xref: /linux/drivers/iio/adc/stm32-dfsdm-adc.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 
27 #include "stm32-dfsdm.h"
28 
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30 
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34 
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37 
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41 
42 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
43 #define DFSDM_DATA_MAX BIT(30)
44 /*
45  * Data are output as two's complement data in a 24 bit field.
46  * Data from filters are in the range +/-2^(n-1)
47  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
48  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
49  * So, the resolution of samples from filter is actually limited to 23 bits
50  */
51 #define DFSDM_DATA_RES 24
52 
53 /* Filter configuration */
54 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
55 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
56 			    DFSDM_CR1_JSCAN_MASK)
57 
58 enum sd_converter_type {
59 	DFSDM_AUDIO,
60 	DFSDM_IIO,
61 };
62 
63 struct stm32_dfsdm_dev_data {
64 	int type;
65 	int (*init)(struct iio_dev *indio_dev);
66 	unsigned int num_channels;
67 	const struct regmap_config *regmap_cfg;
68 };
69 
70 struct stm32_dfsdm_adc {
71 	struct stm32_dfsdm *dfsdm;
72 	const struct stm32_dfsdm_dev_data *dev_data;
73 	unsigned int fl_id;
74 	unsigned int nconv;
75 	unsigned long smask;
76 
77 	/* ADC specific */
78 	unsigned int oversamp;
79 	struct iio_hw_consumer *hwc;
80 	struct completion completion;
81 	u32 *buffer;
82 
83 	/* Audio specific */
84 	unsigned int spi_freq;  /* SPI bus clock frequency */
85 	unsigned int sample_freq; /* Sample frequency after filter decimation */
86 	int (*cb)(const void *data, size_t size, void *cb_priv);
87 	void *cb_priv;
88 
89 	/* DMA */
90 	u8 *rx_buf;
91 	unsigned int bufi; /* Buffer current position */
92 	unsigned int buf_sz; /* Buffer size */
93 	struct dma_chan	*dma_chan;
94 	dma_addr_t dma_buf;
95 };
96 
97 struct stm32_dfsdm_str2field {
98 	const char	*name;
99 	unsigned int	val;
100 };
101 
102 /* DFSDM channel serial interface type */
103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
104 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
105 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
106 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
107 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
108 	{},
109 };
110 
111 /* DFSDM channel clock source */
112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
113 	/* External SPI clock (CLKIN x) */
114 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
115 	/* Internal SPI clock (CLKOUT) */
116 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
117 	/* Internal SPI clock divided by 2 (falling edge) */
118 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
119 	/* Internal SPI clock divided by 2 (falling edge) */
120 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
121 	{},
122 };
123 
124 static int stm32_dfsdm_str2val(const char *str,
125 			       const struct stm32_dfsdm_str2field *list)
126 {
127 	const struct stm32_dfsdm_str2field *p = list;
128 
129 	for (p = list; p && p->name; p++)
130 		if (!strcmp(p->name, str))
131 			return p->val;
132 
133 	return -EINVAL;
134 }
135 
136 /**
137  * struct stm32_dfsdm_trig_info - DFSDM trigger info
138  * @name:		name of the trigger, corresponding to its source
139  * @jextsel:		trigger signal selection
140  */
141 struct stm32_dfsdm_trig_info {
142 	const char *name;
143 	unsigned int jextsel;
144 };
145 
146 /* hardware injected trigger enable, edge selection */
147 enum stm32_dfsdm_jexten {
148 	STM32_DFSDM_JEXTEN_DISABLED,
149 	STM32_DFSDM_JEXTEN_RISING_EDGE,
150 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
151 	STM32_DFSDM_EXTEN_BOTH_EDGES,
152 };
153 
154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
155 	{ TIM1_TRGO, 0 },
156 	{ TIM1_TRGO2, 1 },
157 	{ TIM8_TRGO, 2 },
158 	{ TIM8_TRGO2, 3 },
159 	{ TIM3_TRGO, 4 },
160 	{ TIM4_TRGO, 5 },
161 	{ TIM16_OC1, 6 },
162 	{ TIM6_TRGO, 7 },
163 	{ TIM7_TRGO, 8 },
164 	{ LPTIM1_OUT, 26 },
165 	{ LPTIM2_OUT, 27 },
166 	{ LPTIM3_OUT, 28 },
167 	{},
168 };
169 
170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
171 				   struct iio_trigger *trig)
172 {
173 	int i;
174 
175 	/* lookup triggers registered by stm32 timer trigger driver */
176 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
177 		/**
178 		 * Checking both stm32 timer trigger type and trig name
179 		 * should be safe against arbitrary trigger names.
180 		 */
181 		if ((is_stm32_timer_trigger(trig) ||
182 		     is_stm32_lptim_trigger(trig)) &&
183 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
184 			return stm32_dfsdm_trigs[i].jextsel;
185 		}
186 	}
187 
188 	return -EINVAL;
189 }
190 
191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
192 				    unsigned int fast, unsigned int oversamp)
193 {
194 	unsigned int i, d, fosr, iosr;
195 	u64 res, max;
196 	int bits, shift;
197 	unsigned int m = 1;	/* multiplication factor */
198 	unsigned int p = fl->ford;	/* filter order (ford) */
199 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
200 
201 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
202 	/*
203 	 * This function tries to compute filter oversampling and integrator
204 	 * oversampling, base on oversampling ratio requested by user.
205 	 *
206 	 * Decimation d depends on the filter order and the oversampling ratios.
207 	 * ford: filter order
208 	 * fosr: filter over sampling ratio
209 	 * iosr: integrator over sampling ratio
210 	 */
211 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
212 		m = 2;
213 		p = 2;
214 	}
215 
216 	/*
217 	 * Look for filter and integrator oversampling ratios which allows
218 	 * to maximize data output resolution.
219 	 */
220 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
221 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
222 			if (fast)
223 				d = fosr * iosr;
224 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
225 				d = fosr * (iosr + 3) + 2;
226 			else
227 				d = fosr * (iosr - 1 + p) + p;
228 
229 			if (d > oversamp)
230 				break;
231 			else if (d != oversamp)
232 				continue;
233 			/*
234 			 * Check resolution (limited to signed 32 bits)
235 			 *   res <= 2^31
236 			 * Sincx filters:
237 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
238 			 * FastSinc filter
239 			 *   res = m * fosr^p x iosr (with m=2, p=2)
240 			 */
241 			res = fosr;
242 			for (i = p - 1; i > 0; i--) {
243 				res = res * (u64)fosr;
244 				if (res > DFSDM_DATA_MAX)
245 					break;
246 			}
247 			if (res > DFSDM_DATA_MAX)
248 				continue;
249 
250 			res = res * (u64)m * (u64)iosr;
251 			if (res > DFSDM_DATA_MAX)
252 				continue;
253 
254 			if (res >= flo->res) {
255 				flo->res = res;
256 				flo->fosr = fosr;
257 				flo->iosr = iosr;
258 
259 				bits = fls(flo->res);
260 				/* 8 LBSs in data register contain chan info */
261 				max = flo->res << 8;
262 
263 				/* if resolution is not a power of two */
264 				if (flo->res > BIT(bits - 1))
265 					bits++;
266 				else
267 					max--;
268 
269 				shift = DFSDM_DATA_RES - bits;
270 				/*
271 				 * Compute right/left shift
272 				 * Right shift is performed by hardware
273 				 * when transferring samples to data register.
274 				 * Left shift is done by software on buffer
275 				 */
276 				if (shift > 0) {
277 					/* Resolution is lower than 24 bits */
278 					flo->rshift = 0;
279 					flo->lshift = shift;
280 				} else {
281 					/*
282 					 * If resolution is 24 bits or more,
283 					 * max positive value may be ambiguous
284 					 * (equal to max negative value as sign
285 					 * bit is dropped).
286 					 * Reduce resolution to 23 bits (rshift)
287 					 * to keep the sign on bit 23 and treat
288 					 * saturation before rescaling on 24
289 					 * bits (lshift).
290 					 */
291 					flo->rshift = 1 - shift;
292 					flo->lshift = 1;
293 					max >>= flo->rshift;
294 				}
295 				flo->max = (s32)max;
296 
297 				pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
298 					 __func__, fast, flo->fosr, flo->iosr,
299 					 flo->res, bits, flo->rshift,
300 					 flo->lshift);
301 			}
302 		}
303 	}
304 
305 	if (!flo->res)
306 		return -EINVAL;
307 
308 	return 0;
309 }
310 
311 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
312 					unsigned int oversamp)
313 {
314 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
315 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
316 	int ret0, ret1;
317 
318 	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
319 	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
320 
321 	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
322 	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
323 	if (ret0 < 0 && ret1 < 0) {
324 		dev_err(&indio_dev->dev,
325 			"Filter parameters not found: errors %d/%d\n",
326 			ret0, ret1);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 static int stm32_dfsdm_start_channel(struct stm32_dfsdm_adc *adc)
334 {
335 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
336 	struct regmap *regmap = adc->dfsdm->regmap;
337 	const struct iio_chan_spec *chan;
338 	unsigned int bit;
339 	int ret;
340 
341 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
342 		chan = indio_dev->channels + bit;
343 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
344 					 DFSDM_CHCFGR1_CHEN_MASK,
345 					 DFSDM_CHCFGR1_CHEN(1));
346 		if (ret < 0)
347 			return ret;
348 	}
349 
350 	return 0;
351 }
352 
353 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm_adc *adc)
354 {
355 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
356 	struct regmap *regmap = adc->dfsdm->regmap;
357 	const struct iio_chan_spec *chan;
358 	unsigned int bit;
359 
360 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
361 		chan = indio_dev->channels + bit;
362 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
363 				   DFSDM_CHCFGR1_CHEN_MASK,
364 				   DFSDM_CHCFGR1_CHEN(0));
365 	}
366 }
367 
368 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
369 				      struct stm32_dfsdm_channel *ch)
370 {
371 	unsigned int id = ch->id;
372 	struct regmap *regmap = dfsdm->regmap;
373 	int ret;
374 
375 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
376 				 DFSDM_CHCFGR1_SITP_MASK,
377 				 DFSDM_CHCFGR1_SITP(ch->type));
378 	if (ret < 0)
379 		return ret;
380 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
381 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
382 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
383 	if (ret < 0)
384 		return ret;
385 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
386 				  DFSDM_CHCFGR1_CHINSEL_MASK,
387 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
388 }
389 
390 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
391 				    unsigned int fl_id,
392 				    struct iio_trigger *trig)
393 {
394 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
395 	int ret;
396 
397 	/* Enable filter */
398 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
399 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
400 	if (ret < 0)
401 		return ret;
402 
403 	/* Nothing more to do for injected (scan mode/triggered) conversions */
404 	if (adc->nconv > 1 || trig)
405 		return 0;
406 
407 	/* Software start (single or continuous) regular conversion */
408 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
409 				  DFSDM_CR1_RSWSTART_MASK,
410 				  DFSDM_CR1_RSWSTART(1));
411 }
412 
413 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
414 				    unsigned int fl_id)
415 {
416 	/* Disable conversion */
417 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
418 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
419 }
420 
421 static int stm32_dfsdm_filter_set_trig(struct stm32_dfsdm_adc *adc,
422 				       unsigned int fl_id,
423 				       struct iio_trigger *trig)
424 {
425 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
426 	struct regmap *regmap = adc->dfsdm->regmap;
427 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
428 	int ret;
429 
430 	if (trig) {
431 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
432 		if (ret < 0)
433 			return ret;
434 
435 		/* set trigger source and polarity (default to rising edge) */
436 		jextsel = ret;
437 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
438 	}
439 
440 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
441 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
442 				 DFSDM_CR1_JEXTSEL(jextsel) |
443 				 DFSDM_CR1_JEXTEN(jexten));
444 	if (ret < 0)
445 		return ret;
446 
447 	return 0;
448 }
449 
450 static int stm32_dfsdm_channels_configure(struct stm32_dfsdm_adc *adc,
451 					  unsigned int fl_id,
452 					  struct iio_trigger *trig)
453 {
454 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
455 	struct regmap *regmap = adc->dfsdm->regmap;
456 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
457 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
458 	const struct iio_chan_spec *chan;
459 	unsigned int bit;
460 	int ret;
461 
462 	fl->fast = 0;
463 
464 	/*
465 	 * In continuous mode, use fast mode configuration,
466 	 * if it provides a better resolution.
467 	 */
468 	if (adc->nconv == 1 && !trig &&
469 	    (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
470 		if (fl->flo[1].res >= fl->flo[0].res) {
471 			fl->fast = 1;
472 			flo = &fl->flo[1];
473 		}
474 	}
475 
476 	if (!flo->res)
477 		return -EINVAL;
478 
479 	for_each_set_bit(bit, &adc->smask,
480 			 sizeof(adc->smask) * BITS_PER_BYTE) {
481 		chan = indio_dev->channels + bit;
482 
483 		ret = regmap_update_bits(regmap,
484 					 DFSDM_CHCFGR2(chan->channel),
485 					 DFSDM_CHCFGR2_DTRBS_MASK,
486 					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
487 		if (ret)
488 			return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm_adc *adc,
495 					unsigned int fl_id,
496 					struct iio_trigger *trig)
497 {
498 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
499 	struct regmap *regmap = adc->dfsdm->regmap;
500 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
501 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
502 	u32 cr1;
503 	const struct iio_chan_spec *chan;
504 	unsigned int bit, jchg = 0;
505 	int ret;
506 
507 	/* Average integrator oversampling */
508 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
509 				 DFSDM_FCR_IOSR(flo->iosr - 1));
510 	if (ret)
511 		return ret;
512 
513 	/* Filter order and Oversampling */
514 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
515 				 DFSDM_FCR_FOSR(flo->fosr - 1));
516 	if (ret)
517 		return ret;
518 
519 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
520 				 DFSDM_FCR_FORD(fl->ford));
521 	if (ret)
522 		return ret;
523 
524 	ret = stm32_dfsdm_filter_set_trig(adc, fl_id, trig);
525 	if (ret)
526 		return ret;
527 
528 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
529 				 DFSDM_CR1_FAST_MASK,
530 				 DFSDM_CR1_FAST(fl->fast));
531 	if (ret)
532 		return ret;
533 
534 	/*
535 	 * DFSDM modes configuration W.R.T audio/iio type modes
536 	 * ----------------------------------------------------------------
537 	 * Modes         | regular |  regular     | injected | injected   |
538 	 *               |         |  continuous  |          | + scan     |
539 	 * --------------|---------|--------------|----------|------------|
540 	 * single conv   |    x    |              |          |            |
541 	 * (1 chan)      |         |              |          |            |
542 	 * --------------|---------|--------------|----------|------------|
543 	 * 1 Audio chan	 |         | sample freq  |          |            |
544 	 *               |         | or sync_mode |          |            |
545 	 * --------------|---------|--------------|----------|------------|
546 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
547 	 *               |         | or sync_mode |          |            |
548 	 * --------------|---------|--------------|----------|------------|
549 	 * 2+ IIO chans  |         |              |          | trigger or |
550 	 *               |         |              |          | sync_mode  |
551 	 * ----------------------------------------------------------------
552 	 */
553 	if (adc->nconv == 1 && !trig) {
554 		bit = __ffs(adc->smask);
555 		chan = indio_dev->channels + bit;
556 
557 		/* Use regular conversion for single channel without trigger */
558 		cr1 = DFSDM_CR1_RCH(chan->channel);
559 
560 		/* Continuous conversions triggered by SPI clk in buffer mode */
561 		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
562 			cr1 |= DFSDM_CR1_RCONT(1);
563 
564 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
565 	} else {
566 		/* Use injected conversion for multiple channels */
567 		for_each_set_bit(bit, &adc->smask,
568 				 sizeof(adc->smask) * BITS_PER_BYTE) {
569 			chan = indio_dev->channels + bit;
570 			jchg |= BIT(chan->channel);
571 		}
572 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
573 		if (ret < 0)
574 			return ret;
575 
576 		/* Use scan mode for multiple channels */
577 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
578 
579 		/*
580 		 * Continuous conversions not supported in injected mode,
581 		 * either use:
582 		 * - conversions in sync with filter 0
583 		 * - triggered conversions
584 		 */
585 		if (!fl->sync_mode && !trig)
586 			return -EINVAL;
587 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
588 	}
589 
590 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
591 				  cr1);
592 }
593 
594 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
595 					struct iio_dev *indio_dev,
596 					struct iio_chan_spec *ch)
597 {
598 	struct stm32_dfsdm_channel *df_ch;
599 	const char *of_str;
600 	int chan_idx = ch->scan_index;
601 	int ret, val;
602 
603 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
604 					 "st,adc-channels", chan_idx,
605 					 &ch->channel);
606 	if (ret < 0) {
607 		dev_err(&indio_dev->dev,
608 			" Error parsing 'st,adc-channels' for idx %d\n",
609 			chan_idx);
610 		return ret;
611 	}
612 	if (ch->channel >= dfsdm->num_chs) {
613 		dev_err(&indio_dev->dev,
614 			" Error bad channel number %d (max = %d)\n",
615 			ch->channel, dfsdm->num_chs);
616 		return -EINVAL;
617 	}
618 
619 	ret = of_property_read_string_index(indio_dev->dev.of_node,
620 					    "st,adc-channel-names", chan_idx,
621 					    &ch->datasheet_name);
622 	if (ret < 0) {
623 		dev_err(&indio_dev->dev,
624 			" Error parsing 'st,adc-channel-names' for idx %d\n",
625 			chan_idx);
626 		return ret;
627 	}
628 
629 	df_ch =  &dfsdm->ch_list[ch->channel];
630 	df_ch->id = ch->channel;
631 
632 	ret = of_property_read_string_index(indio_dev->dev.of_node,
633 					    "st,adc-channel-types", chan_idx,
634 					    &of_str);
635 	if (!ret) {
636 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
637 		if (val < 0)
638 			return val;
639 	} else {
640 		val = 0;
641 	}
642 	df_ch->type = val;
643 
644 	ret = of_property_read_string_index(indio_dev->dev.of_node,
645 					    "st,adc-channel-clk-src", chan_idx,
646 					    &of_str);
647 	if (!ret) {
648 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
649 		if (val < 0)
650 			return val;
651 	} else {
652 		val = 0;
653 	}
654 	df_ch->src = val;
655 
656 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
657 					 "st,adc-alt-channel", chan_idx,
658 					 &df_ch->alt_si);
659 	if (ret < 0)
660 		df_ch->alt_si = 0;
661 
662 	return 0;
663 }
664 
665 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
666 					  uintptr_t priv,
667 					  const struct iio_chan_spec *chan,
668 					  char *buf)
669 {
670 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
671 
672 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
673 }
674 
675 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
676 				   unsigned int sample_freq,
677 				   unsigned int spi_freq)
678 {
679 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
680 	unsigned int oversamp;
681 	int ret;
682 
683 	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
684 	if (spi_freq % sample_freq)
685 		dev_dbg(&indio_dev->dev,
686 			"Rate not accurate. requested (%u), actual (%u)\n",
687 			sample_freq, spi_freq / oversamp);
688 
689 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
690 	if (ret < 0)
691 		return ret;
692 
693 	adc->sample_freq = spi_freq / oversamp;
694 	adc->oversamp = oversamp;
695 
696 	return 0;
697 }
698 
699 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
700 					  uintptr_t priv,
701 					  const struct iio_chan_spec *chan,
702 					  const char *buf, size_t len)
703 {
704 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
705 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
706 	unsigned int sample_freq = adc->sample_freq;
707 	unsigned int spi_freq;
708 	int ret;
709 
710 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
711 	/* If DFSDM is master on SPI, SPI freq can not be updated */
712 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
713 		return -EPERM;
714 
715 	ret = kstrtoint(buf, 0, &spi_freq);
716 	if (ret)
717 		return ret;
718 
719 	if (!spi_freq)
720 		return -EINVAL;
721 
722 	if (sample_freq) {
723 		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
724 		if (ret < 0)
725 			return ret;
726 	}
727 	adc->spi_freq = spi_freq;
728 
729 	return len;
730 }
731 
732 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
733 				  struct iio_trigger *trig)
734 {
735 	struct regmap *regmap = adc->dfsdm->regmap;
736 	int ret;
737 
738 	ret = stm32_dfsdm_channels_configure(adc, adc->fl_id, trig);
739 	if (ret < 0)
740 		return ret;
741 
742 	ret = stm32_dfsdm_start_channel(adc);
743 	if (ret < 0)
744 		return ret;
745 
746 	ret = stm32_dfsdm_filter_configure(adc, adc->fl_id, trig);
747 	if (ret < 0)
748 		goto stop_channels;
749 
750 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
751 	if (ret < 0)
752 		goto filter_unconfigure;
753 
754 	return 0;
755 
756 filter_unconfigure:
757 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
758 			   DFSDM_CR1_CFG_MASK, 0);
759 stop_channels:
760 	stm32_dfsdm_stop_channel(adc);
761 
762 	return ret;
763 }
764 
765 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
766 {
767 	struct regmap *regmap = adc->dfsdm->regmap;
768 
769 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
770 
771 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
772 			   DFSDM_CR1_CFG_MASK, 0);
773 
774 	stm32_dfsdm_stop_channel(adc);
775 }
776 
777 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
778 				     unsigned int val)
779 {
780 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
781 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
782 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
783 
784 	/*
785 	 * DMA cyclic transfers are used, buffer is split into two periods.
786 	 * There should be :
787 	 * - always one buffer (period) DMA is working on
788 	 * - one buffer (period) driver pushed to ASoC side.
789 	 */
790 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
791 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
792 
793 	return 0;
794 }
795 
796 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
797 {
798 	struct dma_tx_state state;
799 	enum dma_status status;
800 
801 	status = dmaengine_tx_status(adc->dma_chan,
802 				     adc->dma_chan->cookie,
803 				     &state);
804 	if (status == DMA_IN_PROGRESS) {
805 		/* Residue is size in bytes from end of buffer */
806 		unsigned int i = adc->buf_sz - state.residue;
807 		unsigned int size;
808 
809 		/* Return available bytes */
810 		if (i >= adc->bufi)
811 			size = i - adc->bufi;
812 		else
813 			size = adc->buf_sz + i - adc->bufi;
814 
815 		return size;
816 	}
817 
818 	return 0;
819 }
820 
821 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
822 					    s32 *buffer)
823 {
824 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
825 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
826 	unsigned int i = adc->nconv;
827 	s32 *ptr = buffer;
828 
829 	while (i--) {
830 		/* Mask 8 LSB that contains the channel ID */
831 		*ptr &= 0xFFFFFF00;
832 		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
833 		if (*ptr > flo->max)
834 			*ptr -= 1;
835 		/*
836 		 * Samples from filter are retrieved with 23 bits resolution
837 		 * or less. Shift left to align MSB on 24 bits.
838 		 */
839 		*ptr <<= flo->lshift;
840 
841 		ptr++;
842 	}
843 }
844 
845 static irqreturn_t stm32_dfsdm_adc_trigger_handler(int irq, void *p)
846 {
847 	struct iio_poll_func *pf = p;
848 	struct iio_dev *indio_dev = pf->indio_dev;
849 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
850 	int available = stm32_dfsdm_adc_dma_residue(adc);
851 
852 	while (available >= indio_dev->scan_bytes) {
853 		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
854 
855 		stm32_dfsdm_process_data(adc, buffer);
856 
857 		iio_push_to_buffers_with_timestamp(indio_dev, buffer,
858 						   pf->timestamp);
859 		available -= indio_dev->scan_bytes;
860 		adc->bufi += indio_dev->scan_bytes;
861 		if (adc->bufi >= adc->buf_sz)
862 			adc->bufi = 0;
863 	}
864 
865 	iio_trigger_notify_done(indio_dev->trig);
866 
867 	return IRQ_HANDLED;
868 }
869 
870 static void stm32_dfsdm_dma_buffer_done(void *data)
871 {
872 	struct iio_dev *indio_dev = data;
873 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
874 	int available = stm32_dfsdm_adc_dma_residue(adc);
875 	size_t old_pos;
876 
877 	if (indio_dev->currentmode & INDIO_BUFFER_TRIGGERED) {
878 		iio_trigger_poll_chained(indio_dev->trig);
879 		return;
880 	}
881 
882 	/*
883 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
884 	 * offers only an interface to push data samples per samples.
885 	 * For this reason IIO buffer interface is not used and interface is
886 	 * bypassed using a private callback registered by ASoC.
887 	 * This should be a temporary solution waiting a cyclic DMA engine
888 	 * support in IIO.
889 	 */
890 
891 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
892 		adc->bufi, available);
893 	old_pos = adc->bufi;
894 
895 	while (available >= indio_dev->scan_bytes) {
896 		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
897 
898 		stm32_dfsdm_process_data(adc, buffer);
899 
900 		available -= indio_dev->scan_bytes;
901 		adc->bufi += indio_dev->scan_bytes;
902 		if (adc->bufi >= adc->buf_sz) {
903 			if (adc->cb)
904 				adc->cb(&adc->rx_buf[old_pos],
905 					 adc->buf_sz - old_pos, adc->cb_priv);
906 			adc->bufi = 0;
907 			old_pos = 0;
908 		}
909 		/* regular iio buffer without trigger */
910 		if (adc->dev_data->type == DFSDM_IIO)
911 			iio_push_to_buffers(indio_dev, buffer);
912 	}
913 	if (adc->cb)
914 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
915 			adc->cb_priv);
916 }
917 
918 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
919 {
920 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
921 	/*
922 	 * The DFSDM supports half-word transfers. However, for 16 bits record,
923 	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
924 	 * shift is required.
925 	 */
926 	struct dma_slave_config config = {
927 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
928 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
929 	};
930 	struct dma_async_tx_descriptor *desc;
931 	dma_cookie_t cookie;
932 	int ret;
933 
934 	if (!adc->dma_chan)
935 		return -EINVAL;
936 
937 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
938 		adc->buf_sz, adc->buf_sz / 2);
939 
940 	if (adc->nconv == 1 && !indio_dev->trig)
941 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
942 	else
943 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
944 	ret = dmaengine_slave_config(adc->dma_chan, &config);
945 	if (ret)
946 		return ret;
947 
948 	/* Prepare a DMA cyclic transaction */
949 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
950 					 adc->dma_buf,
951 					 adc->buf_sz, adc->buf_sz / 2,
952 					 DMA_DEV_TO_MEM,
953 					 DMA_PREP_INTERRUPT);
954 	if (!desc)
955 		return -EBUSY;
956 
957 	desc->callback = stm32_dfsdm_dma_buffer_done;
958 	desc->callback_param = indio_dev;
959 
960 	cookie = dmaengine_submit(desc);
961 	ret = dma_submit_error(cookie);
962 	if (ret)
963 		goto err_stop_dma;
964 
965 	/* Issue pending DMA requests */
966 	dma_async_issue_pending(adc->dma_chan);
967 
968 	if (adc->nconv == 1 && !indio_dev->trig) {
969 		/* Enable regular DMA transfer*/
970 		ret = regmap_update_bits(adc->dfsdm->regmap,
971 					 DFSDM_CR1(adc->fl_id),
972 					 DFSDM_CR1_RDMAEN_MASK,
973 					 DFSDM_CR1_RDMAEN_MASK);
974 	} else {
975 		/* Enable injected DMA transfer*/
976 		ret = regmap_update_bits(adc->dfsdm->regmap,
977 					 DFSDM_CR1(adc->fl_id),
978 					 DFSDM_CR1_JDMAEN_MASK,
979 					 DFSDM_CR1_JDMAEN_MASK);
980 	}
981 
982 	if (ret < 0)
983 		goto err_stop_dma;
984 
985 	return 0;
986 
987 err_stop_dma:
988 	dmaengine_terminate_all(adc->dma_chan);
989 
990 	return ret;
991 }
992 
993 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
994 {
995 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
996 
997 	if (!adc->dma_chan)
998 		return;
999 
1000 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1001 			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
1002 	dmaengine_terminate_all(adc->dma_chan);
1003 }
1004 
1005 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1006 					const unsigned long *scan_mask)
1007 {
1008 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1009 
1010 	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
1011 	adc->smask = *scan_mask;
1012 
1013 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1014 
1015 	return 0;
1016 }
1017 
1018 static int __stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1019 {
1020 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1021 	int ret;
1022 
1023 	/* Reset adc buffer index */
1024 	adc->bufi = 0;
1025 
1026 	if (adc->hwc) {
1027 		ret = iio_hw_consumer_enable(adc->hwc);
1028 		if (ret < 0)
1029 			return ret;
1030 	}
1031 
1032 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1033 	if (ret < 0)
1034 		goto err_stop_hwc;
1035 
1036 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1037 	if (ret) {
1038 		dev_err(&indio_dev->dev, "Can't start DMA\n");
1039 		goto stop_dfsdm;
1040 	}
1041 
1042 	ret = stm32_dfsdm_start_conv(adc, indio_dev->trig);
1043 	if (ret) {
1044 		dev_err(&indio_dev->dev, "Can't start conversion\n");
1045 		goto err_stop_dma;
1046 	}
1047 
1048 	return 0;
1049 
1050 err_stop_dma:
1051 	stm32_dfsdm_adc_dma_stop(indio_dev);
1052 stop_dfsdm:
1053 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1054 err_stop_hwc:
1055 	if (adc->hwc)
1056 		iio_hw_consumer_disable(adc->hwc);
1057 
1058 	return ret;
1059 }
1060 
1061 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1062 {
1063 	int ret;
1064 
1065 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
1066 		ret = iio_triggered_buffer_postenable(indio_dev);
1067 		if (ret < 0)
1068 			return ret;
1069 	}
1070 
1071 	ret = __stm32_dfsdm_postenable(indio_dev);
1072 	if (ret < 0)
1073 		goto err_predisable;
1074 
1075 	return 0;
1076 
1077 err_predisable:
1078 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1079 		iio_triggered_buffer_predisable(indio_dev);
1080 
1081 	return ret;
1082 }
1083 
1084 static void __stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1085 {
1086 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1087 
1088 	stm32_dfsdm_stop_conv(adc);
1089 
1090 	stm32_dfsdm_adc_dma_stop(indio_dev);
1091 
1092 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1093 
1094 	if (adc->hwc)
1095 		iio_hw_consumer_disable(adc->hwc);
1096 }
1097 
1098 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1099 {
1100 	__stm32_dfsdm_predisable(indio_dev);
1101 
1102 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1103 		iio_triggered_buffer_predisable(indio_dev);
1104 
1105 	return 0;
1106 }
1107 
1108 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1109 	.postenable = &stm32_dfsdm_postenable,
1110 	.predisable = &stm32_dfsdm_predisable,
1111 };
1112 
1113 /**
1114  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1115  *                             DMA transfer period is achieved.
1116  *
1117  * @iio_dev: Handle to IIO device.
1118  * @cb: Pointer to callback function:
1119  *      - data: pointer to data buffer
1120  *      - size: size in byte of the data buffer
1121  *      - private: pointer to consumer private structure.
1122  * @private: Pointer to consumer private structure.
1123  */
1124 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1125 			    int (*cb)(const void *data, size_t size,
1126 				      void *private),
1127 			    void *private)
1128 {
1129 	struct stm32_dfsdm_adc *adc;
1130 
1131 	if (!iio_dev)
1132 		return -EINVAL;
1133 	adc = iio_priv(iio_dev);
1134 
1135 	adc->cb = cb;
1136 	adc->cb_priv = private;
1137 
1138 	return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1141 
1142 /**
1143  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1144  *
1145  * @iio_dev: Handle to IIO device.
1146  */
1147 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1148 {
1149 	struct stm32_dfsdm_adc *adc;
1150 
1151 	if (!iio_dev)
1152 		return -EINVAL;
1153 	adc = iio_priv(iio_dev);
1154 
1155 	adc->cb = NULL;
1156 	adc->cb_priv = NULL;
1157 
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1161 
1162 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1163 				   const struct iio_chan_spec *chan, int *res)
1164 {
1165 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1166 	long timeout;
1167 	int ret;
1168 
1169 	reinit_completion(&adc->completion);
1170 
1171 	adc->buffer = res;
1172 
1173 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1174 	if (ret < 0)
1175 		return ret;
1176 
1177 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1178 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1179 	if (ret < 0)
1180 		goto stop_dfsdm;
1181 
1182 	adc->nconv = 1;
1183 	adc->smask = BIT(chan->scan_index);
1184 	ret = stm32_dfsdm_start_conv(adc, NULL);
1185 	if (ret < 0) {
1186 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1187 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1188 		goto stop_dfsdm;
1189 	}
1190 
1191 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1192 							    DFSDM_TIMEOUT);
1193 
1194 	/* Mask IRQ for regular conversion achievement*/
1195 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1196 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1197 
1198 	if (timeout == 0)
1199 		ret = -ETIMEDOUT;
1200 	else if (timeout < 0)
1201 		ret = timeout;
1202 	else
1203 		ret = IIO_VAL_INT;
1204 
1205 	stm32_dfsdm_stop_conv(adc);
1206 
1207 stop_dfsdm:
1208 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1209 
1210 	return ret;
1211 }
1212 
1213 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1214 				 struct iio_chan_spec const *chan,
1215 				 int val, int val2, long mask)
1216 {
1217 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1218 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1219 	unsigned int spi_freq;
1220 	int ret = -EINVAL;
1221 
1222 	switch (mask) {
1223 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1224 		ret = iio_device_claim_direct_mode(indio_dev);
1225 		if (ret)
1226 			return ret;
1227 		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1228 		if (!ret)
1229 			adc->oversamp = val;
1230 		iio_device_release_direct_mode(indio_dev);
1231 		return ret;
1232 
1233 	case IIO_CHAN_INFO_SAMP_FREQ:
1234 		if (!val)
1235 			return -EINVAL;
1236 
1237 		ret = iio_device_claim_direct_mode(indio_dev);
1238 		if (ret)
1239 			return ret;
1240 
1241 		switch (ch->src) {
1242 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1243 			spi_freq = adc->dfsdm->spi_master_freq;
1244 			break;
1245 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1246 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1247 			spi_freq = adc->dfsdm->spi_master_freq / 2;
1248 			break;
1249 		default:
1250 			spi_freq = adc->spi_freq;
1251 		}
1252 
1253 		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1254 		iio_device_release_direct_mode(indio_dev);
1255 		return ret;
1256 	}
1257 
1258 	return -EINVAL;
1259 }
1260 
1261 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1262 				struct iio_chan_spec const *chan, int *val,
1263 				int *val2, long mask)
1264 {
1265 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1266 	int ret;
1267 
1268 	switch (mask) {
1269 	case IIO_CHAN_INFO_RAW:
1270 		ret = iio_device_claim_direct_mode(indio_dev);
1271 		if (ret)
1272 			return ret;
1273 		ret = iio_hw_consumer_enable(adc->hwc);
1274 		if (ret < 0) {
1275 			dev_err(&indio_dev->dev,
1276 				"%s: IIO enable failed (channel %d)\n",
1277 				__func__, chan->channel);
1278 			iio_device_release_direct_mode(indio_dev);
1279 			return ret;
1280 		}
1281 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1282 		iio_hw_consumer_disable(adc->hwc);
1283 		if (ret < 0) {
1284 			dev_err(&indio_dev->dev,
1285 				"%s: Conversion failed (channel %d)\n",
1286 				__func__, chan->channel);
1287 			iio_device_release_direct_mode(indio_dev);
1288 			return ret;
1289 		}
1290 		iio_device_release_direct_mode(indio_dev);
1291 		return IIO_VAL_INT;
1292 
1293 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1294 		*val = adc->oversamp;
1295 
1296 		return IIO_VAL_INT;
1297 
1298 	case IIO_CHAN_INFO_SAMP_FREQ:
1299 		*val = adc->sample_freq;
1300 
1301 		return IIO_VAL_INT;
1302 	}
1303 
1304 	return -EINVAL;
1305 }
1306 
1307 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1308 					struct iio_trigger *trig)
1309 {
1310 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1311 }
1312 
1313 static const struct iio_info stm32_dfsdm_info_audio = {
1314 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1315 	.read_raw = stm32_dfsdm_read_raw,
1316 	.write_raw = stm32_dfsdm_write_raw,
1317 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1318 };
1319 
1320 static const struct iio_info stm32_dfsdm_info_adc = {
1321 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1322 	.read_raw = stm32_dfsdm_read_raw,
1323 	.write_raw = stm32_dfsdm_write_raw,
1324 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1325 	.validate_trigger = stm32_dfsdm_validate_trigger,
1326 };
1327 
1328 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1329 {
1330 	struct stm32_dfsdm_adc *adc = arg;
1331 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1332 	struct regmap *regmap = adc->dfsdm->regmap;
1333 	unsigned int status, int_en;
1334 
1335 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1336 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1337 
1338 	if (status & DFSDM_ISR_REOCF_MASK) {
1339 		/* Read the data register clean the IRQ status */
1340 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1341 		complete(&adc->completion);
1342 	}
1343 
1344 	if (status & DFSDM_ISR_ROVRF_MASK) {
1345 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1346 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1347 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1348 				   DFSDM_ICR_CLRROVRF_MASK,
1349 				   DFSDM_ICR_CLRROVRF_MASK);
1350 	}
1351 
1352 	return IRQ_HANDLED;
1353 }
1354 
1355 /*
1356  * Define external info for SPI Frequency and audio sampling rate that can be
1357  * configured by ASoC driver through consumer.h API
1358  */
1359 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1360 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1361 	{
1362 		.name = "spi_clk_freq",
1363 		.shared = IIO_SHARED_BY_TYPE,
1364 		.read = dfsdm_adc_audio_get_spiclk,
1365 		.write = dfsdm_adc_audio_set_spiclk,
1366 	},
1367 	{},
1368 };
1369 
1370 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1371 {
1372 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1373 
1374 	if (adc->dma_chan) {
1375 		dma_free_coherent(adc->dma_chan->device->dev,
1376 				  DFSDM_DMA_BUFFER_SIZE,
1377 				  adc->rx_buf, adc->dma_buf);
1378 		dma_release_channel(adc->dma_chan);
1379 	}
1380 }
1381 
1382 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
1383 {
1384 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1385 
1386 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1387 	if (!adc->dma_chan)
1388 		return -EINVAL;
1389 
1390 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1391 					 DFSDM_DMA_BUFFER_SIZE,
1392 					 &adc->dma_buf, GFP_KERNEL);
1393 	if (!adc->rx_buf) {
1394 		dma_release_channel(adc->dma_chan);
1395 		return -ENOMEM;
1396 	}
1397 
1398 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1399 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1400 
1401 	return 0;
1402 }
1403 
1404 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1405 					 struct iio_chan_spec *ch)
1406 {
1407 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1408 	int ret;
1409 
1410 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1411 	if (ret < 0)
1412 		return ret;
1413 
1414 	ch->type = IIO_VOLTAGE;
1415 	ch->indexed = 1;
1416 
1417 	/*
1418 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1419 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1420 	 */
1421 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1422 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1423 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1424 
1425 	if (adc->dev_data->type == DFSDM_AUDIO) {
1426 		ch->ext_info = dfsdm_adc_audio_ext_info;
1427 	} else {
1428 		ch->scan_type.shift = 8;
1429 	}
1430 	ch->scan_type.sign = 's';
1431 	ch->scan_type.realbits = 24;
1432 	ch->scan_type.storagebits = 32;
1433 
1434 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1435 					  &adc->dfsdm->ch_list[ch->channel]);
1436 }
1437 
1438 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
1439 {
1440 	struct iio_chan_spec *ch;
1441 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1442 	struct stm32_dfsdm_channel *d_ch;
1443 	int ret;
1444 
1445 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1446 	if (!ch)
1447 		return -ENOMEM;
1448 
1449 	ch->scan_index = 0;
1450 
1451 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1452 	if (ret < 0) {
1453 		dev_err(&indio_dev->dev, "Channels init failed\n");
1454 		return ret;
1455 	}
1456 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1457 
1458 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1459 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1460 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1461 
1462 	indio_dev->num_channels = 1;
1463 	indio_dev->channels = ch;
1464 
1465 	return stm32_dfsdm_dma_request(indio_dev);
1466 }
1467 
1468 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1469 {
1470 	struct iio_chan_spec *ch;
1471 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1472 	int num_ch;
1473 	int ret, chan_idx;
1474 
1475 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1476 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1477 	if (ret < 0)
1478 		return ret;
1479 
1480 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1481 					     "st,adc-channels");
1482 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1483 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1484 		return num_ch < 0 ? num_ch : -EINVAL;
1485 	}
1486 
1487 	/* Bind to SD modulator IIO device */
1488 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1489 	if (IS_ERR(adc->hwc))
1490 		return -EPROBE_DEFER;
1491 
1492 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1493 			  GFP_KERNEL);
1494 	if (!ch)
1495 		return -ENOMEM;
1496 
1497 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1498 		ch[chan_idx].scan_index = chan_idx;
1499 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1500 		if (ret < 0) {
1501 			dev_err(&indio_dev->dev, "Channels init failed\n");
1502 			return ret;
1503 		}
1504 	}
1505 
1506 	indio_dev->num_channels = num_ch;
1507 	indio_dev->channels = ch;
1508 
1509 	init_completion(&adc->completion);
1510 
1511 	/* Optionally request DMA */
1512 	if (stm32_dfsdm_dma_request(indio_dev)) {
1513 		dev_dbg(&indio_dev->dev, "No DMA support\n");
1514 		return 0;
1515 	}
1516 
1517 	ret = iio_triggered_buffer_setup(indio_dev,
1518 					 &iio_pollfunc_store_time,
1519 					 &stm32_dfsdm_adc_trigger_handler,
1520 					 &stm32_dfsdm_buffer_setup_ops);
1521 	if (ret) {
1522 		stm32_dfsdm_dma_release(indio_dev);
1523 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1524 		return ret;
1525 	}
1526 
1527 	/* lptimer/timer hardware triggers */
1528 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1529 
1530 	return 0;
1531 }
1532 
1533 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1534 	.type = DFSDM_IIO,
1535 	.init = stm32_dfsdm_adc_init,
1536 };
1537 
1538 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1539 	.type = DFSDM_AUDIO,
1540 	.init = stm32_dfsdm_audio_init,
1541 };
1542 
1543 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1544 	{
1545 		.compatible = "st,stm32-dfsdm-adc",
1546 		.data = &stm32h7_dfsdm_adc_data,
1547 	},
1548 	{
1549 		.compatible = "st,stm32-dfsdm-dmic",
1550 		.data = &stm32h7_dfsdm_audio_data,
1551 	},
1552 	{}
1553 };
1554 
1555 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1556 {
1557 	struct device *dev = &pdev->dev;
1558 	struct stm32_dfsdm_adc *adc;
1559 	struct device_node *np = dev->of_node;
1560 	const struct stm32_dfsdm_dev_data *dev_data;
1561 	struct iio_dev *iio;
1562 	char *name;
1563 	int ret, irq, val;
1564 
1565 	dev_data = of_device_get_match_data(dev);
1566 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1567 	if (!iio) {
1568 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1569 		return -ENOMEM;
1570 	}
1571 
1572 	adc = iio_priv(iio);
1573 	adc->dfsdm = dev_get_drvdata(dev->parent);
1574 
1575 	iio->dev.parent = dev;
1576 	iio->dev.of_node = np;
1577 	iio->modes = INDIO_DIRECT_MODE;
1578 
1579 	platform_set_drvdata(pdev, adc);
1580 
1581 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1582 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1583 		dev_err(dev, "Missing or bad reg property\n");
1584 		return -EINVAL;
1585 	}
1586 
1587 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1588 	if (!name)
1589 		return -ENOMEM;
1590 	if (dev_data->type == DFSDM_AUDIO) {
1591 		iio->info = &stm32_dfsdm_info_audio;
1592 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1593 	} else {
1594 		iio->info = &stm32_dfsdm_info_adc;
1595 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1596 	}
1597 	iio->name = name;
1598 
1599 	/*
1600 	 * In a first step IRQs generated for channels are not treated.
1601 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1602 	 */
1603 	irq = platform_get_irq(pdev, 0);
1604 	if (irq < 0)
1605 		return irq;
1606 
1607 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1608 			       0, pdev->name, adc);
1609 	if (ret < 0) {
1610 		dev_err(dev, "Failed to request IRQ\n");
1611 		return ret;
1612 	}
1613 
1614 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1615 	if (ret < 0) {
1616 		dev_err(dev, "Failed to set filter order\n");
1617 		return ret;
1618 	}
1619 
1620 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1621 
1622 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1623 	if (!ret)
1624 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1625 
1626 	adc->dev_data = dev_data;
1627 	ret = dev_data->init(iio);
1628 	if (ret < 0)
1629 		return ret;
1630 
1631 	ret = iio_device_register(iio);
1632 	if (ret < 0)
1633 		goto err_cleanup;
1634 
1635 	if (dev_data->type == DFSDM_AUDIO) {
1636 		ret = of_platform_populate(np, NULL, NULL, dev);
1637 		if (ret < 0) {
1638 			dev_err(dev, "Failed to find an audio DAI\n");
1639 			goto err_unregister;
1640 		}
1641 	}
1642 
1643 	return 0;
1644 
1645 err_unregister:
1646 	iio_device_unregister(iio);
1647 err_cleanup:
1648 	stm32_dfsdm_dma_release(iio);
1649 
1650 	return ret;
1651 }
1652 
1653 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1654 {
1655 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1656 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1657 
1658 	if (adc->dev_data->type == DFSDM_AUDIO)
1659 		of_platform_depopulate(&pdev->dev);
1660 	iio_device_unregister(indio_dev);
1661 	stm32_dfsdm_dma_release(indio_dev);
1662 
1663 	return 0;
1664 }
1665 
1666 static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1667 {
1668 	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1669 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1670 
1671 	if (iio_buffer_enabled(indio_dev))
1672 		__stm32_dfsdm_predisable(indio_dev);
1673 
1674 	return 0;
1675 }
1676 
1677 static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1678 {
1679 	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1680 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1681 	const struct iio_chan_spec *chan;
1682 	struct stm32_dfsdm_channel *ch;
1683 	int i, ret;
1684 
1685 	/* restore channels configuration */
1686 	for (i = 0; i < indio_dev->num_channels; i++) {
1687 		chan = indio_dev->channels + i;
1688 		ch = &adc->dfsdm->ch_list[chan->channel];
1689 		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1690 		if (ret)
1691 			return ret;
1692 	}
1693 
1694 	if (iio_buffer_enabled(indio_dev))
1695 		__stm32_dfsdm_postenable(indio_dev);
1696 
1697 	return 0;
1698 }
1699 
1700 static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1701 			 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1702 
1703 static struct platform_driver stm32_dfsdm_adc_driver = {
1704 	.driver = {
1705 		.name = "stm32-dfsdm-adc",
1706 		.of_match_table = stm32_dfsdm_adc_match,
1707 		.pm = &stm32_dfsdm_adc_pm_ops,
1708 	},
1709 	.probe = stm32_dfsdm_adc_probe,
1710 	.remove = stm32_dfsdm_adc_remove,
1711 };
1712 module_platform_driver(stm32_dfsdm_adc_driver);
1713 
1714 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1715 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1716 MODULE_LICENSE("GPL v2");
1717