xref: /linux/drivers/iio/accel/sca3000.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
4  *
5  * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
6  *
7  * See industrialio/accels/sca3000.h for comments.
8  */
9 
10 #include <linux/interrupt.h>
11 #include <linux/fs.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/spi/spi.h>
16 #include <linux/sysfs.h>
17 #include <linux/module.h>
18 #include <linux/uaccess.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/kfifo_buf.h>
24 
25 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
26 #define SCA3000_READ_REG(a) ((a) << 2)
27 
28 #define SCA3000_REG_REVID_ADDR				0x00
29 #define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
30 #define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
31 
32 #define SCA3000_REG_STATUS_ADDR				0x02
33 #define   SCA3000_LOCKED				BIT(5)
34 #define   SCA3000_EEPROM_CS_ERROR			BIT(1)
35 #define   SCA3000_SPI_FRAME_ERROR			BIT(0)
36 
37 /* All reads done using register decrement so no need to directly access LSBs */
38 #define SCA3000_REG_X_MSB_ADDR				0x05
39 #define SCA3000_REG_Y_MSB_ADDR				0x07
40 #define SCA3000_REG_Z_MSB_ADDR				0x09
41 
42 #define SCA3000_REG_RING_OUT_ADDR			0x0f
43 
44 /* Temp read untested - the e05 doesn't have the sensor */
45 #define SCA3000_REG_TEMP_MSB_ADDR			0x13
46 
47 #define SCA3000_REG_MODE_ADDR				0x14
48 #define SCA3000_MODE_PROT_MASK				0x28
49 #define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
50 #define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
51 
52 /*
53  * Free fall detection triggers an interrupt if the acceleration
54  * is below a threshold for equivalent of 25cm drop
55  */
56 #define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
57 #define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
58 #define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
59 #define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
60 
61 /*
62  * In motion detection mode the accelerations are band pass filtered
63  * (approx 1 - 25Hz) and then a programmable threshold used to trigger
64  * and interrupt.
65  */
66 #define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
67 #define   SCA3000_REG_MODE_MODE_MASK			0x03
68 
69 #define SCA3000_REG_BUF_COUNT_ADDR			0x15
70 
71 #define SCA3000_REG_INT_STATUS_ADDR			0x16
72 #define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
73 #define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
74 
75 #define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
76 #define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
77 #define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
78 #define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
79 
80 /* Used to allow access to multiplexed registers */
81 #define SCA3000_REG_CTRL_SEL_ADDR			0x18
82 /* Only available for SCA3000-D03 and SCA3000-D01 */
83 #define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
84 #define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
85 #define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
86 #define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
87 #define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
88 /*
89  * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
90  * will not function
91  */
92 #define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
93 
94 #define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
95 #define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
96 #define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
97 #define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
98 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
99 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
100 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
101 
102 
103 /*
104  * Control which motion detector interrupts are on.
105  * For now only OR combinations are supported.
106  */
107 #define SCA3000_MD_CTRL_PROT_MASK			0xC0
108 #define SCA3000_MD_CTRL_OR_Y				BIT(0)
109 #define SCA3000_MD_CTRL_OR_X				BIT(1)
110 #define SCA3000_MD_CTRL_OR_Z				BIT(2)
111 /* Currently unsupported */
112 #define SCA3000_MD_CTRL_AND_Y				BIT(3)
113 #define SCA3000_MD_CTRL_AND_X				BIT(4)
114 #define SCA3000_MD_CTRL_AND_Z				BIT(5)
115 
116 /*
117  * Some control registers of complex access methods requiring this register to
118  * be used to remove a lock.
119  */
120 #define SCA3000_REG_UNLOCK_ADDR				0x1e
121 
122 #define SCA3000_REG_INT_MASK_ADDR			0x21
123 #define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
124 
125 #define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
126 #define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
127 
128 #define SCA3000_REG_INT_MASK_ALL_INTS			0x02
129 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
130 #define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
131 /* Values of multiplexed registers (write to ctrl_data after select) */
132 #define SCA3000_REG_CTRL_DATA_ADDR			0x22
133 
134 /*
135  * Measurement modes available on some sca3000 series chips. Code assumes others
136  * may become available in the future.
137  *
138  * Bypass - Bypass the low-pass filter in the signal channel so as to increase
139  *          signal bandwidth.
140  *
141  * Narrow - Narrow low-pass filtering of the signal channel and half output
142  *          data rate by decimation.
143  *
144  * Wide - Widen low-pass filtering of signal channel to increase bandwidth
145  */
146 #define SCA3000_OP_MODE_BYPASS				0x01
147 #define SCA3000_OP_MODE_NARROW				0x02
148 #define SCA3000_OP_MODE_WIDE				0x04
149 #define SCA3000_MAX_TX 6
150 #define SCA3000_MAX_RX 2
151 
152 /**
153  * struct sca3000_state - device instance state information
154  * @us:			the associated spi device
155  * @info:			chip variant information
156  * @last_timestamp:		the timestamp of the last event
157  * @mo_det_use_count:		reference counter for the motion detection unit
158  * @lock:			lock used to protect elements of sca3000_state
159  *				and the underlying device state.
160  * @tx:			dma-able transmit buffer
161  * @rx:			dma-able receive buffer
162  **/
163 struct sca3000_state {
164 	struct spi_device		*us;
165 	const struct sca3000_chip_info	*info;
166 	s64				last_timestamp;
167 	int				mo_det_use_count;
168 	struct mutex			lock;
169 	/* Can these share a cacheline ? */
170 	u8				rx[384] ____cacheline_aligned;
171 	u8				tx[6] ____cacheline_aligned;
172 };
173 
174 /**
175  * struct sca3000_chip_info - model dependent parameters
176  * @scale:			scale * 10^-6
177  * @temp_output:		some devices have temperature sensors.
178  * @measurement_mode_freq:	normal mode sampling frequency
179  * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
180  * the normal measurement mode.
181  * @option_mode_1:		first optional mode. Not all models have one
182  * @option_mode_1_freq:		option mode 1 sampling frequency
183  * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
184  * the first option mode.
185  * @option_mode_2:		second optional mode. Not all chips have one
186  * @option_mode_2_freq:		option mode 2 sampling frequency
187  * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
188  * the second option mode.
189  * @mod_det_mult_xz:		Bit wise multipliers to calculate the threshold
190  * for motion detection in the x and z axis.
191  * @mod_det_mult_y:		Bit wise multipliers to calculate the threshold
192  * for motion detection in the y axis.
193  *
194  * This structure is used to hold information about the functionality of a given
195  * sca3000 variant.
196  **/
197 struct sca3000_chip_info {
198 	unsigned int		scale;
199 	bool			temp_output;
200 	int			measurement_mode_freq;
201 	int			measurement_mode_3db_freq;
202 	int			option_mode_1;
203 	int			option_mode_1_freq;
204 	int			option_mode_1_3db_freq;
205 	int			option_mode_2;
206 	int			option_mode_2_freq;
207 	int			option_mode_2_3db_freq;
208 	int			mot_det_mult_xz[6];
209 	int			mot_det_mult_y[7];
210 };
211 
212 enum sca3000_variant {
213 	d01,
214 	e02,
215 	e04,
216 	e05,
217 };
218 
219 /*
220  * Note where option modes are not defined, the chip simply does not
221  * support any.
222  * Other chips in the sca3000 series use i2c and are not included here.
223  *
224  * Some of these devices are only listed in the family data sheet and
225  * do not actually appear to be available.
226  */
227 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
228 	[d01] = {
229 		.scale = 7357,
230 		.temp_output = true,
231 		.measurement_mode_freq = 250,
232 		.measurement_mode_3db_freq = 45,
233 		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
234 		.option_mode_1_freq = 250,
235 		.option_mode_1_3db_freq = 70,
236 		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
237 		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
238 	},
239 	[e02] = {
240 		.scale = 9810,
241 		.measurement_mode_freq = 125,
242 		.measurement_mode_3db_freq = 40,
243 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
244 		.option_mode_1_freq = 63,
245 		.option_mode_1_3db_freq = 11,
246 		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
247 		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
248 	},
249 	[e04] = {
250 		.scale = 19620,
251 		.measurement_mode_freq = 100,
252 		.measurement_mode_3db_freq = 38,
253 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
254 		.option_mode_1_freq = 50,
255 		.option_mode_1_3db_freq = 9,
256 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
257 		.option_mode_2_freq = 400,
258 		.option_mode_2_3db_freq = 70,
259 		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
260 		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
261 	},
262 	[e05] = {
263 		.scale = 61313,
264 		.measurement_mode_freq = 200,
265 		.measurement_mode_3db_freq = 60,
266 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
267 		.option_mode_1_freq = 50,
268 		.option_mode_1_3db_freq = 9,
269 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
270 		.option_mode_2_freq = 400,
271 		.option_mode_2_3db_freq = 75,
272 		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
273 		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
274 	},
275 };
276 
277 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
278 {
279 	st->tx[0] = SCA3000_WRITE_REG(address);
280 	st->tx[1] = val;
281 	return spi_write(st->us, st->tx, 2);
282 }
283 
284 static int sca3000_read_data_short(struct sca3000_state *st,
285 				   u8 reg_address_high,
286 				   int len)
287 {
288 	struct spi_transfer xfer[2] = {
289 		{
290 			.len = 1,
291 			.tx_buf = st->tx,
292 		}, {
293 			.len = len,
294 			.rx_buf = st->rx,
295 		}
296 	};
297 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
298 
299 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
300 }
301 
302 /**
303  * sca3000_reg_lock_on() - test if the ctrl register lock is on
304  * @st: Driver specific device instance data.
305  *
306  * Lock must be held.
307  **/
308 static int sca3000_reg_lock_on(struct sca3000_state *st)
309 {
310 	int ret;
311 
312 	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
313 	if (ret < 0)
314 		return ret;
315 
316 	return !(st->rx[0] & SCA3000_LOCKED);
317 }
318 
319 /**
320  * __sca3000_unlock_reg_lock() - unlock the control registers
321  * @st: Driver specific device instance data.
322  *
323  * Note the device does not appear to support doing this in a single transfer.
324  * This should only ever be used as part of ctrl reg read.
325  * Lock must be held before calling this
326  */
327 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
328 {
329 	struct spi_transfer xfer[3] = {
330 		{
331 			.len = 2,
332 			.cs_change = 1,
333 			.tx_buf = st->tx,
334 		}, {
335 			.len = 2,
336 			.cs_change = 1,
337 			.tx_buf = st->tx + 2,
338 		}, {
339 			.len = 2,
340 			.tx_buf = st->tx + 4,
341 		},
342 	};
343 	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
344 	st->tx[1] = 0x00;
345 	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
346 	st->tx[3] = 0x50;
347 	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
348 	st->tx[5] = 0xA0;
349 
350 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
351 }
352 
353 /**
354  * sca3000_write_ctrl_reg() write to a lock protect ctrl register
355  * @st: Driver specific device instance data.
356  * @sel: selects which registers we wish to write to
357  * @val: the value to be written
358  *
359  * Certain control registers are protected against overwriting by the lock
360  * register and use a shared write address. This function allows writing of
361  * these registers.
362  * Lock must be held.
363  */
364 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
365 				  u8 sel,
366 				  uint8_t val)
367 {
368 	int ret;
369 
370 	ret = sca3000_reg_lock_on(st);
371 	if (ret < 0)
372 		goto error_ret;
373 	if (ret) {
374 		ret = __sca3000_unlock_reg_lock(st);
375 		if (ret)
376 			goto error_ret;
377 	}
378 
379 	/* Set the control select register */
380 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
381 	if (ret)
382 		goto error_ret;
383 
384 	/* Write the actual value into the register */
385 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
386 
387 error_ret:
388 	return ret;
389 }
390 
391 /**
392  * sca3000_read_ctrl_reg() read from lock protected control register.
393  * @st: Driver specific device instance data.
394  * @ctrl_reg: Which ctrl register do we want to read.
395  *
396  * Lock must be held.
397  */
398 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
399 				 u8 ctrl_reg)
400 {
401 	int ret;
402 
403 	ret = sca3000_reg_lock_on(st);
404 	if (ret < 0)
405 		goto error_ret;
406 	if (ret) {
407 		ret = __sca3000_unlock_reg_lock(st);
408 		if (ret)
409 			goto error_ret;
410 	}
411 	/* Set the control select register */
412 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
413 	if (ret)
414 		goto error_ret;
415 	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
416 	if (ret)
417 		goto error_ret;
418 	return st->rx[0];
419 error_ret:
420 	return ret;
421 }
422 
423 /**
424  * sca3000_show_rev() - sysfs interface to read the chip revision number
425  * @indio_dev: Device instance specific generic IIO data.
426  * Driver specific device instance data can be obtained via
427  * via iio_priv(indio_dev)
428  */
429 static int sca3000_print_rev(struct iio_dev *indio_dev)
430 {
431 	int ret;
432 	struct sca3000_state *st = iio_priv(indio_dev);
433 
434 	mutex_lock(&st->lock);
435 	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
436 	if (ret < 0)
437 		goto error_ret;
438 	dev_info(&indio_dev->dev,
439 		 "sca3000 revision major=%lu, minor=%lu\n",
440 		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
441 		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
442 error_ret:
443 	mutex_unlock(&st->lock);
444 
445 	return ret;
446 }
447 
448 static ssize_t
449 sca3000_show_available_3db_freqs(struct device *dev,
450 				 struct device_attribute *attr,
451 				 char *buf)
452 {
453 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
454 	struct sca3000_state *st = iio_priv(indio_dev);
455 	int len;
456 
457 	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
458 	if (st->info->option_mode_1)
459 		len += sprintf(buf + len, " %d",
460 			       st->info->option_mode_1_3db_freq);
461 	if (st->info->option_mode_2)
462 		len += sprintf(buf + len, " %d",
463 			       st->info->option_mode_2_3db_freq);
464 	len += sprintf(buf + len, "\n");
465 
466 	return len;
467 }
468 
469 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
470 		       S_IRUGO, sca3000_show_available_3db_freqs,
471 		       NULL, 0);
472 
473 static const struct iio_event_spec sca3000_event = {
474 	.type = IIO_EV_TYPE_MAG,
475 	.dir = IIO_EV_DIR_RISING,
476 	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
477 };
478 
479 /*
480  * Note the hack in the number of bits to pretend we have 2 more than
481  * we do in the fifo.
482  */
483 #define SCA3000_CHAN(index, mod)				\
484 	{							\
485 		.type = IIO_ACCEL,				\
486 		.modified = 1,					\
487 		.channel2 = mod,				\
488 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
489 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
490 			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
491 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
492 		.address = index,				\
493 		.scan_index = index,				\
494 		.scan_type = {					\
495 			.sign = 's',				\
496 			.realbits = 13,				\
497 			.storagebits = 16,			\
498 			.shift = 3,				\
499 			.endianness = IIO_BE,			\
500 		},						\
501 		.event_spec = &sca3000_event,			\
502 		.num_event_specs = 1,				\
503 	}
504 
505 static const struct iio_event_spec sca3000_freefall_event_spec = {
506 	.type = IIO_EV_TYPE_MAG,
507 	.dir = IIO_EV_DIR_FALLING,
508 	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
509 		BIT(IIO_EV_INFO_PERIOD),
510 };
511 
512 static const struct iio_chan_spec sca3000_channels[] = {
513 	SCA3000_CHAN(0, IIO_MOD_X),
514 	SCA3000_CHAN(1, IIO_MOD_Y),
515 	SCA3000_CHAN(2, IIO_MOD_Z),
516 	{
517 		.type = IIO_ACCEL,
518 		.modified = 1,
519 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
520 		.scan_index = -1, /* Fake channel */
521 		.event_spec = &sca3000_freefall_event_spec,
522 		.num_event_specs = 1,
523 	},
524 };
525 
526 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
527 	SCA3000_CHAN(0, IIO_MOD_X),
528 	SCA3000_CHAN(1, IIO_MOD_Y),
529 	SCA3000_CHAN(2, IIO_MOD_Z),
530 	{
531 		.type = IIO_TEMP,
532 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
533 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
534 			BIT(IIO_CHAN_INFO_OFFSET),
535 		/* No buffer support */
536 		.scan_index = -1,
537 	},
538 	{
539 		.type = IIO_ACCEL,
540 		.modified = 1,
541 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
542 		.scan_index = -1, /* Fake channel */
543 		.event_spec = &sca3000_freefall_event_spec,
544 		.num_event_specs = 1,
545 	},
546 };
547 
548 static u8 sca3000_addresses[3][3] = {
549 	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
550 	       SCA3000_MD_CTRL_OR_X},
551 	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
552 	       SCA3000_MD_CTRL_OR_Y},
553 	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
554 	       SCA3000_MD_CTRL_OR_Z},
555 };
556 
557 /**
558  * __sca3000_get_base_freq() - obtain mode specific base frequency
559  * @st: Private driver specific device instance specific state.
560  * @info: chip type specific information.
561  * @base_freq: Base frequency for the current measurement mode.
562  *
563  * lock must be held
564  */
565 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
566 					  const struct sca3000_chip_info *info,
567 					  int *base_freq)
568 {
569 	int ret;
570 
571 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
572 	if (ret)
573 		goto error_ret;
574 	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
575 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
576 		*base_freq = info->measurement_mode_freq;
577 		break;
578 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
579 		*base_freq = info->option_mode_1_freq;
580 		break;
581 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
582 		*base_freq = info->option_mode_2_freq;
583 		break;
584 	default:
585 		ret = -EINVAL;
586 	}
587 error_ret:
588 	return ret;
589 }
590 
591 /**
592  * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
593  * @st: Private driver specific device instance specific state.
594  * @val: The frequency read back.
595  *
596  * lock must be held
597  **/
598 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
599 {
600 	int ret;
601 
602 	ret = __sca3000_get_base_freq(st, st->info, val);
603 	if (ret)
604 		return ret;
605 
606 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
607 	if (ret < 0)
608 		return ret;
609 
610 	if (*val > 0) {
611 		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
612 		switch (ret) {
613 		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
614 			*val /= 2;
615 			break;
616 		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
617 			*val /= 4;
618 			break;
619 		}
620 	}
621 
622 	return 0;
623 }
624 
625 /**
626  * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
627  * @st: Private driver specific device instance specific state.
628  * @val: The frequency desired.
629  *
630  * lock must be held
631  */
632 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
633 {
634 	int ret, base_freq, ctrlval;
635 
636 	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
637 	if (ret)
638 		return ret;
639 
640 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
641 	if (ret < 0)
642 		return ret;
643 
644 	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
645 
646 	if (val == base_freq / 2)
647 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
648 	if (val == base_freq / 4)
649 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
650 	else if (val != base_freq)
651 		return -EINVAL;
652 
653 	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
654 				     ctrlval);
655 }
656 
657 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
658 {
659 	int ret;
660 
661 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
662 	if (ret)
663 		return ret;
664 
665 	/* mask bottom 2 bits - only ones that are relevant */
666 	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
667 	switch (st->rx[0]) {
668 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
669 		*val = st->info->measurement_mode_3db_freq;
670 		return IIO_VAL_INT;
671 	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
672 		return -EBUSY;
673 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
674 		*val = st->info->option_mode_1_3db_freq;
675 		return IIO_VAL_INT;
676 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
677 		*val = st->info->option_mode_2_3db_freq;
678 		return IIO_VAL_INT;
679 	default:
680 		return -EINVAL;
681 	}
682 }
683 
684 static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
685 {
686 	int ret;
687 	int mode;
688 
689 	if (val == st->info->measurement_mode_3db_freq)
690 		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
691 	else if (st->info->option_mode_1 &&
692 		 (val == st->info->option_mode_1_3db_freq))
693 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
694 	else if (st->info->option_mode_2 &&
695 		 (val == st->info->option_mode_2_3db_freq))
696 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
697 	else
698 		return -EINVAL;
699 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
700 	if (ret)
701 		return ret;
702 
703 	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
704 	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
705 
706 	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
707 }
708 
709 static int sca3000_read_raw(struct iio_dev *indio_dev,
710 			    struct iio_chan_spec const *chan,
711 			    int *val,
712 			    int *val2,
713 			    long mask)
714 {
715 	struct sca3000_state *st = iio_priv(indio_dev);
716 	int ret;
717 	u8 address;
718 
719 	switch (mask) {
720 	case IIO_CHAN_INFO_RAW:
721 		mutex_lock(&st->lock);
722 		if (chan->type == IIO_ACCEL) {
723 			if (st->mo_det_use_count) {
724 				mutex_unlock(&st->lock);
725 				return -EBUSY;
726 			}
727 			address = sca3000_addresses[chan->address][0];
728 			ret = sca3000_read_data_short(st, address, 2);
729 			if (ret < 0) {
730 				mutex_unlock(&st->lock);
731 				return ret;
732 			}
733 			*val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
734 			*val = ((*val) << (sizeof(*val) * 8 - 13)) >>
735 				(sizeof(*val) * 8 - 13);
736 		} else {
737 			/* get the temperature when available */
738 			ret = sca3000_read_data_short(st,
739 						      SCA3000_REG_TEMP_MSB_ADDR,
740 						      2);
741 			if (ret < 0) {
742 				mutex_unlock(&st->lock);
743 				return ret;
744 			}
745 			*val = ((st->rx[0] & 0x3F) << 3) |
746 			       ((st->rx[1] & 0xE0) >> 5);
747 		}
748 		mutex_unlock(&st->lock);
749 		return IIO_VAL_INT;
750 	case IIO_CHAN_INFO_SCALE:
751 		*val = 0;
752 		if (chan->type == IIO_ACCEL)
753 			*val2 = st->info->scale;
754 		else /* temperature */
755 			*val2 = 555556;
756 		return IIO_VAL_INT_PLUS_MICRO;
757 	case IIO_CHAN_INFO_OFFSET:
758 		*val = -214;
759 		*val2 = 600000;
760 		return IIO_VAL_INT_PLUS_MICRO;
761 	case IIO_CHAN_INFO_SAMP_FREQ:
762 		mutex_lock(&st->lock);
763 		ret = sca3000_read_raw_samp_freq(st, val);
764 		mutex_unlock(&st->lock);
765 		return ret ? ret : IIO_VAL_INT;
766 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
767 		mutex_lock(&st->lock);
768 		ret = sca3000_read_3db_freq(st, val);
769 		mutex_unlock(&st->lock);
770 		return ret;
771 	default:
772 		return -EINVAL;
773 	}
774 }
775 
776 static int sca3000_write_raw(struct iio_dev *indio_dev,
777 			     struct iio_chan_spec const *chan,
778 			     int val, int val2, long mask)
779 {
780 	struct sca3000_state *st = iio_priv(indio_dev);
781 	int ret;
782 
783 	switch (mask) {
784 	case IIO_CHAN_INFO_SAMP_FREQ:
785 		if (val2)
786 			return -EINVAL;
787 		mutex_lock(&st->lock);
788 		ret = sca3000_write_raw_samp_freq(st, val);
789 		mutex_unlock(&st->lock);
790 		return ret;
791 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
792 		if (val2)
793 			return -EINVAL;
794 		mutex_lock(&st->lock);
795 		ret = sca3000_write_3db_freq(st, val);
796 		mutex_unlock(&st->lock);
797 		return ret;
798 	default:
799 		return -EINVAL;
800 	}
801 
802 	return ret;
803 }
804 
805 /**
806  * sca3000_read_av_freq() - sysfs function to get available frequencies
807  * @dev: Device structure for this device.
808  * @attr: Description of the attribute.
809  * @buf: Incoming string
810  *
811  * The later modes are only relevant to the ring buffer - and depend on current
812  * mode. Note that data sheet gives rather wide tolerances for these so integer
813  * division will give good enough answer and not all chips have them specified
814  * at all.
815  **/
816 static ssize_t sca3000_read_av_freq(struct device *dev,
817 				    struct device_attribute *attr,
818 				    char *buf)
819 {
820 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
821 	struct sca3000_state *st = iio_priv(indio_dev);
822 	int len = 0, ret, val;
823 
824 	mutex_lock(&st->lock);
825 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
826 	val = st->rx[0];
827 	mutex_unlock(&st->lock);
828 	if (ret)
829 		goto error_ret;
830 
831 	switch (val & SCA3000_REG_MODE_MODE_MASK) {
832 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
833 		len += sprintf(buf + len, "%d %d %d\n",
834 			       st->info->measurement_mode_freq,
835 			       st->info->measurement_mode_freq / 2,
836 			       st->info->measurement_mode_freq / 4);
837 		break;
838 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
839 		len += sprintf(buf + len, "%d %d %d\n",
840 			       st->info->option_mode_1_freq,
841 			       st->info->option_mode_1_freq / 2,
842 			       st->info->option_mode_1_freq / 4);
843 		break;
844 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
845 		len += sprintf(buf + len, "%d %d %d\n",
846 			       st->info->option_mode_2_freq,
847 			       st->info->option_mode_2_freq / 2,
848 			       st->info->option_mode_2_freq / 4);
849 		break;
850 	}
851 	return len;
852 error_ret:
853 	return ret;
854 }
855 
856 /*
857  * Should only really be registered if ring buffer support is compiled in.
858  * Does no harm however and doing it right would add a fair bit of complexity
859  */
860 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
861 
862 /**
863  * sca3000_read_event_value() - query of a threshold or period
864  **/
865 static int sca3000_read_event_value(struct iio_dev *indio_dev,
866 				    const struct iio_chan_spec *chan,
867 				    enum iio_event_type type,
868 				    enum iio_event_direction dir,
869 				    enum iio_event_info info,
870 				    int *val, int *val2)
871 {
872 	struct sca3000_state *st = iio_priv(indio_dev);
873 	long ret;
874 	int i;
875 
876 	switch (info) {
877 	case IIO_EV_INFO_VALUE:
878 		mutex_lock(&st->lock);
879 		ret = sca3000_read_ctrl_reg(st,
880 					    sca3000_addresses[chan->address][1]);
881 		mutex_unlock(&st->lock);
882 		if (ret < 0)
883 			return ret;
884 		*val = 0;
885 		if (chan->channel2 == IIO_MOD_Y)
886 			for_each_set_bit(i, &ret,
887 					 ARRAY_SIZE(st->info->mot_det_mult_y))
888 				*val += st->info->mot_det_mult_y[i];
889 		else
890 			for_each_set_bit(i, &ret,
891 					 ARRAY_SIZE(st->info->mot_det_mult_xz))
892 				*val += st->info->mot_det_mult_xz[i];
893 
894 		return IIO_VAL_INT;
895 	case IIO_EV_INFO_PERIOD:
896 		*val = 0;
897 		*val2 = 226000;
898 		return IIO_VAL_INT_PLUS_MICRO;
899 	default:
900 		return -EINVAL;
901 	}
902 }
903 
904 /**
905  * sca3000_write_value() - control of threshold and period
906  * @indio_dev: Device instance specific IIO information.
907  * @chan: Description of the channel for which the event is being
908  * configured.
909  * @type: The type of event being configured, here magnitude rising
910  * as everything else is read only.
911  * @dir: Direction of the event (here rising)
912  * @info: What information about the event are we configuring.
913  * Here the threshold only.
914  * @val: Integer part of the value being written..
915  * @val2: Non integer part of the value being written. Here always 0.
916  */
917 static int sca3000_write_event_value(struct iio_dev *indio_dev,
918 				     const struct iio_chan_spec *chan,
919 				     enum iio_event_type type,
920 				     enum iio_event_direction dir,
921 				     enum iio_event_info info,
922 				     int val, int val2)
923 {
924 	struct sca3000_state *st = iio_priv(indio_dev);
925 	int ret;
926 	int i;
927 	u8 nonlinear = 0;
928 
929 	if (chan->channel2 == IIO_MOD_Y) {
930 		i = ARRAY_SIZE(st->info->mot_det_mult_y);
931 		while (i > 0)
932 			if (val >= st->info->mot_det_mult_y[--i]) {
933 				nonlinear |= (1 << i);
934 				val -= st->info->mot_det_mult_y[i];
935 			}
936 	} else {
937 		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
938 		while (i > 0)
939 			if (val >= st->info->mot_det_mult_xz[--i]) {
940 				nonlinear |= (1 << i);
941 				val -= st->info->mot_det_mult_xz[i];
942 			}
943 	}
944 
945 	mutex_lock(&st->lock);
946 	ret = sca3000_write_ctrl_reg(st,
947 				     sca3000_addresses[chan->address][1],
948 				     nonlinear);
949 	mutex_unlock(&st->lock);
950 
951 	return ret;
952 }
953 
954 static struct attribute *sca3000_attributes[] = {
955 	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
956 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
957 	NULL,
958 };
959 
960 static const struct attribute_group sca3000_attribute_group = {
961 	.attrs = sca3000_attributes,
962 };
963 
964 static int sca3000_read_data(struct sca3000_state *st,
965 			     u8 reg_address_high,
966 			     u8 *rx,
967 			     int len)
968 {
969 	int ret;
970 	struct spi_transfer xfer[2] = {
971 		{
972 			.len = 1,
973 			.tx_buf = st->tx,
974 		}, {
975 			.len = len,
976 			.rx_buf = rx,
977 		}
978 	};
979 
980 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
981 	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
982 	if (ret) {
983 		dev_err(get_device(&st->us->dev), "problem reading register");
984 		return ret;
985 	}
986 
987 	return 0;
988 }
989 
990 /**
991  * sca3000_ring_int_process() - ring specific interrupt handling.
992  * @val: Value of the interrupt status register.
993  * @indio_dev: Device instance specific IIO device structure.
994  */
995 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
996 {
997 	struct sca3000_state *st = iio_priv(indio_dev);
998 	int ret, i, num_available;
999 
1000 	mutex_lock(&st->lock);
1001 
1002 	if (val & SCA3000_REG_INT_STATUS_HALF) {
1003 		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1004 					      1);
1005 		if (ret)
1006 			goto error_ret;
1007 		num_available = st->rx[0];
1008 		/*
1009 		 * num_available is the total number of samples available
1010 		 * i.e. number of time points * number of channels.
1011 		 */
1012 		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1013 					num_available * 2);
1014 		if (ret)
1015 			goto error_ret;
1016 		for (i = 0; i < num_available / 3; i++) {
1017 			/*
1018 			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1019 			 * direct reading.
1020 			 *
1021 			 * In theory the bottom two bits are undefined.
1022 			 * In reality they appear to always be 0.
1023 			 */
1024 			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1025 		}
1026 	}
1027 error_ret:
1028 	mutex_unlock(&st->lock);
1029 }
1030 
1031 /**
1032  * sca3000_event_handler() - handling ring and non ring events
1033  * @irq: The irq being handled.
1034  * @private: struct iio_device pointer for the device.
1035  *
1036  * Ring related interrupt handler. Depending on event, push to
1037  * the ring buffer event chrdev or the event one.
1038  *
1039  * This function is complicated by the fact that the devices can signify ring
1040  * and non ring events via the same interrupt line and they can only
1041  * be distinguished via a read of the relevant status register.
1042  */
1043 static irqreturn_t sca3000_event_handler(int irq, void *private)
1044 {
1045 	struct iio_dev *indio_dev = private;
1046 	struct sca3000_state *st = iio_priv(indio_dev);
1047 	int ret, val;
1048 	s64 last_timestamp = iio_get_time_ns(indio_dev);
1049 
1050 	/*
1051 	 * Could lead if badly timed to an extra read of status reg,
1052 	 * but ensures no interrupt is missed.
1053 	 */
1054 	mutex_lock(&st->lock);
1055 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1056 	val = st->rx[0];
1057 	mutex_unlock(&st->lock);
1058 	if (ret)
1059 		goto done;
1060 
1061 	sca3000_ring_int_process(val, indio_dev);
1062 
1063 	if (val & SCA3000_INT_STATUS_FREE_FALL)
1064 		iio_push_event(indio_dev,
1065 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1066 						  0,
1067 						  IIO_MOD_X_AND_Y_AND_Z,
1068 						  IIO_EV_TYPE_MAG,
1069 						  IIO_EV_DIR_FALLING),
1070 			       last_timestamp);
1071 
1072 	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1073 		iio_push_event(indio_dev,
1074 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1075 						  0,
1076 						  IIO_MOD_Y,
1077 						  IIO_EV_TYPE_MAG,
1078 						  IIO_EV_DIR_RISING),
1079 			       last_timestamp);
1080 
1081 	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1082 		iio_push_event(indio_dev,
1083 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1084 						  0,
1085 						  IIO_MOD_X,
1086 						  IIO_EV_TYPE_MAG,
1087 						  IIO_EV_DIR_RISING),
1088 			       last_timestamp);
1089 
1090 	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1091 		iio_push_event(indio_dev,
1092 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1093 						  0,
1094 						  IIO_MOD_Z,
1095 						  IIO_EV_TYPE_MAG,
1096 						  IIO_EV_DIR_RISING),
1097 			       last_timestamp);
1098 
1099 done:
1100 	return IRQ_HANDLED;
1101 }
1102 
1103 /**
1104  * sca3000_read_event_config() what events are enabled
1105  **/
1106 static int sca3000_read_event_config(struct iio_dev *indio_dev,
1107 				     const struct iio_chan_spec *chan,
1108 				     enum iio_event_type type,
1109 				     enum iio_event_direction dir)
1110 {
1111 	struct sca3000_state *st = iio_priv(indio_dev);
1112 	int ret;
1113 	/* read current value of mode register */
1114 	mutex_lock(&st->lock);
1115 
1116 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1117 	if (ret)
1118 		goto error_ret;
1119 
1120 	switch (chan->channel2) {
1121 	case IIO_MOD_X_AND_Y_AND_Z:
1122 		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1123 		break;
1124 	case IIO_MOD_X:
1125 	case IIO_MOD_Y:
1126 	case IIO_MOD_Z:
1127 		/*
1128 		 * Motion detection mode cannot run at the same time as
1129 		 * acceleration data being read.
1130 		 */
1131 		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1132 		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1133 			ret = 0;
1134 		} else {
1135 			ret = sca3000_read_ctrl_reg(st,
1136 						SCA3000_REG_CTRL_SEL_MD_CTRL);
1137 			if (ret < 0)
1138 				goto error_ret;
1139 			/* only supporting logical or's for now */
1140 			ret = !!(ret & sca3000_addresses[chan->address][2]);
1141 		}
1142 		break;
1143 	default:
1144 		ret = -EINVAL;
1145 	}
1146 
1147 error_ret:
1148 	mutex_unlock(&st->lock);
1149 
1150 	return ret;
1151 }
1152 
1153 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1154 {
1155 	struct sca3000_state *st = iio_priv(indio_dev);
1156 	int ret;
1157 
1158 	/* read current value of mode register */
1159 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1160 	if (ret)
1161 		return ret;
1162 
1163 	/* if off and should be on */
1164 	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1165 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1166 					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1167 	/* if on and should be off */
1168 	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1169 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1170 					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1171 	else
1172 		return 0;
1173 }
1174 
1175 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1176 					   int state)
1177 {
1178 	struct sca3000_state *st = iio_priv(indio_dev);
1179 	int ret, ctrlval;
1180 
1181 	/*
1182 	 * First read the motion detector config to find out if
1183 	 * this axis is on
1184 	 */
1185 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1186 	if (ret < 0)
1187 		return ret;
1188 	ctrlval = ret;
1189 	/* if off and should be on */
1190 	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1191 		ret = sca3000_write_ctrl_reg(st,
1192 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1193 					     ctrlval |
1194 					     sca3000_addresses[axis][2]);
1195 		if (ret)
1196 			return ret;
1197 		st->mo_det_use_count++;
1198 	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1199 		ret = sca3000_write_ctrl_reg(st,
1200 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1201 					     ctrlval &
1202 					     ~(sca3000_addresses[axis][2]));
1203 		if (ret)
1204 			return ret;
1205 		st->mo_det_use_count--;
1206 	}
1207 
1208 	/* read current value of mode register */
1209 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1210 	if (ret)
1211 		return ret;
1212 	/* if off and should be on */
1213 	if ((st->mo_det_use_count) &&
1214 	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1215 	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1216 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1217 			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1218 			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1219 	/* if on and should be off */
1220 	else if (!(st->mo_det_use_count) &&
1221 		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1222 		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1223 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1224 			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1225 	else
1226 		return 0;
1227 }
1228 
1229 /**
1230  * sca3000_write_event_config() - simple on off control for motion detector
1231  * @indio_dev: IIO device instance specific structure. Data specific to this
1232  * particular driver may be accessed via iio_priv(indio_dev).
1233  * @chan: Description of the channel whose event we are configuring.
1234  * @type: The type of event.
1235  * @dir: The direction of the event.
1236  * @state: Desired state of event being configured.
1237  *
1238  * This is a per axis control, but enabling any will result in the
1239  * motion detector unit being enabled.
1240  * N.B. enabling motion detector stops normal data acquisition.
1241  * There is a complexity in knowing which mode to return to when
1242  * this mode is disabled.  Currently normal mode is assumed.
1243  **/
1244 static int sca3000_write_event_config(struct iio_dev *indio_dev,
1245 				      const struct iio_chan_spec *chan,
1246 				      enum iio_event_type type,
1247 				      enum iio_event_direction dir,
1248 				      int state)
1249 {
1250 	struct sca3000_state *st = iio_priv(indio_dev);
1251 	int ret;
1252 
1253 	mutex_lock(&st->lock);
1254 	switch (chan->channel2) {
1255 	case IIO_MOD_X_AND_Y_AND_Z:
1256 		ret = sca3000_freefall_set_state(indio_dev, state);
1257 		break;
1258 
1259 	case IIO_MOD_X:
1260 	case IIO_MOD_Y:
1261 	case IIO_MOD_Z:
1262 		ret = sca3000_motion_detect_set_state(indio_dev,
1263 						      chan->address,
1264 						      state);
1265 		break;
1266 	default:
1267 		ret = -EINVAL;
1268 		break;
1269 	}
1270 	mutex_unlock(&st->lock);
1271 
1272 	return ret;
1273 }
1274 
1275 static int sca3000_configure_ring(struct iio_dev *indio_dev)
1276 {
1277 	struct iio_buffer *buffer;
1278 
1279 	buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1280 	if (!buffer)
1281 		return -ENOMEM;
1282 
1283 	iio_device_attach_buffer(indio_dev, buffer);
1284 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1285 
1286 	return 0;
1287 }
1288 
1289 static inline
1290 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1291 {
1292 	struct sca3000_state *st = iio_priv(indio_dev);
1293 	int ret;
1294 
1295 	mutex_lock(&st->lock);
1296 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1297 	if (ret)
1298 		goto error_ret;
1299 	if (state) {
1300 		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1301 		ret = sca3000_write_reg(st,
1302 			SCA3000_REG_MODE_ADDR,
1303 			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1304 	} else
1305 		ret = sca3000_write_reg(st,
1306 			SCA3000_REG_MODE_ADDR,
1307 			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1308 error_ret:
1309 	mutex_unlock(&st->lock);
1310 
1311 	return ret;
1312 }
1313 
1314 /**
1315  * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1316  * @indio_dev: structure representing the IIO device. Device instance
1317  * specific state can be accessed via iio_priv(indio_dev).
1318  *
1319  * Very simple enable function as the chip will allows normal reads
1320  * during ring buffer operation so as long as it is indeed running
1321  * before we notify the core, the precise ordering does not matter.
1322  */
1323 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1324 {
1325 	int ret;
1326 	struct sca3000_state *st = iio_priv(indio_dev);
1327 
1328 	mutex_lock(&st->lock);
1329 
1330 	/* Enable the 50% full interrupt */
1331 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1332 	if (ret)
1333 		goto error_unlock;
1334 	ret = sca3000_write_reg(st,
1335 				SCA3000_REG_INT_MASK_ADDR,
1336 				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1337 	if (ret)
1338 		goto error_unlock;
1339 
1340 	mutex_unlock(&st->lock);
1341 
1342 	return __sca3000_hw_ring_state_set(indio_dev, 1);
1343 
1344 error_unlock:
1345 	mutex_unlock(&st->lock);
1346 
1347 	return ret;
1348 }
1349 
1350 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1351 {
1352 	int ret;
1353 	struct sca3000_state *st = iio_priv(indio_dev);
1354 
1355 	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1356 	if (ret)
1357 		return ret;
1358 
1359 	/* Disable the 50% full interrupt */
1360 	mutex_lock(&st->lock);
1361 
1362 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1363 	if (ret)
1364 		goto unlock;
1365 	ret = sca3000_write_reg(st,
1366 				SCA3000_REG_INT_MASK_ADDR,
1367 				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1368 unlock:
1369 	mutex_unlock(&st->lock);
1370 	return ret;
1371 }
1372 
1373 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1374 	.preenable = &sca3000_hw_ring_preenable,
1375 	.postdisable = &sca3000_hw_ring_postdisable,
1376 };
1377 
1378 /**
1379  * sca3000_clean_setup() - get the device into a predictable state
1380  * @st: Device instance specific private data structure
1381  *
1382  * Devices use flash memory to store many of the register values
1383  * and hence can come up in somewhat unpredictable states.
1384  * Hence reset everything on driver load.
1385  */
1386 static int sca3000_clean_setup(struct sca3000_state *st)
1387 {
1388 	int ret;
1389 
1390 	mutex_lock(&st->lock);
1391 	/* Ensure all interrupts have been acknowledged */
1392 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1393 	if (ret)
1394 		goto error_ret;
1395 
1396 	/* Turn off all motion detection channels */
1397 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1398 	if (ret < 0)
1399 		goto error_ret;
1400 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1401 				     ret & SCA3000_MD_CTRL_PROT_MASK);
1402 	if (ret)
1403 		goto error_ret;
1404 
1405 	/* Disable ring buffer */
1406 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1407 	if (ret < 0)
1408 		goto error_ret;
1409 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1410 				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1411 				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1412 				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1413 				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1414 				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1415 	if (ret)
1416 		goto error_ret;
1417 	/* Enable interrupts, relevant to mode and set up as active low */
1418 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1419 	if (ret)
1420 		goto error_ret;
1421 	ret = sca3000_write_reg(st,
1422 				SCA3000_REG_INT_MASK_ADDR,
1423 				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1424 				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1425 	if (ret)
1426 		goto error_ret;
1427 	/*
1428 	 * Select normal measurement mode, free fall off, ring off
1429 	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1430 	 * as that occurs in one of the example on the datasheet
1431 	 */
1432 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1433 	if (ret)
1434 		goto error_ret;
1435 	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1436 				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1437 
1438 error_ret:
1439 	mutex_unlock(&st->lock);
1440 	return ret;
1441 }
1442 
1443 static const struct iio_info sca3000_info = {
1444 	.attrs = &sca3000_attribute_group,
1445 	.read_raw = &sca3000_read_raw,
1446 	.write_raw = &sca3000_write_raw,
1447 	.read_event_value = &sca3000_read_event_value,
1448 	.write_event_value = &sca3000_write_event_value,
1449 	.read_event_config = &sca3000_read_event_config,
1450 	.write_event_config = &sca3000_write_event_config,
1451 };
1452 
1453 static int sca3000_probe(struct spi_device *spi)
1454 {
1455 	int ret;
1456 	struct sca3000_state *st;
1457 	struct iio_dev *indio_dev;
1458 
1459 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1460 	if (!indio_dev)
1461 		return -ENOMEM;
1462 
1463 	st = iio_priv(indio_dev);
1464 	spi_set_drvdata(spi, indio_dev);
1465 	st->us = spi;
1466 	mutex_init(&st->lock);
1467 	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1468 					      ->driver_data];
1469 
1470 	indio_dev->dev.parent = &spi->dev;
1471 	indio_dev->name = spi_get_device_id(spi)->name;
1472 	indio_dev->info = &sca3000_info;
1473 	if (st->info->temp_output) {
1474 		indio_dev->channels = sca3000_channels_with_temp;
1475 		indio_dev->num_channels =
1476 			ARRAY_SIZE(sca3000_channels_with_temp);
1477 	} else {
1478 		indio_dev->channels = sca3000_channels;
1479 		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1480 	}
1481 	indio_dev->modes = INDIO_DIRECT_MODE;
1482 
1483 	ret = sca3000_configure_ring(indio_dev);
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (spi->irq) {
1488 		ret = request_threaded_irq(spi->irq,
1489 					   NULL,
1490 					   &sca3000_event_handler,
1491 					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1492 					   "sca3000",
1493 					   indio_dev);
1494 		if (ret)
1495 			return ret;
1496 	}
1497 	indio_dev->setup_ops = &sca3000_ring_setup_ops;
1498 	ret = sca3000_clean_setup(st);
1499 	if (ret)
1500 		goto error_free_irq;
1501 
1502 	ret = sca3000_print_rev(indio_dev);
1503 	if (ret)
1504 		goto error_free_irq;
1505 
1506 	return iio_device_register(indio_dev);
1507 
1508 error_free_irq:
1509 	if (spi->irq)
1510 		free_irq(spi->irq, indio_dev);
1511 
1512 	return ret;
1513 }
1514 
1515 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1516 {
1517 	int ret;
1518 
1519 	mutex_lock(&st->lock);
1520 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1521 	if (ret)
1522 		goto error_ret;
1523 	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1524 				(st->rx[0] &
1525 				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1526 				   SCA3000_REG_INT_MASK_RING_HALF |
1527 				   SCA3000_REG_INT_MASK_ALL_INTS)));
1528 error_ret:
1529 	mutex_unlock(&st->lock);
1530 	return ret;
1531 }
1532 
1533 static int sca3000_remove(struct spi_device *spi)
1534 {
1535 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1536 	struct sca3000_state *st = iio_priv(indio_dev);
1537 
1538 	iio_device_unregister(indio_dev);
1539 
1540 	/* Must ensure no interrupts can be generated after this! */
1541 	sca3000_stop_all_interrupts(st);
1542 	if (spi->irq)
1543 		free_irq(spi->irq, indio_dev);
1544 
1545 	return 0;
1546 }
1547 
1548 static const struct spi_device_id sca3000_id[] = {
1549 	{"sca3000_d01", d01},
1550 	{"sca3000_e02", e02},
1551 	{"sca3000_e04", e04},
1552 	{"sca3000_e05", e05},
1553 	{}
1554 };
1555 MODULE_DEVICE_TABLE(spi, sca3000_id);
1556 
1557 static struct spi_driver sca3000_driver = {
1558 	.driver = {
1559 		.name = "sca3000",
1560 	},
1561 	.probe = sca3000_probe,
1562 	.remove = sca3000_remove,
1563 	.id_table = sca3000_id,
1564 };
1565 module_spi_driver(sca3000_driver);
1566 
1567 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1568 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1569 MODULE_LICENSE("GPL v2");
1570