1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Invensense, Inc.
4 */
5 
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/i2c.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/sysfs.h>
12 #include <linux/jiffies.h>
13 #include <linux/irq.h>
14 #include <linux/interrupt.h>
15 #include <linux/acpi.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/property.h>
21 
22 #include <linux/iio/common/inv_sensors_timestamp.h>
23 #include <linux/iio/iio.h>
24 
25 #include "inv_mpu_iio.h"
26 #include "inv_mpu_magn.h"
27 
28 /*
29  * this is the gyro scale translated from dynamic range plus/minus
30  * {250, 500, 1000, 2000} to rad/s
31  */
32 static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};
33 
34 /*
35  * this is the accel scale translated from dynamic range plus/minus
36  * {2, 4, 8, 16} to m/s^2
37  */
38 static const int accel_scale[] = {598, 1196, 2392, 4785};
39 
40 static const struct inv_mpu6050_reg_map reg_set_icm20602 = {
41 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
42 	.lpf                    = INV_MPU6050_REG_CONFIG,
43 	.accel_lpf              = INV_MPU6500_REG_ACCEL_CONFIG_2,
44 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
45 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
46 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
47 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
48 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
49 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
50 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
51 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
52 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
53 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
54 	.int_status             = INV_MPU6050_REG_INT_STATUS,
55 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
56 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
57 	.int_pin_cfg            = INV_MPU6050_REG_INT_PIN_CFG,
58 	.accl_offset            = INV_MPU6500_REG_ACCEL_OFFSET,
59 	.gyro_offset            = INV_MPU6050_REG_GYRO_OFFSET,
60 	.i2c_if                 = INV_ICM20602_REG_I2C_IF,
61 };
62 
63 static const struct inv_mpu6050_reg_map reg_set_6500 = {
64 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
65 	.lpf                    = INV_MPU6050_REG_CONFIG,
66 	.accel_lpf              = INV_MPU6500_REG_ACCEL_CONFIG_2,
67 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
68 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
69 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
70 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
71 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
72 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
73 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
74 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
75 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
76 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
77 	.int_status             = INV_MPU6050_REG_INT_STATUS,
78 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
79 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
80 	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
81 	.accl_offset		= INV_MPU6500_REG_ACCEL_OFFSET,
82 	.gyro_offset		= INV_MPU6050_REG_GYRO_OFFSET,
83 	.i2c_if                 = 0,
84 };
85 
86 static const struct inv_mpu6050_reg_map reg_set_6050 = {
87 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
88 	.lpf                    = INV_MPU6050_REG_CONFIG,
89 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
90 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
91 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
92 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
93 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
94 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
95 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
96 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
97 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
98 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
99 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
100 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
101 	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
102 	.accl_offset		= INV_MPU6050_REG_ACCEL_OFFSET,
103 	.gyro_offset		= INV_MPU6050_REG_GYRO_OFFSET,
104 	.i2c_if                 = 0,
105 };
106 
107 static const struct inv_mpu6050_chip_config chip_config_6050 = {
108 	.clk = INV_CLK_INTERNAL,
109 	.fsr = INV_MPU6050_FSR_2000DPS,
110 	.lpf = INV_MPU6050_FILTER_20HZ,
111 	.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
112 	.gyro_en = true,
113 	.accl_en = true,
114 	.temp_en = true,
115 	.magn_en = false,
116 	.gyro_fifo_enable = false,
117 	.accl_fifo_enable = false,
118 	.temp_fifo_enable = false,
119 	.magn_fifo_enable = false,
120 	.accl_fs = INV_MPU6050_FS_02G,
121 	.user_ctrl = 0,
122 };
123 
124 static const struct inv_mpu6050_chip_config chip_config_6500 = {
125 	.clk = INV_CLK_PLL,
126 	.fsr = INV_MPU6050_FSR_2000DPS,
127 	.lpf = INV_MPU6050_FILTER_20HZ,
128 	.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
129 	.gyro_en = true,
130 	.accl_en = true,
131 	.temp_en = true,
132 	.magn_en = false,
133 	.gyro_fifo_enable = false,
134 	.accl_fifo_enable = false,
135 	.temp_fifo_enable = false,
136 	.magn_fifo_enable = false,
137 	.accl_fs = INV_MPU6050_FS_02G,
138 	.user_ctrl = 0,
139 };
140 
141 /* Indexed by enum inv_devices */
142 static const struct inv_mpu6050_hw hw_info[] = {
143 	{
144 		.whoami = INV_MPU6050_WHOAMI_VALUE,
145 		.name = "MPU6050",
146 		.reg = &reg_set_6050,
147 		.config = &chip_config_6050,
148 		.fifo_size = 1024,
149 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
150 		.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
151 	},
152 	{
153 		.whoami = INV_MPU6500_WHOAMI_VALUE,
154 		.name = "MPU6500",
155 		.reg = &reg_set_6500,
156 		.config = &chip_config_6500,
157 		.fifo_size = 512,
158 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
159 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
160 	},
161 	{
162 		.whoami = INV_MPU6515_WHOAMI_VALUE,
163 		.name = "MPU6515",
164 		.reg = &reg_set_6500,
165 		.config = &chip_config_6500,
166 		.fifo_size = 512,
167 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
168 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
169 	},
170 	{
171 		.whoami = INV_MPU6880_WHOAMI_VALUE,
172 		.name = "MPU6880",
173 		.reg = &reg_set_6500,
174 		.config = &chip_config_6500,
175 		.fifo_size = 4096,
176 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
177 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
178 	},
179 	{
180 		.whoami = INV_MPU6000_WHOAMI_VALUE,
181 		.name = "MPU6000",
182 		.reg = &reg_set_6050,
183 		.config = &chip_config_6050,
184 		.fifo_size = 1024,
185 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
186 		.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
187 	},
188 	{
189 		.whoami = INV_MPU9150_WHOAMI_VALUE,
190 		.name = "MPU9150",
191 		.reg = &reg_set_6050,
192 		.config = &chip_config_6050,
193 		.fifo_size = 1024,
194 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
195 		.startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME},
196 	},
197 	{
198 		.whoami = INV_MPU9250_WHOAMI_VALUE,
199 		.name = "MPU9250",
200 		.reg = &reg_set_6500,
201 		.config = &chip_config_6500,
202 		.fifo_size = 512,
203 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
204 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
205 	},
206 	{
207 		.whoami = INV_MPU9255_WHOAMI_VALUE,
208 		.name = "MPU9255",
209 		.reg = &reg_set_6500,
210 		.config = &chip_config_6500,
211 		.fifo_size = 512,
212 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
213 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
214 	},
215 	{
216 		.whoami = INV_ICM20608_WHOAMI_VALUE,
217 		.name = "ICM20608",
218 		.reg = &reg_set_6500,
219 		.config = &chip_config_6500,
220 		.fifo_size = 512,
221 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
222 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
223 	},
224 	{
225 		.whoami = INV_ICM20608D_WHOAMI_VALUE,
226 		.name = "ICM20608D",
227 		.reg = &reg_set_6500,
228 		.config = &chip_config_6500,
229 		.fifo_size = 512,
230 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
231 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
232 	},
233 	{
234 		.whoami = INV_ICM20609_WHOAMI_VALUE,
235 		.name = "ICM20609",
236 		.reg = &reg_set_6500,
237 		.config = &chip_config_6500,
238 		.fifo_size = 4 * 1024,
239 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
240 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
241 	},
242 	{
243 		.whoami = INV_ICM20689_WHOAMI_VALUE,
244 		.name = "ICM20689",
245 		.reg = &reg_set_6500,
246 		.config = &chip_config_6500,
247 		.fifo_size = 4 * 1024,
248 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
249 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
250 	},
251 	{
252 		.whoami = INV_ICM20600_WHOAMI_VALUE,
253 		.name = "ICM20600",
254 		.reg = &reg_set_icm20602,
255 		.config = &chip_config_6500,
256 		.fifo_size = 1008,
257 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
258 		.startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME},
259 	},
260 	{
261 		.whoami = INV_ICM20602_WHOAMI_VALUE,
262 		.name = "ICM20602",
263 		.reg = &reg_set_icm20602,
264 		.config = &chip_config_6500,
265 		.fifo_size = 1008,
266 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
267 		.startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME},
268 	},
269 	{
270 		.whoami = INV_ICM20690_WHOAMI_VALUE,
271 		.name = "ICM20690",
272 		.reg = &reg_set_6500,
273 		.config = &chip_config_6500,
274 		.fifo_size = 1024,
275 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
276 		.startup_time = {INV_ICM20690_GYRO_STARTUP_TIME, INV_ICM20690_ACCEL_STARTUP_TIME},
277 	},
278 	{
279 		.whoami = INV_IAM20680_WHOAMI_VALUE,
280 		.name = "IAM20680",
281 		.reg = &reg_set_6500,
282 		.config = &chip_config_6500,
283 		.fifo_size = 512,
284 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
285 		.startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME},
286 	},
287 };
288 
289 static int inv_mpu6050_pwr_mgmt_1_write(struct inv_mpu6050_state *st, bool sleep,
290 					int clock, int temp_dis)
291 {
292 	u8 val;
293 
294 	if (clock < 0)
295 		clock = st->chip_config.clk;
296 	if (temp_dis < 0)
297 		temp_dis = !st->chip_config.temp_en;
298 
299 	val = clock & INV_MPU6050_BIT_CLK_MASK;
300 	if (temp_dis)
301 		val |= INV_MPU6050_BIT_TEMP_DIS;
302 	if (sleep)
303 		val |= INV_MPU6050_BIT_SLEEP;
304 
305 	dev_dbg(regmap_get_device(st->map), "pwr_mgmt_1: 0x%x\n", val);
306 	return regmap_write(st->map, st->reg->pwr_mgmt_1, val);
307 }
308 
309 static int inv_mpu6050_clock_switch(struct inv_mpu6050_state *st,
310 				    unsigned int clock)
311 {
312 	int ret;
313 
314 	switch (st->chip_type) {
315 	case INV_MPU6050:
316 	case INV_MPU6000:
317 	case INV_MPU9150:
318 		/* old chips: switch clock manually */
319 		ret = inv_mpu6050_pwr_mgmt_1_write(st, false, clock, -1);
320 		if (ret)
321 			return ret;
322 		st->chip_config.clk = clock;
323 		break;
324 	default:
325 		/* automatic clock switching, nothing to do */
326 		break;
327 	}
328 
329 	return 0;
330 }
331 
332 int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en,
333 			      unsigned int mask)
334 {
335 	unsigned int sleep;
336 	u8 pwr_mgmt2, user_ctrl;
337 	int ret;
338 
339 	/* delete useless requests */
340 	if (mask & INV_MPU6050_SENSOR_ACCL && en == st->chip_config.accl_en)
341 		mask &= ~INV_MPU6050_SENSOR_ACCL;
342 	if (mask & INV_MPU6050_SENSOR_GYRO && en == st->chip_config.gyro_en)
343 		mask &= ~INV_MPU6050_SENSOR_GYRO;
344 	if (mask & INV_MPU6050_SENSOR_TEMP && en == st->chip_config.temp_en)
345 		mask &= ~INV_MPU6050_SENSOR_TEMP;
346 	if (mask & INV_MPU6050_SENSOR_MAGN && en == st->chip_config.magn_en)
347 		mask &= ~INV_MPU6050_SENSOR_MAGN;
348 	if (mask == 0)
349 		return 0;
350 
351 	/* turn on/off temperature sensor */
352 	if (mask & INV_MPU6050_SENSOR_TEMP) {
353 		ret = inv_mpu6050_pwr_mgmt_1_write(st, false, -1, !en);
354 		if (ret)
355 			return ret;
356 		st->chip_config.temp_en = en;
357 	}
358 
359 	/* update user_crtl for driving magnetometer */
360 	if (mask & INV_MPU6050_SENSOR_MAGN) {
361 		user_ctrl = st->chip_config.user_ctrl;
362 		if (en)
363 			user_ctrl |= INV_MPU6050_BIT_I2C_MST_EN;
364 		else
365 			user_ctrl &= ~INV_MPU6050_BIT_I2C_MST_EN;
366 		ret = regmap_write(st->map, st->reg->user_ctrl, user_ctrl);
367 		if (ret)
368 			return ret;
369 		st->chip_config.user_ctrl = user_ctrl;
370 		st->chip_config.magn_en = en;
371 	}
372 
373 	/* manage accel & gyro engines */
374 	if (mask & (INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO)) {
375 		/* compute power management 2 current value */
376 		pwr_mgmt2 = 0;
377 		if (!st->chip_config.accl_en)
378 			pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
379 		if (!st->chip_config.gyro_en)
380 			pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
381 
382 		/* update to new requested value */
383 		if (mask & INV_MPU6050_SENSOR_ACCL) {
384 			if (en)
385 				pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_ACCL_STBY;
386 			else
387 				pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
388 		}
389 		if (mask & INV_MPU6050_SENSOR_GYRO) {
390 			if (en)
391 				pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_GYRO_STBY;
392 			else
393 				pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
394 		}
395 
396 		/* switch clock to internal when turning gyro off */
397 		if (mask & INV_MPU6050_SENSOR_GYRO && !en) {
398 			ret = inv_mpu6050_clock_switch(st, INV_CLK_INTERNAL);
399 			if (ret)
400 				return ret;
401 		}
402 
403 		/* update sensors engine */
404 		dev_dbg(regmap_get_device(st->map), "pwr_mgmt_2: 0x%x\n",
405 			pwr_mgmt2);
406 		ret = regmap_write(st->map, st->reg->pwr_mgmt_2, pwr_mgmt2);
407 		if (ret)
408 			return ret;
409 		if (mask & INV_MPU6050_SENSOR_ACCL)
410 			st->chip_config.accl_en = en;
411 		if (mask & INV_MPU6050_SENSOR_GYRO)
412 			st->chip_config.gyro_en = en;
413 
414 		/* compute required time to have sensors stabilized */
415 		sleep = 0;
416 		if (en) {
417 			if (mask & INV_MPU6050_SENSOR_ACCL) {
418 				if (sleep < st->hw->startup_time.accel)
419 					sleep = st->hw->startup_time.accel;
420 			}
421 			if (mask & INV_MPU6050_SENSOR_GYRO) {
422 				if (sleep < st->hw->startup_time.gyro)
423 					sleep = st->hw->startup_time.gyro;
424 			}
425 		} else {
426 			if (mask & INV_MPU6050_SENSOR_GYRO) {
427 				if (sleep < INV_MPU6050_GYRO_DOWN_TIME)
428 					sleep = INV_MPU6050_GYRO_DOWN_TIME;
429 			}
430 		}
431 		if (sleep)
432 			msleep(sleep);
433 
434 		/* switch clock to PLL when turning gyro on */
435 		if (mask & INV_MPU6050_SENSOR_GYRO && en) {
436 			ret = inv_mpu6050_clock_switch(st, INV_CLK_PLL);
437 			if (ret)
438 				return ret;
439 		}
440 	}
441 
442 	return 0;
443 }
444 
445 static int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st,
446 				     bool power_on)
447 {
448 	int result;
449 
450 	result = inv_mpu6050_pwr_mgmt_1_write(st, !power_on, -1, -1);
451 	if (result)
452 		return result;
453 
454 	if (power_on)
455 		usleep_range(INV_MPU6050_REG_UP_TIME_MIN,
456 			     INV_MPU6050_REG_UP_TIME_MAX);
457 
458 	return 0;
459 }
460 
461 static int inv_mpu6050_set_gyro_fsr(struct inv_mpu6050_state *st,
462 				    enum inv_mpu6050_fsr_e val)
463 {
464 	unsigned int gyro_shift;
465 	u8 data;
466 
467 	switch (st->chip_type) {
468 	case INV_ICM20690:
469 		gyro_shift = INV_ICM20690_GYRO_CONFIG_FSR_SHIFT;
470 		break;
471 	default:
472 		gyro_shift = INV_MPU6050_GYRO_CONFIG_FSR_SHIFT;
473 		break;
474 	}
475 
476 	data = val << gyro_shift;
477 	return regmap_write(st->map, st->reg->gyro_config, data);
478 }
479 
480 /*
481  *  inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent
482  *
483  *  MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope
484  *  MPU6500 and above have a dedicated register for accelerometer
485  */
486 static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st,
487 				    enum inv_mpu6050_filter_e val)
488 {
489 	int result;
490 
491 	result = regmap_write(st->map, st->reg->lpf, val);
492 	if (result)
493 		return result;
494 
495 	/* set accel lpf */
496 	switch (st->chip_type) {
497 	case INV_MPU6050:
498 	case INV_MPU6000:
499 	case INV_MPU9150:
500 		/* old chips, nothing to do */
501 		return 0;
502 	case INV_ICM20689:
503 	case INV_ICM20690:
504 		/* set FIFO size to maximum value */
505 		val |= INV_ICM20689_BITS_FIFO_SIZE_MAX;
506 		break;
507 	default:
508 		break;
509 	}
510 
511 	return regmap_write(st->map, st->reg->accel_lpf, val);
512 }
513 
514 /*
515  *  inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
516  *
517  *  Initial configuration:
518  *  FSR: ± 2000DPS
519  *  DLPF: 20Hz
520  *  FIFO rate: 50Hz
521  *  Clock source: Gyro PLL
522  */
523 static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
524 {
525 	int result;
526 	u8 d;
527 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
528 	struct inv_sensors_timestamp_chip timestamp;
529 
530 	result = inv_mpu6050_set_gyro_fsr(st, st->chip_config.fsr);
531 	if (result)
532 		return result;
533 
534 	result = inv_mpu6050_set_lpf_regs(st, st->chip_config.lpf);
535 	if (result)
536 		return result;
537 
538 	d = st->chip_config.divider;
539 	result = regmap_write(st->map, st->reg->sample_rate_div, d);
540 	if (result)
541 		return result;
542 
543 	d = (st->chip_config.accl_fs << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
544 	result = regmap_write(st->map, st->reg->accl_config, d);
545 	if (result)
546 		return result;
547 
548 	result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask);
549 	if (result)
550 		return result;
551 
552 	/* clock jitter is +/- 2% */
553 	timestamp.clock_period = NSEC_PER_SEC / INV_MPU6050_INTERNAL_FREQ_HZ;
554 	timestamp.jitter = 20;
555 	timestamp.init_period =
556 			NSEC_PER_SEC / INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
557 	inv_sensors_timestamp_init(&st->timestamp, &timestamp);
558 
559 	/* magn chip init, noop if not present in the chip */
560 	result = inv_mpu_magn_probe(st);
561 	if (result)
562 		return result;
563 
564 	return 0;
565 }
566 
567 static int inv_mpu6050_sensor_set(struct inv_mpu6050_state  *st, int reg,
568 				int axis, int val)
569 {
570 	int ind;
571 	__be16 d = cpu_to_be16(val);
572 
573 	ind = (axis - IIO_MOD_X) * 2;
574 
575 	return regmap_bulk_write(st->map, reg + ind, &d, sizeof(d));
576 }
577 
578 static int inv_mpu6050_sensor_show(struct inv_mpu6050_state  *st, int reg,
579 				   int axis, int *val)
580 {
581 	int ind, result;
582 	__be16 d;
583 
584 	ind = (axis - IIO_MOD_X) * 2;
585 	result = regmap_bulk_read(st->map, reg + ind, &d, sizeof(d));
586 	if (result)
587 		return result;
588 	*val = (short)be16_to_cpup(&d);
589 
590 	return IIO_VAL_INT;
591 }
592 
593 static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev,
594 					 struct iio_chan_spec const *chan,
595 					 int *val)
596 {
597 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
598 	struct device *pdev = regmap_get_device(st->map);
599 	unsigned int freq_hz, period_us, min_sleep_us, max_sleep_us;
600 	int result;
601 	int ret;
602 
603 	/* compute sample period */
604 	freq_hz = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
605 	period_us = 1000000 / freq_hz;
606 
607 	result = pm_runtime_resume_and_get(pdev);
608 	if (result)
609 		return result;
610 
611 	switch (chan->type) {
612 	case IIO_ANGL_VEL:
613 		if (!st->chip_config.gyro_en) {
614 			result = inv_mpu6050_switch_engine(st, true,
615 					INV_MPU6050_SENSOR_GYRO);
616 			if (result)
617 				goto error_power_off;
618 			/* need to wait 2 periods to have first valid sample */
619 			min_sleep_us = 2 * period_us;
620 			max_sleep_us = 2 * (period_us + period_us / 2);
621 			usleep_range(min_sleep_us, max_sleep_us);
622 		}
623 		ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
624 					      chan->channel2, val);
625 		break;
626 	case IIO_ACCEL:
627 		if (!st->chip_config.accl_en) {
628 			result = inv_mpu6050_switch_engine(st, true,
629 					INV_MPU6050_SENSOR_ACCL);
630 			if (result)
631 				goto error_power_off;
632 			/* wait 1 period for first sample availability */
633 			min_sleep_us = period_us;
634 			max_sleep_us = period_us + period_us / 2;
635 			usleep_range(min_sleep_us, max_sleep_us);
636 		}
637 		ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
638 					      chan->channel2, val);
639 		break;
640 	case IIO_TEMP:
641 		/* temperature sensor work only with accel and/or gyro */
642 		if (!st->chip_config.accl_en && !st->chip_config.gyro_en) {
643 			result = -EBUSY;
644 			goto error_power_off;
645 		}
646 		if (!st->chip_config.temp_en) {
647 			result = inv_mpu6050_switch_engine(st, true,
648 					INV_MPU6050_SENSOR_TEMP);
649 			if (result)
650 				goto error_power_off;
651 			/* wait 1 period for first sample availability */
652 			min_sleep_us = period_us;
653 			max_sleep_us = period_us + period_us / 2;
654 			usleep_range(min_sleep_us, max_sleep_us);
655 		}
656 		ret = inv_mpu6050_sensor_show(st, st->reg->temperature,
657 					      IIO_MOD_X, val);
658 		break;
659 	case IIO_MAGN:
660 		if (!st->chip_config.magn_en) {
661 			result = inv_mpu6050_switch_engine(st, true,
662 					INV_MPU6050_SENSOR_MAGN);
663 			if (result)
664 				goto error_power_off;
665 			/* frequency is limited for magnetometer */
666 			if (freq_hz > INV_MPU_MAGN_FREQ_HZ_MAX) {
667 				freq_hz = INV_MPU_MAGN_FREQ_HZ_MAX;
668 				period_us = 1000000 / freq_hz;
669 			}
670 			/* need to wait 2 periods to have first valid sample */
671 			min_sleep_us = 2 * period_us;
672 			max_sleep_us = 2 * (period_us + period_us / 2);
673 			usleep_range(min_sleep_us, max_sleep_us);
674 		}
675 		ret = inv_mpu_magn_read(st, chan->channel2, val);
676 		break;
677 	default:
678 		ret = -EINVAL;
679 		break;
680 	}
681 
682 	pm_runtime_mark_last_busy(pdev);
683 	pm_runtime_put_autosuspend(pdev);
684 
685 	return ret;
686 
687 error_power_off:
688 	pm_runtime_put_autosuspend(pdev);
689 	return result;
690 }
691 
692 static int
693 inv_mpu6050_read_raw(struct iio_dev *indio_dev,
694 		     struct iio_chan_spec const *chan,
695 		     int *val, int *val2, long mask)
696 {
697 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
698 	int ret = 0;
699 
700 	switch (mask) {
701 	case IIO_CHAN_INFO_RAW:
702 		ret = iio_device_claim_direct_mode(indio_dev);
703 		if (ret)
704 			return ret;
705 		mutex_lock(&st->lock);
706 		ret = inv_mpu6050_read_channel_data(indio_dev, chan, val);
707 		mutex_unlock(&st->lock);
708 		iio_device_release_direct_mode(indio_dev);
709 		return ret;
710 	case IIO_CHAN_INFO_SCALE:
711 		switch (chan->type) {
712 		case IIO_ANGL_VEL:
713 			mutex_lock(&st->lock);
714 			*val  = 0;
715 			*val2 = gyro_scale_6050[st->chip_config.fsr];
716 			mutex_unlock(&st->lock);
717 
718 			return IIO_VAL_INT_PLUS_NANO;
719 		case IIO_ACCEL:
720 			mutex_lock(&st->lock);
721 			*val = 0;
722 			*val2 = accel_scale[st->chip_config.accl_fs];
723 			mutex_unlock(&st->lock);
724 
725 			return IIO_VAL_INT_PLUS_MICRO;
726 		case IIO_TEMP:
727 			*val = st->hw->temp.scale / 1000000;
728 			*val2 = st->hw->temp.scale % 1000000;
729 			return IIO_VAL_INT_PLUS_MICRO;
730 		case IIO_MAGN:
731 			return inv_mpu_magn_get_scale(st, chan, val, val2);
732 		default:
733 			return -EINVAL;
734 		}
735 	case IIO_CHAN_INFO_OFFSET:
736 		switch (chan->type) {
737 		case IIO_TEMP:
738 			*val = st->hw->temp.offset;
739 			return IIO_VAL_INT;
740 		default:
741 			return -EINVAL;
742 		}
743 	case IIO_CHAN_INFO_CALIBBIAS:
744 		switch (chan->type) {
745 		case IIO_ANGL_VEL:
746 			mutex_lock(&st->lock);
747 			ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset,
748 						chan->channel2, val);
749 			mutex_unlock(&st->lock);
750 			return ret;
751 		case IIO_ACCEL:
752 			mutex_lock(&st->lock);
753 			ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset,
754 						chan->channel2, val);
755 			mutex_unlock(&st->lock);
756 			return ret;
757 
758 		default:
759 			return -EINVAL;
760 		}
761 	default:
762 		return -EINVAL;
763 	}
764 }
765 
766 static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val,
767 					int val2)
768 {
769 	int result, i;
770 
771 	if (val != 0)
772 		return -EINVAL;
773 
774 	for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) {
775 		if (gyro_scale_6050[i] == val2) {
776 			result = inv_mpu6050_set_gyro_fsr(st, i);
777 			if (result)
778 				return result;
779 
780 			st->chip_config.fsr = i;
781 			return 0;
782 		}
783 	}
784 
785 	return -EINVAL;
786 }
787 
788 static int inv_write_raw_get_fmt(struct iio_dev *indio_dev,
789 				 struct iio_chan_spec const *chan, long mask)
790 {
791 	switch (mask) {
792 	case IIO_CHAN_INFO_SCALE:
793 		switch (chan->type) {
794 		case IIO_ANGL_VEL:
795 			return IIO_VAL_INT_PLUS_NANO;
796 		default:
797 			return IIO_VAL_INT_PLUS_MICRO;
798 		}
799 	default:
800 		return IIO_VAL_INT_PLUS_MICRO;
801 	}
802 
803 	return -EINVAL;
804 }
805 
806 static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val,
807 					 int val2)
808 {
809 	int result, i;
810 	u8 d;
811 
812 	if (val != 0)
813 		return -EINVAL;
814 
815 	for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) {
816 		if (accel_scale[i] == val2) {
817 			d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
818 			result = regmap_write(st->map, st->reg->accl_config, d);
819 			if (result)
820 				return result;
821 
822 			st->chip_config.accl_fs = i;
823 			return 0;
824 		}
825 	}
826 
827 	return -EINVAL;
828 }
829 
830 static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
831 				 struct iio_chan_spec const *chan,
832 				 int val, int val2, long mask)
833 {
834 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
835 	struct device *pdev = regmap_get_device(st->map);
836 	int result;
837 
838 	/*
839 	 * we should only update scale when the chip is disabled, i.e.
840 	 * not running
841 	 */
842 	result = iio_device_claim_direct_mode(indio_dev);
843 	if (result)
844 		return result;
845 
846 	mutex_lock(&st->lock);
847 	result = pm_runtime_resume_and_get(pdev);
848 	if (result)
849 		goto error_write_raw_unlock;
850 
851 	switch (mask) {
852 	case IIO_CHAN_INFO_SCALE:
853 		switch (chan->type) {
854 		case IIO_ANGL_VEL:
855 			result = inv_mpu6050_write_gyro_scale(st, val, val2);
856 			break;
857 		case IIO_ACCEL:
858 			result = inv_mpu6050_write_accel_scale(st, val, val2);
859 			break;
860 		default:
861 			result = -EINVAL;
862 			break;
863 		}
864 		break;
865 	case IIO_CHAN_INFO_CALIBBIAS:
866 		switch (chan->type) {
867 		case IIO_ANGL_VEL:
868 			result = inv_mpu6050_sensor_set(st,
869 							st->reg->gyro_offset,
870 							chan->channel2, val);
871 			break;
872 		case IIO_ACCEL:
873 			result = inv_mpu6050_sensor_set(st,
874 							st->reg->accl_offset,
875 							chan->channel2, val);
876 			break;
877 		default:
878 			result = -EINVAL;
879 			break;
880 		}
881 		break;
882 	default:
883 		result = -EINVAL;
884 		break;
885 	}
886 
887 	pm_runtime_mark_last_busy(pdev);
888 	pm_runtime_put_autosuspend(pdev);
889 error_write_raw_unlock:
890 	mutex_unlock(&st->lock);
891 	iio_device_release_direct_mode(indio_dev);
892 
893 	return result;
894 }
895 
896 /*
897  *  inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
898  *
899  *                  Based on the Nyquist principle, the bandwidth of the low
900  *                  pass filter must not exceed the signal sampling rate divided
901  *                  by 2, or there would be aliasing.
902  *                  This function basically search for the correct low pass
903  *                  parameters based on the fifo rate, e.g, sampling frequency.
904  *
905  *  lpf is set automatically when setting sampling rate to avoid any aliases.
906  */
907 static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
908 {
909 	static const int hz[] = {400, 200, 90, 40, 20, 10};
910 	static const int d[] = {
911 		INV_MPU6050_FILTER_200HZ, INV_MPU6050_FILTER_100HZ,
912 		INV_MPU6050_FILTER_45HZ, INV_MPU6050_FILTER_20HZ,
913 		INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ
914 	};
915 	int i, result;
916 	u8 data;
917 
918 	data = INV_MPU6050_FILTER_5HZ;
919 	for (i = 0; i < ARRAY_SIZE(hz); ++i) {
920 		if (rate >= hz[i]) {
921 			data = d[i];
922 			break;
923 		}
924 	}
925 	result = inv_mpu6050_set_lpf_regs(st, data);
926 	if (result)
927 		return result;
928 	st->chip_config.lpf = data;
929 
930 	return 0;
931 }
932 
933 /*
934  * inv_mpu6050_fifo_rate_store() - Set fifo rate.
935  */
936 static ssize_t
937 inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr,
938 			    const char *buf, size_t count)
939 {
940 	int fifo_rate;
941 	u32 fifo_period;
942 	bool fifo_on;
943 	u8 d;
944 	int result;
945 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
946 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
947 	struct device *pdev = regmap_get_device(st->map);
948 
949 	if (kstrtoint(buf, 10, &fifo_rate))
950 		return -EINVAL;
951 	if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
952 	    fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
953 		return -EINVAL;
954 
955 	/* compute the chip sample rate divider */
956 	d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(fifo_rate);
957 	/* compute back the fifo rate to handle truncation cases */
958 	fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(d);
959 	fifo_period = NSEC_PER_SEC / fifo_rate;
960 
961 	mutex_lock(&st->lock);
962 	if (d == st->chip_config.divider) {
963 		result = 0;
964 		goto fifo_rate_fail_unlock;
965 	}
966 
967 	fifo_on = st->chip_config.accl_fifo_enable ||
968 		  st->chip_config.gyro_fifo_enable ||
969 		  st->chip_config.magn_fifo_enable;
970 	result = inv_sensors_timestamp_update_odr(&st->timestamp, fifo_period, fifo_on);
971 	if (result)
972 		goto fifo_rate_fail_unlock;
973 
974 	result = pm_runtime_resume_and_get(pdev);
975 	if (result)
976 		goto fifo_rate_fail_unlock;
977 
978 	result = regmap_write(st->map, st->reg->sample_rate_div, d);
979 	if (result)
980 		goto fifo_rate_fail_power_off;
981 	st->chip_config.divider = d;
982 
983 	result = inv_mpu6050_set_lpf(st, fifo_rate);
984 	if (result)
985 		goto fifo_rate_fail_power_off;
986 
987 	/* update rate for magn, noop if not present in chip */
988 	result = inv_mpu_magn_set_rate(st, fifo_rate);
989 	if (result)
990 		goto fifo_rate_fail_power_off;
991 
992 	pm_runtime_mark_last_busy(pdev);
993 fifo_rate_fail_power_off:
994 	pm_runtime_put_autosuspend(pdev);
995 fifo_rate_fail_unlock:
996 	mutex_unlock(&st->lock);
997 	if (result)
998 		return result;
999 
1000 	return count;
1001 }
1002 
1003 /*
1004  * inv_fifo_rate_show() - Get the current sampling rate.
1005  */
1006 static ssize_t
1007 inv_fifo_rate_show(struct device *dev, struct device_attribute *attr,
1008 		   char *buf)
1009 {
1010 	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
1011 	unsigned fifo_rate;
1012 
1013 	mutex_lock(&st->lock);
1014 	fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
1015 	mutex_unlock(&st->lock);
1016 
1017 	return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate);
1018 }
1019 
1020 /*
1021  * inv_attr_show() - calling this function will show current
1022  *                    parameters.
1023  *
1024  * Deprecated in favor of IIO mounting matrix API.
1025  *
1026  * See inv_get_mount_matrix()
1027  */
1028 static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr,
1029 			     char *buf)
1030 {
1031 	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
1032 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
1033 	s8 *m;
1034 
1035 	switch (this_attr->address) {
1036 	/*
1037 	 * In MPU6050, the two matrix are the same because gyro and accel
1038 	 * are integrated in one chip
1039 	 */
1040 	case ATTR_GYRO_MATRIX:
1041 	case ATTR_ACCL_MATRIX:
1042 		m = st->plat_data.orientation;
1043 
1044 		return scnprintf(buf, PAGE_SIZE,
1045 			"%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
1046 			m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
1047 	default:
1048 		return -EINVAL;
1049 	}
1050 }
1051 
1052 /**
1053  * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
1054  *                                  MPU6050 device.
1055  * @indio_dev: The IIO device
1056  * @trig: The new trigger
1057  *
1058  * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
1059  * device, -EINVAL otherwise.
1060  */
1061 static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
1062 					struct iio_trigger *trig)
1063 {
1064 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1065 
1066 	if (st->trig != trig)
1067 		return -EINVAL;
1068 
1069 	return 0;
1070 }
1071 
1072 static const struct iio_mount_matrix *
1073 inv_get_mount_matrix(const struct iio_dev *indio_dev,
1074 		     const struct iio_chan_spec *chan)
1075 {
1076 	struct inv_mpu6050_state *data = iio_priv(indio_dev);
1077 	const struct iio_mount_matrix *matrix;
1078 
1079 	if (chan->type == IIO_MAGN)
1080 		matrix = &data->magn_orient;
1081 	else
1082 		matrix = &data->orientation;
1083 
1084 	return matrix;
1085 }
1086 
1087 static const struct iio_chan_spec_ext_info inv_ext_info[] = {
1088 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix),
1089 	{ }
1090 };
1091 
1092 #define INV_MPU6050_CHAN(_type, _channel2, _index)                    \
1093 	{                                                             \
1094 		.type = _type,                                        \
1095 		.modified = 1,                                        \
1096 		.channel2 = _channel2,                                \
1097 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1098 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |	      \
1099 				      BIT(IIO_CHAN_INFO_CALIBBIAS),   \
1100 		.scan_index = _index,                                 \
1101 		.scan_type = {                                        \
1102 				.sign = 's',                          \
1103 				.realbits = 16,                       \
1104 				.storagebits = 16,                    \
1105 				.shift = 0,                           \
1106 				.endianness = IIO_BE,                 \
1107 			     },                                       \
1108 		.ext_info = inv_ext_info,                             \
1109 	}
1110 
1111 #define INV_MPU6050_TEMP_CHAN(_index)				\
1112 	{							\
1113 		.type = IIO_TEMP,				\
1114 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)	\
1115 				| BIT(IIO_CHAN_INFO_OFFSET)	\
1116 				| BIT(IIO_CHAN_INFO_SCALE),	\
1117 		.scan_index = _index,				\
1118 		.scan_type = {					\
1119 			.sign = 's',				\
1120 			.realbits = 16,				\
1121 			.storagebits = 16,			\
1122 			.shift = 0,				\
1123 			.endianness = IIO_BE,			\
1124 		},						\
1125 	}
1126 
1127 static const struct iio_chan_spec inv_mpu_channels[] = {
1128 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
1129 
1130 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1131 
1132 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1133 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1134 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1135 
1136 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1137 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1138 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1139 };
1140 
1141 #define INV_MPU6050_SCAN_MASK_3AXIS_ACCEL	\
1142 	(BIT(INV_MPU6050_SCAN_ACCL_X)		\
1143 	| BIT(INV_MPU6050_SCAN_ACCL_Y)		\
1144 	| BIT(INV_MPU6050_SCAN_ACCL_Z))
1145 
1146 #define INV_MPU6050_SCAN_MASK_3AXIS_GYRO	\
1147 	(BIT(INV_MPU6050_SCAN_GYRO_X)		\
1148 	| BIT(INV_MPU6050_SCAN_GYRO_Y)		\
1149 	| BIT(INV_MPU6050_SCAN_GYRO_Z))
1150 
1151 #define INV_MPU6050_SCAN_MASK_TEMP		(BIT(INV_MPU6050_SCAN_TEMP))
1152 
1153 static const unsigned long inv_mpu_scan_masks[] = {
1154 	/* 3-axis accel */
1155 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
1156 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1157 	/* 3-axis gyro */
1158 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1159 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1160 	/* 6-axis accel + gyro */
1161 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1162 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1163 		| INV_MPU6050_SCAN_MASK_TEMP,
1164 	0,
1165 };
1166 
1167 #define INV_MPU9X50_MAGN_CHAN(_chan2, _bits, _index)			\
1168 	{								\
1169 		.type = IIO_MAGN,					\
1170 		.modified = 1,						\
1171 		.channel2 = _chan2,					\
1172 		.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) |	\
1173 				      BIT(IIO_CHAN_INFO_RAW),		\
1174 		.scan_index = _index,					\
1175 		.scan_type = {						\
1176 			.sign = 's',					\
1177 			.realbits = _bits,				\
1178 			.storagebits = 16,				\
1179 			.shift = 0,					\
1180 			.endianness = IIO_BE,				\
1181 		},							\
1182 		.ext_info = inv_ext_info,				\
1183 	}
1184 
1185 static const struct iio_chan_spec inv_mpu9150_channels[] = {
1186 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
1187 
1188 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1189 
1190 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1191 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1192 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1193 
1194 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1195 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1196 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1197 
1198 	/* Magnetometer resolution is 13 bits */
1199 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 13, INV_MPU9X50_SCAN_MAGN_X),
1200 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 13, INV_MPU9X50_SCAN_MAGN_Y),
1201 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 13, INV_MPU9X50_SCAN_MAGN_Z),
1202 };
1203 
1204 static const struct iio_chan_spec inv_mpu9250_channels[] = {
1205 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
1206 
1207 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1208 
1209 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1210 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1211 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1212 
1213 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1214 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1215 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1216 
1217 	/* Magnetometer resolution is 16 bits */
1218 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 16, INV_MPU9X50_SCAN_MAGN_X),
1219 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 16, INV_MPU9X50_SCAN_MAGN_Y),
1220 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 16, INV_MPU9X50_SCAN_MAGN_Z),
1221 };
1222 
1223 #define INV_MPU9X50_SCAN_MASK_3AXIS_MAGN	\
1224 	(BIT(INV_MPU9X50_SCAN_MAGN_X)		\
1225 	| BIT(INV_MPU9X50_SCAN_MAGN_Y)		\
1226 	| BIT(INV_MPU9X50_SCAN_MAGN_Z))
1227 
1228 static const unsigned long inv_mpu9x50_scan_masks[] = {
1229 	/* 3-axis accel */
1230 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
1231 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1232 	/* 3-axis gyro */
1233 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1234 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1235 	/* 3-axis magn */
1236 	INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1237 	INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP,
1238 	/* 6-axis accel + gyro */
1239 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1240 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1241 		| INV_MPU6050_SCAN_MASK_TEMP,
1242 	/* 6-axis accel + magn */
1243 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1244 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1245 		| INV_MPU6050_SCAN_MASK_TEMP,
1246 	/* 6-axis gyro + magn */
1247 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1248 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1249 		| INV_MPU6050_SCAN_MASK_TEMP,
1250 	/* 9-axis accel + gyro + magn */
1251 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1252 		| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1253 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1254 		| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1255 		| INV_MPU6050_SCAN_MASK_TEMP,
1256 	0,
1257 };
1258 
1259 static const unsigned long inv_icm20602_scan_masks[] = {
1260 	/* 3-axis accel + temp (mandatory) */
1261 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1262 	/* 3-axis gyro + temp (mandatory) */
1263 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1264 	/* 6-axis accel + gyro + temp (mandatory) */
1265 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1266 		| INV_MPU6050_SCAN_MASK_TEMP,
1267 	0,
1268 };
1269 
1270 /*
1271  * The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and
1272  * INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the
1273  * low-pass filter. Specifically, each of these sampling rates are about twice
1274  * the bandwidth of a corresponding low-pass filter, which should eliminate
1275  * aliasing following the Nyquist principle. By picking a frequency different
1276  * from these, the user risks aliasing effects.
1277  */
1278 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
1279 static IIO_CONST_ATTR(in_anglvel_scale_available,
1280 					  "0.000133090 0.000266181 0.000532362 0.001064724");
1281 static IIO_CONST_ATTR(in_accel_scale_available,
1282 					  "0.000598 0.001196 0.002392 0.004785");
1283 static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
1284 	inv_mpu6050_fifo_rate_store);
1285 
1286 /* Deprecated: kept for userspace backward compatibility. */
1287 static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
1288 	ATTR_GYRO_MATRIX);
1289 static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
1290 	ATTR_ACCL_MATRIX);
1291 
1292 static struct attribute *inv_attributes[] = {
1293 	&iio_dev_attr_in_gyro_matrix.dev_attr.attr,  /* deprecated */
1294 	&iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */
1295 	&iio_dev_attr_sampling_frequency.dev_attr.attr,
1296 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1297 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
1298 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
1299 	NULL,
1300 };
1301 
1302 static const struct attribute_group inv_attribute_group = {
1303 	.attrs = inv_attributes
1304 };
1305 
1306 static int inv_mpu6050_reg_access(struct iio_dev *indio_dev,
1307 				  unsigned int reg,
1308 				  unsigned int writeval,
1309 				  unsigned int *readval)
1310 {
1311 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1312 	int ret;
1313 
1314 	mutex_lock(&st->lock);
1315 	if (readval)
1316 		ret = regmap_read(st->map, reg, readval);
1317 	else
1318 		ret = regmap_write(st->map, reg, writeval);
1319 	mutex_unlock(&st->lock);
1320 
1321 	return ret;
1322 }
1323 
1324 static const struct iio_info mpu_info = {
1325 	.read_raw = &inv_mpu6050_read_raw,
1326 	.write_raw = &inv_mpu6050_write_raw,
1327 	.write_raw_get_fmt = &inv_write_raw_get_fmt,
1328 	.attrs = &inv_attribute_group,
1329 	.validate_trigger = inv_mpu6050_validate_trigger,
1330 	.debugfs_reg_access = &inv_mpu6050_reg_access,
1331 };
1332 
1333 /*
1334  *  inv_check_and_setup_chip() - check and setup chip.
1335  */
1336 static int inv_check_and_setup_chip(struct inv_mpu6050_state *st)
1337 {
1338 	int result;
1339 	unsigned int regval, mask;
1340 	int i;
1341 
1342 	st->hw  = &hw_info[st->chip_type];
1343 	st->reg = hw_info[st->chip_type].reg;
1344 	memcpy(&st->chip_config, hw_info[st->chip_type].config,
1345 	       sizeof(st->chip_config));
1346 	st->data = devm_kzalloc(regmap_get_device(st->map), st->hw->fifo_size, GFP_KERNEL);
1347 	if (st->data == NULL)
1348 		return -ENOMEM;
1349 
1350 	/* check chip self-identification */
1351 	result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, &regval);
1352 	if (result)
1353 		return result;
1354 	if (regval != st->hw->whoami) {
1355 		/* check whoami against all possible values */
1356 		for (i = 0; i < INV_NUM_PARTS; ++i) {
1357 			if (regval == hw_info[i].whoami) {
1358 				dev_warn(regmap_get_device(st->map),
1359 					"whoami mismatch got 0x%02x (%s) expected 0x%02x (%s)\n",
1360 					regval, hw_info[i].name,
1361 					st->hw->whoami, st->hw->name);
1362 				break;
1363 			}
1364 		}
1365 		if (i >= INV_NUM_PARTS) {
1366 			dev_err(regmap_get_device(st->map),
1367 				"invalid whoami 0x%02x expected 0x%02x (%s)\n",
1368 				regval, st->hw->whoami, st->hw->name);
1369 			return -ENODEV;
1370 		}
1371 	}
1372 
1373 	/* reset to make sure previous state are not there */
1374 	result = regmap_write(st->map, st->reg->pwr_mgmt_1,
1375 			      INV_MPU6050_BIT_H_RESET);
1376 	if (result)
1377 		return result;
1378 	msleep(INV_MPU6050_POWER_UP_TIME);
1379 	switch (st->chip_type) {
1380 	case INV_MPU6000:
1381 	case INV_MPU6500:
1382 	case INV_MPU6515:
1383 	case INV_MPU6880:
1384 	case INV_MPU9250:
1385 	case INV_MPU9255:
1386 		/* reset signal path (required for spi connection) */
1387 		regval = INV_MPU6050_BIT_TEMP_RST | INV_MPU6050_BIT_ACCEL_RST |
1388 			 INV_MPU6050_BIT_GYRO_RST;
1389 		result = regmap_write(st->map, INV_MPU6050_REG_SIGNAL_PATH_RESET,
1390 				      regval);
1391 		if (result)
1392 			return result;
1393 		msleep(INV_MPU6050_POWER_UP_TIME);
1394 		break;
1395 	default:
1396 		break;
1397 	}
1398 
1399 	/*
1400 	 * Turn power on. After reset, the sleep bit could be on
1401 	 * or off depending on the OTP settings. Turning power on
1402 	 * make it in a definite state as well as making the hardware
1403 	 * state align with the software state
1404 	 */
1405 	result = inv_mpu6050_set_power_itg(st, true);
1406 	if (result)
1407 		return result;
1408 	mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
1409 			INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN;
1410 	result = inv_mpu6050_switch_engine(st, false, mask);
1411 	if (result)
1412 		goto error_power_off;
1413 
1414 	return 0;
1415 
1416 error_power_off:
1417 	inv_mpu6050_set_power_itg(st, false);
1418 	return result;
1419 }
1420 
1421 static int inv_mpu_core_enable_regulator_vddio(struct inv_mpu6050_state *st)
1422 {
1423 	int result;
1424 
1425 	result = regulator_enable(st->vddio_supply);
1426 	if (result) {
1427 		dev_err(regmap_get_device(st->map),
1428 			"Failed to enable vddio regulator: %d\n", result);
1429 	} else {
1430 		/* Give the device a little bit of time to start up. */
1431 		usleep_range(3000, 5000);
1432 	}
1433 
1434 	return result;
1435 }
1436 
1437 static int inv_mpu_core_disable_regulator_vddio(struct inv_mpu6050_state *st)
1438 {
1439 	int result;
1440 
1441 	result = regulator_disable(st->vddio_supply);
1442 	if (result)
1443 		dev_err(regmap_get_device(st->map),
1444 			"Failed to disable vddio regulator: %d\n", result);
1445 
1446 	return result;
1447 }
1448 
1449 static void inv_mpu_core_disable_regulator_action(void *_data)
1450 {
1451 	struct inv_mpu6050_state *st = _data;
1452 	int result;
1453 
1454 	result = regulator_disable(st->vdd_supply);
1455 	if (result)
1456 		dev_err(regmap_get_device(st->map),
1457 			"Failed to disable vdd regulator: %d\n", result);
1458 
1459 	inv_mpu_core_disable_regulator_vddio(st);
1460 }
1461 
1462 static void inv_mpu_pm_disable(void *data)
1463 {
1464 	struct device *dev = data;
1465 
1466 	pm_runtime_disable(dev);
1467 }
1468 
1469 int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name,
1470 		int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type)
1471 {
1472 	struct inv_mpu6050_state *st;
1473 	struct iio_dev *indio_dev;
1474 	struct inv_mpu6050_platform_data *pdata;
1475 	struct device *dev = regmap_get_device(regmap);
1476 	int result;
1477 	struct irq_data *desc;
1478 	int irq_type;
1479 
1480 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1481 	if (!indio_dev)
1482 		return -ENOMEM;
1483 
1484 	BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS);
1485 	if (chip_type < 0 || chip_type >= INV_NUM_PARTS) {
1486 		dev_err(dev, "Bad invensense chip_type=%d name=%s\n",
1487 				chip_type, name);
1488 		return -ENODEV;
1489 	}
1490 	st = iio_priv(indio_dev);
1491 	mutex_init(&st->lock);
1492 	st->chip_type = chip_type;
1493 	st->irq = irq;
1494 	st->map = regmap;
1495 
1496 	st->level_shifter = device_property_read_bool(dev,
1497 						      "invensense,level-shifter");
1498 	pdata = dev_get_platdata(dev);
1499 	if (!pdata) {
1500 		result = iio_read_mount_matrix(dev, &st->orientation);
1501 		if (result) {
1502 			dev_err(dev, "Failed to retrieve mounting matrix %d\n",
1503 				result);
1504 			return result;
1505 		}
1506 	} else {
1507 		st->plat_data = *pdata;
1508 	}
1509 
1510 	if (irq > 0) {
1511 		desc = irq_get_irq_data(irq);
1512 		if (!desc) {
1513 			dev_err(dev, "Could not find IRQ %d\n", irq);
1514 			return -EINVAL;
1515 		}
1516 
1517 		irq_type = irqd_get_trigger_type(desc);
1518 		if (!irq_type)
1519 			irq_type = IRQF_TRIGGER_RISING;
1520 	} else {
1521 		/* Doesn't really matter, use the default */
1522 		irq_type = IRQF_TRIGGER_RISING;
1523 	}
1524 
1525 	if (irq_type & IRQF_TRIGGER_RISING)	// rising or both-edge
1526 		st->irq_mask = INV_MPU6050_ACTIVE_HIGH;
1527 	else if (irq_type == IRQF_TRIGGER_FALLING)
1528 		st->irq_mask = INV_MPU6050_ACTIVE_LOW;
1529 	else if (irq_type == IRQF_TRIGGER_HIGH)
1530 		st->irq_mask = INV_MPU6050_ACTIVE_HIGH |
1531 			INV_MPU6050_LATCH_INT_EN;
1532 	else if (irq_type == IRQF_TRIGGER_LOW)
1533 		st->irq_mask = INV_MPU6050_ACTIVE_LOW |
1534 			INV_MPU6050_LATCH_INT_EN;
1535 	else {
1536 		dev_err(dev, "Invalid interrupt type 0x%x specified\n",
1537 			irq_type);
1538 		return -EINVAL;
1539 	}
1540 
1541 	st->vdd_supply = devm_regulator_get(dev, "vdd");
1542 	if (IS_ERR(st->vdd_supply))
1543 		return dev_err_probe(dev, PTR_ERR(st->vdd_supply),
1544 				     "Failed to get vdd regulator\n");
1545 
1546 	st->vddio_supply = devm_regulator_get(dev, "vddio");
1547 	if (IS_ERR(st->vddio_supply))
1548 		return dev_err_probe(dev, PTR_ERR(st->vddio_supply),
1549 				     "Failed to get vddio regulator\n");
1550 
1551 	result = regulator_enable(st->vdd_supply);
1552 	if (result) {
1553 		dev_err(dev, "Failed to enable vdd regulator: %d\n", result);
1554 		return result;
1555 	}
1556 	msleep(INV_MPU6050_POWER_UP_TIME);
1557 
1558 	result = inv_mpu_core_enable_regulator_vddio(st);
1559 	if (result) {
1560 		regulator_disable(st->vdd_supply);
1561 		return result;
1562 	}
1563 
1564 	result = devm_add_action_or_reset(dev, inv_mpu_core_disable_regulator_action,
1565 				 st);
1566 	if (result) {
1567 		dev_err(dev, "Failed to setup regulator cleanup action %d\n",
1568 			result);
1569 		return result;
1570 	}
1571 
1572 	/* fill magnetometer orientation */
1573 	result = inv_mpu_magn_set_orient(st);
1574 	if (result)
1575 		return result;
1576 
1577 	/* power is turned on inside check chip type*/
1578 	result = inv_check_and_setup_chip(st);
1579 	if (result)
1580 		return result;
1581 
1582 	result = inv_mpu6050_init_config(indio_dev);
1583 	if (result) {
1584 		dev_err(dev, "Could not initialize device.\n");
1585 		goto error_power_off;
1586 	}
1587 
1588 	dev_set_drvdata(dev, indio_dev);
1589 	/* name will be NULL when enumerated via ACPI */
1590 	if (name)
1591 		indio_dev->name = name;
1592 	else
1593 		indio_dev->name = dev_name(dev);
1594 
1595 	/* requires parent device set in indio_dev */
1596 	if (inv_mpu_bus_setup) {
1597 		result = inv_mpu_bus_setup(indio_dev);
1598 		if (result)
1599 			goto error_power_off;
1600 	}
1601 
1602 	/* chip init is done, turning on runtime power management */
1603 	result = pm_runtime_set_active(dev);
1604 	if (result)
1605 		goto error_power_off;
1606 	pm_runtime_get_noresume(dev);
1607 	pm_runtime_enable(dev);
1608 	pm_runtime_set_autosuspend_delay(dev, INV_MPU6050_SUSPEND_DELAY_MS);
1609 	pm_runtime_use_autosuspend(dev);
1610 	pm_runtime_put(dev);
1611 	result = devm_add_action_or_reset(dev, inv_mpu_pm_disable, dev);
1612 	if (result)
1613 		return result;
1614 
1615 	switch (chip_type) {
1616 	case INV_MPU9150:
1617 		indio_dev->channels = inv_mpu9150_channels;
1618 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu9150_channels);
1619 		indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
1620 		break;
1621 	case INV_MPU9250:
1622 	case INV_MPU9255:
1623 		indio_dev->channels = inv_mpu9250_channels;
1624 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu9250_channels);
1625 		indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
1626 		break;
1627 	case INV_ICM20600:
1628 	case INV_ICM20602:
1629 		indio_dev->channels = inv_mpu_channels;
1630 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1631 		indio_dev->available_scan_masks = inv_icm20602_scan_masks;
1632 		break;
1633 	default:
1634 		indio_dev->channels = inv_mpu_channels;
1635 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1636 		indio_dev->available_scan_masks = inv_mpu_scan_masks;
1637 		break;
1638 	}
1639 	/*
1640 	 * Use magnetometer inside the chip only if there is no i2c
1641 	 * auxiliary device in use. Otherwise Going back to 6-axis only.
1642 	 */
1643 	if (st->magn_disabled) {
1644 		indio_dev->channels = inv_mpu_channels;
1645 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1646 		indio_dev->available_scan_masks = inv_mpu_scan_masks;
1647 	}
1648 
1649 	indio_dev->info = &mpu_info;
1650 
1651 	if (irq > 0) {
1652 		/*
1653 		 * The driver currently only supports buffered capture with its
1654 		 * own trigger. So no IRQ, no trigger, no buffer
1655 		 */
1656 		result = devm_iio_triggered_buffer_setup(dev, indio_dev,
1657 							 iio_pollfunc_store_time,
1658 							 inv_mpu6050_read_fifo,
1659 							 NULL);
1660 		if (result) {
1661 			dev_err(dev, "configure buffer fail %d\n", result);
1662 			return result;
1663 		}
1664 
1665 		result = inv_mpu6050_probe_trigger(indio_dev, irq_type);
1666 		if (result) {
1667 			dev_err(dev, "trigger probe fail %d\n", result);
1668 			return result;
1669 		}
1670 	}
1671 
1672 	result = devm_iio_device_register(dev, indio_dev);
1673 	if (result) {
1674 		dev_err(dev, "IIO register fail %d\n", result);
1675 		return result;
1676 	}
1677 
1678 	return 0;
1679 
1680 error_power_off:
1681 	inv_mpu6050_set_power_itg(st, false);
1682 	return result;
1683 }
1684 EXPORT_SYMBOL_NS_GPL(inv_mpu_core_probe, IIO_MPU6050);
1685 
1686 static int inv_mpu_resume(struct device *dev)
1687 {
1688 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1689 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1690 	int result;
1691 
1692 	mutex_lock(&st->lock);
1693 	result = inv_mpu_core_enable_regulator_vddio(st);
1694 	if (result)
1695 		goto out_unlock;
1696 
1697 	result = inv_mpu6050_set_power_itg(st, true);
1698 	if (result)
1699 		goto out_unlock;
1700 
1701 	pm_runtime_disable(dev);
1702 	pm_runtime_set_active(dev);
1703 	pm_runtime_enable(dev);
1704 
1705 	result = inv_mpu6050_switch_engine(st, true, st->suspended_sensors);
1706 	if (result)
1707 		goto out_unlock;
1708 
1709 	if (iio_buffer_enabled(indio_dev))
1710 		result = inv_mpu6050_prepare_fifo(st, true);
1711 
1712 out_unlock:
1713 	mutex_unlock(&st->lock);
1714 
1715 	return result;
1716 }
1717 
1718 static int inv_mpu_suspend(struct device *dev)
1719 {
1720 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1721 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1722 	int result;
1723 
1724 	mutex_lock(&st->lock);
1725 
1726 	st->suspended_sensors = 0;
1727 	if (pm_runtime_suspended(dev)) {
1728 		result = 0;
1729 		goto out_unlock;
1730 	}
1731 
1732 	if (iio_buffer_enabled(indio_dev)) {
1733 		result = inv_mpu6050_prepare_fifo(st, false);
1734 		if (result)
1735 			goto out_unlock;
1736 	}
1737 
1738 	if (st->chip_config.accl_en)
1739 		st->suspended_sensors |= INV_MPU6050_SENSOR_ACCL;
1740 	if (st->chip_config.gyro_en)
1741 		st->suspended_sensors |= INV_MPU6050_SENSOR_GYRO;
1742 	if (st->chip_config.temp_en)
1743 		st->suspended_sensors |= INV_MPU6050_SENSOR_TEMP;
1744 	if (st->chip_config.magn_en)
1745 		st->suspended_sensors |= INV_MPU6050_SENSOR_MAGN;
1746 	result = inv_mpu6050_switch_engine(st, false, st->suspended_sensors);
1747 	if (result)
1748 		goto out_unlock;
1749 
1750 	result = inv_mpu6050_set_power_itg(st, false);
1751 	if (result)
1752 		goto out_unlock;
1753 
1754 	inv_mpu_core_disable_regulator_vddio(st);
1755 out_unlock:
1756 	mutex_unlock(&st->lock);
1757 
1758 	return result;
1759 }
1760 
1761 static int inv_mpu_runtime_suspend(struct device *dev)
1762 {
1763 	struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
1764 	unsigned int sensors;
1765 	int ret;
1766 
1767 	mutex_lock(&st->lock);
1768 
1769 	sensors = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
1770 			INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN;
1771 	ret = inv_mpu6050_switch_engine(st, false, sensors);
1772 	if (ret)
1773 		goto out_unlock;
1774 
1775 	ret = inv_mpu6050_set_power_itg(st, false);
1776 	if (ret)
1777 		goto out_unlock;
1778 
1779 	inv_mpu_core_disable_regulator_vddio(st);
1780 
1781 out_unlock:
1782 	mutex_unlock(&st->lock);
1783 	return ret;
1784 }
1785 
1786 static int inv_mpu_runtime_resume(struct device *dev)
1787 {
1788 	struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
1789 	int ret;
1790 
1791 	ret = inv_mpu_core_enable_regulator_vddio(st);
1792 	if (ret)
1793 		return ret;
1794 
1795 	return inv_mpu6050_set_power_itg(st, true);
1796 }
1797 
1798 EXPORT_NS_GPL_DEV_PM_OPS(inv_mpu_pmops, IIO_MPU6050) = {
1799 	SYSTEM_SLEEP_PM_OPS(inv_mpu_suspend, inv_mpu_resume)
1800 	RUNTIME_PM_OPS(inv_mpu_runtime_suspend, inv_mpu_runtime_resume, NULL)
1801 };
1802 
1803 MODULE_AUTHOR("Invensense Corporation");
1804 MODULE_DESCRIPTION("Invensense device MPU6050 driver");
1805 MODULE_LICENSE("GPL");
1806 MODULE_IMPORT_NS(IIO_INV_SENSORS_TIMESTAMP);
1807