xref: /linux/drivers/iio/temperature/ltc2983.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4  * driver
5  *
6  * Copyright 2019 Analog Devices Inc.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/iio/iio.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20 
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23 
24 /* register map */
25 #define LTC2983_STATUS_REG			0x0000
26 #define LTC2983_TEMP_RES_START_REG		0x0010
27 #define LTC2983_TEMP_RES_END_REG		0x005F
28 #define LTC2983_EEPROM_KEY_REG			0x00B0
29 #define LTC2983_EEPROM_READ_STATUS_REG		0x00D0
30 #define LTC2983_GLOBAL_CONFIG_REG		0x00F0
31 #define LTC2983_MULT_CHANNEL_START_REG		0x00F4
32 #define LTC2983_MULT_CHANNEL_END_REG		0x00F7
33 #define LTC2986_EEPROM_STATUS_REG		0x00F9
34 #define LTC2983_MUX_CONFIG_REG			0x00FF
35 #define LTC2983_CHAN_ASSIGN_START_REG		0x0200
36 #define LTC2983_CHAN_ASSIGN_END_REG		0x024F
37 #define LTC2983_CUST_SENS_TBL_START_REG		0x0250
38 #define LTC2983_CUST_SENS_TBL_END_REG		0x03CF
39 
40 #define LTC2983_DIFFERENTIAL_CHAN_MIN		2
41 #define LTC2983_MIN_CHANNELS_NR			1
42 #define LTC2983_SLEEP				0x97
43 #define LTC2983_CUSTOM_STEINHART_SIZE		24
44 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ		6
45 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ	4
46 
47 #define LTC2983_EEPROM_KEY			0xA53C0F5A
48 #define LTC2983_EEPROM_WRITE_CMD		0x15
49 #define LTC2983_EEPROM_READ_CMD			0x16
50 #define LTC2983_EEPROM_STATUS_FAILURE_MASK	GENMASK(3, 1)
51 #define LTC2983_EEPROM_READ_FAILURE_MASK	GENMASK(7, 0)
52 
53 #define LTC2983_EEPROM_WRITE_TIME_MS		2600
54 #define LTC2983_EEPROM_READ_TIME_MS		20
55 
56 #define LTC2983_CHAN_START_ADDR(chan) \
57 			(((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
58 #define LTC2983_CHAN_RES_ADDR(chan) \
59 			(((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
60 #define LTC2983_THERMOCOUPLE_DIFF_MASK		BIT(3)
61 #define LTC2983_THERMOCOUPLE_SGL(x) \
62 				FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
63 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK	GENMASK(1, 0)
64 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
65 				FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
66 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK	BIT(2)
67 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
68 			FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
69 
70 #define LTC2983_THERMISTOR_DIFF_MASK		BIT(2)
71 #define LTC2983_THERMISTOR_SGL(x) \
72 				FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
73 #define LTC2983_THERMISTOR_R_SHARE_MASK		BIT(1)
74 #define LTC2983_THERMISTOR_R_SHARE(x) \
75 				FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
76 #define LTC2983_THERMISTOR_C_ROTATE_MASK	BIT(0)
77 #define LTC2983_THERMISTOR_C_ROTATE(x) \
78 				FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
79 
80 #define LTC2983_DIODE_DIFF_MASK			BIT(2)
81 #define LTC2983_DIODE_SGL(x) \
82 			FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
83 #define LTC2983_DIODE_3_CONV_CYCLE_MASK		BIT(1)
84 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
85 				FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
86 #define LTC2983_DIODE_AVERAGE_ON_MASK		BIT(0)
87 #define LTC2983_DIODE_AVERAGE_ON(x) \
88 				FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
89 
90 #define LTC2983_RTD_4_WIRE_MASK			BIT(3)
91 #define LTC2983_RTD_ROTATION_MASK		BIT(1)
92 #define LTC2983_RTD_C_ROTATE(x) \
93 			FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
94 #define LTC2983_RTD_KELVIN_R_SENSE_MASK		GENMASK(3, 2)
95 #define LTC2983_RTD_N_WIRES_MASK		GENMASK(3, 2)
96 #define LTC2983_RTD_N_WIRES(x) \
97 			FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
98 #define LTC2983_RTD_R_SHARE_MASK		BIT(0)
99 #define LTC2983_RTD_R_SHARE(x) \
100 			FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
101 
102 #define LTC2983_COMMON_HARD_FAULT_MASK	GENMASK(31, 30)
103 #define LTC2983_COMMON_SOFT_FAULT_MASK	GENMASK(27, 25)
104 
105 #define	LTC2983_STATUS_START_MASK	BIT(7)
106 #define	LTC2983_STATUS_START(x)		FIELD_PREP(LTC2983_STATUS_START_MASK, x)
107 #define	LTC2983_STATUS_UP_MASK		GENMASK(7, 6)
108 #define	LTC2983_STATUS_UP(reg)		FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
109 
110 #define	LTC2983_STATUS_CHAN_SEL_MASK	GENMASK(4, 0)
111 #define	LTC2983_STATUS_CHAN_SEL(x) \
112 				FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
113 
114 #define LTC2983_TEMP_UNITS_MASK		BIT(2)
115 #define LTC2983_TEMP_UNITS(x)		FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
116 
117 #define LTC2983_NOTCH_FREQ_MASK		GENMASK(1, 0)
118 #define LTC2983_NOTCH_FREQ(x)		FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
119 
120 #define LTC2983_RES_VALID_MASK		BIT(24)
121 #define LTC2983_DATA_MASK		GENMASK(23, 0)
122 #define LTC2983_DATA_SIGN_BIT		23
123 
124 #define LTC2983_CHAN_TYPE_MASK		GENMASK(31, 27)
125 #define LTC2983_CHAN_TYPE(x)		FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
126 
127 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
128 #define LTC2983_CHAN_ASSIGN_MASK	GENMASK(26, 22)
129 #define LTC2983_CHAN_ASSIGN(x)		FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
130 
131 #define LTC2983_CUSTOM_LEN_MASK		GENMASK(5, 0)
132 #define LTC2983_CUSTOM_LEN(x)		FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
133 
134 #define LTC2983_CUSTOM_ADDR_MASK	GENMASK(11, 6)
135 #define LTC2983_CUSTOM_ADDR(x)		FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
136 
137 #define LTC2983_THERMOCOUPLE_CFG_MASK	GENMASK(21, 18)
138 #define LTC2983_THERMOCOUPLE_CFG(x) \
139 				FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
140 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK	GENMASK(31, 29)
141 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK	GENMASK(28, 25)
142 
143 #define LTC2983_RTD_CFG_MASK		GENMASK(21, 18)
144 #define LTC2983_RTD_CFG(x)		FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
145 #define LTC2983_RTD_EXC_CURRENT_MASK	GENMASK(17, 14)
146 #define LTC2983_RTD_EXC_CURRENT(x) \
147 				FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
148 #define LTC2983_RTD_CURVE_MASK		GENMASK(13, 12)
149 #define LTC2983_RTD_CURVE(x)		FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
150 
151 #define LTC2983_THERMISTOR_CFG_MASK	GENMASK(21, 19)
152 #define LTC2983_THERMISTOR_CFG(x) \
153 				FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
154 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK	GENMASK(18, 15)
155 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
156 			FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
157 
158 #define LTC2983_DIODE_CFG_MASK		GENMASK(26, 24)
159 #define LTC2983_DIODE_CFG(x)		FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
160 #define LTC2983_DIODE_EXC_CURRENT_MASK	GENMASK(23, 22)
161 #define LTC2983_DIODE_EXC_CURRENT(x) \
162 				FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
163 #define LTC2983_DIODE_IDEAL_FACTOR_MASK	GENMASK(21, 0)
164 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
165 				FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
166 
167 #define LTC2983_R_SENSE_VAL_MASK	GENMASK(26, 0)
168 #define LTC2983_R_SENSE_VAL(x)		FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
169 
170 #define LTC2983_ADC_SINGLE_ENDED_MASK	BIT(26)
171 #define LTC2983_ADC_SINGLE_ENDED(x) \
172 				FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
173 
174 enum {
175 	LTC2983_SENSOR_THERMOCOUPLE = 1,
176 	LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
177 	LTC2983_SENSOR_RTD = 10,
178 	LTC2983_SENSOR_RTD_CUSTOM = 18,
179 	LTC2983_SENSOR_THERMISTOR = 19,
180 	LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
181 	LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
182 	LTC2983_SENSOR_DIODE = 28,
183 	LTC2983_SENSOR_SENSE_RESISTOR = 29,
184 	LTC2983_SENSOR_DIRECT_ADC = 30,
185 	LTC2983_SENSOR_ACTIVE_TEMP = 31,
186 };
187 
188 #define to_thermocouple(_sensor) \
189 		container_of(_sensor, struct ltc2983_thermocouple, sensor)
190 
191 #define to_rtd(_sensor) \
192 		container_of(_sensor, struct ltc2983_rtd, sensor)
193 
194 #define to_thermistor(_sensor) \
195 		container_of(_sensor, struct ltc2983_thermistor, sensor)
196 
197 #define to_diode(_sensor) \
198 		container_of(_sensor, struct ltc2983_diode, sensor)
199 
200 #define to_rsense(_sensor) \
201 		container_of(_sensor, struct ltc2983_rsense, sensor)
202 
203 #define to_adc(_sensor) \
204 		container_of(_sensor, struct ltc2983_adc, sensor)
205 
206 #define to_temp(_sensor) \
207 		container_of(_sensor, struct ltc2983_temp, sensor)
208 
209 struct ltc2983_chip_info {
210 	const char *name;
211 	unsigned int max_channels_nr;
212 	bool has_temp;
213 	bool has_eeprom;
214 };
215 
216 struct ltc2983_data {
217 	const struct ltc2983_chip_info *info;
218 	struct regmap *regmap;
219 	struct spi_device *spi;
220 	struct mutex lock;
221 	struct completion completion;
222 	struct iio_chan_spec *iio_chan;
223 	struct ltc2983_sensor **sensors;
224 	u32 mux_delay_config;
225 	u32 filter_notch_freq;
226 	u16 custom_table_size;
227 	u8 num_channels;
228 	u8 iio_channels;
229 	/*
230 	 * DMA (thus cache coherency maintenance) may require the
231 	 * transfer buffers to live in their own cache lines.
232 	 * Holds the converted temperature
233 	 */
234 	__be32 temp __aligned(IIO_DMA_MINALIGN);
235 	__be32 chan_val;
236 	__be32 eeprom_key;
237 };
238 
239 struct ltc2983_sensor {
240 	int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
241 	int (*assign_chan)(struct ltc2983_data *st,
242 			   const struct ltc2983_sensor *sensor);
243 	/* specifies the sensor channel */
244 	u32 chan;
245 	/* sensor type */
246 	u32 type;
247 };
248 
249 struct ltc2983_custom_sensor {
250 	/* raw table sensor data */
251 	void *table;
252 	size_t size;
253 	/* address offset */
254 	s8 offset;
255 	bool is_steinhart;
256 };
257 
258 struct ltc2983_thermocouple {
259 	struct ltc2983_sensor sensor;
260 	struct ltc2983_custom_sensor *custom;
261 	u32 sensor_config;
262 	u32 cold_junction_chan;
263 };
264 
265 struct ltc2983_rtd {
266 	struct ltc2983_sensor sensor;
267 	struct ltc2983_custom_sensor *custom;
268 	u32 sensor_config;
269 	u32 r_sense_chan;
270 	u32 excitation_current;
271 	u32 rtd_curve;
272 };
273 
274 struct ltc2983_thermistor {
275 	struct ltc2983_sensor sensor;
276 	struct ltc2983_custom_sensor *custom;
277 	u32 sensor_config;
278 	u32 r_sense_chan;
279 	u32 excitation_current;
280 };
281 
282 struct ltc2983_diode {
283 	struct ltc2983_sensor sensor;
284 	u32 sensor_config;
285 	u32 excitation_current;
286 	u32 ideal_factor_value;
287 };
288 
289 struct ltc2983_rsense {
290 	struct ltc2983_sensor sensor;
291 	u32 r_sense_val;
292 };
293 
294 struct ltc2983_adc {
295 	struct ltc2983_sensor sensor;
296 	bool single_ended;
297 };
298 
299 struct ltc2983_temp {
300 	struct ltc2983_sensor sensor;
301 	struct ltc2983_custom_sensor *custom;
302 	bool single_ended;
303 };
304 
305 /*
306  * Convert to Q format numbers. These number's are integers where
307  * the number of integer and fractional bits are specified. The resolution
308  * is given by 1/@resolution and tell us the number of fractional bits. For
309  * instance a resolution of 2^-10 means we have 10 fractional bits.
310  */
311 static u32 __convert_to_raw(const u64 val, const u32 resolution)
312 {
313 	u64 __res = val * resolution;
314 
315 	/* all values are multiplied by 1000000 to remove the fraction */
316 	do_div(__res, 1000000);
317 
318 	return __res;
319 }
320 
321 static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
322 {
323 	s64 __res = -(s32)val;
324 
325 	__res = __convert_to_raw(__res, resolution);
326 
327 	return (u32)-__res;
328 }
329 
330 static int __ltc2983_fault_handler(const struct ltc2983_data *st,
331 				   const u32 result, const u32 hard_mask,
332 				   const u32 soft_mask)
333 {
334 	const struct device *dev = &st->spi->dev;
335 
336 	if (result & hard_mask) {
337 		dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
338 		return -EIO;
339 	} else if (result & soft_mask) {
340 		/* just print a warning */
341 		dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
342 	}
343 
344 	return 0;
345 }
346 
347 static int __ltc2983_chan_assign_common(struct ltc2983_data *st,
348 					const struct ltc2983_sensor *sensor,
349 					u32 chan_val)
350 {
351 	u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
352 
353 	chan_val |= LTC2983_CHAN_TYPE(sensor->type);
354 	dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
355 		chan_val);
356 	st->chan_val = cpu_to_be32(chan_val);
357 	return regmap_bulk_write(st->regmap, reg, &st->chan_val,
358 				 sizeof(st->chan_val));
359 }
360 
361 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
362 					  struct ltc2983_custom_sensor *custom,
363 					  u32 *chan_val)
364 {
365 	u32 reg;
366 	u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
367 		LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
368 	const struct device *dev = &st->spi->dev;
369 	/*
370 	 * custom->size holds the raw size of the table. However, when
371 	 * configuring the sensor channel, we must write the number of
372 	 * entries of the table minus 1. For steinhart sensors 0 is written
373 	 * since the size is constant!
374 	 */
375 	const u8 len = custom->is_steinhart ? 0 :
376 		(custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
377 	/*
378 	 * Check if the offset was assigned already. It should be for steinhart
379 	 * sensors. When coming from sleep, it should be assigned for all.
380 	 */
381 	if (custom->offset < 0) {
382 		/*
383 		 * This needs to be done again here because, from the moment
384 		 * when this test was done (successfully) for this custom
385 		 * sensor, a steinhart sensor might have been added changing
386 		 * custom_table_size...
387 		 */
388 		if (st->custom_table_size + custom->size >
389 		    (LTC2983_CUST_SENS_TBL_END_REG -
390 		     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
391 			dev_err(dev,
392 				"Not space left(%d) for new custom sensor(%zu)",
393 				st->custom_table_size,
394 				custom->size);
395 			return -EINVAL;
396 		}
397 
398 		custom->offset = st->custom_table_size /
399 					LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
400 		st->custom_table_size += custom->size;
401 	}
402 
403 	reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
404 
405 	*chan_val |= LTC2983_CUSTOM_LEN(len);
406 	*chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
407 	dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
408 		reg, custom->offset,
409 		custom->size);
410 	/* write custom sensor table */
411 	return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
412 }
413 
414 static struct ltc2983_custom_sensor *
415 __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn,
416 			    const char *propname, const bool is_steinhart,
417 			    const u32 resolution, const bool has_signed)
418 {
419 	struct ltc2983_custom_sensor *new_custom;
420 	struct device *dev = &st->spi->dev;
421 	/*
422 	 * For custom steinhart, the full u32 is taken. For all the others
423 	 * the MSB is discarded.
424 	 */
425 	const u8 n_size = is_steinhart ? 4 : 3;
426 	u8 index, n_entries;
427 	int ret;
428 
429 	if (is_steinhart)
430 		n_entries = fwnode_property_count_u32(fn, propname);
431 	else
432 		n_entries = fwnode_property_count_u64(fn, propname);
433 	/* n_entries must be an even number */
434 	if (!n_entries || (n_entries % 2) != 0) {
435 		dev_err(dev, "Number of entries either 0 or not even\n");
436 		return ERR_PTR(-EINVAL);
437 	}
438 
439 	new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
440 	if (!new_custom)
441 		return ERR_PTR(-ENOMEM);
442 
443 	new_custom->size = n_entries * n_size;
444 	/* check Steinhart size */
445 	if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
446 		dev_err(dev, "Steinhart sensors size(%zu) must be %u\n", new_custom->size,
447 			LTC2983_CUSTOM_STEINHART_SIZE);
448 		return ERR_PTR(-EINVAL);
449 	}
450 	/* Check space on the table. */
451 	if (st->custom_table_size + new_custom->size >
452 	    (LTC2983_CUST_SENS_TBL_END_REG -
453 	     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
454 		dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
455 				st->custom_table_size, new_custom->size);
456 		return ERR_PTR(-EINVAL);
457 	}
458 
459 	/* allocate the table */
460 	if (is_steinhart)
461 		new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL);
462 	else
463 		new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL);
464 	if (!new_custom->table)
465 		return ERR_PTR(-ENOMEM);
466 
467 	/*
468 	 * Steinhart sensors are configured with raw values in the firmware
469 	 * node. For the other sensors we must convert the value to raw.
470 	 * The odd index's correspond to temperatures and always have 1/1024
471 	 * of resolution. Temperatures also come in Kelvin, so signed values
472 	 * are not possible.
473 	 */
474 	if (is_steinhart) {
475 		ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries);
476 		if (ret < 0)
477 			return ERR_PTR(ret);
478 
479 		cpu_to_be32_array(new_custom->table, new_custom->table, n_entries);
480 	} else {
481 		ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries);
482 		if (ret < 0)
483 			return ERR_PTR(ret);
484 
485 		for (index = 0; index < n_entries; index++) {
486 			u64 temp = ((u64 *)new_custom->table)[index];
487 
488 			if ((index % 2) != 0)
489 				temp = __convert_to_raw(temp, 1024);
490 			else if (has_signed && (s64)temp < 0)
491 				temp = __convert_to_raw_sign(temp, resolution);
492 			else
493 				temp = __convert_to_raw(temp, resolution);
494 
495 			put_unaligned_be24(temp, new_custom->table + index * 3);
496 		}
497 	}
498 
499 	new_custom->is_steinhart = is_steinhart;
500 	/*
501 	 * This is done to first add all the steinhart sensors to the table,
502 	 * in order to maximize the table usage. If we mix adding steinhart
503 	 * with the other sensors, we might have to do some roundup to make
504 	 * sure that sensor_addr - 0x250(start address) is a multiple of 4
505 	 * (for steinhart), and a multiple of 6 for all the other sensors.
506 	 * Since we have const 24 bytes for steinhart sensors and 24 is
507 	 * also a multiple of 6, we guarantee that the first non-steinhart
508 	 * sensor will sit in a correct address without the need of filling
509 	 * addresses.
510 	 */
511 	if (is_steinhart) {
512 		new_custom->offset = st->custom_table_size /
513 					LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
514 		st->custom_table_size += new_custom->size;
515 	} else {
516 		/* mark as unset. This is checked later on the assign phase */
517 		new_custom->offset = -1;
518 	}
519 
520 	return new_custom;
521 }
522 
523 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
524 					      const u32 result)
525 {
526 	return __ltc2983_fault_handler(st, result,
527 				       LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
528 				       LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
529 }
530 
531 static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
532 					const u32 result)
533 {
534 	return __ltc2983_fault_handler(st, result,
535 				       LTC2983_COMMON_HARD_FAULT_MASK,
536 				       LTC2983_COMMON_SOFT_FAULT_MASK);
537 }
538 
539 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
540 				const struct ltc2983_sensor *sensor)
541 {
542 	struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
543 	u32 chan_val;
544 
545 	chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
546 	chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
547 
548 	if (thermo->custom) {
549 		int ret;
550 
551 		ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
552 							  &chan_val);
553 		if (ret)
554 			return ret;
555 	}
556 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
557 }
558 
559 static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
560 				   const struct ltc2983_sensor *sensor)
561 {
562 	struct ltc2983_rtd *rtd = to_rtd(sensor);
563 	u32 chan_val;
564 
565 	chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
566 	chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
567 	chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
568 	chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
569 
570 	if (rtd->custom) {
571 		int ret;
572 
573 		ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
574 							  &chan_val);
575 		if (ret)
576 			return ret;
577 	}
578 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
579 }
580 
581 static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
582 					  const struct ltc2983_sensor *sensor)
583 {
584 	struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
585 	u32 chan_val;
586 
587 	chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
588 	chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
589 	chan_val |=
590 		LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
591 
592 	if (thermistor->custom) {
593 		int ret;
594 
595 		ret = __ltc2983_chan_custom_sensor_assign(st,
596 							  thermistor->custom,
597 							  &chan_val);
598 		if (ret)
599 			return ret;
600 	}
601 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
602 }
603 
604 static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
605 				     const struct ltc2983_sensor *sensor)
606 {
607 	struct ltc2983_diode *diode = to_diode(sensor);
608 	u32 chan_val;
609 
610 	chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
611 	chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
612 	chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
613 
614 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
615 }
616 
617 static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
618 				       const struct ltc2983_sensor *sensor)
619 {
620 	struct ltc2983_rsense *rsense = to_rsense(sensor);
621 	u32 chan_val;
622 
623 	chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
624 
625 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
626 }
627 
628 static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
629 				   const struct ltc2983_sensor *sensor)
630 {
631 	struct ltc2983_adc *adc = to_adc(sensor);
632 	u32 chan_val;
633 
634 	chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
635 
636 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
637 }
638 
639 static int ltc2983_temp_assign_chan(struct ltc2983_data *st,
640 				    const struct ltc2983_sensor *sensor)
641 {
642 	struct ltc2983_temp *temp = to_temp(sensor);
643 	u32 chan_val;
644 	int ret;
645 
646 	chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended);
647 
648 	ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val);
649 	if (ret)
650 		return ret;
651 
652 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
653 }
654 
655 static struct ltc2983_sensor *
656 ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st,
657 			 const struct ltc2983_sensor *sensor)
658 {
659 	struct ltc2983_thermocouple *thermo;
660 	struct fwnode_handle *ref;
661 	u32 oc_current;
662 	int ret;
663 
664 	thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
665 	if (!thermo)
666 		return ERR_PTR(-ENOMEM);
667 
668 	if (fwnode_property_read_bool(child, "adi,single-ended"))
669 		thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
670 
671 	ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current);
672 	if (!ret) {
673 		switch (oc_current) {
674 		case 10:
675 			thermo->sensor_config |=
676 					LTC2983_THERMOCOUPLE_OC_CURR(0);
677 			break;
678 		case 100:
679 			thermo->sensor_config |=
680 					LTC2983_THERMOCOUPLE_OC_CURR(1);
681 			break;
682 		case 500:
683 			thermo->sensor_config |=
684 					LTC2983_THERMOCOUPLE_OC_CURR(2);
685 			break;
686 		case 1000:
687 			thermo->sensor_config |=
688 					LTC2983_THERMOCOUPLE_OC_CURR(3);
689 			break;
690 		default:
691 			dev_err(&st->spi->dev,
692 				"Invalid open circuit current:%u", oc_current);
693 			return ERR_PTR(-EINVAL);
694 		}
695 
696 		thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
697 	}
698 	/* validate channel index */
699 	if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
700 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
701 		dev_err(&st->spi->dev,
702 			"Invalid chann:%d for differential thermocouple",
703 			sensor->chan);
704 		return ERR_PTR(-EINVAL);
705 	}
706 
707 	ref = fwnode_find_reference(child, "adi,cold-junction-handle", 0);
708 	if (IS_ERR(ref)) {
709 		ref = NULL;
710 	} else {
711 		ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan);
712 		if (ret) {
713 			/*
714 			 * This would be catched later but we can just return
715 			 * the error right away.
716 			 */
717 			dev_err(&st->spi->dev, "Property reg must be given\n");
718 			goto fail;
719 		}
720 	}
721 
722 	/* check custom sensor */
723 	if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
724 		const char *propname = "adi,custom-thermocouple";
725 
726 		thermo->custom = __ltc2983_custom_sensor_new(st, child,
727 							     propname, false,
728 							     16384, true);
729 		if (IS_ERR(thermo->custom)) {
730 			ret = PTR_ERR(thermo->custom);
731 			goto fail;
732 		}
733 	}
734 
735 	/* set common parameters */
736 	thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
737 	thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
738 
739 	fwnode_handle_put(ref);
740 	return &thermo->sensor;
741 
742 fail:
743 	fwnode_handle_put(ref);
744 	return ERR_PTR(ret);
745 }
746 
747 static struct ltc2983_sensor *
748 ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st,
749 		const struct ltc2983_sensor *sensor)
750 {
751 	struct ltc2983_rtd *rtd;
752 	int ret = 0;
753 	struct device *dev = &st->spi->dev;
754 	struct fwnode_handle *ref;
755 	u32 excitation_current = 0, n_wires = 0;
756 
757 	rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
758 	if (!rtd)
759 		return ERR_PTR(-ENOMEM);
760 
761 	ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
762 	if (IS_ERR(ref)) {
763 		dev_err(dev, "Property adi,rsense-handle missing or invalid");
764 		return ERR_CAST(ref);
765 	}
766 
767 	ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan);
768 	if (ret) {
769 		dev_err(dev, "Property reg must be given\n");
770 		goto fail;
771 	}
772 
773 	ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires);
774 	if (!ret) {
775 		switch (n_wires) {
776 		case 2:
777 			rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
778 			break;
779 		case 3:
780 			rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
781 			break;
782 		case 4:
783 			rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
784 			break;
785 		case 5:
786 			/* 4 wires, Kelvin Rsense */
787 			rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
788 			break;
789 		default:
790 			dev_err(dev, "Invalid number of wires:%u\n", n_wires);
791 			ret = -EINVAL;
792 			goto fail;
793 		}
794 	}
795 
796 	if (fwnode_property_read_bool(child, "adi,rsense-share")) {
797 		/* Current rotation is only available with rsense sharing */
798 		if (fwnode_property_read_bool(child, "adi,current-rotate")) {
799 			if (n_wires == 2 || n_wires == 3) {
800 				dev_err(dev,
801 					"Rotation not allowed for 2/3 Wire RTDs");
802 				ret = -EINVAL;
803 				goto fail;
804 			}
805 			rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
806 		} else {
807 			rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
808 		}
809 	}
810 	/*
811 	 * rtd channel indexes are a bit more complicated to validate.
812 	 * For 4wire RTD with rotation, the channel selection cannot be
813 	 * >=19 since the chann + 1 is used in this configuration.
814 	 * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
815 	 * <=1 since chanel - 1 and channel - 2 are used.
816 	 */
817 	if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
818 		/* 4-wire */
819 		u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
820 			max = st->info->max_channels_nr;
821 
822 		if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
823 			max = st->info->max_channels_nr - 1;
824 
825 		if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
826 		     == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
827 		    (rtd->r_sense_chan <=  min)) {
828 			/* kelvin rsense*/
829 			dev_err(dev,
830 				"Invalid rsense chann:%d to use in kelvin rsense",
831 				rtd->r_sense_chan);
832 
833 			ret = -EINVAL;
834 			goto fail;
835 		}
836 
837 		if (sensor->chan < min || sensor->chan > max) {
838 			dev_err(dev, "Invalid chann:%d for the rtd config",
839 				sensor->chan);
840 
841 			ret = -EINVAL;
842 			goto fail;
843 		}
844 	} else {
845 		/* same as differential case */
846 		if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
847 			dev_err(&st->spi->dev,
848 				"Invalid chann:%d for RTD", sensor->chan);
849 
850 			ret = -EINVAL;
851 			goto fail;
852 		}
853 	}
854 
855 	/* check custom sensor */
856 	if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
857 		rtd->custom = __ltc2983_custom_sensor_new(st, child,
858 							  "adi,custom-rtd",
859 							  false, 2048, false);
860 		if (IS_ERR(rtd->custom)) {
861 			ret = PTR_ERR(rtd->custom);
862 			goto fail;
863 		}
864 	}
865 
866 	/* set common parameters */
867 	rtd->sensor.fault_handler = ltc2983_common_fault_handler;
868 	rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
869 
870 	ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
871 				       &excitation_current);
872 	if (ret) {
873 		/* default to 5uA */
874 		rtd->excitation_current = 1;
875 	} else {
876 		switch (excitation_current) {
877 		case 5:
878 			rtd->excitation_current = 0x01;
879 			break;
880 		case 10:
881 			rtd->excitation_current = 0x02;
882 			break;
883 		case 25:
884 			rtd->excitation_current = 0x03;
885 			break;
886 		case 50:
887 			rtd->excitation_current = 0x04;
888 			break;
889 		case 100:
890 			rtd->excitation_current = 0x05;
891 			break;
892 		case 250:
893 			rtd->excitation_current = 0x06;
894 			break;
895 		case 500:
896 			rtd->excitation_current = 0x07;
897 			break;
898 		case 1000:
899 			rtd->excitation_current = 0x08;
900 			break;
901 		default:
902 			dev_err(&st->spi->dev,
903 				"Invalid value for excitation current(%u)",
904 				excitation_current);
905 			ret = -EINVAL;
906 			goto fail;
907 		}
908 	}
909 
910 	fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
911 
912 	fwnode_handle_put(ref);
913 	return &rtd->sensor;
914 fail:
915 	fwnode_handle_put(ref);
916 	return ERR_PTR(ret);
917 }
918 
919 static struct ltc2983_sensor *
920 ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st,
921 		       const struct ltc2983_sensor *sensor)
922 {
923 	struct ltc2983_thermistor *thermistor;
924 	struct device *dev = &st->spi->dev;
925 	struct fwnode_handle *ref;
926 	u32 excitation_current = 0;
927 	int ret = 0;
928 
929 	thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
930 	if (!thermistor)
931 		return ERR_PTR(-ENOMEM);
932 
933 	ref = fwnode_find_reference(child, "adi,rsense-handle", 0);
934 	if (IS_ERR(ref)) {
935 		dev_err(dev, "Property adi,rsense-handle missing or invalid");
936 		return ERR_CAST(ref);
937 	}
938 
939 	ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan);
940 	if (ret) {
941 		dev_err(dev, "rsense channel must be configured...\n");
942 		goto fail;
943 	}
944 
945 	if (fwnode_property_read_bool(child, "adi,single-ended")) {
946 		thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
947 	} else if (fwnode_property_read_bool(child, "adi,rsense-share")) {
948 		/* rotation is only possible if sharing rsense */
949 		if (fwnode_property_read_bool(child, "adi,current-rotate"))
950 			thermistor->sensor_config =
951 						LTC2983_THERMISTOR_C_ROTATE(1);
952 		else
953 			thermistor->sensor_config =
954 						LTC2983_THERMISTOR_R_SHARE(1);
955 	}
956 	/* validate channel index */
957 	if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
958 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
959 		dev_err(&st->spi->dev,
960 			"Invalid chann:%d for differential thermistor",
961 			sensor->chan);
962 		ret = -EINVAL;
963 		goto fail;
964 	}
965 
966 	/* check custom sensor */
967 	if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
968 		bool steinhart = false;
969 		const char *propname;
970 
971 		if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
972 			steinhart = true;
973 			propname = "adi,custom-steinhart";
974 		} else {
975 			propname = "adi,custom-thermistor";
976 		}
977 
978 		thermistor->custom = __ltc2983_custom_sensor_new(st, child,
979 								 propname,
980 								 steinhart,
981 								 64, false);
982 		if (IS_ERR(thermistor->custom)) {
983 			ret = PTR_ERR(thermistor->custom);
984 			goto fail;
985 		}
986 	}
987 	/* set common parameters */
988 	thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
989 	thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
990 
991 	ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp",
992 				       &excitation_current);
993 	if (ret) {
994 		/* Auto range is not allowed for custom sensors */
995 		if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
996 			/* default to 1uA */
997 			thermistor->excitation_current = 0x03;
998 		else
999 			/* default to auto-range */
1000 			thermistor->excitation_current = 0x0c;
1001 	} else {
1002 		switch (excitation_current) {
1003 		case 0:
1004 			/* auto range */
1005 			if (sensor->type >=
1006 			    LTC2983_SENSOR_THERMISTOR_STEINHART) {
1007 				dev_err(&st->spi->dev,
1008 					"Auto Range not allowed for custom sensors\n");
1009 				ret = -EINVAL;
1010 				goto fail;
1011 			}
1012 			thermistor->excitation_current = 0x0c;
1013 			break;
1014 		case 250:
1015 			thermistor->excitation_current = 0x01;
1016 			break;
1017 		case 500:
1018 			thermistor->excitation_current = 0x02;
1019 			break;
1020 		case 1000:
1021 			thermistor->excitation_current = 0x03;
1022 			break;
1023 		case 5000:
1024 			thermistor->excitation_current = 0x04;
1025 			break;
1026 		case 10000:
1027 			thermistor->excitation_current = 0x05;
1028 			break;
1029 		case 25000:
1030 			thermistor->excitation_current = 0x06;
1031 			break;
1032 		case 50000:
1033 			thermistor->excitation_current = 0x07;
1034 			break;
1035 		case 100000:
1036 			thermistor->excitation_current = 0x08;
1037 			break;
1038 		case 250000:
1039 			thermistor->excitation_current = 0x09;
1040 			break;
1041 		case 500000:
1042 			thermistor->excitation_current = 0x0a;
1043 			break;
1044 		case 1000000:
1045 			thermistor->excitation_current = 0x0b;
1046 			break;
1047 		default:
1048 			dev_err(&st->spi->dev,
1049 				"Invalid value for excitation current(%u)",
1050 				excitation_current);
1051 			ret = -EINVAL;
1052 			goto fail;
1053 		}
1054 	}
1055 
1056 	fwnode_handle_put(ref);
1057 	return &thermistor->sensor;
1058 fail:
1059 	fwnode_handle_put(ref);
1060 	return ERR_PTR(ret);
1061 }
1062 
1063 static struct ltc2983_sensor *
1064 ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st,
1065 		  const struct ltc2983_sensor *sensor)
1066 {
1067 	struct ltc2983_diode *diode;
1068 	u32 temp = 0, excitation_current = 0;
1069 	int ret;
1070 
1071 	diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1072 	if (!diode)
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	if (fwnode_property_read_bool(child, "adi,single-ended"))
1076 		diode->sensor_config = LTC2983_DIODE_SGL(1);
1077 
1078 	if (fwnode_property_read_bool(child, "adi,three-conversion-cycles"))
1079 		diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1080 
1081 	if (fwnode_property_read_bool(child, "adi,average-on"))
1082 		diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1083 
1084 	/* validate channel index */
1085 	if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1086 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1087 		dev_err(&st->spi->dev,
1088 			"Invalid chann:%d for differential thermistor",
1089 			sensor->chan);
1090 		return ERR_PTR(-EINVAL);
1091 	}
1092 	/* set common parameters */
1093 	diode->sensor.fault_handler = ltc2983_common_fault_handler;
1094 	diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1095 
1096 	ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
1097 				       &excitation_current);
1098 	if (!ret) {
1099 		switch (excitation_current) {
1100 		case 10:
1101 			diode->excitation_current = 0x00;
1102 			break;
1103 		case 20:
1104 			diode->excitation_current = 0x01;
1105 			break;
1106 		case 40:
1107 			diode->excitation_current = 0x02;
1108 			break;
1109 		case 80:
1110 			diode->excitation_current = 0x03;
1111 			break;
1112 		default:
1113 			dev_err(&st->spi->dev,
1114 				"Invalid value for excitation current(%u)",
1115 				excitation_current);
1116 			return ERR_PTR(-EINVAL);
1117 		}
1118 	}
1119 
1120 	fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp);
1121 
1122 	/* 2^20 resolution */
1123 	diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1124 
1125 	return &diode->sensor;
1126 }
1127 
1128 static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child,
1129 					struct ltc2983_data *st,
1130 					const struct ltc2983_sensor *sensor)
1131 {
1132 	struct ltc2983_rsense *rsense;
1133 	int ret;
1134 	u32 temp;
1135 
1136 	rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1137 	if (!rsense)
1138 		return ERR_PTR(-ENOMEM);
1139 
1140 	/* validate channel index */
1141 	if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1142 		dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1143 			sensor->chan);
1144 		return ERR_PTR(-EINVAL);
1145 	}
1146 
1147 	ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1148 	if (ret) {
1149 		dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1150 		return ERR_PTR(-EINVAL);
1151 	}
1152 	/*
1153 	 * Times 1000 because we have milli-ohms and __convert_to_raw
1154 	 * expects scales of 1000000 which are used for all other
1155 	 * properties.
1156 	 * 2^10 resolution
1157 	 */
1158 	rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1159 
1160 	/* set common parameters */
1161 	rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1162 
1163 	return &rsense->sensor;
1164 }
1165 
1166 static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child,
1167 					 struct ltc2983_data *st,
1168 					 const struct ltc2983_sensor *sensor)
1169 {
1170 	struct ltc2983_adc *adc;
1171 
1172 	adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1173 	if (!adc)
1174 		return ERR_PTR(-ENOMEM);
1175 
1176 	if (fwnode_property_read_bool(child, "adi,single-ended"))
1177 		adc->single_ended = true;
1178 
1179 	if (!adc->single_ended &&
1180 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1181 		dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1182 			sensor->chan);
1183 		return ERR_PTR(-EINVAL);
1184 	}
1185 	/* set common parameters */
1186 	adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1187 	adc->sensor.fault_handler = ltc2983_common_fault_handler;
1188 
1189 	return &adc->sensor;
1190 }
1191 
1192 static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child,
1193 					       struct ltc2983_data *st,
1194 					       const struct ltc2983_sensor *sensor)
1195 {
1196 	struct ltc2983_temp *temp;
1197 
1198 	temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL);
1199 	if (!temp)
1200 		return ERR_PTR(-ENOMEM);
1201 
1202 	if (fwnode_property_read_bool(child, "adi,single-ended"))
1203 		temp->single_ended = true;
1204 
1205 	if (!temp->single_ended &&
1206 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1207 		dev_err(&st->spi->dev, "Invalid chan:%d for differential temp\n",
1208 			sensor->chan);
1209 		return ERR_PTR(-EINVAL);
1210 	}
1211 
1212 	temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp",
1213 						   false, 4096, true);
1214 	if (IS_ERR(temp->custom))
1215 		return ERR_CAST(temp->custom);
1216 
1217 	/* set common parameters */
1218 	temp->sensor.assign_chan = ltc2983_temp_assign_chan;
1219 	temp->sensor.fault_handler = ltc2983_common_fault_handler;
1220 
1221 	return &temp->sensor;
1222 }
1223 
1224 static int ltc2983_chan_read(struct ltc2983_data *st,
1225 			const struct ltc2983_sensor *sensor, int *val)
1226 {
1227 	u32 start_conversion = 0;
1228 	int ret;
1229 	unsigned long time;
1230 
1231 	start_conversion = LTC2983_STATUS_START(true);
1232 	start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1233 	dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1234 		sensor->chan, start_conversion);
1235 	/* start conversion */
1236 	ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1237 	if (ret)
1238 		return ret;
1239 
1240 	reinit_completion(&st->completion);
1241 	/*
1242 	 * wait for conversion to complete.
1243 	 * 300 ms should be more than enough to complete the conversion.
1244 	 * Depending on the sensor configuration, there are 2/3 conversions
1245 	 * cycles of 82ms.
1246 	 */
1247 	time = wait_for_completion_timeout(&st->completion,
1248 					   msecs_to_jiffies(300));
1249 	if (!time) {
1250 		dev_warn(&st->spi->dev, "Conversion timed out\n");
1251 		return -ETIMEDOUT;
1252 	}
1253 
1254 	/* read the converted data */
1255 	ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1256 			       &st->temp, sizeof(st->temp));
1257 	if (ret)
1258 		return ret;
1259 
1260 	*val = __be32_to_cpu(st->temp);
1261 
1262 	if (!(LTC2983_RES_VALID_MASK & *val)) {
1263 		dev_err(&st->spi->dev, "Invalid conversion detected\n");
1264 		return -EIO;
1265 	}
1266 
1267 	ret = sensor->fault_handler(st, *val);
1268 	if (ret)
1269 		return ret;
1270 
1271 	*val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1272 	return 0;
1273 }
1274 
1275 static int ltc2983_read_raw(struct iio_dev *indio_dev,
1276 			    struct iio_chan_spec const *chan,
1277 			    int *val, int *val2, long mask)
1278 {
1279 	struct ltc2983_data *st = iio_priv(indio_dev);
1280 	int ret;
1281 
1282 	/* sanity check */
1283 	if (chan->address >= st->num_channels) {
1284 		dev_err(&st->spi->dev, "Invalid chan address:%ld",
1285 			chan->address);
1286 		return -EINVAL;
1287 	}
1288 
1289 	switch (mask) {
1290 	case IIO_CHAN_INFO_RAW:
1291 		mutex_lock(&st->lock);
1292 		ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1293 		mutex_unlock(&st->lock);
1294 		return ret ?: IIO_VAL_INT;
1295 	case IIO_CHAN_INFO_SCALE:
1296 		switch (chan->type) {
1297 		case IIO_TEMP:
1298 			/* value in milli degrees */
1299 			*val = 1000;
1300 			/* 2^10 */
1301 			*val2 = 1024;
1302 			return IIO_VAL_FRACTIONAL;
1303 		case IIO_VOLTAGE:
1304 			/* value in millivolt */
1305 			*val = 1000;
1306 			/* 2^21 */
1307 			*val2 = 2097152;
1308 			return IIO_VAL_FRACTIONAL;
1309 		default:
1310 			return -EINVAL;
1311 		}
1312 	}
1313 
1314 	return -EINVAL;
1315 }
1316 
1317 static int ltc2983_reg_access(struct iio_dev *indio_dev,
1318 			      unsigned int reg,
1319 			      unsigned int writeval,
1320 			      unsigned int *readval)
1321 {
1322 	struct ltc2983_data *st = iio_priv(indio_dev);
1323 
1324 	if (readval)
1325 		return regmap_read(st->regmap, reg, readval);
1326 	else
1327 		return regmap_write(st->regmap, reg, writeval);
1328 }
1329 
1330 static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1331 {
1332 	struct ltc2983_data *st = data;
1333 
1334 	complete(&st->completion);
1335 	return IRQ_HANDLED;
1336 }
1337 
1338 #define LTC2983_CHAN(__type, index, __address) ({ \
1339 	struct iio_chan_spec __chan = { \
1340 		.type = __type, \
1341 		.indexed = 1, \
1342 		.channel = index, \
1343 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1344 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1345 		.address = __address, \
1346 	}; \
1347 	__chan; \
1348 })
1349 
1350 static int ltc2983_parse_fw(struct ltc2983_data *st)
1351 {
1352 	struct device *dev = &st->spi->dev;
1353 	struct fwnode_handle *child;
1354 	int ret = 0, chan = 0, channel_avail_mask = 0;
1355 
1356 	device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config);
1357 
1358 	device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq);
1359 
1360 	st->num_channels = device_get_child_node_count(dev);
1361 	if (!st->num_channels) {
1362 		dev_err(&st->spi->dev, "At least one channel must be given!");
1363 		return -EINVAL;
1364 	}
1365 
1366 	st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1367 				   GFP_KERNEL);
1368 	if (!st->sensors)
1369 		return -ENOMEM;
1370 
1371 	st->iio_channels = st->num_channels;
1372 	device_for_each_child_node(dev, child) {
1373 		struct ltc2983_sensor sensor;
1374 
1375 		ret = fwnode_property_read_u32(child, "reg", &sensor.chan);
1376 		if (ret) {
1377 			dev_err(dev, "reg property must given for child nodes\n");
1378 			goto put_child;
1379 		}
1380 
1381 		/* check if we have a valid channel */
1382 		if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1383 		    sensor.chan > st->info->max_channels_nr) {
1384 			ret = -EINVAL;
1385 			dev_err(dev, "chan:%d must be from %u to %u\n", sensor.chan,
1386 				LTC2983_MIN_CHANNELS_NR, st->info->max_channels_nr);
1387 			goto put_child;
1388 		} else if (channel_avail_mask & BIT(sensor.chan)) {
1389 			ret = -EINVAL;
1390 			dev_err(dev, "chan:%d already in use\n", sensor.chan);
1391 			goto put_child;
1392 		}
1393 
1394 		ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type);
1395 		if (ret) {
1396 			dev_err(dev,
1397 				"adi,sensor-type property must given for child nodes\n");
1398 			goto put_child;
1399 		}
1400 
1401 		dev_dbg(dev, "Create new sensor, type %u, chann %u",
1402 								sensor.type,
1403 								sensor.chan);
1404 
1405 		if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1406 		    sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1407 			st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1408 								     &sensor);
1409 		} else if (sensor.type >= LTC2983_SENSOR_RTD &&
1410 			   sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1411 			st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1412 		} else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1413 			   sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1414 			st->sensors[chan] = ltc2983_thermistor_new(child, st,
1415 								   &sensor);
1416 		} else if (sensor.type == LTC2983_SENSOR_DIODE) {
1417 			st->sensors[chan] = ltc2983_diode_new(child, st,
1418 							      &sensor);
1419 		} else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1420 			st->sensors[chan] = ltc2983_r_sense_new(child, st,
1421 								&sensor);
1422 			/* don't add rsense to iio */
1423 			st->iio_channels--;
1424 		} else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1425 			st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1426 		} else if (st->info->has_temp &&
1427 			   sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) {
1428 			st->sensors[chan] = ltc2983_temp_new(child, st, &sensor);
1429 		} else {
1430 			dev_err(dev, "Unknown sensor type %d\n", sensor.type);
1431 			ret = -EINVAL;
1432 			goto put_child;
1433 		}
1434 
1435 		if (IS_ERR(st->sensors[chan])) {
1436 			dev_err(dev, "Failed to create sensor %ld",
1437 				PTR_ERR(st->sensors[chan]));
1438 			ret = PTR_ERR(st->sensors[chan]);
1439 			goto put_child;
1440 		}
1441 		/* set generic sensor parameters */
1442 		st->sensors[chan]->chan = sensor.chan;
1443 		st->sensors[chan]->type = sensor.type;
1444 
1445 		channel_avail_mask |= BIT(sensor.chan);
1446 		chan++;
1447 	}
1448 
1449 	return 0;
1450 put_child:
1451 	fwnode_handle_put(child);
1452 	return ret;
1453 }
1454 
1455 static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd,
1456 			      unsigned int wait_time, unsigned int status_reg,
1457 			      unsigned long status_fail_mask)
1458 {
1459 	unsigned long time;
1460 	unsigned int val;
1461 	int ret;
1462 
1463 	ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG,
1464 				&st->eeprom_key, sizeof(st->eeprom_key));
1465 	if (ret)
1466 		return ret;
1467 
1468 	reinit_completion(&st->completion);
1469 
1470 	ret = regmap_write(st->regmap, LTC2983_STATUS_REG,
1471 			   LTC2983_STATUS_START(true) | cmd);
1472 	if (ret)
1473 		return ret;
1474 
1475 	time = wait_for_completion_timeout(&st->completion,
1476 					   msecs_to_jiffies(wait_time));
1477 	if (!time) {
1478 		dev_err(&st->spi->dev, "EEPROM command timed out\n");
1479 		return -ETIMEDOUT;
1480 	}
1481 
1482 	ret = regmap_read(st->regmap, status_reg, &val);
1483 	if (ret)
1484 		return ret;
1485 
1486 	if (val & status_fail_mask) {
1487 		dev_err(&st->spi->dev, "EEPROM command failed: 0x%02X\n", val);
1488 		return -EINVAL;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1495 {
1496 	u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1497 	int ret;
1498 
1499 	/* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1500 	ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1501 				       LTC2983_STATUS_UP(status) == 1, 25000,
1502 				       25000 * 10);
1503 	if (ret) {
1504 		dev_err(&st->spi->dev, "Device startup timed out\n");
1505 		return ret;
1506 	}
1507 
1508 	ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1509 				 LTC2983_NOTCH_FREQ_MASK,
1510 				 LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1515 			   st->mux_delay_config);
1516 	if (ret)
1517 		return ret;
1518 
1519 	if (st->info->has_eeprom && !assign_iio) {
1520 		ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD,
1521 					 LTC2983_EEPROM_READ_TIME_MS,
1522 					 LTC2983_EEPROM_READ_STATUS_REG,
1523 					 LTC2983_EEPROM_READ_FAILURE_MASK);
1524 		if (!ret)
1525 			return 0;
1526 	}
1527 
1528 	for (chan = 0; chan < st->num_channels; chan++) {
1529 		u32 chan_type = 0, *iio_chan;
1530 
1531 		ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1532 		if (ret)
1533 			return ret;
1534 		/*
1535 		 * The assign_iio flag is necessary for when the device is
1536 		 * coming out of sleep. In that case, we just need to
1537 		 * re-configure the device channels.
1538 		 * We also don't assign iio channels for rsense.
1539 		 */
1540 		if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1541 		    !assign_iio)
1542 			continue;
1543 
1544 		/* assign iio channel */
1545 		if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1546 			chan_type = IIO_TEMP;
1547 			iio_chan = &iio_chan_t;
1548 		} else {
1549 			chan_type = IIO_VOLTAGE;
1550 			iio_chan = &iio_chan_v;
1551 		}
1552 
1553 		/*
1554 		 * add chan as the iio .address so that, we can directly
1555 		 * reference the sensor given the iio_chan_spec
1556 		 */
1557 		st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1558 						       chan);
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static const struct regmap_range ltc2983_reg_ranges[] = {
1565 	regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1566 	regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1567 	regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG),
1568 	regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG,
1569 			 LTC2983_EEPROM_READ_STATUS_REG),
1570 	regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1571 	regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1572 			 LTC2983_MULT_CHANNEL_END_REG),
1573 	regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG),
1574 	regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1575 	regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1576 			 LTC2983_CHAN_ASSIGN_END_REG),
1577 	regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1578 			 LTC2983_CUST_SENS_TBL_END_REG),
1579 };
1580 
1581 static const struct regmap_access_table ltc2983_reg_table = {
1582 	.yes_ranges = ltc2983_reg_ranges,
1583 	.n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1584 };
1585 
1586 /*
1587  *  The reg_bits are actually 12 but the device needs the first *complete*
1588  *  byte for the command (R/W).
1589  */
1590 static const struct regmap_config ltc2983_regmap_config = {
1591 	.reg_bits = 24,
1592 	.val_bits = 8,
1593 	.wr_table = &ltc2983_reg_table,
1594 	.rd_table = &ltc2983_reg_table,
1595 	.read_flag_mask = GENMASK(1, 0),
1596 	.write_flag_mask = BIT(1),
1597 };
1598 
1599 static const struct  iio_info ltc2983_iio_info = {
1600 	.read_raw = ltc2983_read_raw,
1601 	.debugfs_reg_access = ltc2983_reg_access,
1602 };
1603 
1604 static int ltc2983_probe(struct spi_device *spi)
1605 {
1606 	struct ltc2983_data *st;
1607 	struct iio_dev *indio_dev;
1608 	struct gpio_desc *gpio;
1609 	int ret;
1610 
1611 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1612 	if (!indio_dev)
1613 		return -ENOMEM;
1614 
1615 	st = iio_priv(indio_dev);
1616 
1617 	st->info = spi_get_device_match_data(spi);
1618 	if (!st->info)
1619 		return -ENODEV;
1620 
1621 	st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1622 	if (IS_ERR(st->regmap)) {
1623 		dev_err(&spi->dev, "Failed to initialize regmap\n");
1624 		return PTR_ERR(st->regmap);
1625 	}
1626 
1627 	mutex_init(&st->lock);
1628 	init_completion(&st->completion);
1629 	st->spi = spi;
1630 	st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY);
1631 	spi_set_drvdata(spi, st);
1632 
1633 	ret = ltc2983_parse_fw(st);
1634 	if (ret)
1635 		return ret;
1636 
1637 	gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
1638 	if (IS_ERR(gpio))
1639 		return PTR_ERR(gpio);
1640 
1641 	if (gpio) {
1642 		/* bring the device out of reset */
1643 		usleep_range(1000, 1200);
1644 		gpiod_set_value_cansleep(gpio, 0);
1645 	}
1646 
1647 	st->iio_chan = devm_kzalloc(&spi->dev,
1648 				    st->iio_channels * sizeof(*st->iio_chan),
1649 				    GFP_KERNEL);
1650 	if (!st->iio_chan)
1651 		return -ENOMEM;
1652 
1653 	ret = ltc2983_setup(st, true);
1654 	if (ret)
1655 		return ret;
1656 
1657 	ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1658 			       IRQF_TRIGGER_RISING, st->info->name, st);
1659 	if (ret) {
1660 		dev_err(&spi->dev, "failed to request an irq, %d", ret);
1661 		return ret;
1662 	}
1663 
1664 	if (st->info->has_eeprom) {
1665 		ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD,
1666 					 LTC2983_EEPROM_WRITE_TIME_MS,
1667 					 LTC2986_EEPROM_STATUS_REG,
1668 					 LTC2983_EEPROM_STATUS_FAILURE_MASK);
1669 		if (ret)
1670 			return ret;
1671 	}
1672 
1673 	indio_dev->name = st->info->name;
1674 	indio_dev->num_channels = st->iio_channels;
1675 	indio_dev->channels = st->iio_chan;
1676 	indio_dev->modes = INDIO_DIRECT_MODE;
1677 	indio_dev->info = &ltc2983_iio_info;
1678 
1679 	return devm_iio_device_register(&spi->dev, indio_dev);
1680 }
1681 
1682 static int ltc2983_resume(struct device *dev)
1683 {
1684 	struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1685 	int dummy;
1686 
1687 	/* dummy read to bring the device out of sleep */
1688 	regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1689 	/* we need to re-assign the channels */
1690 	return ltc2983_setup(st, false);
1691 }
1692 
1693 static int ltc2983_suspend(struct device *dev)
1694 {
1695 	struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1696 
1697 	return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1698 }
1699 
1700 static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend,
1701 				ltc2983_resume);
1702 
1703 static const struct ltc2983_chip_info ltc2983_chip_info_data = {
1704 	.name = "ltc2983",
1705 	.max_channels_nr = 20,
1706 };
1707 
1708 static const struct ltc2983_chip_info ltc2984_chip_info_data = {
1709 	.name = "ltc2984",
1710 	.max_channels_nr = 20,
1711 	.has_eeprom = true,
1712 };
1713 
1714 static const struct ltc2983_chip_info ltc2986_chip_info_data = {
1715 	.name = "ltc2986",
1716 	.max_channels_nr = 10,
1717 	.has_temp = true,
1718 	.has_eeprom = true,
1719 };
1720 
1721 static const struct ltc2983_chip_info ltm2985_chip_info_data = {
1722 	.name = "ltm2985",
1723 	.max_channels_nr = 10,
1724 	.has_temp = true,
1725 	.has_eeprom = true,
1726 };
1727 
1728 static const struct spi_device_id ltc2983_id_table[] = {
1729 	{ "ltc2983", (kernel_ulong_t)&ltc2983_chip_info_data },
1730 	{ "ltc2984", (kernel_ulong_t)&ltc2984_chip_info_data },
1731 	{ "ltc2986", (kernel_ulong_t)&ltc2986_chip_info_data },
1732 	{ "ltm2985", (kernel_ulong_t)&ltm2985_chip_info_data },
1733 	{},
1734 };
1735 MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1736 
1737 static const struct of_device_id ltc2983_of_match[] = {
1738 	{ .compatible = "adi,ltc2983", .data = &ltc2983_chip_info_data },
1739 	{ .compatible = "adi,ltc2984", .data = &ltc2984_chip_info_data },
1740 	{ .compatible = "adi,ltc2986", .data = &ltc2986_chip_info_data },
1741 	{ .compatible = "adi,ltm2985", .data = &ltm2985_chip_info_data },
1742 	{},
1743 };
1744 MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1745 
1746 static struct spi_driver ltc2983_driver = {
1747 	.driver = {
1748 		.name = "ltc2983",
1749 		.of_match_table = ltc2983_of_match,
1750 		.pm = pm_sleep_ptr(&ltc2983_pm_ops),
1751 	},
1752 	.probe = ltc2983_probe,
1753 	.id_table = ltc2983_id_table,
1754 };
1755 
1756 module_spi_driver(ltc2983_driver);
1757 
1758 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1759 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1760 MODULE_LICENSE("GPL");
1761