xref: /linux/drivers/iio/chemical/bme680_core.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Bosch BME680 - Temperature, Pressure, Humidity & Gas Sensor
4  *
5  * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
6  * Copyright (C) 2018 Himanshu Jha <himanshujha199640@gmail.com>
7  *
8  * Datasheet:
9  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
10  */
11 #include <linux/acpi.h>
12 #include <linux/bitfield.h>
13 #include <linux/device.h>
14 #include <linux/module.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 
20 #include "bme680.h"
21 
22 struct bme680_calib {
23 	u16 par_t1;
24 	s16 par_t2;
25 	s8  par_t3;
26 	u16 par_p1;
27 	s16 par_p2;
28 	s8  par_p3;
29 	s16 par_p4;
30 	s16 par_p5;
31 	s8  par_p6;
32 	s8  par_p7;
33 	s16 par_p8;
34 	s16 par_p9;
35 	u8  par_p10;
36 	u16 par_h1;
37 	u16 par_h2;
38 	s8  par_h3;
39 	s8  par_h4;
40 	s8  par_h5;
41 	s8  par_h6;
42 	s8  par_h7;
43 	s8  par_gh1;
44 	s16 par_gh2;
45 	s8  par_gh3;
46 	u8  res_heat_range;
47 	s8  res_heat_val;
48 	s8  range_sw_err;
49 };
50 
51 struct bme680_data {
52 	struct regmap *regmap;
53 	struct bme680_calib bme680;
54 	u8 oversampling_temp;
55 	u8 oversampling_press;
56 	u8 oversampling_humid;
57 	u16 heater_dur;
58 	u16 heater_temp;
59 	/*
60 	 * Carryover value from temperature conversion, used in pressure
61 	 * and humidity compensation calculations.
62 	 */
63 	s32 t_fine;
64 };
65 
66 static const struct regmap_range bme680_volatile_ranges[] = {
67 	regmap_reg_range(BME680_REG_MEAS_STAT_0, BME680_REG_GAS_R_LSB),
68 	regmap_reg_range(BME680_REG_STATUS, BME680_REG_STATUS),
69 	regmap_reg_range(BME680_T2_LSB_REG, BME680_GH3_REG),
70 };
71 
72 static const struct regmap_access_table bme680_volatile_table = {
73 	.yes_ranges	= bme680_volatile_ranges,
74 	.n_yes_ranges	= ARRAY_SIZE(bme680_volatile_ranges),
75 };
76 
77 const struct regmap_config bme680_regmap_config = {
78 	.reg_bits = 8,
79 	.val_bits = 8,
80 	.max_register = 0xef,
81 	.volatile_table = &bme680_volatile_table,
82 	.cache_type = REGCACHE_RBTREE,
83 };
84 EXPORT_SYMBOL_NS(bme680_regmap_config, IIO_BME680);
85 
86 static const struct iio_chan_spec bme680_channels[] = {
87 	{
88 		.type = IIO_TEMP,
89 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
90 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
91 	},
92 	{
93 		.type = IIO_PRESSURE,
94 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
95 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
96 	},
97 	{
98 		.type = IIO_HUMIDITYRELATIVE,
99 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
100 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
101 	},
102 	{
103 		.type = IIO_RESISTANCE,
104 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
105 	},
106 };
107 
108 static int bme680_read_calib(struct bme680_data *data,
109 			     struct bme680_calib *calib)
110 {
111 	struct device *dev = regmap_get_device(data->regmap);
112 	unsigned int tmp, tmp_msb, tmp_lsb;
113 	int ret;
114 	__le16 buf;
115 
116 	/* Temperature related coefficients */
117 	ret = regmap_bulk_read(data->regmap, BME680_T1_LSB_REG,
118 			       &buf, sizeof(buf));
119 	if (ret < 0) {
120 		dev_err(dev, "failed to read BME680_T1_LSB_REG\n");
121 		return ret;
122 	}
123 	calib->par_t1 = le16_to_cpu(buf);
124 
125 	ret = regmap_bulk_read(data->regmap, BME680_T2_LSB_REG,
126 			       &buf, sizeof(buf));
127 	if (ret < 0) {
128 		dev_err(dev, "failed to read BME680_T2_LSB_REG\n");
129 		return ret;
130 	}
131 	calib->par_t2 = le16_to_cpu(buf);
132 
133 	ret = regmap_read(data->regmap, BME680_T3_REG, &tmp);
134 	if (ret < 0) {
135 		dev_err(dev, "failed to read BME680_T3_REG\n");
136 		return ret;
137 	}
138 	calib->par_t3 = tmp;
139 
140 	/* Pressure related coefficients */
141 	ret = regmap_bulk_read(data->regmap, BME680_P1_LSB_REG,
142 			       &buf, sizeof(buf));
143 	if (ret < 0) {
144 		dev_err(dev, "failed to read BME680_P1_LSB_REG\n");
145 		return ret;
146 	}
147 	calib->par_p1 = le16_to_cpu(buf);
148 
149 	ret = regmap_bulk_read(data->regmap, BME680_P2_LSB_REG,
150 			       &buf, sizeof(buf));
151 	if (ret < 0) {
152 		dev_err(dev, "failed to read BME680_P2_LSB_REG\n");
153 		return ret;
154 	}
155 	calib->par_p2 = le16_to_cpu(buf);
156 
157 	ret = regmap_read(data->regmap, BME680_P3_REG, &tmp);
158 	if (ret < 0) {
159 		dev_err(dev, "failed to read BME680_P3_REG\n");
160 		return ret;
161 	}
162 	calib->par_p3 = tmp;
163 
164 	ret = regmap_bulk_read(data->regmap, BME680_P4_LSB_REG,
165 			       &buf, sizeof(buf));
166 	if (ret < 0) {
167 		dev_err(dev, "failed to read BME680_P4_LSB_REG\n");
168 		return ret;
169 	}
170 	calib->par_p4 = le16_to_cpu(buf);
171 
172 	ret = regmap_bulk_read(data->regmap, BME680_P5_LSB_REG,
173 			       &buf, sizeof(buf));
174 	if (ret < 0) {
175 		dev_err(dev, "failed to read BME680_P5_LSB_REG\n");
176 		return ret;
177 	}
178 	calib->par_p5 = le16_to_cpu(buf);
179 
180 	ret = regmap_read(data->regmap, BME680_P6_REG, &tmp);
181 	if (ret < 0) {
182 		dev_err(dev, "failed to read BME680_P6_REG\n");
183 		return ret;
184 	}
185 	calib->par_p6 = tmp;
186 
187 	ret = regmap_read(data->regmap, BME680_P7_REG, &tmp);
188 	if (ret < 0) {
189 		dev_err(dev, "failed to read BME680_P7_REG\n");
190 		return ret;
191 	}
192 	calib->par_p7 = tmp;
193 
194 	ret = regmap_bulk_read(data->regmap, BME680_P8_LSB_REG,
195 			       &buf, sizeof(buf));
196 	if (ret < 0) {
197 		dev_err(dev, "failed to read BME680_P8_LSB_REG\n");
198 		return ret;
199 	}
200 	calib->par_p8 = le16_to_cpu(buf);
201 
202 	ret = regmap_bulk_read(data->regmap, BME680_P9_LSB_REG,
203 			       &buf, sizeof(buf));
204 	if (ret < 0) {
205 		dev_err(dev, "failed to read BME680_P9_LSB_REG\n");
206 		return ret;
207 	}
208 	calib->par_p9 = le16_to_cpu(buf);
209 
210 	ret = regmap_read(data->regmap, BME680_P10_REG, &tmp);
211 	if (ret < 0) {
212 		dev_err(dev, "failed to read BME680_P10_REG\n");
213 		return ret;
214 	}
215 	calib->par_p10 = tmp;
216 
217 	/* Humidity related coefficients */
218 	ret = regmap_read(data->regmap, BME680_H1_MSB_REG, &tmp_msb);
219 	if (ret < 0) {
220 		dev_err(dev, "failed to read BME680_H1_MSB_REG\n");
221 		return ret;
222 	}
223 	ret = regmap_read(data->regmap, BME680_H1_LSB_REG, &tmp_lsb);
224 	if (ret < 0) {
225 		dev_err(dev, "failed to read BME680_H1_LSB_REG\n");
226 		return ret;
227 	}
228 	calib->par_h1 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
229 			(tmp_lsb & BME680_BIT_H1_DATA_MASK);
230 
231 	ret = regmap_read(data->regmap, BME680_H2_MSB_REG, &tmp_msb);
232 	if (ret < 0) {
233 		dev_err(dev, "failed to read BME680_H2_MSB_REG\n");
234 		return ret;
235 	}
236 	ret = regmap_read(data->regmap, BME680_H2_LSB_REG, &tmp_lsb);
237 	if (ret < 0) {
238 		dev_err(dev, "failed to read BME680_H2_LSB_REG\n");
239 		return ret;
240 	}
241 	calib->par_h2 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
242 			(tmp_lsb >> BME680_HUM_REG_SHIFT_VAL);
243 
244 	ret = regmap_read(data->regmap, BME680_H3_REG, &tmp);
245 	if (ret < 0) {
246 		dev_err(dev, "failed to read BME680_H3_REG\n");
247 		return ret;
248 	}
249 	calib->par_h3 = tmp;
250 
251 	ret = regmap_read(data->regmap, BME680_H4_REG, &tmp);
252 	if (ret < 0) {
253 		dev_err(dev, "failed to read BME680_H4_REG\n");
254 		return ret;
255 	}
256 	calib->par_h4 = tmp;
257 
258 	ret = regmap_read(data->regmap, BME680_H5_REG, &tmp);
259 	if (ret < 0) {
260 		dev_err(dev, "failed to read BME680_H5_REG\n");
261 		return ret;
262 	}
263 	calib->par_h5 = tmp;
264 
265 	ret = regmap_read(data->regmap, BME680_H6_REG, &tmp);
266 	if (ret < 0) {
267 		dev_err(dev, "failed to read BME680_H6_REG\n");
268 		return ret;
269 	}
270 	calib->par_h6 = tmp;
271 
272 	ret = regmap_read(data->regmap, BME680_H7_REG, &tmp);
273 	if (ret < 0) {
274 		dev_err(dev, "failed to read BME680_H7_REG\n");
275 		return ret;
276 	}
277 	calib->par_h7 = tmp;
278 
279 	/* Gas heater related coefficients */
280 	ret = regmap_read(data->regmap, BME680_GH1_REG, &tmp);
281 	if (ret < 0) {
282 		dev_err(dev, "failed to read BME680_GH1_REG\n");
283 		return ret;
284 	}
285 	calib->par_gh1 = tmp;
286 
287 	ret = regmap_bulk_read(data->regmap, BME680_GH2_LSB_REG,
288 			       &buf, sizeof(buf));
289 	if (ret < 0) {
290 		dev_err(dev, "failed to read BME680_GH2_LSB_REG\n");
291 		return ret;
292 	}
293 	calib->par_gh2 = le16_to_cpu(buf);
294 
295 	ret = regmap_read(data->regmap, BME680_GH3_REG, &tmp);
296 	if (ret < 0) {
297 		dev_err(dev, "failed to read BME680_GH3_REG\n");
298 		return ret;
299 	}
300 	calib->par_gh3 = tmp;
301 
302 	/* Other coefficients */
303 	ret = regmap_read(data->regmap, BME680_REG_RES_HEAT_RANGE, &tmp);
304 	if (ret < 0) {
305 		dev_err(dev, "failed to read resistance heat range\n");
306 		return ret;
307 	}
308 	calib->res_heat_range = FIELD_GET(BME680_RHRANGE_MASK, tmp);
309 
310 	ret = regmap_read(data->regmap, BME680_REG_RES_HEAT_VAL, &tmp);
311 	if (ret < 0) {
312 		dev_err(dev, "failed to read resistance heat value\n");
313 		return ret;
314 	}
315 	calib->res_heat_val = tmp;
316 
317 	ret = regmap_read(data->regmap, BME680_REG_RANGE_SW_ERR, &tmp);
318 	if (ret < 0) {
319 		dev_err(dev, "failed to read range software error\n");
320 		return ret;
321 	}
322 	calib->range_sw_err = FIELD_GET(BME680_RSERROR_MASK, tmp);
323 
324 	return 0;
325 }
326 
327 /*
328  * Taken from Bosch BME680 API:
329  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L876
330  *
331  * Returns temperature measurement in DegC, resolutions is 0.01 DegC. Therefore,
332  * output value of "3233" represents 32.33 DegC.
333  */
334 static s16 bme680_compensate_temp(struct bme680_data *data,
335 				  s32 adc_temp)
336 {
337 	struct bme680_calib *calib = &data->bme680;
338 	s64 var1, var2, var3;
339 	s16 calc_temp;
340 
341 	/* If the calibration is invalid, attempt to reload it */
342 	if (!calib->par_t2)
343 		bme680_read_calib(data, calib);
344 
345 	var1 = (adc_temp >> 3) - (calib->par_t1 << 1);
346 	var2 = (var1 * calib->par_t2) >> 11;
347 	var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
348 	var3 = (var3 * (calib->par_t3 << 4)) >> 14;
349 	data->t_fine = var2 + var3;
350 	calc_temp = (data->t_fine * 5 + 128) >> 8;
351 
352 	return calc_temp;
353 }
354 
355 /*
356  * Taken from Bosch BME680 API:
357  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L896
358  *
359  * Returns pressure measurement in Pa. Output value of "97356" represents
360  * 97356 Pa = 973.56 hPa.
361  */
362 static u32 bme680_compensate_press(struct bme680_data *data,
363 				   u32 adc_press)
364 {
365 	struct bme680_calib *calib = &data->bme680;
366 	s32 var1, var2, var3, press_comp;
367 
368 	var1 = (data->t_fine >> 1) - 64000;
369 	var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2;
370 	var2 = var2 + (var1 * calib->par_p5 << 1);
371 	var2 = (var2 >> 2) + (calib->par_p4 << 16);
372 	var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
373 			(calib->par_p3 << 5)) >> 3) +
374 			((calib->par_p2 * var1) >> 1);
375 	var1 = var1 >> 18;
376 	var1 = ((32768 + var1) * calib->par_p1) >> 15;
377 	press_comp = 1048576 - adc_press;
378 	press_comp = ((press_comp - (var2 >> 12)) * 3125);
379 
380 	if (press_comp >= BME680_MAX_OVERFLOW_VAL)
381 		press_comp = ((press_comp / (u32)var1) << 1);
382 	else
383 		press_comp = ((press_comp << 1) / (u32)var1);
384 
385 	var1 = (calib->par_p9 * (((press_comp >> 3) *
386 			(press_comp >> 3)) >> 13)) >> 12;
387 	var2 = ((press_comp >> 2) * calib->par_p8) >> 13;
388 	var3 = ((press_comp >> 8) * (press_comp >> 8) *
389 			(press_comp >> 8) * calib->par_p10) >> 17;
390 
391 	press_comp += (var1 + var2 + var3 + (calib->par_p7 << 7)) >> 4;
392 
393 	return press_comp;
394 }
395 
396 /*
397  * Taken from Bosch BME680 API:
398  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L937
399  *
400  * Returns humidity measurement in percent, resolution is 0.001 percent. Output
401  * value of "43215" represents 43.215 %rH.
402  */
403 static u32 bme680_compensate_humid(struct bme680_data *data,
404 				   u16 adc_humid)
405 {
406 	struct bme680_calib *calib = &data->bme680;
407 	s32 var1, var2, var3, var4, var5, var6, temp_scaled, calc_hum;
408 
409 	temp_scaled = (data->t_fine * 5 + 128) >> 8;
410 	var1 = (adc_humid - ((s32) ((s32) calib->par_h1 * 16))) -
411 		(((temp_scaled * (s32) calib->par_h3) / 100) >> 1);
412 	var2 = ((s32) calib->par_h2 *
413 		(((temp_scaled * calib->par_h4) / 100) +
414 		 (((temp_scaled * ((temp_scaled * calib->par_h5) / 100))
415 		   >> 6) / 100) + (1 << 14))) >> 10;
416 	var3 = var1 * var2;
417 	var4 = calib->par_h6 << 7;
418 	var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4;
419 	var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
420 	var6 = (var4 * var5) >> 1;
421 	calc_hum = (((var3 + var6) >> 10) * 1000) >> 12;
422 
423 	calc_hum = clamp(calc_hum, 0, 100000); /* clamp between 0-100 %rH */
424 
425 	return calc_hum;
426 }
427 
428 /*
429  * Taken from Bosch BME680 API:
430  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L973
431  *
432  * Returns gas measurement in Ohm. Output value of "82986" represent 82986 ohms.
433  */
434 static u32 bme680_compensate_gas(struct bme680_data *data, u16 gas_res_adc,
435 				 u8 gas_range)
436 {
437 	struct bme680_calib *calib = &data->bme680;
438 	s64 var1;
439 	u64 var2;
440 	s64 var3;
441 	u32 calc_gas_res;
442 
443 	/* Look up table for the possible gas range values */
444 	const u32 lookupTable[16] = {2147483647u, 2147483647u,
445 				2147483647u, 2147483647u, 2147483647u,
446 				2126008810u, 2147483647u, 2130303777u,
447 				2147483647u, 2147483647u, 2143188679u,
448 				2136746228u, 2147483647u, 2126008810u,
449 				2147483647u, 2147483647u};
450 
451 	var1 = ((1340 + (5 * (s64) calib->range_sw_err)) *
452 			((s64) lookupTable[gas_range])) >> 16;
453 	var2 = ((gas_res_adc << 15) - 16777216) + var1;
454 	var3 = ((125000 << (15 - gas_range)) * var1) >> 9;
455 	var3 += (var2 >> 1);
456 	calc_gas_res = div64_s64(var3, (s64) var2);
457 
458 	return calc_gas_res;
459 }
460 
461 /*
462  * Taken from Bosch BME680 API:
463  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1002
464  */
465 static u8 bme680_calc_heater_res(struct bme680_data *data, u16 temp)
466 {
467 	struct bme680_calib *calib = &data->bme680;
468 	s32 var1, var2, var3, var4, var5, heatr_res_x100;
469 	u8 heatr_res;
470 
471 	if (temp > 400) /* Cap temperature */
472 		temp = 400;
473 
474 	var1 = (((s32) BME680_AMB_TEMP * calib->par_gh3) / 1000) * 256;
475 	var2 = (calib->par_gh1 + 784) * (((((calib->par_gh2 + 154009) *
476 						temp * 5) / 100)
477 						+ 3276800) / 10);
478 	var3 = var1 + (var2 / 2);
479 	var4 = (var3 / (calib->res_heat_range + 4));
480 	var5 = 131 * calib->res_heat_val + 65536;
481 	heatr_res_x100 = ((var4 / var5) - 250) * 34;
482 	heatr_res = DIV_ROUND_CLOSEST(heatr_res_x100, 100);
483 
484 	return heatr_res;
485 }
486 
487 /*
488  * Taken from Bosch BME680 API:
489  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1188
490  */
491 static u8 bme680_calc_heater_dur(u16 dur)
492 {
493 	u8 durval, factor = 0;
494 
495 	if (dur >= 0xfc0) {
496 		durval = 0xff; /* Max duration */
497 	} else {
498 		while (dur > 0x3F) {
499 			dur = dur / 4;
500 			factor += 1;
501 		}
502 		durval = dur + (factor * 64);
503 	}
504 
505 	return durval;
506 }
507 
508 static int bme680_set_mode(struct bme680_data *data, bool mode)
509 {
510 	struct device *dev = regmap_get_device(data->regmap);
511 	int ret;
512 
513 	if (mode) {
514 		ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
515 					BME680_MODE_MASK, BME680_MODE_FORCED);
516 		if (ret < 0)
517 			dev_err(dev, "failed to set forced mode\n");
518 
519 	} else {
520 		ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
521 					BME680_MODE_MASK, BME680_MODE_SLEEP);
522 		if (ret < 0)
523 			dev_err(dev, "failed to set sleep mode\n");
524 
525 	}
526 
527 	return ret;
528 }
529 
530 static u8 bme680_oversampling_to_reg(u8 val)
531 {
532 	return ilog2(val) + 1;
533 }
534 
535 static int bme680_chip_config(struct bme680_data *data)
536 {
537 	struct device *dev = regmap_get_device(data->regmap);
538 	int ret;
539 	u8 osrs;
540 
541 	osrs = FIELD_PREP(
542 		BME680_OSRS_HUMIDITY_MASK,
543 		bme680_oversampling_to_reg(data->oversampling_humid));
544 	/*
545 	 * Highly recommended to set oversampling of humidity before
546 	 * temperature/pressure oversampling.
547 	 */
548 	ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_HUMIDITY,
549 				 BME680_OSRS_HUMIDITY_MASK, osrs);
550 	if (ret < 0) {
551 		dev_err(dev, "failed to write ctrl_hum register\n");
552 		return ret;
553 	}
554 
555 	/* IIR filter settings */
556 	ret = regmap_update_bits(data->regmap, BME680_REG_CONFIG,
557 				 BME680_FILTER_MASK,
558 				 BME680_FILTER_COEFF_VAL);
559 	if (ret < 0) {
560 		dev_err(dev, "failed to write config register\n");
561 		return ret;
562 	}
563 
564 	osrs = FIELD_PREP(BME680_OSRS_TEMP_MASK,
565 			  bme680_oversampling_to_reg(data->oversampling_temp)) |
566 	       FIELD_PREP(BME680_OSRS_PRESS_MASK,
567 			  bme680_oversampling_to_reg(data->oversampling_press));
568 	ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
569 				BME680_OSRS_TEMP_MASK | BME680_OSRS_PRESS_MASK,
570 				osrs);
571 	if (ret < 0)
572 		dev_err(dev, "failed to write ctrl_meas register\n");
573 
574 	return ret;
575 }
576 
577 static int bme680_gas_config(struct bme680_data *data)
578 {
579 	struct device *dev = regmap_get_device(data->regmap);
580 	int ret;
581 	u8 heatr_res, heatr_dur;
582 
583 	heatr_res = bme680_calc_heater_res(data, data->heater_temp);
584 
585 	/* set target heater temperature */
586 	ret = regmap_write(data->regmap, BME680_REG_RES_HEAT_0, heatr_res);
587 	if (ret < 0) {
588 		dev_err(dev, "failed to write res_heat_0 register\n");
589 		return ret;
590 	}
591 
592 	heatr_dur = bme680_calc_heater_dur(data->heater_dur);
593 
594 	/* set target heating duration */
595 	ret = regmap_write(data->regmap, BME680_REG_GAS_WAIT_0, heatr_dur);
596 	if (ret < 0) {
597 		dev_err(dev, "failed to write gas_wait_0 register\n");
598 		return ret;
599 	}
600 
601 	/* Enable the gas sensor and select heater profile set-point 0 */
602 	ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_GAS_1,
603 				 BME680_RUN_GAS_MASK | BME680_NB_CONV_MASK,
604 				 FIELD_PREP(BME680_RUN_GAS_MASK, 1) |
605 				 FIELD_PREP(BME680_NB_CONV_MASK, 0));
606 	if (ret < 0)
607 		dev_err(dev, "failed to write ctrl_gas_1 register\n");
608 
609 	return ret;
610 }
611 
612 static int bme680_read_temp(struct bme680_data *data, int *val)
613 {
614 	struct device *dev = regmap_get_device(data->regmap);
615 	int ret;
616 	__be32 tmp = 0;
617 	s32 adc_temp;
618 	s16 comp_temp;
619 
620 	/* set forced mode to trigger measurement */
621 	ret = bme680_set_mode(data, true);
622 	if (ret < 0)
623 		return ret;
624 
625 	ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB,
626 			       &tmp, 3);
627 	if (ret < 0) {
628 		dev_err(dev, "failed to read temperature\n");
629 		return ret;
630 	}
631 
632 	adc_temp = be32_to_cpu(tmp) >> 12;
633 	if (adc_temp == BME680_MEAS_SKIPPED) {
634 		/* reading was skipped */
635 		dev_err(dev, "reading temperature skipped\n");
636 		return -EINVAL;
637 	}
638 	comp_temp = bme680_compensate_temp(data, adc_temp);
639 	/*
640 	 * val might be NULL if we're called by the read_press/read_humid
641 	 * routine which is called to get t_fine value used in
642 	 * compensate_press/compensate_humid to get compensated
643 	 * pressure/humidity readings.
644 	 */
645 	if (val) {
646 		*val = comp_temp * 10; /* Centidegrees to millidegrees */
647 		return IIO_VAL_INT;
648 	}
649 
650 	return ret;
651 }
652 
653 static int bme680_read_press(struct bme680_data *data,
654 			     int *val, int *val2)
655 {
656 	struct device *dev = regmap_get_device(data->regmap);
657 	int ret;
658 	__be32 tmp = 0;
659 	s32 adc_press;
660 
661 	/* Read and compensate temperature to get a reading of t_fine */
662 	ret = bme680_read_temp(data, NULL);
663 	if (ret < 0)
664 		return ret;
665 
666 	ret = regmap_bulk_read(data->regmap, BME680_REG_PRESS_MSB,
667 			       &tmp, 3);
668 	if (ret < 0) {
669 		dev_err(dev, "failed to read pressure\n");
670 		return ret;
671 	}
672 
673 	adc_press = be32_to_cpu(tmp) >> 12;
674 	if (adc_press == BME680_MEAS_SKIPPED) {
675 		/* reading was skipped */
676 		dev_err(dev, "reading pressure skipped\n");
677 		return -EINVAL;
678 	}
679 
680 	*val = bme680_compensate_press(data, adc_press);
681 	*val2 = 100;
682 	return IIO_VAL_FRACTIONAL;
683 }
684 
685 static int bme680_read_humid(struct bme680_data *data,
686 			     int *val, int *val2)
687 {
688 	struct device *dev = regmap_get_device(data->regmap);
689 	int ret;
690 	__be16 tmp = 0;
691 	s32 adc_humidity;
692 	u32 comp_humidity;
693 
694 	/* Read and compensate temperature to get a reading of t_fine */
695 	ret = bme680_read_temp(data, NULL);
696 	if (ret < 0)
697 		return ret;
698 
699 	ret = regmap_bulk_read(data->regmap, BM6880_REG_HUMIDITY_MSB,
700 			       &tmp, sizeof(tmp));
701 	if (ret < 0) {
702 		dev_err(dev, "failed to read humidity\n");
703 		return ret;
704 	}
705 
706 	adc_humidity = be16_to_cpu(tmp);
707 	if (adc_humidity == BME680_MEAS_SKIPPED) {
708 		/* reading was skipped */
709 		dev_err(dev, "reading humidity skipped\n");
710 		return -EINVAL;
711 	}
712 	comp_humidity = bme680_compensate_humid(data, adc_humidity);
713 
714 	*val = comp_humidity;
715 	*val2 = 1000;
716 	return IIO_VAL_FRACTIONAL;
717 }
718 
719 static int bme680_read_gas(struct bme680_data *data,
720 			   int *val)
721 {
722 	struct device *dev = regmap_get_device(data->regmap);
723 	int ret;
724 	__be16 tmp = 0;
725 	unsigned int check;
726 	u16 adc_gas_res;
727 	u8 gas_range;
728 
729 	/* Set heater settings */
730 	ret = bme680_gas_config(data);
731 	if (ret < 0) {
732 		dev_err(dev, "failed to set gas config\n");
733 		return ret;
734 	}
735 
736 	/* set forced mode to trigger measurement */
737 	ret = bme680_set_mode(data, true);
738 	if (ret < 0)
739 		return ret;
740 
741 	ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &check);
742 	if (check & BME680_GAS_MEAS_BIT) {
743 		dev_err(dev, "gas measurement incomplete\n");
744 		return -EBUSY;
745 	}
746 
747 	ret = regmap_read(data->regmap, BME680_REG_GAS_R_LSB, &check);
748 	if (ret < 0) {
749 		dev_err(dev, "failed to read gas_r_lsb register\n");
750 		return ret;
751 	}
752 
753 	/*
754 	 * occurs if either the gas heating duration was insuffient
755 	 * to reach the target heater temperature or the target
756 	 * heater temperature was too high for the heater sink to
757 	 * reach.
758 	 */
759 	if ((check & BME680_GAS_STAB_BIT) == 0) {
760 		dev_err(dev, "heater failed to reach the target temperature\n");
761 		return -EINVAL;
762 	}
763 
764 	ret = regmap_bulk_read(data->regmap, BME680_REG_GAS_MSB,
765 			       &tmp, sizeof(tmp));
766 	if (ret < 0) {
767 		dev_err(dev, "failed to read gas resistance\n");
768 		return ret;
769 	}
770 
771 	gas_range = check & BME680_GAS_RANGE_MASK;
772 	adc_gas_res = be16_to_cpu(tmp) >> BME680_ADC_GAS_RES_SHIFT;
773 
774 	*val = bme680_compensate_gas(data, adc_gas_res, gas_range);
775 	return IIO_VAL_INT;
776 }
777 
778 static int bme680_read_raw(struct iio_dev *indio_dev,
779 			   struct iio_chan_spec const *chan,
780 			   int *val, int *val2, long mask)
781 {
782 	struct bme680_data *data = iio_priv(indio_dev);
783 
784 	switch (mask) {
785 	case IIO_CHAN_INFO_PROCESSED:
786 		switch (chan->type) {
787 		case IIO_TEMP:
788 			return bme680_read_temp(data, val);
789 		case IIO_PRESSURE:
790 			return bme680_read_press(data, val, val2);
791 		case IIO_HUMIDITYRELATIVE:
792 			return bme680_read_humid(data, val, val2);
793 		case IIO_RESISTANCE:
794 			return bme680_read_gas(data, val);
795 		default:
796 			return -EINVAL;
797 		}
798 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
799 		switch (chan->type) {
800 		case IIO_TEMP:
801 			*val = data->oversampling_temp;
802 			return IIO_VAL_INT;
803 		case IIO_PRESSURE:
804 			*val = data->oversampling_press;
805 			return IIO_VAL_INT;
806 		case IIO_HUMIDITYRELATIVE:
807 			*val = data->oversampling_humid;
808 			return IIO_VAL_INT;
809 		default:
810 			return -EINVAL;
811 		}
812 	default:
813 		return -EINVAL;
814 	}
815 }
816 
817 static bool bme680_is_valid_oversampling(int rate)
818 {
819 	return (rate > 0 && rate <= 16 && is_power_of_2(rate));
820 }
821 
822 static int bme680_write_raw(struct iio_dev *indio_dev,
823 			    struct iio_chan_spec const *chan,
824 			    int val, int val2, long mask)
825 {
826 	struct bme680_data *data = iio_priv(indio_dev);
827 
828 	if (val2 != 0)
829 		return -EINVAL;
830 
831 	switch (mask) {
832 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
833 	{
834 		if (!bme680_is_valid_oversampling(val))
835 			return -EINVAL;
836 
837 		switch (chan->type) {
838 		case IIO_TEMP:
839 			data->oversampling_temp = val;
840 			break;
841 		case IIO_PRESSURE:
842 			data->oversampling_press = val;
843 			break;
844 		case IIO_HUMIDITYRELATIVE:
845 			data->oversampling_humid = val;
846 			break;
847 		default:
848 			return -EINVAL;
849 		}
850 
851 		return bme680_chip_config(data);
852 	}
853 	default:
854 		return -EINVAL;
855 	}
856 }
857 
858 static const char bme680_oversampling_ratio_show[] = "1 2 4 8 16";
859 
860 static IIO_CONST_ATTR(oversampling_ratio_available,
861 		      bme680_oversampling_ratio_show);
862 
863 static struct attribute *bme680_attributes[] = {
864 	&iio_const_attr_oversampling_ratio_available.dev_attr.attr,
865 	NULL,
866 };
867 
868 static const struct attribute_group bme680_attribute_group = {
869 	.attrs = bme680_attributes,
870 };
871 
872 static const struct iio_info bme680_info = {
873 	.read_raw = &bme680_read_raw,
874 	.write_raw = &bme680_write_raw,
875 	.attrs = &bme680_attribute_group,
876 };
877 
878 static const char *bme680_match_acpi_device(struct device *dev)
879 {
880 	const struct acpi_device_id *id;
881 
882 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
883 	if (!id)
884 		return NULL;
885 
886 	return dev_name(dev);
887 }
888 
889 int bme680_core_probe(struct device *dev, struct regmap *regmap,
890 		      const char *name)
891 {
892 	struct iio_dev *indio_dev;
893 	struct bme680_data *data;
894 	unsigned int val;
895 	int ret;
896 
897 	ret = regmap_write(regmap, BME680_REG_SOFT_RESET,
898 			   BME680_CMD_SOFTRESET);
899 	if (ret < 0) {
900 		dev_err(dev, "Failed to reset chip\n");
901 		return ret;
902 	}
903 
904 	ret = regmap_read(regmap, BME680_REG_CHIP_ID, &val);
905 	if (ret < 0) {
906 		dev_err(dev, "Error reading chip ID\n");
907 		return ret;
908 	}
909 
910 	if (val != BME680_CHIP_ID_VAL) {
911 		dev_err(dev, "Wrong chip ID, got %x expected %x\n",
912 				val, BME680_CHIP_ID_VAL);
913 		return -ENODEV;
914 	}
915 
916 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
917 	if (!indio_dev)
918 		return -ENOMEM;
919 
920 	if (!name && ACPI_HANDLE(dev))
921 		name = bme680_match_acpi_device(dev);
922 
923 	data = iio_priv(indio_dev);
924 	dev_set_drvdata(dev, indio_dev);
925 	data->regmap = regmap;
926 	indio_dev->name = name;
927 	indio_dev->channels = bme680_channels;
928 	indio_dev->num_channels = ARRAY_SIZE(bme680_channels);
929 	indio_dev->info = &bme680_info;
930 	indio_dev->modes = INDIO_DIRECT_MODE;
931 
932 	/* default values for the sensor */
933 	data->oversampling_humid = 2; /* 2X oversampling rate */
934 	data->oversampling_press = 4; /* 4X oversampling rate */
935 	data->oversampling_temp = 8;  /* 8X oversampling rate */
936 	data->heater_temp = 320; /* degree Celsius */
937 	data->heater_dur = 150;  /* milliseconds */
938 
939 	ret = bme680_chip_config(data);
940 	if (ret < 0) {
941 		dev_err(dev, "failed to set chip_config data\n");
942 		return ret;
943 	}
944 
945 	ret = bme680_gas_config(data);
946 	if (ret < 0) {
947 		dev_err(dev, "failed to set gas config data\n");
948 		return ret;
949 	}
950 
951 	ret = bme680_read_calib(data, &data->bme680);
952 	if (ret < 0) {
953 		dev_err(dev,
954 			"failed to read calibration coefficients at probe\n");
955 		return ret;
956 	}
957 
958 	return devm_iio_device_register(dev, indio_dev);
959 }
960 EXPORT_SYMBOL_NS_GPL(bme680_core_probe, IIO_BME680);
961 
962 MODULE_AUTHOR("Himanshu Jha <himanshujha199640@gmail.com>");
963 MODULE_DESCRIPTION("Bosch BME680 Driver");
964 MODULE_LICENSE("GPL v2");
965