xref: /linux/drivers/iio/adc/stm32-adc.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 
29 #include "stm32-adc-core.h"
30 
31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
32 #define STM32H7_LINCALFACT_NUM		6
33 
34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35 #define STM32H7_BOOST_CLKRATE		20000000UL
36 
37 #define STM32_ADC_CH_MAX		20	/* max number of channels */
38 #define STM32_ADC_CH_SZ			10	/* max channel name size */
39 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
40 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
41 #define STM32_ADC_TIMEOUT_US		100000
42 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43 #define STM32_ADC_HW_STOP_DELAY_MS	100
44 
45 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
46 
47 /* External trigger enable */
48 enum stm32_adc_exten {
49 	STM32_EXTEN_SWTRIG,
50 	STM32_EXTEN_HWTRIG_RISING_EDGE,
51 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
53 };
54 
55 /* extsel - trigger mux selection value */
56 enum stm32_adc_extsel {
57 	STM32_EXT0,
58 	STM32_EXT1,
59 	STM32_EXT2,
60 	STM32_EXT3,
61 	STM32_EXT4,
62 	STM32_EXT5,
63 	STM32_EXT6,
64 	STM32_EXT7,
65 	STM32_EXT8,
66 	STM32_EXT9,
67 	STM32_EXT10,
68 	STM32_EXT11,
69 	STM32_EXT12,
70 	STM32_EXT13,
71 	STM32_EXT14,
72 	STM32_EXT15,
73 	STM32_EXT16,
74 	STM32_EXT17,
75 	STM32_EXT18,
76 	STM32_EXT19,
77 	STM32_EXT20,
78 };
79 
80 /**
81  * struct stm32_adc_trig_info - ADC trigger info
82  * @name:		name of the trigger, corresponding to its source
83  * @extsel:		trigger selection
84  */
85 struct stm32_adc_trig_info {
86 	const char *name;
87 	enum stm32_adc_extsel extsel;
88 };
89 
90 /**
91  * struct stm32_adc_calib - optional adc calibration data
92  * @calfact_s: Calibration offset for single ended channels
93  * @calfact_d: Calibration offset in differential
94  * @lincalfact: Linearity calibration factor
95  * @calibrated: Indicates calibration status
96  */
97 struct stm32_adc_calib {
98 	u32			calfact_s;
99 	u32			calfact_d;
100 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
101 	bool			calibrated;
102 };
103 
104 /**
105  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106  * @reg:		register offset
107  * @mask:		bitfield mask
108  * @shift:		left shift
109  */
110 struct stm32_adc_regs {
111 	int reg;
112 	int mask;
113 	int shift;
114 };
115 
116 /**
117  * struct stm32_adc_regspec - stm32 registers definition
118  * @dr:			data register offset
119  * @ier_eoc:		interrupt enable register & eocie bitfield
120  * @isr_eoc:		interrupt status register & eoc bitfield
121  * @sqr:		reference to sequence registers array
122  * @exten:		trigger control register & bitfield
123  * @extsel:		trigger selection register & bitfield
124  * @res:		resolution selection register & bitfield
125  * @smpr:		smpr1 & smpr2 registers offset array
126  * @smp_bits:		smpr1 & smpr2 index and bitfields
127  */
128 struct stm32_adc_regspec {
129 	const u32 dr;
130 	const struct stm32_adc_regs ier_eoc;
131 	const struct stm32_adc_regs isr_eoc;
132 	const struct stm32_adc_regs *sqr;
133 	const struct stm32_adc_regs exten;
134 	const struct stm32_adc_regs extsel;
135 	const struct stm32_adc_regs res;
136 	const u32 smpr[2];
137 	const struct stm32_adc_regs *smp_bits;
138 };
139 
140 struct stm32_adc;
141 
142 /**
143  * struct stm32_adc_cfg - stm32 compatible configuration data
144  * @regs:		registers descriptions
145  * @adc_info:		per instance input channels definitions
146  * @trigs:		external trigger sources
147  * @clk_required:	clock is required
148  * @has_vregready:	vregready status flag presence
149  * @prepare:		optional prepare routine (power-up, enable)
150  * @start_conv:		routine to start conversions
151  * @stop_conv:		routine to stop conversions
152  * @unprepare:		optional unprepare routine (disable, power-down)
153  * @smp_cycles:		programmable sampling time (ADC clock cycles)
154  */
155 struct stm32_adc_cfg {
156 	const struct stm32_adc_regspec	*regs;
157 	const struct stm32_adc_info	*adc_info;
158 	struct stm32_adc_trig_info	*trigs;
159 	bool clk_required;
160 	bool has_vregready;
161 	int (*prepare)(struct stm32_adc *);
162 	void (*start_conv)(struct stm32_adc *, bool dma);
163 	void (*stop_conv)(struct stm32_adc *);
164 	void (*unprepare)(struct stm32_adc *);
165 	const unsigned int *smp_cycles;
166 };
167 
168 /**
169  * struct stm32_adc - private data of each ADC IIO instance
170  * @common:		reference to ADC block common data
171  * @offset:		ADC instance register offset in ADC block
172  * @cfg:		compatible configuration data
173  * @completion:		end of single conversion completion
174  * @buffer:		data buffer
175  * @clk:		clock for this adc instance
176  * @irq:		interrupt for this adc instance
177  * @lock:		spinlock
178  * @bufi:		data buffer index
179  * @num_conv:		expected number of scan conversions
180  * @res:		data resolution (e.g. RES bitfield value)
181  * @trigger_polarity:	external trigger polarity (e.g. exten)
182  * @dma_chan:		dma channel
183  * @rx_buf:		dma rx buffer cpu address
184  * @rx_dma_buf:		dma rx buffer bus address
185  * @rx_buf_sz:		dma rx buffer size
186  * @difsel:		bitmask to set single-ended/differential channel
187  * @pcsel:		bitmask to preselect channels on some devices
188  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
189  * @cal:		optional calibration data on some devices
190  * @chan_name:		channel name array
191  */
192 struct stm32_adc {
193 	struct stm32_adc_common	*common;
194 	u32			offset;
195 	const struct stm32_adc_cfg	*cfg;
196 	struct completion	completion;
197 	u16			buffer[STM32_ADC_MAX_SQ];
198 	struct clk		*clk;
199 	int			irq;
200 	spinlock_t		lock;		/* interrupt lock */
201 	unsigned int		bufi;
202 	unsigned int		num_conv;
203 	u32			res;
204 	u32			trigger_polarity;
205 	struct dma_chan		*dma_chan;
206 	u8			*rx_buf;
207 	dma_addr_t		rx_dma_buf;
208 	unsigned int		rx_buf_sz;
209 	u32			difsel;
210 	u32			pcsel;
211 	u32			smpr_val[2];
212 	struct stm32_adc_calib	cal;
213 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
214 };
215 
216 struct stm32_adc_diff_channel {
217 	u32 vinp;
218 	u32 vinn;
219 };
220 
221 /**
222  * struct stm32_adc_info - stm32 ADC, per instance config data
223  * @max_channels:	Number of channels
224  * @resolutions:	available resolutions
225  * @num_res:		number of available resolutions
226  */
227 struct stm32_adc_info {
228 	int max_channels;
229 	const unsigned int *resolutions;
230 	const unsigned int num_res;
231 };
232 
233 static const unsigned int stm32f4_adc_resolutions[] = {
234 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
235 	12, 10, 8, 6,
236 };
237 
238 /* stm32f4 can have up to 16 channels */
239 static const struct stm32_adc_info stm32f4_adc_info = {
240 	.max_channels = 16,
241 	.resolutions = stm32f4_adc_resolutions,
242 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
243 };
244 
245 static const unsigned int stm32h7_adc_resolutions[] = {
246 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
247 	16, 14, 12, 10, 8,
248 };
249 
250 /* stm32h7 can have up to 20 channels */
251 static const struct stm32_adc_info stm32h7_adc_info = {
252 	.max_channels = STM32_ADC_CH_MAX,
253 	.resolutions = stm32h7_adc_resolutions,
254 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
255 };
256 
257 /*
258  * stm32f4_sq - describe regular sequence registers
259  * - L: sequence len (register & bit field)
260  * - SQ1..SQ16: sequence entries (register & bit field)
261  */
262 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
263 	/* L: len bit field description to be kept as first element */
264 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
265 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
266 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
267 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
268 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
269 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
270 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
271 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
272 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
273 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
274 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
275 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
276 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
277 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
278 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
279 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
280 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
281 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
282 };
283 
284 /* STM32F4 external trigger sources for all instances */
285 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
286 	{ TIM1_CH1, STM32_EXT0 },
287 	{ TIM1_CH2, STM32_EXT1 },
288 	{ TIM1_CH3, STM32_EXT2 },
289 	{ TIM2_CH2, STM32_EXT3 },
290 	{ TIM2_CH3, STM32_EXT4 },
291 	{ TIM2_CH4, STM32_EXT5 },
292 	{ TIM2_TRGO, STM32_EXT6 },
293 	{ TIM3_CH1, STM32_EXT7 },
294 	{ TIM3_TRGO, STM32_EXT8 },
295 	{ TIM4_CH4, STM32_EXT9 },
296 	{ TIM5_CH1, STM32_EXT10 },
297 	{ TIM5_CH2, STM32_EXT11 },
298 	{ TIM5_CH3, STM32_EXT12 },
299 	{ TIM8_CH1, STM32_EXT13 },
300 	{ TIM8_TRGO, STM32_EXT14 },
301 	{}, /* sentinel */
302 };
303 
304 /*
305  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
306  * Sorted so it can be indexed by channel number.
307  */
308 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
309 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
310 	{ 1, GENMASK(2, 0), 0 },
311 	{ 1, GENMASK(5, 3), 3 },
312 	{ 1, GENMASK(8, 6), 6 },
313 	{ 1, GENMASK(11, 9), 9 },
314 	{ 1, GENMASK(14, 12), 12 },
315 	{ 1, GENMASK(17, 15), 15 },
316 	{ 1, GENMASK(20, 18), 18 },
317 	{ 1, GENMASK(23, 21), 21 },
318 	{ 1, GENMASK(26, 24), 24 },
319 	{ 1, GENMASK(29, 27), 27 },
320 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
321 	{ 0, GENMASK(2, 0), 0 },
322 	{ 0, GENMASK(5, 3), 3 },
323 	{ 0, GENMASK(8, 6), 6 },
324 	{ 0, GENMASK(11, 9), 9 },
325 	{ 0, GENMASK(14, 12), 12 },
326 	{ 0, GENMASK(17, 15), 15 },
327 	{ 0, GENMASK(20, 18), 18 },
328 	{ 0, GENMASK(23, 21), 21 },
329 	{ 0, GENMASK(26, 24), 24 },
330 };
331 
332 /* STM32F4 programmable sampling time (ADC clock cycles) */
333 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
334 	3, 15, 28, 56, 84, 112, 144, 480,
335 };
336 
337 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
338 	.dr = STM32F4_ADC_DR,
339 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
340 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
341 	.sqr = stm32f4_sq,
342 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
343 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
344 		    STM32F4_EXTSEL_SHIFT },
345 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
346 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
347 	.smp_bits = stm32f4_smp_bits,
348 };
349 
350 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
351 	/* L: len bit field description to be kept as first element */
352 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
353 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
354 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
355 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
356 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
357 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
358 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
359 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
360 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
361 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
362 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
363 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
364 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
365 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
366 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
367 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
368 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
369 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
370 };
371 
372 /* STM32H7 external trigger sources for all instances */
373 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
374 	{ TIM1_CH1, STM32_EXT0 },
375 	{ TIM1_CH2, STM32_EXT1 },
376 	{ TIM1_CH3, STM32_EXT2 },
377 	{ TIM2_CH2, STM32_EXT3 },
378 	{ TIM3_TRGO, STM32_EXT4 },
379 	{ TIM4_CH4, STM32_EXT5 },
380 	{ TIM8_TRGO, STM32_EXT7 },
381 	{ TIM8_TRGO2, STM32_EXT8 },
382 	{ TIM1_TRGO, STM32_EXT9 },
383 	{ TIM1_TRGO2, STM32_EXT10 },
384 	{ TIM2_TRGO, STM32_EXT11 },
385 	{ TIM4_TRGO, STM32_EXT12 },
386 	{ TIM6_TRGO, STM32_EXT13 },
387 	{ TIM15_TRGO, STM32_EXT14 },
388 	{ TIM3_CH4, STM32_EXT15 },
389 	{ LPTIM1_OUT, STM32_EXT18 },
390 	{ LPTIM2_OUT, STM32_EXT19 },
391 	{ LPTIM3_OUT, STM32_EXT20 },
392 	{},
393 };
394 
395 /*
396  * stm32h7_smp_bits - describe sampling time register index & bit fields
397  * Sorted so it can be indexed by channel number.
398  */
399 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
400 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
401 	{ 0, GENMASK(2, 0), 0 },
402 	{ 0, GENMASK(5, 3), 3 },
403 	{ 0, GENMASK(8, 6), 6 },
404 	{ 0, GENMASK(11, 9), 9 },
405 	{ 0, GENMASK(14, 12), 12 },
406 	{ 0, GENMASK(17, 15), 15 },
407 	{ 0, GENMASK(20, 18), 18 },
408 	{ 0, GENMASK(23, 21), 21 },
409 	{ 0, GENMASK(26, 24), 24 },
410 	{ 0, GENMASK(29, 27), 27 },
411 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
412 	{ 1, GENMASK(2, 0), 0 },
413 	{ 1, GENMASK(5, 3), 3 },
414 	{ 1, GENMASK(8, 6), 6 },
415 	{ 1, GENMASK(11, 9), 9 },
416 	{ 1, GENMASK(14, 12), 12 },
417 	{ 1, GENMASK(17, 15), 15 },
418 	{ 1, GENMASK(20, 18), 18 },
419 	{ 1, GENMASK(23, 21), 21 },
420 	{ 1, GENMASK(26, 24), 24 },
421 	{ 1, GENMASK(29, 27), 27 },
422 };
423 
424 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
425 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
426 	1, 2, 8, 16, 32, 64, 387, 810,
427 };
428 
429 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
430 	.dr = STM32H7_ADC_DR,
431 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
432 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
433 	.sqr = stm32h7_sq,
434 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
435 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
436 		    STM32H7_EXTSEL_SHIFT },
437 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
438 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
439 	.smp_bits = stm32h7_smp_bits,
440 };
441 
442 /**
443  * STM32 ADC registers access routines
444  * @adc: stm32 adc instance
445  * @reg: reg offset in adc instance
446  *
447  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
448  * for adc1, adc2 and adc3.
449  */
450 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
451 {
452 	return readl_relaxed(adc->common->base + adc->offset + reg);
453 }
454 
455 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
456 
457 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
458 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
459 			   cond, sleep_us, timeout_us)
460 
461 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
462 {
463 	return readw_relaxed(adc->common->base + adc->offset + reg);
464 }
465 
466 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
467 {
468 	writel_relaxed(val, adc->common->base + adc->offset + reg);
469 }
470 
471 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
472 {
473 	unsigned long flags;
474 
475 	spin_lock_irqsave(&adc->lock, flags);
476 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
477 	spin_unlock_irqrestore(&adc->lock, flags);
478 }
479 
480 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481 {
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(&adc->lock, flags);
485 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
486 	spin_unlock_irqrestore(&adc->lock, flags);
487 }
488 
489 /**
490  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
491  * @adc: stm32 adc instance
492  */
493 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
494 {
495 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
496 			   adc->cfg->regs->ier_eoc.mask);
497 };
498 
499 /**
500  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
501  * @adc: stm32 adc instance
502  */
503 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
504 {
505 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 			   adc->cfg->regs->ier_eoc.mask);
507 }
508 
509 static void stm32_adc_set_res(struct stm32_adc *adc)
510 {
511 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
512 	u32 val;
513 
514 	val = stm32_adc_readl(adc, res->reg);
515 	val = (val & ~res->mask) | (adc->res << res->shift);
516 	stm32_adc_writel(adc, res->reg, val);
517 }
518 
519 static int stm32_adc_hw_stop(struct device *dev)
520 {
521 	struct stm32_adc *adc = dev_get_drvdata(dev);
522 
523 	if (adc->cfg->unprepare)
524 		adc->cfg->unprepare(adc);
525 
526 	if (adc->clk)
527 		clk_disable_unprepare(adc->clk);
528 
529 	return 0;
530 }
531 
532 static int stm32_adc_hw_start(struct device *dev)
533 {
534 	struct stm32_adc *adc = dev_get_drvdata(dev);
535 	int ret;
536 
537 	if (adc->clk) {
538 		ret = clk_prepare_enable(adc->clk);
539 		if (ret)
540 			return ret;
541 	}
542 
543 	stm32_adc_set_res(adc);
544 
545 	if (adc->cfg->prepare) {
546 		ret = adc->cfg->prepare(adc);
547 		if (ret)
548 			goto err_clk_dis;
549 	}
550 
551 	return 0;
552 
553 err_clk_dis:
554 	if (adc->clk)
555 		clk_disable_unprepare(adc->clk);
556 
557 	return ret;
558 }
559 
560 /**
561  * stm32f4_adc_start_conv() - Start conversions for regular channels.
562  * @adc: stm32 adc instance
563  * @dma: use dma to transfer conversion result
564  *
565  * Start conversions for regular channels.
566  * Also take care of normal or DMA mode. Circular DMA may be used for regular
567  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
568  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
569  */
570 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
571 {
572 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
573 
574 	if (dma)
575 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
576 				   STM32F4_DMA | STM32F4_DDS);
577 
578 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
579 
580 	/* Wait for Power-up time (tSTAB from datasheet) */
581 	usleep_range(2, 3);
582 
583 	/* Software start ? (e.g. trigger detection disabled ?) */
584 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
585 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
586 }
587 
588 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
589 {
590 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
591 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
592 
593 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
595 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
596 }
597 
598 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
599 {
600 	enum stm32h7_adc_dmngt dmngt;
601 	unsigned long flags;
602 	u32 val;
603 
604 	if (dma)
605 		dmngt = STM32H7_DMNGT_DMA_CIRC;
606 	else
607 		dmngt = STM32H7_DMNGT_DR_ONLY;
608 
609 	spin_lock_irqsave(&adc->lock, flags);
610 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
611 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
612 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
613 	spin_unlock_irqrestore(&adc->lock, flags);
614 
615 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
616 }
617 
618 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
619 {
620 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
621 	int ret;
622 	u32 val;
623 
624 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
625 
626 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
627 					   !(val & (STM32H7_ADSTART)),
628 					   100, STM32_ADC_TIMEOUT_US);
629 	if (ret)
630 		dev_warn(&indio_dev->dev, "stop failed\n");
631 
632 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
633 }
634 
635 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
636 {
637 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
638 	int ret;
639 	u32 val;
640 
641 	/* Exit deep power down, then enable ADC voltage regulator */
642 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
643 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
644 
645 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
646 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
647 
648 	/* Wait for startup time */
649 	if (!adc->cfg->has_vregready) {
650 		usleep_range(10, 20);
651 		return 0;
652 	}
653 
654 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
655 					   val & STM32MP1_VREGREADY, 100,
656 					   STM32_ADC_TIMEOUT_US);
657 	if (ret) {
658 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
659 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
660 	}
661 
662 	return ret;
663 }
664 
665 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
666 {
667 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668 
669 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
670 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
671 }
672 
673 static int stm32h7_adc_enable(struct stm32_adc *adc)
674 {
675 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
676 	int ret;
677 	u32 val;
678 
679 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
680 
681 	/* Poll for ADRDY to be set (after adc startup time) */
682 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
683 					   val & STM32H7_ADRDY,
684 					   100, STM32_ADC_TIMEOUT_US);
685 	if (ret) {
686 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
687 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
688 	} else {
689 		/* Clear ADRDY by writing one */
690 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
691 	}
692 
693 	return ret;
694 }
695 
696 static void stm32h7_adc_disable(struct stm32_adc *adc)
697 {
698 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 	int ret;
700 	u32 val;
701 
702 	/* Disable ADC and wait until it's effectively disabled */
703 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
704 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
705 					   !(val & STM32H7_ADEN), 100,
706 					   STM32_ADC_TIMEOUT_US);
707 	if (ret)
708 		dev_warn(&indio_dev->dev, "Failed to disable\n");
709 }
710 
711 /**
712  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
713  * @adc: stm32 adc instance
714  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
715  */
716 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
717 {
718 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 	int i, ret;
720 	u32 lincalrdyw_mask, val;
721 
722 	/* Read linearity calibration */
723 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727 
728 		/* Poll: wait calib data to be ready in CALFACT2 register */
729 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 						   !(val & lincalrdyw_mask),
731 						   100, STM32_ADC_TIMEOUT_US);
732 		if (ret) {
733 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 			return ret;
735 		}
736 
737 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740 
741 		lincalrdyw_mask >>= 1;
742 	}
743 
744 	/* Read offset calibration */
745 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750 	adc->cal.calibrated = true;
751 
752 	return 0;
753 }
754 
755 /**
756  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
757  * @adc: stm32 adc instance
758  * Note: ADC must be enabled, with no on-going conversions.
759  */
760 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
761 {
762 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 	int i, ret;
764 	u32 lincalrdyw_mask, val;
765 
766 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
767 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
768 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
769 
770 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
771 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
772 		/*
773 		 * Write saved calibration data to shadow registers:
774 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
775 		 * data write. Then poll to wait for complete transfer.
776 		 */
777 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
778 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
779 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
780 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
781 						   val & lincalrdyw_mask,
782 						   100, STM32_ADC_TIMEOUT_US);
783 		if (ret) {
784 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
785 			return ret;
786 		}
787 
788 		/*
789 		 * Read back calibration data, has two effects:
790 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
791 		 *   for next time calibration needs to be restored.
792 		 * - BTW, bit clear triggers a read, then check data has been
793 		 *   correctly written.
794 		 */
795 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
796 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 						   !(val & lincalrdyw_mask),
798 						   100, STM32_ADC_TIMEOUT_US);
799 		if (ret) {
800 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
801 			return ret;
802 		}
803 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
804 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
805 			dev_err(&indio_dev->dev, "calfact not consistent\n");
806 			return -EIO;
807 		}
808 
809 		lincalrdyw_mask >>= 1;
810 	}
811 
812 	return 0;
813 }
814 
815 /**
816  * Fixed timeout value for ADC calibration.
817  * worst cases:
818  * - low clock frequency
819  * - maximum prescalers
820  * Calibration requires:
821  * - 131,072 ADC clock cycle for the linear calibration
822  * - 20 ADC clock cycle for the offset calibration
823  *
824  * Set to 100ms for now
825  */
826 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
827 
828 /**
829  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
830  * @adc: stm32 adc instance
831  * Note: Must be called once ADC is out of power down.
832  */
833 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
834 {
835 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
836 	int ret;
837 	u32 val;
838 
839 	if (adc->cal.calibrated)
840 		return true;
841 
842 	/*
843 	 * Select calibration mode:
844 	 * - Offset calibration for single ended inputs
845 	 * - No linearity calibration (do it later, before reading it)
846 	 */
847 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
848 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
849 
850 	/* Start calibration, then wait for completion */
851 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
852 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 					   !(val & STM32H7_ADCAL), 100,
854 					   STM32H7_ADC_CALIB_TIMEOUT_US);
855 	if (ret) {
856 		dev_err(&indio_dev->dev, "calibration failed\n");
857 		goto out;
858 	}
859 
860 	/*
861 	 * Select calibration mode, then start calibration:
862 	 * - Offset calibration for differential input
863 	 * - Linearity calibration (needs to be done only once for single/diff)
864 	 *   will run simultaneously with offset calibration.
865 	 */
866 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
867 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
868 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
869 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
870 					   !(val & STM32H7_ADCAL), 100,
871 					   STM32H7_ADC_CALIB_TIMEOUT_US);
872 	if (ret) {
873 		dev_err(&indio_dev->dev, "calibration failed\n");
874 		goto out;
875 	}
876 
877 out:
878 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880 
881 	return ret;
882 }
883 
884 /**
885  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
886  * @adc: stm32 adc instance
887  * Leave power down mode.
888  * Configure channels as single ended or differential before enabling ADC.
889  * Enable ADC.
890  * Restore calibration data.
891  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
892  * - Only one input is selected for single ended (e.g. 'vinp')
893  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
894  */
895 static int stm32h7_adc_prepare(struct stm32_adc *adc)
896 {
897 	int calib, ret;
898 
899 	ret = stm32h7_adc_exit_pwr_down(adc);
900 	if (ret)
901 		return ret;
902 
903 	ret = stm32h7_adc_selfcalib(adc);
904 	if (ret < 0)
905 		goto pwr_dwn;
906 	calib = ret;
907 
908 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
909 
910 	ret = stm32h7_adc_enable(adc);
911 	if (ret)
912 		goto pwr_dwn;
913 
914 	/* Either restore or read calibration result for future reference */
915 	if (calib)
916 		ret = stm32h7_adc_restore_selfcalib(adc);
917 	else
918 		ret = stm32h7_adc_read_selfcalib(adc);
919 	if (ret)
920 		goto disable;
921 
922 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
923 
924 	return 0;
925 
926 disable:
927 	stm32h7_adc_disable(adc);
928 pwr_dwn:
929 	stm32h7_adc_enter_pwr_down(adc);
930 
931 	return ret;
932 }
933 
934 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
935 {
936 	stm32h7_adc_disable(adc);
937 	stm32h7_adc_enter_pwr_down(adc);
938 }
939 
940 /**
941  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
942  * @indio_dev: IIO device
943  * @scan_mask: channels to be converted
944  *
945  * Conversion sequence :
946  * Apply sampling time settings for all channels.
947  * Configure ADC scan sequence based on selected channels in scan_mask.
948  * Add channels to SQR registers, from scan_mask LSB to MSB, then
949  * program sequence len.
950  */
951 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
952 				   const unsigned long *scan_mask)
953 {
954 	struct stm32_adc *adc = iio_priv(indio_dev);
955 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
956 	const struct iio_chan_spec *chan;
957 	u32 val, bit;
958 	int i = 0;
959 
960 	/* Apply sampling time settings */
961 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
962 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
963 
964 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
965 		chan = indio_dev->channels + bit;
966 		/*
967 		 * Assign one channel per SQ entry in regular
968 		 * sequence, starting with SQ1.
969 		 */
970 		i++;
971 		if (i > STM32_ADC_MAX_SQ)
972 			return -EINVAL;
973 
974 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
975 			__func__, chan->channel, i);
976 
977 		val = stm32_adc_readl(adc, sqr[i].reg);
978 		val &= ~sqr[i].mask;
979 		val |= chan->channel << sqr[i].shift;
980 		stm32_adc_writel(adc, sqr[i].reg, val);
981 	}
982 
983 	if (!i)
984 		return -EINVAL;
985 
986 	/* Sequence len */
987 	val = stm32_adc_readl(adc, sqr[0].reg);
988 	val &= ~sqr[0].mask;
989 	val |= ((i - 1) << sqr[0].shift);
990 	stm32_adc_writel(adc, sqr[0].reg, val);
991 
992 	return 0;
993 }
994 
995 /**
996  * stm32_adc_get_trig_extsel() - Get external trigger selection
997  * @indio_dev: IIO device structure
998  * @trig: trigger
999  *
1000  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1001  */
1002 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1003 				     struct iio_trigger *trig)
1004 {
1005 	struct stm32_adc *adc = iio_priv(indio_dev);
1006 	int i;
1007 
1008 	/* lookup triggers registered by stm32 timer trigger driver */
1009 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1010 		/**
1011 		 * Checking both stm32 timer trigger type and trig name
1012 		 * should be safe against arbitrary trigger names.
1013 		 */
1014 		if ((is_stm32_timer_trigger(trig) ||
1015 		     is_stm32_lptim_trigger(trig)) &&
1016 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1017 			return adc->cfg->trigs[i].extsel;
1018 		}
1019 	}
1020 
1021 	return -EINVAL;
1022 }
1023 
1024 /**
1025  * stm32_adc_set_trig() - Set a regular trigger
1026  * @indio_dev: IIO device
1027  * @trig: IIO trigger
1028  *
1029  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1030  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1031  * - if HW trigger enabled, set source & polarity
1032  */
1033 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1034 			      struct iio_trigger *trig)
1035 {
1036 	struct stm32_adc *adc = iio_priv(indio_dev);
1037 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1038 	unsigned long flags;
1039 	int ret;
1040 
1041 	if (trig) {
1042 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1043 		if (ret < 0)
1044 			return ret;
1045 
1046 		/* set trigger source and polarity (default to rising edge) */
1047 		extsel = ret;
1048 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1049 	}
1050 
1051 	spin_lock_irqsave(&adc->lock, flags);
1052 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1053 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1054 	val |= exten << adc->cfg->regs->exten.shift;
1055 	val |= extsel << adc->cfg->regs->extsel.shift;
1056 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1057 	spin_unlock_irqrestore(&adc->lock, flags);
1058 
1059 	return 0;
1060 }
1061 
1062 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1063 				  const struct iio_chan_spec *chan,
1064 				  unsigned int type)
1065 {
1066 	struct stm32_adc *adc = iio_priv(indio_dev);
1067 
1068 	adc->trigger_polarity = type;
1069 
1070 	return 0;
1071 }
1072 
1073 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1074 				  const struct iio_chan_spec *chan)
1075 {
1076 	struct stm32_adc *adc = iio_priv(indio_dev);
1077 
1078 	return adc->trigger_polarity;
1079 }
1080 
1081 static const char * const stm32_trig_pol_items[] = {
1082 	"rising-edge", "falling-edge", "both-edges",
1083 };
1084 
1085 static const struct iio_enum stm32_adc_trig_pol = {
1086 	.items = stm32_trig_pol_items,
1087 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1088 	.get = stm32_adc_get_trig_pol,
1089 	.set = stm32_adc_set_trig_pol,
1090 };
1091 
1092 /**
1093  * stm32_adc_single_conv() - Performs a single conversion
1094  * @indio_dev: IIO device
1095  * @chan: IIO channel
1096  * @res: conversion result
1097  *
1098  * The function performs a single conversion on a given channel:
1099  * - Apply sampling time settings
1100  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1101  * - Use SW trigger
1102  * - Start conversion, then wait for interrupt completion.
1103  */
1104 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1105 				 const struct iio_chan_spec *chan,
1106 				 int *res)
1107 {
1108 	struct stm32_adc *adc = iio_priv(indio_dev);
1109 	struct device *dev = indio_dev->dev.parent;
1110 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1111 	long timeout;
1112 	u32 val;
1113 	int ret;
1114 
1115 	reinit_completion(&adc->completion);
1116 
1117 	adc->bufi = 0;
1118 
1119 	ret = pm_runtime_get_sync(dev);
1120 	if (ret < 0) {
1121 		pm_runtime_put_noidle(dev);
1122 		return ret;
1123 	}
1124 
1125 	/* Apply sampling time settings */
1126 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1127 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1128 
1129 	/* Program chan number in regular sequence (SQ1) */
1130 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1131 	val &= ~regs->sqr[1].mask;
1132 	val |= chan->channel << regs->sqr[1].shift;
1133 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1134 
1135 	/* Set regular sequence len (0 for 1 conversion) */
1136 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1137 
1138 	/* Trigger detection disabled (conversion can be launched in SW) */
1139 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1140 
1141 	stm32_adc_conv_irq_enable(adc);
1142 
1143 	adc->cfg->start_conv(adc, false);
1144 
1145 	timeout = wait_for_completion_interruptible_timeout(
1146 					&adc->completion, STM32_ADC_TIMEOUT);
1147 	if (timeout == 0) {
1148 		ret = -ETIMEDOUT;
1149 	} else if (timeout < 0) {
1150 		ret = timeout;
1151 	} else {
1152 		*res = adc->buffer[0];
1153 		ret = IIO_VAL_INT;
1154 	}
1155 
1156 	adc->cfg->stop_conv(adc);
1157 
1158 	stm32_adc_conv_irq_disable(adc);
1159 
1160 	pm_runtime_mark_last_busy(dev);
1161 	pm_runtime_put_autosuspend(dev);
1162 
1163 	return ret;
1164 }
1165 
1166 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1167 			      struct iio_chan_spec const *chan,
1168 			      int *val, int *val2, long mask)
1169 {
1170 	struct stm32_adc *adc = iio_priv(indio_dev);
1171 	int ret;
1172 
1173 	switch (mask) {
1174 	case IIO_CHAN_INFO_RAW:
1175 		ret = iio_device_claim_direct_mode(indio_dev);
1176 		if (ret)
1177 			return ret;
1178 		if (chan->type == IIO_VOLTAGE)
1179 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1180 		else
1181 			ret = -EINVAL;
1182 		iio_device_release_direct_mode(indio_dev);
1183 		return ret;
1184 
1185 	case IIO_CHAN_INFO_SCALE:
1186 		if (chan->differential) {
1187 			*val = adc->common->vref_mv * 2;
1188 			*val2 = chan->scan_type.realbits;
1189 		} else {
1190 			*val = adc->common->vref_mv;
1191 			*val2 = chan->scan_type.realbits;
1192 		}
1193 		return IIO_VAL_FRACTIONAL_LOG2;
1194 
1195 	case IIO_CHAN_INFO_OFFSET:
1196 		if (chan->differential)
1197 			/* ADC_full_scale / 2 */
1198 			*val = -((1 << chan->scan_type.realbits) / 2);
1199 		else
1200 			*val = 0;
1201 		return IIO_VAL_INT;
1202 
1203 	default:
1204 		return -EINVAL;
1205 	}
1206 }
1207 
1208 static irqreturn_t stm32_adc_isr(int irq, void *data)
1209 {
1210 	struct stm32_adc *adc = data;
1211 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1212 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1213 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1214 
1215 	if (status & regs->isr_eoc.mask) {
1216 		/* Reading DR also clears EOC status flag */
1217 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1218 		if (iio_buffer_enabled(indio_dev)) {
1219 			adc->bufi++;
1220 			if (adc->bufi >= adc->num_conv) {
1221 				stm32_adc_conv_irq_disable(adc);
1222 				iio_trigger_poll(indio_dev->trig);
1223 			}
1224 		} else {
1225 			complete(&adc->completion);
1226 		}
1227 		return IRQ_HANDLED;
1228 	}
1229 
1230 	return IRQ_NONE;
1231 }
1232 
1233 /**
1234  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1235  * @indio_dev: IIO device
1236  * @trig: new trigger
1237  *
1238  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1239  * driver, -EINVAL otherwise.
1240  */
1241 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1242 				      struct iio_trigger *trig)
1243 {
1244 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1245 }
1246 
1247 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1248 {
1249 	struct stm32_adc *adc = iio_priv(indio_dev);
1250 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1251 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1252 
1253 	/*
1254 	 * dma cyclic transfers are used, buffer is split into two periods.
1255 	 * There should be :
1256 	 * - always one buffer (period) dma is working on
1257 	 * - one buffer (period) driver can push with iio_trigger_poll().
1258 	 */
1259 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1260 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1261 
1262 	return 0;
1263 }
1264 
1265 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1266 				      const unsigned long *scan_mask)
1267 {
1268 	struct stm32_adc *adc = iio_priv(indio_dev);
1269 	struct device *dev = indio_dev->dev.parent;
1270 	int ret;
1271 
1272 	ret = pm_runtime_get_sync(dev);
1273 	if (ret < 0) {
1274 		pm_runtime_put_noidle(dev);
1275 		return ret;
1276 	}
1277 
1278 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1279 
1280 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1281 	pm_runtime_mark_last_busy(dev);
1282 	pm_runtime_put_autosuspend(dev);
1283 
1284 	return ret;
1285 }
1286 
1287 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1288 			      const struct of_phandle_args *iiospec)
1289 {
1290 	int i;
1291 
1292 	for (i = 0; i < indio_dev->num_channels; i++)
1293 		if (indio_dev->channels[i].channel == iiospec->args[0])
1294 			return i;
1295 
1296 	return -EINVAL;
1297 }
1298 
1299 /**
1300  * stm32_adc_debugfs_reg_access - read or write register value
1301  * @indio_dev: IIO device structure
1302  * @reg: register offset
1303  * @writeval: value to write
1304  * @readval: value to read
1305  *
1306  * To read a value from an ADC register:
1307  *   echo [ADC reg offset] > direct_reg_access
1308  *   cat direct_reg_access
1309  *
1310  * To write a value in a ADC register:
1311  *   echo [ADC_reg_offset] [value] > direct_reg_access
1312  */
1313 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1314 					unsigned reg, unsigned writeval,
1315 					unsigned *readval)
1316 {
1317 	struct stm32_adc *adc = iio_priv(indio_dev);
1318 	struct device *dev = indio_dev->dev.parent;
1319 	int ret;
1320 
1321 	ret = pm_runtime_get_sync(dev);
1322 	if (ret < 0) {
1323 		pm_runtime_put_noidle(dev);
1324 		return ret;
1325 	}
1326 
1327 	if (!readval)
1328 		stm32_adc_writel(adc, reg, writeval);
1329 	else
1330 		*readval = stm32_adc_readl(adc, reg);
1331 
1332 	pm_runtime_mark_last_busy(dev);
1333 	pm_runtime_put_autosuspend(dev);
1334 
1335 	return 0;
1336 }
1337 
1338 static const struct iio_info stm32_adc_iio_info = {
1339 	.read_raw = stm32_adc_read_raw,
1340 	.validate_trigger = stm32_adc_validate_trigger,
1341 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1342 	.update_scan_mode = stm32_adc_update_scan_mode,
1343 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1344 	.of_xlate = stm32_adc_of_xlate,
1345 };
1346 
1347 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1348 {
1349 	struct dma_tx_state state;
1350 	enum dma_status status;
1351 
1352 	status = dmaengine_tx_status(adc->dma_chan,
1353 				     adc->dma_chan->cookie,
1354 				     &state);
1355 	if (status == DMA_IN_PROGRESS) {
1356 		/* Residue is size in bytes from end of buffer */
1357 		unsigned int i = adc->rx_buf_sz - state.residue;
1358 		unsigned int size;
1359 
1360 		/* Return available bytes */
1361 		if (i >= adc->bufi)
1362 			size = i - adc->bufi;
1363 		else
1364 			size = adc->rx_buf_sz + i - adc->bufi;
1365 
1366 		return size;
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static void stm32_adc_dma_buffer_done(void *data)
1373 {
1374 	struct iio_dev *indio_dev = data;
1375 
1376 	iio_trigger_poll_chained(indio_dev->trig);
1377 }
1378 
1379 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1380 {
1381 	struct stm32_adc *adc = iio_priv(indio_dev);
1382 	struct dma_async_tx_descriptor *desc;
1383 	dma_cookie_t cookie;
1384 	int ret;
1385 
1386 	if (!adc->dma_chan)
1387 		return 0;
1388 
1389 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1390 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1391 
1392 	/* Prepare a DMA cyclic transaction */
1393 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1394 					 adc->rx_dma_buf,
1395 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1396 					 DMA_DEV_TO_MEM,
1397 					 DMA_PREP_INTERRUPT);
1398 	if (!desc)
1399 		return -EBUSY;
1400 
1401 	desc->callback = stm32_adc_dma_buffer_done;
1402 	desc->callback_param = indio_dev;
1403 
1404 	cookie = dmaengine_submit(desc);
1405 	ret = dma_submit_error(cookie);
1406 	if (ret) {
1407 		dmaengine_terminate_sync(adc->dma_chan);
1408 		return ret;
1409 	}
1410 
1411 	/* Issue pending DMA requests */
1412 	dma_async_issue_pending(adc->dma_chan);
1413 
1414 	return 0;
1415 }
1416 
1417 static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1418 {
1419 	struct stm32_adc *adc = iio_priv(indio_dev);
1420 	struct device *dev = indio_dev->dev.parent;
1421 	int ret;
1422 
1423 	ret = pm_runtime_get_sync(dev);
1424 	if (ret < 0) {
1425 		pm_runtime_put_noidle(dev);
1426 		return ret;
1427 	}
1428 
1429 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1430 	if (ret) {
1431 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1432 		goto err_pm_put;
1433 	}
1434 
1435 	ret = stm32_adc_dma_start(indio_dev);
1436 	if (ret) {
1437 		dev_err(&indio_dev->dev, "Can't start dma\n");
1438 		goto err_clr_trig;
1439 	}
1440 
1441 	/* Reset adc buffer index */
1442 	adc->bufi = 0;
1443 
1444 	if (!adc->dma_chan)
1445 		stm32_adc_conv_irq_enable(adc);
1446 
1447 	adc->cfg->start_conv(adc, !!adc->dma_chan);
1448 
1449 	return 0;
1450 
1451 err_clr_trig:
1452 	stm32_adc_set_trig(indio_dev, NULL);
1453 err_pm_put:
1454 	pm_runtime_mark_last_busy(dev);
1455 	pm_runtime_put_autosuspend(dev);
1456 
1457 	return ret;
1458 }
1459 
1460 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1461 {
1462 	int ret;
1463 
1464 	ret = iio_triggered_buffer_postenable(indio_dev);
1465 	if (ret < 0)
1466 		return ret;
1467 
1468 	ret = __stm32_adc_buffer_postenable(indio_dev);
1469 	if (ret < 0)
1470 		iio_triggered_buffer_predisable(indio_dev);
1471 
1472 	return ret;
1473 }
1474 
1475 static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1476 {
1477 	struct stm32_adc *adc = iio_priv(indio_dev);
1478 	struct device *dev = indio_dev->dev.parent;
1479 
1480 	adc->cfg->stop_conv(adc);
1481 	if (!adc->dma_chan)
1482 		stm32_adc_conv_irq_disable(adc);
1483 
1484 	if (adc->dma_chan)
1485 		dmaengine_terminate_sync(adc->dma_chan);
1486 
1487 	if (stm32_adc_set_trig(indio_dev, NULL))
1488 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1489 
1490 	pm_runtime_mark_last_busy(dev);
1491 	pm_runtime_put_autosuspend(dev);
1492 }
1493 
1494 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1495 {
1496 	int ret;
1497 
1498 	__stm32_adc_buffer_predisable(indio_dev);
1499 
1500 	ret = iio_triggered_buffer_predisable(indio_dev);
1501 	if (ret < 0)
1502 		dev_err(&indio_dev->dev, "predisable failed\n");
1503 
1504 	return ret;
1505 }
1506 
1507 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1508 	.postenable = &stm32_adc_buffer_postenable,
1509 	.predisable = &stm32_adc_buffer_predisable,
1510 };
1511 
1512 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1513 {
1514 	struct iio_poll_func *pf = p;
1515 	struct iio_dev *indio_dev = pf->indio_dev;
1516 	struct stm32_adc *adc = iio_priv(indio_dev);
1517 
1518 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1519 
1520 	if (!adc->dma_chan) {
1521 		/* reset buffer index */
1522 		adc->bufi = 0;
1523 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1524 						   pf->timestamp);
1525 	} else {
1526 		int residue = stm32_adc_dma_residue(adc);
1527 
1528 		while (residue >= indio_dev->scan_bytes) {
1529 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1530 
1531 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1532 							   pf->timestamp);
1533 			residue -= indio_dev->scan_bytes;
1534 			adc->bufi += indio_dev->scan_bytes;
1535 			if (adc->bufi >= adc->rx_buf_sz)
1536 				adc->bufi = 0;
1537 		}
1538 	}
1539 
1540 	iio_trigger_notify_done(indio_dev->trig);
1541 
1542 	/* re-enable eoc irq */
1543 	if (!adc->dma_chan)
1544 		stm32_adc_conv_irq_enable(adc);
1545 
1546 	return IRQ_HANDLED;
1547 }
1548 
1549 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1550 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1551 	{
1552 		.name = "trigger_polarity_available",
1553 		.shared = IIO_SHARED_BY_ALL,
1554 		.read = iio_enum_available_read,
1555 		.private = (uintptr_t)&stm32_adc_trig_pol,
1556 	},
1557 	{},
1558 };
1559 
1560 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1561 {
1562 	struct device_node *node = indio_dev->dev.of_node;
1563 	struct stm32_adc *adc = iio_priv(indio_dev);
1564 	unsigned int i;
1565 	u32 res;
1566 
1567 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1568 		res = adc->cfg->adc_info->resolutions[0];
1569 
1570 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1571 		if (res == adc->cfg->adc_info->resolutions[i])
1572 			break;
1573 	if (i >= adc->cfg->adc_info->num_res) {
1574 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1575 		return -EINVAL;
1576 	}
1577 
1578 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1579 	adc->res = i;
1580 
1581 	return 0;
1582 }
1583 
1584 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1585 {
1586 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1587 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1588 	unsigned int smp, r = smpr->reg;
1589 
1590 	/* Determine sampling time (ADC clock cycles) */
1591 	period_ns = NSEC_PER_SEC / adc->common->rate;
1592 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1593 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1594 			break;
1595 	if (smp > STM32_ADC_MAX_SMP)
1596 		smp = STM32_ADC_MAX_SMP;
1597 
1598 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1599 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1600 }
1601 
1602 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1603 				    struct iio_chan_spec *chan, u32 vinp,
1604 				    u32 vinn, int scan_index, bool differential)
1605 {
1606 	struct stm32_adc *adc = iio_priv(indio_dev);
1607 	char *name = adc->chan_name[vinp];
1608 
1609 	chan->type = IIO_VOLTAGE;
1610 	chan->channel = vinp;
1611 	if (differential) {
1612 		chan->differential = 1;
1613 		chan->channel2 = vinn;
1614 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1615 	} else {
1616 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1617 	}
1618 	chan->datasheet_name = name;
1619 	chan->scan_index = scan_index;
1620 	chan->indexed = 1;
1621 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1622 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1623 					 BIT(IIO_CHAN_INFO_OFFSET);
1624 	chan->scan_type.sign = 'u';
1625 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1626 	chan->scan_type.storagebits = 16;
1627 	chan->ext_info = stm32_adc_ext_info;
1628 
1629 	/* pre-build selected channels mask */
1630 	adc->pcsel |= BIT(chan->channel);
1631 	if (differential) {
1632 		/* pre-build diff channels mask */
1633 		adc->difsel |= BIT(chan->channel);
1634 		/* Also add negative input to pre-selected channels */
1635 		adc->pcsel |= BIT(chan->channel2);
1636 	}
1637 }
1638 
1639 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1640 {
1641 	struct device_node *node = indio_dev->dev.of_node;
1642 	struct stm32_adc *adc = iio_priv(indio_dev);
1643 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1644 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1645 	struct property *prop;
1646 	const __be32 *cur;
1647 	struct iio_chan_spec *channels;
1648 	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1649 	u32 val, smp = 0;
1650 
1651 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1652 	if (ret > adc_info->max_channels) {
1653 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1654 		return -EINVAL;
1655 	} else if (ret > 0) {
1656 		num_channels += ret;
1657 	}
1658 
1659 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1660 					      sizeof(*diff));
1661 	if (ret > adc_info->max_channels) {
1662 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1663 		return -EINVAL;
1664 	} else if (ret > 0) {
1665 		int size = ret * sizeof(*diff) / sizeof(u32);
1666 
1667 		num_diff = ret;
1668 		num_channels += ret;
1669 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1670 						 (u32 *)diff, size);
1671 		if (ret)
1672 			return ret;
1673 	}
1674 
1675 	if (!num_channels) {
1676 		dev_err(&indio_dev->dev, "No channels configured\n");
1677 		return -ENODATA;
1678 	}
1679 
1680 	/* Optional sample time is provided either for each, or all channels */
1681 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1682 	if (ret > 1 && ret != num_channels) {
1683 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1684 		return -EINVAL;
1685 	}
1686 
1687 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1688 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1689 	if (!channels)
1690 		return -ENOMEM;
1691 
1692 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1693 		if (val >= adc_info->max_channels) {
1694 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1695 			return -EINVAL;
1696 		}
1697 
1698 		/* Channel can't be configured both as single-ended & diff */
1699 		for (i = 0; i < num_diff; i++) {
1700 			if (val == diff[i].vinp) {
1701 				dev_err(&indio_dev->dev,
1702 					"channel %d miss-configured\n",	val);
1703 				return -EINVAL;
1704 			}
1705 		}
1706 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1707 					0, scan_index, false);
1708 		scan_index++;
1709 	}
1710 
1711 	for (i = 0; i < num_diff; i++) {
1712 		if (diff[i].vinp >= adc_info->max_channels ||
1713 		    diff[i].vinn >= adc_info->max_channels) {
1714 			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1715 				diff[i].vinp, diff[i].vinn);
1716 			return -EINVAL;
1717 		}
1718 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1719 					diff[i].vinp, diff[i].vinn, scan_index,
1720 					true);
1721 		scan_index++;
1722 	}
1723 
1724 	for (i = 0; i < scan_index; i++) {
1725 		/*
1726 		 * Using of_property_read_u32_index(), smp value will only be
1727 		 * modified if valid u32 value can be decoded. This allows to
1728 		 * get either no value, 1 shared value for all indexes, or one
1729 		 * value per channel.
1730 		 */
1731 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1732 					   i, &smp);
1733 		/* Prepare sampling time settings */
1734 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1735 	}
1736 
1737 	indio_dev->num_channels = scan_index;
1738 	indio_dev->channels = channels;
1739 
1740 	return 0;
1741 }
1742 
1743 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1744 {
1745 	struct stm32_adc *adc = iio_priv(indio_dev);
1746 	struct dma_slave_config config;
1747 	int ret;
1748 
1749 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1750 	if (!adc->dma_chan)
1751 		return 0;
1752 
1753 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1754 					 STM32_DMA_BUFFER_SIZE,
1755 					 &adc->rx_dma_buf, GFP_KERNEL);
1756 	if (!adc->rx_buf) {
1757 		ret = -ENOMEM;
1758 		goto err_release;
1759 	}
1760 
1761 	/* Configure DMA channel to read data register */
1762 	memset(&config, 0, sizeof(config));
1763 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1764 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1765 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1766 
1767 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1768 	if (ret)
1769 		goto err_free;
1770 
1771 	return 0;
1772 
1773 err_free:
1774 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1775 			  adc->rx_buf, adc->rx_dma_buf);
1776 err_release:
1777 	dma_release_channel(adc->dma_chan);
1778 
1779 	return ret;
1780 }
1781 
1782 static int stm32_adc_probe(struct platform_device *pdev)
1783 {
1784 	struct iio_dev *indio_dev;
1785 	struct device *dev = &pdev->dev;
1786 	struct stm32_adc *adc;
1787 	int ret;
1788 
1789 	if (!pdev->dev.of_node)
1790 		return -ENODEV;
1791 
1792 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1793 	if (!indio_dev)
1794 		return -ENOMEM;
1795 
1796 	adc = iio_priv(indio_dev);
1797 	adc->common = dev_get_drvdata(pdev->dev.parent);
1798 	spin_lock_init(&adc->lock);
1799 	init_completion(&adc->completion);
1800 	adc->cfg = (const struct stm32_adc_cfg *)
1801 		of_match_device(dev->driver->of_match_table, dev)->data;
1802 
1803 	indio_dev->name = dev_name(&pdev->dev);
1804 	indio_dev->dev.parent = &pdev->dev;
1805 	indio_dev->dev.of_node = pdev->dev.of_node;
1806 	indio_dev->info = &stm32_adc_iio_info;
1807 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1808 
1809 	platform_set_drvdata(pdev, adc);
1810 
1811 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1812 	if (ret != 0) {
1813 		dev_err(&pdev->dev, "missing reg property\n");
1814 		return -EINVAL;
1815 	}
1816 
1817 	adc->irq = platform_get_irq(pdev, 0);
1818 	if (adc->irq < 0)
1819 		return adc->irq;
1820 
1821 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1822 			       0, pdev->name, adc);
1823 	if (ret) {
1824 		dev_err(&pdev->dev, "failed to request IRQ\n");
1825 		return ret;
1826 	}
1827 
1828 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1829 	if (IS_ERR(adc->clk)) {
1830 		ret = PTR_ERR(adc->clk);
1831 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1832 			adc->clk = NULL;
1833 		} else {
1834 			dev_err(&pdev->dev, "Can't get clock\n");
1835 			return ret;
1836 		}
1837 	}
1838 
1839 	ret = stm32_adc_of_get_resolution(indio_dev);
1840 	if (ret < 0)
1841 		return ret;
1842 
1843 	ret = stm32_adc_chan_of_init(indio_dev);
1844 	if (ret < 0)
1845 		return ret;
1846 
1847 	ret = stm32_adc_dma_request(indio_dev);
1848 	if (ret < 0)
1849 		return ret;
1850 
1851 	ret = iio_triggered_buffer_setup(indio_dev,
1852 					 &iio_pollfunc_store_time,
1853 					 &stm32_adc_trigger_handler,
1854 					 &stm32_adc_buffer_setup_ops);
1855 	if (ret) {
1856 		dev_err(&pdev->dev, "buffer setup failed\n");
1857 		goto err_dma_disable;
1858 	}
1859 
1860 	/* Get stm32-adc-core PM online */
1861 	pm_runtime_get_noresume(dev);
1862 	pm_runtime_set_active(dev);
1863 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1864 	pm_runtime_use_autosuspend(dev);
1865 	pm_runtime_enable(dev);
1866 
1867 	ret = stm32_adc_hw_start(dev);
1868 	if (ret)
1869 		goto err_buffer_cleanup;
1870 
1871 	ret = iio_device_register(indio_dev);
1872 	if (ret) {
1873 		dev_err(&pdev->dev, "iio dev register failed\n");
1874 		goto err_hw_stop;
1875 	}
1876 
1877 	pm_runtime_mark_last_busy(dev);
1878 	pm_runtime_put_autosuspend(dev);
1879 
1880 	return 0;
1881 
1882 err_hw_stop:
1883 	stm32_adc_hw_stop(dev);
1884 
1885 err_buffer_cleanup:
1886 	pm_runtime_disable(dev);
1887 	pm_runtime_set_suspended(dev);
1888 	pm_runtime_put_noidle(dev);
1889 	iio_triggered_buffer_cleanup(indio_dev);
1890 
1891 err_dma_disable:
1892 	if (adc->dma_chan) {
1893 		dma_free_coherent(adc->dma_chan->device->dev,
1894 				  STM32_DMA_BUFFER_SIZE,
1895 				  adc->rx_buf, adc->rx_dma_buf);
1896 		dma_release_channel(adc->dma_chan);
1897 	}
1898 
1899 	return ret;
1900 }
1901 
1902 static int stm32_adc_remove(struct platform_device *pdev)
1903 {
1904 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1905 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1906 
1907 	pm_runtime_get_sync(&pdev->dev);
1908 	iio_device_unregister(indio_dev);
1909 	stm32_adc_hw_stop(&pdev->dev);
1910 	pm_runtime_disable(&pdev->dev);
1911 	pm_runtime_set_suspended(&pdev->dev);
1912 	pm_runtime_put_noidle(&pdev->dev);
1913 	iio_triggered_buffer_cleanup(indio_dev);
1914 	if (adc->dma_chan) {
1915 		dma_free_coherent(adc->dma_chan->device->dev,
1916 				  STM32_DMA_BUFFER_SIZE,
1917 				  adc->rx_buf, adc->rx_dma_buf);
1918 		dma_release_channel(adc->dma_chan);
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 #if defined(CONFIG_PM_SLEEP)
1925 static int stm32_adc_suspend(struct device *dev)
1926 {
1927 	struct stm32_adc *adc = dev_get_drvdata(dev);
1928 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1929 
1930 	if (iio_buffer_enabled(indio_dev))
1931 		__stm32_adc_buffer_predisable(indio_dev);
1932 
1933 	return pm_runtime_force_suspend(dev);
1934 }
1935 
1936 static int stm32_adc_resume(struct device *dev)
1937 {
1938 	struct stm32_adc *adc = dev_get_drvdata(dev);
1939 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1940 	int ret;
1941 
1942 	ret = pm_runtime_force_resume(dev);
1943 	if (ret < 0)
1944 		return ret;
1945 
1946 	if (!iio_buffer_enabled(indio_dev))
1947 		return 0;
1948 
1949 	ret = stm32_adc_update_scan_mode(indio_dev,
1950 					 indio_dev->active_scan_mask);
1951 	if (ret < 0)
1952 		return ret;
1953 
1954 	return __stm32_adc_buffer_postenable(indio_dev);
1955 }
1956 #endif
1957 
1958 #if defined(CONFIG_PM)
1959 static int stm32_adc_runtime_suspend(struct device *dev)
1960 {
1961 	return stm32_adc_hw_stop(dev);
1962 }
1963 
1964 static int stm32_adc_runtime_resume(struct device *dev)
1965 {
1966 	return stm32_adc_hw_start(dev);
1967 }
1968 #endif
1969 
1970 static const struct dev_pm_ops stm32_adc_pm_ops = {
1971 	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
1972 	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
1973 			   NULL)
1974 };
1975 
1976 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1977 	.regs = &stm32f4_adc_regspec,
1978 	.adc_info = &stm32f4_adc_info,
1979 	.trigs = stm32f4_adc_trigs,
1980 	.clk_required = true,
1981 	.start_conv = stm32f4_adc_start_conv,
1982 	.stop_conv = stm32f4_adc_stop_conv,
1983 	.smp_cycles = stm32f4_adc_smp_cycles,
1984 };
1985 
1986 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1987 	.regs = &stm32h7_adc_regspec,
1988 	.adc_info = &stm32h7_adc_info,
1989 	.trigs = stm32h7_adc_trigs,
1990 	.start_conv = stm32h7_adc_start_conv,
1991 	.stop_conv = stm32h7_adc_stop_conv,
1992 	.prepare = stm32h7_adc_prepare,
1993 	.unprepare = stm32h7_adc_unprepare,
1994 	.smp_cycles = stm32h7_adc_smp_cycles,
1995 };
1996 
1997 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
1998 	.regs = &stm32h7_adc_regspec,
1999 	.adc_info = &stm32h7_adc_info,
2000 	.trigs = stm32h7_adc_trigs,
2001 	.has_vregready = true,
2002 	.start_conv = stm32h7_adc_start_conv,
2003 	.stop_conv = stm32h7_adc_stop_conv,
2004 	.prepare = stm32h7_adc_prepare,
2005 	.unprepare = stm32h7_adc_unprepare,
2006 	.smp_cycles = stm32h7_adc_smp_cycles,
2007 };
2008 
2009 static const struct of_device_id stm32_adc_of_match[] = {
2010 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2011 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2012 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2013 	{},
2014 };
2015 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2016 
2017 static struct platform_driver stm32_adc_driver = {
2018 	.probe = stm32_adc_probe,
2019 	.remove = stm32_adc_remove,
2020 	.driver = {
2021 		.name = "stm32-adc",
2022 		.of_match_table = stm32_adc_of_match,
2023 		.pm = &stm32_adc_pm_ops,
2024 	},
2025 };
2026 module_platform_driver(stm32_adc_driver);
2027 
2028 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2029 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2030 MODULE_LICENSE("GPL v2");
2031 MODULE_ALIAS("platform:stm32-adc");
2032