xref: /linux/drivers/iio/adc/stm32-dfsdm-core.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part the core part STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/iio/iio.h>
11 #include <linux/iio/sysfs.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 
20 #include "stm32-dfsdm.h"
21 
22 struct stm32_dfsdm_dev_data {
23 	unsigned int num_filters;
24 	unsigned int num_channels;
25 	const struct regmap_config *regmap_cfg;
26 };
27 
28 #define STM32H7_DFSDM_NUM_FILTERS	4
29 #define STM32H7_DFSDM_NUM_CHANNELS	8
30 #define STM32MP1_DFSDM_NUM_FILTERS	6
31 #define STM32MP1_DFSDM_NUM_CHANNELS	8
32 
33 static bool stm32_dfsdm_volatile_reg(struct device *dev, unsigned int reg)
34 {
35 	if (reg < DFSDM_FILTER_BASE_ADR)
36 		return false;
37 
38 	/*
39 	 * Mask is done on register to avoid to list registers of all
40 	 * filter instances.
41 	 */
42 	switch (reg & DFSDM_FILTER_REG_MASK) {
43 	case DFSDM_CR1(0) & DFSDM_FILTER_REG_MASK:
44 	case DFSDM_ISR(0) & DFSDM_FILTER_REG_MASK:
45 	case DFSDM_JDATAR(0) & DFSDM_FILTER_REG_MASK:
46 	case DFSDM_RDATAR(0) & DFSDM_FILTER_REG_MASK:
47 		return true;
48 	}
49 
50 	return false;
51 }
52 
53 static const struct regmap_config stm32h7_dfsdm_regmap_cfg = {
54 	.reg_bits = 32,
55 	.val_bits = 32,
56 	.reg_stride = sizeof(u32),
57 	.max_register = 0x2B8,
58 	.volatile_reg = stm32_dfsdm_volatile_reg,
59 	.fast_io = true,
60 };
61 
62 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_data = {
63 	.num_filters = STM32H7_DFSDM_NUM_FILTERS,
64 	.num_channels = STM32H7_DFSDM_NUM_CHANNELS,
65 	.regmap_cfg = &stm32h7_dfsdm_regmap_cfg,
66 };
67 
68 static const struct regmap_config stm32mp1_dfsdm_regmap_cfg = {
69 	.reg_bits = 32,
70 	.val_bits = 32,
71 	.reg_stride = sizeof(u32),
72 	.max_register = 0x7fc,
73 	.volatile_reg = stm32_dfsdm_volatile_reg,
74 	.fast_io = true,
75 };
76 
77 static const struct stm32_dfsdm_dev_data stm32mp1_dfsdm_data = {
78 	.num_filters = STM32MP1_DFSDM_NUM_FILTERS,
79 	.num_channels = STM32MP1_DFSDM_NUM_CHANNELS,
80 	.regmap_cfg = &stm32mp1_dfsdm_regmap_cfg,
81 };
82 
83 struct dfsdm_priv {
84 	struct platform_device *pdev; /* platform device */
85 
86 	struct stm32_dfsdm dfsdm; /* common data exported for all instances */
87 
88 	unsigned int spi_clk_out_div; /* SPI clkout divider value */
89 	atomic_t n_active_ch;	/* number of current active channels */
90 
91 	struct clk *clk; /* DFSDM clock */
92 	struct clk *aclk; /* audio clock */
93 };
94 
95 static inline struct dfsdm_priv *to_stm32_dfsdm_priv(struct stm32_dfsdm *dfsdm)
96 {
97 	return container_of(dfsdm, struct dfsdm_priv, dfsdm);
98 }
99 
100 static int stm32_dfsdm_clk_prepare_enable(struct stm32_dfsdm *dfsdm)
101 {
102 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
103 	int ret;
104 
105 	ret = clk_prepare_enable(priv->clk);
106 	if (ret || !priv->aclk)
107 		return ret;
108 
109 	ret = clk_prepare_enable(priv->aclk);
110 	if (ret)
111 		clk_disable_unprepare(priv->clk);
112 
113 	return ret;
114 }
115 
116 static void stm32_dfsdm_clk_disable_unprepare(struct stm32_dfsdm *dfsdm)
117 {
118 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
119 
120 	if (priv->aclk)
121 		clk_disable_unprepare(priv->aclk);
122 	clk_disable_unprepare(priv->clk);
123 }
124 
125 /**
126  * stm32_dfsdm_start_dfsdm - start global dfsdm interface.
127  *
128  * Enable interface if n_active_ch is not null.
129  * @dfsdm: Handle used to retrieve dfsdm context.
130  */
131 int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm)
132 {
133 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
134 	struct device *dev = &priv->pdev->dev;
135 	unsigned int clk_div = priv->spi_clk_out_div, clk_src;
136 	int ret;
137 
138 	if (atomic_inc_return(&priv->n_active_ch) == 1) {
139 		ret = pm_runtime_get_sync(dev);
140 		if (ret < 0) {
141 			pm_runtime_put_noidle(dev);
142 			goto error_ret;
143 		}
144 
145 		/* select clock source, e.g. 0 for "dfsdm" or 1 for "audio" */
146 		clk_src = priv->aclk ? 1 : 0;
147 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
148 					 DFSDM_CHCFGR1_CKOUTSRC_MASK,
149 					 DFSDM_CHCFGR1_CKOUTSRC(clk_src));
150 		if (ret < 0)
151 			goto pm_put;
152 
153 		/* Output the SPI CLKOUT (if clk_div == 0 clock if OFF) */
154 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
155 					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
156 					 DFSDM_CHCFGR1_CKOUTDIV(clk_div));
157 		if (ret < 0)
158 			goto pm_put;
159 
160 		/* Global enable of DFSDM interface */
161 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
162 					 DFSDM_CHCFGR1_DFSDMEN_MASK,
163 					 DFSDM_CHCFGR1_DFSDMEN(1));
164 		if (ret < 0)
165 			goto pm_put;
166 	}
167 
168 	dev_dbg(dev, "%s: n_active_ch %d\n", __func__,
169 		atomic_read(&priv->n_active_ch));
170 
171 	return 0;
172 
173 pm_put:
174 	pm_runtime_put_sync(dev);
175 error_ret:
176 	atomic_dec(&priv->n_active_ch);
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(stm32_dfsdm_start_dfsdm);
181 
182 /**
183  * stm32_dfsdm_stop_dfsdm - stop global DFSDM interface.
184  *
185  * Disable interface if n_active_ch is null
186  * @dfsdm: Handle used to retrieve dfsdm context.
187  */
188 int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm)
189 {
190 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
191 	int ret;
192 
193 	if (atomic_dec_and_test(&priv->n_active_ch)) {
194 		/* Global disable of DFSDM interface */
195 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
196 					 DFSDM_CHCFGR1_DFSDMEN_MASK,
197 					 DFSDM_CHCFGR1_DFSDMEN(0));
198 		if (ret < 0)
199 			return ret;
200 
201 		/* Stop SPI CLKOUT */
202 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
203 					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
204 					 DFSDM_CHCFGR1_CKOUTDIV(0));
205 		if (ret < 0)
206 			return ret;
207 
208 		pm_runtime_put_sync(&priv->pdev->dev);
209 	}
210 	dev_dbg(&priv->pdev->dev, "%s: n_active_ch %d\n", __func__,
211 		atomic_read(&priv->n_active_ch));
212 
213 	return 0;
214 }
215 EXPORT_SYMBOL_GPL(stm32_dfsdm_stop_dfsdm);
216 
217 static int stm32_dfsdm_parse_of(struct platform_device *pdev,
218 				struct dfsdm_priv *priv)
219 {
220 	struct device_node *node = pdev->dev.of_node;
221 	struct resource *res;
222 	unsigned long clk_freq, divider;
223 	unsigned int spi_freq, rem;
224 	int ret;
225 
226 	if (!node)
227 		return -EINVAL;
228 
229 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
230 	if (!res) {
231 		dev_err(&pdev->dev, "Failed to get memory resource\n");
232 		return -ENODEV;
233 	}
234 	priv->dfsdm.phys_base = res->start;
235 	priv->dfsdm.base = devm_ioremap_resource(&pdev->dev, res);
236 
237 	/*
238 	 * "dfsdm" clock is mandatory for DFSDM peripheral clocking.
239 	 * "dfsdm" or "audio" clocks can be used as source clock for
240 	 * the SPI clock out signal and internal processing, depending
241 	 * on use case.
242 	 */
243 	priv->clk = devm_clk_get(&pdev->dev, "dfsdm");
244 	if (IS_ERR(priv->clk)) {
245 		dev_err(&pdev->dev, "No stm32_dfsdm_clk clock found\n");
246 		return -EINVAL;
247 	}
248 
249 	priv->aclk = devm_clk_get(&pdev->dev, "audio");
250 	if (IS_ERR(priv->aclk))
251 		priv->aclk = NULL;
252 
253 	if (priv->aclk)
254 		clk_freq = clk_get_rate(priv->aclk);
255 	else
256 		clk_freq = clk_get_rate(priv->clk);
257 
258 	/* SPI clock out frequency */
259 	ret = of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
260 				   &spi_freq);
261 	if (ret < 0) {
262 		/* No SPI master mode */
263 		return 0;
264 	}
265 
266 	divider = div_u64_rem(clk_freq, spi_freq, &rem);
267 	/* Round up divider when ckout isn't precise, not to exceed spi_freq */
268 	if (rem)
269 		divider++;
270 
271 	/* programmable divider is in range of [2:256] */
272 	if (divider < 2 || divider > 256) {
273 		dev_err(&pdev->dev, "spi-max-frequency not achievable\n");
274 		return -EINVAL;
275 	}
276 
277 	/* SPI clock output divider is: divider = CKOUTDIV + 1 */
278 	priv->spi_clk_out_div = divider - 1;
279 	priv->dfsdm.spi_master_freq = clk_freq / (priv->spi_clk_out_div + 1);
280 
281 	if (rem) {
282 		dev_warn(&pdev->dev, "SPI clock not accurate\n");
283 		dev_warn(&pdev->dev, "%ld = %d * %d + %d\n",
284 			 clk_freq, spi_freq, priv->spi_clk_out_div + 1, rem);
285 	}
286 
287 	return 0;
288 };
289 
290 static const struct of_device_id stm32_dfsdm_of_match[] = {
291 	{
292 		.compatible = "st,stm32h7-dfsdm",
293 		.data = &stm32h7_dfsdm_data,
294 	},
295 	{
296 		.compatible = "st,stm32mp1-dfsdm",
297 		.data = &stm32mp1_dfsdm_data,
298 	},
299 	{}
300 };
301 MODULE_DEVICE_TABLE(of, stm32_dfsdm_of_match);
302 
303 static int stm32_dfsdm_probe(struct platform_device *pdev)
304 {
305 	struct dfsdm_priv *priv;
306 	const struct stm32_dfsdm_dev_data *dev_data;
307 	struct stm32_dfsdm *dfsdm;
308 	int ret;
309 
310 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
311 	if (!priv)
312 		return -ENOMEM;
313 
314 	priv->pdev = pdev;
315 
316 	dev_data = of_device_get_match_data(&pdev->dev);
317 
318 	dfsdm = &priv->dfsdm;
319 	dfsdm->fl_list = devm_kcalloc(&pdev->dev, dev_data->num_filters,
320 				      sizeof(*dfsdm->fl_list), GFP_KERNEL);
321 	if (!dfsdm->fl_list)
322 		return -ENOMEM;
323 
324 	dfsdm->num_fls = dev_data->num_filters;
325 	dfsdm->ch_list = devm_kcalloc(&pdev->dev, dev_data->num_channels,
326 				      sizeof(*dfsdm->ch_list),
327 				      GFP_KERNEL);
328 	if (!dfsdm->ch_list)
329 		return -ENOMEM;
330 	dfsdm->num_chs = dev_data->num_channels;
331 
332 	ret = stm32_dfsdm_parse_of(pdev, priv);
333 	if (ret < 0)
334 		return ret;
335 
336 	dfsdm->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dfsdm",
337 						  dfsdm->base,
338 						  dev_data->regmap_cfg);
339 	if (IS_ERR(dfsdm->regmap)) {
340 		ret = PTR_ERR(dfsdm->regmap);
341 		dev_err(&pdev->dev, "%s: Failed to allocate regmap: %d\n",
342 			__func__, ret);
343 		return ret;
344 	}
345 
346 	platform_set_drvdata(pdev, dfsdm);
347 
348 	ret = stm32_dfsdm_clk_prepare_enable(dfsdm);
349 	if (ret) {
350 		dev_err(&pdev->dev, "Failed to start clock\n");
351 		return ret;
352 	}
353 
354 	pm_runtime_get_noresume(&pdev->dev);
355 	pm_runtime_set_active(&pdev->dev);
356 	pm_runtime_enable(&pdev->dev);
357 
358 	ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
359 	if (ret)
360 		goto pm_put;
361 
362 	pm_runtime_put(&pdev->dev);
363 
364 	return 0;
365 
366 pm_put:
367 	pm_runtime_disable(&pdev->dev);
368 	pm_runtime_set_suspended(&pdev->dev);
369 	pm_runtime_put_noidle(&pdev->dev);
370 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
371 
372 	return ret;
373 }
374 
375 static int stm32_dfsdm_core_remove(struct platform_device *pdev)
376 {
377 	struct stm32_dfsdm *dfsdm = platform_get_drvdata(pdev);
378 
379 	pm_runtime_get_sync(&pdev->dev);
380 	of_platform_depopulate(&pdev->dev);
381 	pm_runtime_disable(&pdev->dev);
382 	pm_runtime_set_suspended(&pdev->dev);
383 	pm_runtime_put_noidle(&pdev->dev);
384 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
385 
386 	return 0;
387 }
388 
389 static int __maybe_unused stm32_dfsdm_core_suspend(struct device *dev)
390 {
391 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
392 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
393 	int ret;
394 
395 	ret = pm_runtime_force_suspend(dev);
396 	if (ret)
397 		return ret;
398 
399 	/* Balance devm_regmap_init_mmio_clk() clk_prepare() */
400 	clk_unprepare(priv->clk);
401 
402 	return pinctrl_pm_select_sleep_state(dev);
403 }
404 
405 static int __maybe_unused stm32_dfsdm_core_resume(struct device *dev)
406 {
407 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
408 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
409 	int ret;
410 
411 	ret = pinctrl_pm_select_default_state(dev);
412 	if (ret)
413 		return ret;
414 
415 	ret = clk_prepare(priv->clk);
416 	if (ret)
417 		return ret;
418 
419 	return pm_runtime_force_resume(dev);
420 }
421 
422 static int __maybe_unused stm32_dfsdm_core_runtime_suspend(struct device *dev)
423 {
424 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
425 
426 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
427 
428 	return 0;
429 }
430 
431 static int __maybe_unused stm32_dfsdm_core_runtime_resume(struct device *dev)
432 {
433 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
434 
435 	return stm32_dfsdm_clk_prepare_enable(dfsdm);
436 }
437 
438 static const struct dev_pm_ops stm32_dfsdm_core_pm_ops = {
439 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dfsdm_core_suspend,
440 				stm32_dfsdm_core_resume)
441 	SET_RUNTIME_PM_OPS(stm32_dfsdm_core_runtime_suspend,
442 			   stm32_dfsdm_core_runtime_resume,
443 			   NULL)
444 };
445 
446 static struct platform_driver stm32_dfsdm_driver = {
447 	.probe = stm32_dfsdm_probe,
448 	.remove = stm32_dfsdm_core_remove,
449 	.driver = {
450 		.name = "stm32-dfsdm",
451 		.of_match_table = stm32_dfsdm_of_match,
452 		.pm = &stm32_dfsdm_core_pm_ops,
453 	},
454 };
455 
456 module_platform_driver(stm32_dfsdm_driver);
457 
458 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
459 MODULE_DESCRIPTION("STMicroelectronics STM32 dfsdm driver");
460 MODULE_LICENSE("GPL v2");
461