl2				= KX022A_REG_CNTL2,
1208 	.odcntl				= KX022A_REG_ODCNTL,
1209 	.buf_cntl1			= KX022A_REG_BUF_CNTL1,
1210 	.buf_cntl2			= KX022A_REG_BUF_CNTL2,
1211 	.buf_clear			= KX022A_REG_BUF_CLEAR,
1212 	.buf_status1			= KX022A_REG_BUF_STATUS_1,
1213 	.buf_read			= KX022A_REG_BUF_READ,
1214 	.inc1				= KX022A_REG_INC1,
1215 	.inc4				= KX022A_REG_INC4,
1216 	.inc5				= KX022A_REG_INC5,
1217 	.inc6				= KX022A_REG_INC6,
1218 	.xout_l				= KX022A_REG_XOUT_L,
1219 	.get_fifo_bytes_available	= kx022a_get_fifo_bytes_available,
1220 };
1221 EXPORT_SYMBOL_NS_GPL(kx132acr_chip_info, IIO_KX022A);
1222 
1223 int kx022a_probe_internal(struct device *dev, const struct kx022a_chip_info *chip_info)
1224 {
1225 	static const char * const regulator_names[] = {"io-vdd", "vdd"};
1226 	struct iio_trigger *indio_trig;
1227 	struct fwnode_handle *fwnode;
1228 	struct kx022a_data *data;
1229 	struct regmap *regmap;
1230 	unsigned int chip_id;
1231 	struct iio_dev *idev;
1232 	int ret, irq;
1233 	char *name;
1234 
1235 	regmap = dev_get_regmap(dev, NULL);
1236 	if (!regmap) {
1237 		dev_err(dev, "no regmap\n");
1238 		return -EINVAL;
1239 	}
1240 
1241 	fwnode = dev_fwnode(dev);
1242 	if (!fwnode)
1243 		return -ENODEV;
1244 
1245 	idev = devm_iio_device_alloc(dev, sizeof(*data));
1246 	if (!idev)
1247 		return -ENOMEM;
1248 
1249 	data = iio_priv(idev);
1250 	data->chip_info = chip_info;
1251 
1252 	/*
1253 	 * VDD is the analog and digital domain voltage supply and
1254 	 * IO_VDD is the digital I/O voltage supply.
1255 	 */
1256 	ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names),
1257 					     regulator_names);
1258 	if (ret && ret != -ENODEV)
1259 		return dev_err_probe(dev, ret, "failed to enable regulator\n");
1260 
1261 	ret = regmap_read(regmap, chip_info->who, &chip_id);
1262 	if (ret)
1263 		return dev_err_probe(dev, ret, "Failed to access sensor\n");
1264 
1265 	if (chip_id != chip_info->id)
1266 		dev_warn(dev, "unknown device 0x%x\n", chip_id);
1267 
1268 	irq = fwnode_irq_get_byname(fwnode, "INT1");
1269 	if (irq > 0) {
1270 		data->inc_reg = chip_info->inc1;
1271 		data->ien_reg = chip_info->inc4;
1272 	} else {
1273 		irq = fwnode_irq_get_byname(fwnode, "INT2");
1274 		if (irq < 0)
1275 			return dev_err_probe(dev, irq, "No suitable IRQ\n");
1276 
1277 		data->inc_reg = chip_info->inc5;
1278 		data->ien_reg = chip_info->inc6;
1279 	}
1280 
1281 	data->regmap = regmap;
1282 	data->dev = dev;
1283 	data->irq = irq;
1284 	data->odr_ns = KX022A_DEFAULT_PERIOD_NS;
1285 	mutex_init(&data->mutex);
1286 
1287 	idev->channels = chip_info->channels;
1288 	idev->num_channels = chip_info->num_channels;
1289 	idev->name = chip_info->name;
1290 	idev->info = &kx022a_info;
1291 	idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1292 	idev->available_scan_masks = kx022a_scan_masks;
1293 
1294 	/* Read the mounting matrix, if present */
1295 	ret = iio_read_mount_matrix(dev, &data->orientation);
1296 	if (ret)
1297 		return ret;
1298 
1299 	/* The sensor must be turned off for configuration */
1300 	ret = kx022a_turn_off_lock(data);
1301 	if (ret)
1302 		return ret;
1303 
1304 	ret = kx022a_chip_init(data);
1305 	if (ret) {
1306 		mutex_unlock(&data->mutex);
1307 		return ret;
1308 	}
1309 
1310 	ret = kx022a_turn_on_unlock(data);
1311 	if (ret)
1312 		return ret;
1313 
1314 	ret = devm_iio_triggered_buffer_setup_ext(dev, idev,
1315 						  &iio_pollfunc_store_time,
1316 						  kx022a_trigger_handler,
1317 						  IIO_BUFFER_DIRECTION_IN,
1318 						  &kx022a_buffer_ops,
1319 						  kx022a_fifo_attributes);
1320 
1321 	if (ret)
1322 		return dev_err_probe(data->dev, ret,
1323 				     "iio_triggered_buffer_setup_ext FAIL\n");
1324 	indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name,
1325 					    iio_device_id(idev));
1326 	if (!indio_trig)
1327 		return -ENOMEM;
1328 
1329 	data->trig = indio_trig;
1330 
1331 	indio_trig->ops = &kx022a_trigger_ops;
1332 	iio_trigger_set_drvdata(indio_trig, data);
1333 
1334 	/*
1335 	 * No need to check for NULL. request_threaded_irq() defaults to
1336 	 * dev_name() should the alloc fail.
1337 	 */
1338 	name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a",
1339 			      dev_name(data->dev));
1340 
1341 	ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler,
1342 					&kx022a_irq_thread_handler,
1343 					IRQF_ONESHOT, name, idev);
1344 	if (ret)
1345 		return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
1346 
1347 	ret = devm_iio_trigger_register(dev, indio_trig);
1348 	if (ret)
1349 		return dev_err_probe(data->dev, ret,
1350 				     "Trigger registration failed\n");
1351 
1352 	ret = devm_iio_device_register(data->dev, idev);
1353 	if (ret < 0)
1354 		return dev_err_probe(dev, ret,
1355 				     "Unable to register iio device\n");
1356 
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A);
1360 
1361 MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver");
1362 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
1363 MODULE_LICENSE("GPL");
1364