xref: /linux/drivers/infiniband/core/cache.c (revision f86fd32d)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Intel Corporation. All rights reserved.
4  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5  * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/netdevice.h>
41 #include <net/addrconf.h>
42 
43 #include <rdma/ib_cache.h>
44 
45 #include "core_priv.h"
46 
47 struct ib_pkey_cache {
48 	int             table_len;
49 	u16             table[0];
50 };
51 
52 struct ib_update_work {
53 	struct work_struct work;
54 	struct ib_event event;
55 	bool enforce_security;
56 };
57 
58 union ib_gid zgid;
59 EXPORT_SYMBOL(zgid);
60 
61 enum gid_attr_find_mask {
62 	GID_ATTR_FIND_MASK_GID          = 1UL << 0,
63 	GID_ATTR_FIND_MASK_NETDEV	= 1UL << 1,
64 	GID_ATTR_FIND_MASK_DEFAULT	= 1UL << 2,
65 	GID_ATTR_FIND_MASK_GID_TYPE	= 1UL << 3,
66 };
67 
68 enum gid_table_entry_state {
69 	GID_TABLE_ENTRY_INVALID		= 1,
70 	GID_TABLE_ENTRY_VALID		= 2,
71 	/*
72 	 * Indicates that entry is pending to be removed, there may
73 	 * be active users of this GID entry.
74 	 * When last user of the GID entry releases reference to it,
75 	 * GID entry is detached from the table.
76 	 */
77 	GID_TABLE_ENTRY_PENDING_DEL	= 3,
78 };
79 
80 struct roce_gid_ndev_storage {
81 	struct rcu_head rcu_head;
82 	struct net_device *ndev;
83 };
84 
85 struct ib_gid_table_entry {
86 	struct kref			kref;
87 	struct work_struct		del_work;
88 	struct ib_gid_attr		attr;
89 	void				*context;
90 	/* Store the ndev pointer to release reference later on in
91 	 * call_rcu context because by that time gid_table_entry
92 	 * and attr might be already freed. So keep a copy of it.
93 	 * ndev_storage is freed by rcu callback.
94 	 */
95 	struct roce_gid_ndev_storage	*ndev_storage;
96 	enum gid_table_entry_state	state;
97 };
98 
99 struct ib_gid_table {
100 	int				sz;
101 	/* In RoCE, adding a GID to the table requires:
102 	 * (a) Find if this GID is already exists.
103 	 * (b) Find a free space.
104 	 * (c) Write the new GID
105 	 *
106 	 * Delete requires different set of operations:
107 	 * (a) Find the GID
108 	 * (b) Delete it.
109 	 *
110 	 **/
111 	/* Any writer to data_vec must hold this lock and the write side of
112 	 * rwlock. Readers must hold only rwlock. All writers must be in a
113 	 * sleepable context.
114 	 */
115 	struct mutex			lock;
116 	/* rwlock protects data_vec[ix]->state and entry pointer.
117 	 */
118 	rwlock_t			rwlock;
119 	struct ib_gid_table_entry	**data_vec;
120 	/* bit field, each bit indicates the index of default GID */
121 	u32				default_gid_indices;
122 };
123 
124 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
125 {
126 	struct ib_event event;
127 
128 	event.device		= ib_dev;
129 	event.element.port_num	= port;
130 	event.event		= IB_EVENT_GID_CHANGE;
131 
132 	ib_dispatch_event_clients(&event);
133 }
134 
135 static const char * const gid_type_str[] = {
136 	[IB_GID_TYPE_IB]	= "IB/RoCE v1",
137 	[IB_GID_TYPE_ROCE_UDP_ENCAP]	= "RoCE v2",
138 };
139 
140 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
141 {
142 	if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
143 		return gid_type_str[gid_type];
144 
145 	return "Invalid GID type";
146 }
147 EXPORT_SYMBOL(ib_cache_gid_type_str);
148 
149 /** rdma_is_zero_gid - Check if given GID is zero or not.
150  * @gid:	GID to check
151  * Returns true if given GID is zero, returns false otherwise.
152  */
153 bool rdma_is_zero_gid(const union ib_gid *gid)
154 {
155 	return !memcmp(gid, &zgid, sizeof(*gid));
156 }
157 EXPORT_SYMBOL(rdma_is_zero_gid);
158 
159 /** is_gid_index_default - Check if a given index belongs to
160  * reserved default GIDs or not.
161  * @table:	GID table pointer
162  * @index:	Index to check in GID table
163  * Returns true if index is one of the reserved default GID index otherwise
164  * returns false.
165  */
166 static bool is_gid_index_default(const struct ib_gid_table *table,
167 				 unsigned int index)
168 {
169 	return index < 32 && (BIT(index) & table->default_gid_indices);
170 }
171 
172 int ib_cache_gid_parse_type_str(const char *buf)
173 {
174 	unsigned int i;
175 	size_t len;
176 	int err = -EINVAL;
177 
178 	len = strlen(buf);
179 	if (len == 0)
180 		return -EINVAL;
181 
182 	if (buf[len - 1] == '\n')
183 		len--;
184 
185 	for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
186 		if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
187 		    len == strlen(gid_type_str[i])) {
188 			err = i;
189 			break;
190 		}
191 
192 	return err;
193 }
194 EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
195 
196 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
197 {
198 	return device->port_data[port].cache.gid;
199 }
200 
201 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
202 {
203 	return !entry;
204 }
205 
206 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
207 {
208 	return entry && entry->state == GID_TABLE_ENTRY_VALID;
209 }
210 
211 static void schedule_free_gid(struct kref *kref)
212 {
213 	struct ib_gid_table_entry *entry =
214 			container_of(kref, struct ib_gid_table_entry, kref);
215 
216 	queue_work(ib_wq, &entry->del_work);
217 }
218 
219 static void put_gid_ndev(struct rcu_head *head)
220 {
221 	struct roce_gid_ndev_storage *storage =
222 		container_of(head, struct roce_gid_ndev_storage, rcu_head);
223 
224 	WARN_ON(!storage->ndev);
225 	/* At this point its safe to release netdev reference,
226 	 * as all callers working on gid_attr->ndev are done
227 	 * using this netdev.
228 	 */
229 	dev_put(storage->ndev);
230 	kfree(storage);
231 }
232 
233 static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
234 {
235 	struct ib_device *device = entry->attr.device;
236 	u8 port_num = entry->attr.port_num;
237 	struct ib_gid_table *table = rdma_gid_table(device, port_num);
238 
239 	dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__,
240 		port_num, entry->attr.index, entry->attr.gid.raw);
241 
242 	write_lock_irq(&table->rwlock);
243 
244 	/*
245 	 * The only way to avoid overwriting NULL in table is
246 	 * by comparing if it is same entry in table or not!
247 	 * If new entry in table is added by the time we free here,
248 	 * don't overwrite the table entry.
249 	 */
250 	if (entry == table->data_vec[entry->attr.index])
251 		table->data_vec[entry->attr.index] = NULL;
252 	/* Now this index is ready to be allocated */
253 	write_unlock_irq(&table->rwlock);
254 
255 	if (entry->ndev_storage)
256 		call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
257 	kfree(entry);
258 }
259 
260 static void free_gid_entry(struct kref *kref)
261 {
262 	struct ib_gid_table_entry *entry =
263 			container_of(kref, struct ib_gid_table_entry, kref);
264 
265 	free_gid_entry_locked(entry);
266 }
267 
268 /**
269  * free_gid_work - Release reference to the GID entry
270  * @work: Work structure to refer to GID entry which needs to be
271  * deleted.
272  *
273  * free_gid_work() frees the entry from the HCA's hardware table
274  * if provider supports it. It releases reference to netdevice.
275  */
276 static void free_gid_work(struct work_struct *work)
277 {
278 	struct ib_gid_table_entry *entry =
279 		container_of(work, struct ib_gid_table_entry, del_work);
280 	struct ib_device *device = entry->attr.device;
281 	u8 port_num = entry->attr.port_num;
282 	struct ib_gid_table *table = rdma_gid_table(device, port_num);
283 
284 	mutex_lock(&table->lock);
285 	free_gid_entry_locked(entry);
286 	mutex_unlock(&table->lock);
287 }
288 
289 static struct ib_gid_table_entry *
290 alloc_gid_entry(const struct ib_gid_attr *attr)
291 {
292 	struct ib_gid_table_entry *entry;
293 	struct net_device *ndev;
294 
295 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
296 	if (!entry)
297 		return NULL;
298 
299 	ndev = rcu_dereference_protected(attr->ndev, 1);
300 	if (ndev) {
301 		entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
302 					      GFP_KERNEL);
303 		if (!entry->ndev_storage) {
304 			kfree(entry);
305 			return NULL;
306 		}
307 		dev_hold(ndev);
308 		entry->ndev_storage->ndev = ndev;
309 	}
310 	kref_init(&entry->kref);
311 	memcpy(&entry->attr, attr, sizeof(*attr));
312 	INIT_WORK(&entry->del_work, free_gid_work);
313 	entry->state = GID_TABLE_ENTRY_INVALID;
314 	return entry;
315 }
316 
317 static void store_gid_entry(struct ib_gid_table *table,
318 			    struct ib_gid_table_entry *entry)
319 {
320 	entry->state = GID_TABLE_ENTRY_VALID;
321 
322 	dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n",
323 		__func__, entry->attr.port_num, entry->attr.index,
324 		entry->attr.gid.raw);
325 
326 	lockdep_assert_held(&table->lock);
327 	write_lock_irq(&table->rwlock);
328 	table->data_vec[entry->attr.index] = entry;
329 	write_unlock_irq(&table->rwlock);
330 }
331 
332 static void get_gid_entry(struct ib_gid_table_entry *entry)
333 {
334 	kref_get(&entry->kref);
335 }
336 
337 static void put_gid_entry(struct ib_gid_table_entry *entry)
338 {
339 	kref_put(&entry->kref, schedule_free_gid);
340 }
341 
342 static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
343 {
344 	kref_put(&entry->kref, free_gid_entry);
345 }
346 
347 static int add_roce_gid(struct ib_gid_table_entry *entry)
348 {
349 	const struct ib_gid_attr *attr = &entry->attr;
350 	int ret;
351 
352 	if (!attr->ndev) {
353 		dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n",
354 			__func__, attr->port_num, attr->index);
355 		return -EINVAL;
356 	}
357 	if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
358 		ret = attr->device->ops.add_gid(attr, &entry->context);
359 		if (ret) {
360 			dev_err(&attr->device->dev,
361 				"%s GID add failed port=%d index=%d\n",
362 				__func__, attr->port_num, attr->index);
363 			return ret;
364 		}
365 	}
366 	return 0;
367 }
368 
369 /**
370  * del_gid - Delete GID table entry
371  *
372  * @ib_dev:	IB device whose GID entry to be deleted
373  * @port:	Port number of the IB device
374  * @table:	GID table of the IB device for a port
375  * @ix:		GID entry index to delete
376  *
377  */
378 static void del_gid(struct ib_device *ib_dev, u8 port,
379 		    struct ib_gid_table *table, int ix)
380 {
381 	struct roce_gid_ndev_storage *ndev_storage;
382 	struct ib_gid_table_entry *entry;
383 
384 	lockdep_assert_held(&table->lock);
385 
386 	dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port,
387 		ix, table->data_vec[ix]->attr.gid.raw);
388 
389 	write_lock_irq(&table->rwlock);
390 	entry = table->data_vec[ix];
391 	entry->state = GID_TABLE_ENTRY_PENDING_DEL;
392 	/*
393 	 * For non RoCE protocol, GID entry slot is ready to use.
394 	 */
395 	if (!rdma_protocol_roce(ib_dev, port))
396 		table->data_vec[ix] = NULL;
397 	write_unlock_irq(&table->rwlock);
398 
399 	ndev_storage = entry->ndev_storage;
400 	if (ndev_storage) {
401 		entry->ndev_storage = NULL;
402 		rcu_assign_pointer(entry->attr.ndev, NULL);
403 		call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
404 	}
405 
406 	if (rdma_cap_roce_gid_table(ib_dev, port))
407 		ib_dev->ops.del_gid(&entry->attr, &entry->context);
408 
409 	put_gid_entry_locked(entry);
410 }
411 
412 /**
413  * add_modify_gid - Add or modify GID table entry
414  *
415  * @table:	GID table in which GID to be added or modified
416  * @attr:	Attributes of the GID
417  *
418  * Returns 0 on success or appropriate error code. It accepts zero
419  * GID addition for non RoCE ports for HCA's who report them as valid
420  * GID. However such zero GIDs are not added to the cache.
421  */
422 static int add_modify_gid(struct ib_gid_table *table,
423 			  const struct ib_gid_attr *attr)
424 {
425 	struct ib_gid_table_entry *entry;
426 	int ret = 0;
427 
428 	/*
429 	 * Invalidate any old entry in the table to make it safe to write to
430 	 * this index.
431 	 */
432 	if (is_gid_entry_valid(table->data_vec[attr->index]))
433 		del_gid(attr->device, attr->port_num, table, attr->index);
434 
435 	/*
436 	 * Some HCA's report multiple GID entries with only one valid GID, and
437 	 * leave other unused entries as the zero GID. Convert zero GIDs to
438 	 * empty table entries instead of storing them.
439 	 */
440 	if (rdma_is_zero_gid(&attr->gid))
441 		return 0;
442 
443 	entry = alloc_gid_entry(attr);
444 	if (!entry)
445 		return -ENOMEM;
446 
447 	if (rdma_protocol_roce(attr->device, attr->port_num)) {
448 		ret = add_roce_gid(entry);
449 		if (ret)
450 			goto done;
451 	}
452 
453 	store_gid_entry(table, entry);
454 	return 0;
455 
456 done:
457 	put_gid_entry(entry);
458 	return ret;
459 }
460 
461 /* rwlock should be read locked, or lock should be held */
462 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
463 		    const struct ib_gid_attr *val, bool default_gid,
464 		    unsigned long mask, int *pempty)
465 {
466 	int i = 0;
467 	int found = -1;
468 	int empty = pempty ? -1 : 0;
469 
470 	while (i < table->sz && (found < 0 || empty < 0)) {
471 		struct ib_gid_table_entry *data = table->data_vec[i];
472 		struct ib_gid_attr *attr;
473 		int curr_index = i;
474 
475 		i++;
476 
477 		/* find_gid() is used during GID addition where it is expected
478 		 * to return a free entry slot which is not duplicate.
479 		 * Free entry slot is requested and returned if pempty is set,
480 		 * so lookup free slot only if requested.
481 		 */
482 		if (pempty && empty < 0) {
483 			if (is_gid_entry_free(data) &&
484 			    default_gid ==
485 				is_gid_index_default(table, curr_index)) {
486 				/*
487 				 * Found an invalid (free) entry; allocate it.
488 				 * If default GID is requested, then our
489 				 * found slot must be one of the DEFAULT
490 				 * reserved slots or we fail.
491 				 * This ensures that only DEFAULT reserved
492 				 * slots are used for default property GIDs.
493 				 */
494 				empty = curr_index;
495 			}
496 		}
497 
498 		/*
499 		 * Additionally find_gid() is used to find valid entry during
500 		 * lookup operation; so ignore the entries which are marked as
501 		 * pending for removal and the entries which are marked as
502 		 * invalid.
503 		 */
504 		if (!is_gid_entry_valid(data))
505 			continue;
506 
507 		if (found >= 0)
508 			continue;
509 
510 		attr = &data->attr;
511 		if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
512 		    attr->gid_type != val->gid_type)
513 			continue;
514 
515 		if (mask & GID_ATTR_FIND_MASK_GID &&
516 		    memcmp(gid, &data->attr.gid, sizeof(*gid)))
517 			continue;
518 
519 		if (mask & GID_ATTR_FIND_MASK_NETDEV &&
520 		    attr->ndev != val->ndev)
521 			continue;
522 
523 		if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
524 		    is_gid_index_default(table, curr_index) != default_gid)
525 			continue;
526 
527 		found = curr_index;
528 	}
529 
530 	if (pempty)
531 		*pempty = empty;
532 
533 	return found;
534 }
535 
536 static void make_default_gid(struct  net_device *dev, union ib_gid *gid)
537 {
538 	gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
539 	addrconf_ifid_eui48(&gid->raw[8], dev);
540 }
541 
542 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
543 			      union ib_gid *gid, struct ib_gid_attr *attr,
544 			      unsigned long mask, bool default_gid)
545 {
546 	struct ib_gid_table *table;
547 	int ret = 0;
548 	int empty;
549 	int ix;
550 
551 	/* Do not allow adding zero GID in support of
552 	 * IB spec version 1.3 section 4.1.1 point (6) and
553 	 * section 12.7.10 and section 12.7.20
554 	 */
555 	if (rdma_is_zero_gid(gid))
556 		return -EINVAL;
557 
558 	table = rdma_gid_table(ib_dev, port);
559 
560 	mutex_lock(&table->lock);
561 
562 	ix = find_gid(table, gid, attr, default_gid, mask, &empty);
563 	if (ix >= 0)
564 		goto out_unlock;
565 
566 	if (empty < 0) {
567 		ret = -ENOSPC;
568 		goto out_unlock;
569 	}
570 	attr->device = ib_dev;
571 	attr->index = empty;
572 	attr->port_num = port;
573 	attr->gid = *gid;
574 	ret = add_modify_gid(table, attr);
575 	if (!ret)
576 		dispatch_gid_change_event(ib_dev, port);
577 
578 out_unlock:
579 	mutex_unlock(&table->lock);
580 	if (ret)
581 		pr_warn("%s: unable to add gid %pI6 error=%d\n",
582 			__func__, gid->raw, ret);
583 	return ret;
584 }
585 
586 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
587 		     union ib_gid *gid, struct ib_gid_attr *attr)
588 {
589 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
590 			     GID_ATTR_FIND_MASK_GID_TYPE |
591 			     GID_ATTR_FIND_MASK_NETDEV;
592 
593 	return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
594 }
595 
596 static int
597 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
598 		  union ib_gid *gid, struct ib_gid_attr *attr,
599 		  unsigned long mask, bool default_gid)
600 {
601 	struct ib_gid_table *table;
602 	int ret = 0;
603 	int ix;
604 
605 	table = rdma_gid_table(ib_dev, port);
606 
607 	mutex_lock(&table->lock);
608 
609 	ix = find_gid(table, gid, attr, default_gid, mask, NULL);
610 	if (ix < 0) {
611 		ret = -EINVAL;
612 		goto out_unlock;
613 	}
614 
615 	del_gid(ib_dev, port, table, ix);
616 	dispatch_gid_change_event(ib_dev, port);
617 
618 out_unlock:
619 	mutex_unlock(&table->lock);
620 	if (ret)
621 		pr_debug("%s: can't delete gid %pI6 error=%d\n",
622 			 __func__, gid->raw, ret);
623 	return ret;
624 }
625 
626 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
627 		     union ib_gid *gid, struct ib_gid_attr *attr)
628 {
629 	unsigned long mask = GID_ATTR_FIND_MASK_GID	  |
630 			     GID_ATTR_FIND_MASK_GID_TYPE |
631 			     GID_ATTR_FIND_MASK_DEFAULT  |
632 			     GID_ATTR_FIND_MASK_NETDEV;
633 
634 	return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
635 }
636 
637 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
638 				     struct net_device *ndev)
639 {
640 	struct ib_gid_table *table;
641 	int ix;
642 	bool deleted = false;
643 
644 	table = rdma_gid_table(ib_dev, port);
645 
646 	mutex_lock(&table->lock);
647 
648 	for (ix = 0; ix < table->sz; ix++) {
649 		if (is_gid_entry_valid(table->data_vec[ix]) &&
650 		    table->data_vec[ix]->attr.ndev == ndev) {
651 			del_gid(ib_dev, port, table, ix);
652 			deleted = true;
653 		}
654 	}
655 
656 	mutex_unlock(&table->lock);
657 
658 	if (deleted)
659 		dispatch_gid_change_event(ib_dev, port);
660 
661 	return 0;
662 }
663 
664 /**
665  * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
666  * a valid GID entry for given search parameters. It searches for the specified
667  * GID value in the local software cache.
668  * @device: The device to query.
669  * @gid: The GID value to search for.
670  * @gid_type: The GID type to search for.
671  * @port_num: The port number of the device where the GID value should be
672  *   searched.
673  * @ndev: In RoCE, the net device of the device. NULL means ignore.
674  *
675  * Returns sgid attributes if the GID is found with valid reference or
676  * returns ERR_PTR for the error.
677  * The caller must invoke rdma_put_gid_attr() to release the reference.
678  */
679 const struct ib_gid_attr *
680 rdma_find_gid_by_port(struct ib_device *ib_dev,
681 		      const union ib_gid *gid,
682 		      enum ib_gid_type gid_type,
683 		      u8 port, struct net_device *ndev)
684 {
685 	int local_index;
686 	struct ib_gid_table *table;
687 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
688 			     GID_ATTR_FIND_MASK_GID_TYPE;
689 	struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
690 	const struct ib_gid_attr *attr;
691 	unsigned long flags;
692 
693 	if (!rdma_is_port_valid(ib_dev, port))
694 		return ERR_PTR(-ENOENT);
695 
696 	table = rdma_gid_table(ib_dev, port);
697 
698 	if (ndev)
699 		mask |= GID_ATTR_FIND_MASK_NETDEV;
700 
701 	read_lock_irqsave(&table->rwlock, flags);
702 	local_index = find_gid(table, gid, &val, false, mask, NULL);
703 	if (local_index >= 0) {
704 		get_gid_entry(table->data_vec[local_index]);
705 		attr = &table->data_vec[local_index]->attr;
706 		read_unlock_irqrestore(&table->rwlock, flags);
707 		return attr;
708 	}
709 
710 	read_unlock_irqrestore(&table->rwlock, flags);
711 	return ERR_PTR(-ENOENT);
712 }
713 EXPORT_SYMBOL(rdma_find_gid_by_port);
714 
715 /**
716  * rdma_find_gid_by_filter - Returns the GID table attribute where a
717  * specified GID value occurs
718  * @device: The device to query.
719  * @gid: The GID value to search for.
720  * @port: The port number of the device where the GID value could be
721  *   searched.
722  * @filter: The filter function is executed on any matching GID in the table.
723  *   If the filter function returns true, the corresponding index is returned,
724  *   otherwise, we continue searching the GID table. It's guaranteed that
725  *   while filter is executed, ndev field is valid and the structure won't
726  *   change. filter is executed in an atomic context. filter must not be NULL.
727  *
728  * rdma_find_gid_by_filter() searches for the specified GID value
729  * of which the filter function returns true in the port's GID table.
730  *
731  */
732 const struct ib_gid_attr *rdma_find_gid_by_filter(
733 	struct ib_device *ib_dev, const union ib_gid *gid, u8 port,
734 	bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
735 		       void *),
736 	void *context)
737 {
738 	const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
739 	struct ib_gid_table *table;
740 	unsigned long flags;
741 	unsigned int i;
742 
743 	if (!rdma_is_port_valid(ib_dev, port))
744 		return ERR_PTR(-EINVAL);
745 
746 	table = rdma_gid_table(ib_dev, port);
747 
748 	read_lock_irqsave(&table->rwlock, flags);
749 	for (i = 0; i < table->sz; i++) {
750 		struct ib_gid_table_entry *entry = table->data_vec[i];
751 
752 		if (!is_gid_entry_valid(entry))
753 			continue;
754 
755 		if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
756 			continue;
757 
758 		if (filter(gid, &entry->attr, context)) {
759 			get_gid_entry(entry);
760 			res = &entry->attr;
761 			break;
762 		}
763 	}
764 	read_unlock_irqrestore(&table->rwlock, flags);
765 	return res;
766 }
767 
768 static struct ib_gid_table *alloc_gid_table(int sz)
769 {
770 	struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
771 
772 	if (!table)
773 		return NULL;
774 
775 	table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
776 	if (!table->data_vec)
777 		goto err_free_table;
778 
779 	mutex_init(&table->lock);
780 
781 	table->sz = sz;
782 	rwlock_init(&table->rwlock);
783 	return table;
784 
785 err_free_table:
786 	kfree(table);
787 	return NULL;
788 }
789 
790 static void release_gid_table(struct ib_device *device,
791 			      struct ib_gid_table *table)
792 {
793 	bool leak = false;
794 	int i;
795 
796 	if (!table)
797 		return;
798 
799 	for (i = 0; i < table->sz; i++) {
800 		if (is_gid_entry_free(table->data_vec[i]))
801 			continue;
802 		if (kref_read(&table->data_vec[i]->kref) > 1) {
803 			dev_err(&device->dev,
804 				"GID entry ref leak for index %d ref=%d\n", i,
805 				kref_read(&table->data_vec[i]->kref));
806 			leak = true;
807 		}
808 	}
809 	if (leak)
810 		return;
811 
812 	mutex_destroy(&table->lock);
813 	kfree(table->data_vec);
814 	kfree(table);
815 }
816 
817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
818 				   struct ib_gid_table *table)
819 {
820 	int i;
821 
822 	if (!table)
823 		return;
824 
825 	mutex_lock(&table->lock);
826 	for (i = 0; i < table->sz; ++i) {
827 		if (is_gid_entry_valid(table->data_vec[i]))
828 			del_gid(ib_dev, port, table, i);
829 	}
830 	mutex_unlock(&table->lock);
831 }
832 
833 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
834 				  struct net_device *ndev,
835 				  unsigned long gid_type_mask,
836 				  enum ib_cache_gid_default_mode mode)
837 {
838 	union ib_gid gid = { };
839 	struct ib_gid_attr gid_attr;
840 	unsigned int gid_type;
841 	unsigned long mask;
842 
843 	mask = GID_ATTR_FIND_MASK_GID_TYPE |
844 	       GID_ATTR_FIND_MASK_DEFAULT |
845 	       GID_ATTR_FIND_MASK_NETDEV;
846 	memset(&gid_attr, 0, sizeof(gid_attr));
847 	gid_attr.ndev = ndev;
848 
849 	for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
850 		if (1UL << gid_type & ~gid_type_mask)
851 			continue;
852 
853 		gid_attr.gid_type = gid_type;
854 
855 		if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
856 			make_default_gid(ndev, &gid);
857 			__ib_cache_gid_add(ib_dev, port, &gid,
858 					   &gid_attr, mask, true);
859 		} else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
860 			_ib_cache_gid_del(ib_dev, port, &gid,
861 					  &gid_attr, mask, true);
862 		}
863 	}
864 }
865 
866 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
867 				      struct ib_gid_table *table)
868 {
869 	unsigned int i;
870 	unsigned long roce_gid_type_mask;
871 	unsigned int num_default_gids;
872 
873 	roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
874 	num_default_gids = hweight_long(roce_gid_type_mask);
875 	/* Reserve starting indices for default GIDs */
876 	for (i = 0; i < num_default_gids && i < table->sz; i++)
877 		table->default_gid_indices |= BIT(i);
878 }
879 
880 
881 static void gid_table_release_one(struct ib_device *ib_dev)
882 {
883 	unsigned int p;
884 
885 	rdma_for_each_port (ib_dev, p) {
886 		release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
887 		ib_dev->port_data[p].cache.gid = NULL;
888 	}
889 }
890 
891 static int _gid_table_setup_one(struct ib_device *ib_dev)
892 {
893 	struct ib_gid_table *table;
894 	unsigned int rdma_port;
895 
896 	rdma_for_each_port (ib_dev, rdma_port) {
897 		table = alloc_gid_table(
898 			ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
899 		if (!table)
900 			goto rollback_table_setup;
901 
902 		gid_table_reserve_default(ib_dev, rdma_port, table);
903 		ib_dev->port_data[rdma_port].cache.gid = table;
904 	}
905 	return 0;
906 
907 rollback_table_setup:
908 	gid_table_release_one(ib_dev);
909 	return -ENOMEM;
910 }
911 
912 static void gid_table_cleanup_one(struct ib_device *ib_dev)
913 {
914 	unsigned int p;
915 
916 	rdma_for_each_port (ib_dev, p)
917 		cleanup_gid_table_port(ib_dev, p,
918 				       ib_dev->port_data[p].cache.gid);
919 }
920 
921 static int gid_table_setup_one(struct ib_device *ib_dev)
922 {
923 	int err;
924 
925 	err = _gid_table_setup_one(ib_dev);
926 
927 	if (err)
928 		return err;
929 
930 	rdma_roce_rescan_device(ib_dev);
931 
932 	return err;
933 }
934 
935 /**
936  * rdma_query_gid - Read the GID content from the GID software cache
937  * @device:		Device to query the GID
938  * @port_num:		Port number of the device
939  * @index:		Index of the GID table entry to read
940  * @gid:		Pointer to GID where to store the entry's GID
941  *
942  * rdma_query_gid() only reads the GID entry content for requested device,
943  * port and index. It reads for IB, RoCE and iWarp link layers.  It doesn't
944  * hold any reference to the GID table entry in the HCA or software cache.
945  *
946  * Returns 0 on success or appropriate error code.
947  *
948  */
949 int rdma_query_gid(struct ib_device *device, u8 port_num,
950 		   int index, union ib_gid *gid)
951 {
952 	struct ib_gid_table *table;
953 	unsigned long flags;
954 	int res = -EINVAL;
955 
956 	if (!rdma_is_port_valid(device, port_num))
957 		return -EINVAL;
958 
959 	table = rdma_gid_table(device, port_num);
960 	read_lock_irqsave(&table->rwlock, flags);
961 
962 	if (index < 0 || index >= table->sz ||
963 	    !is_gid_entry_valid(table->data_vec[index]))
964 		goto done;
965 
966 	memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
967 	res = 0;
968 
969 done:
970 	read_unlock_irqrestore(&table->rwlock, flags);
971 	return res;
972 }
973 EXPORT_SYMBOL(rdma_query_gid);
974 
975 /**
976  * rdma_find_gid - Returns SGID attributes if the matching GID is found.
977  * @device: The device to query.
978  * @gid: The GID value to search for.
979  * @gid_type: The GID type to search for.
980  * @ndev: In RoCE, the net device of the device. NULL means ignore.
981  *
982  * rdma_find_gid() searches for the specified GID value in the software cache.
983  *
984  * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
985  * error. The caller must invoke rdma_put_gid_attr() to release the reference.
986  *
987  */
988 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
989 					const union ib_gid *gid,
990 					enum ib_gid_type gid_type,
991 					struct net_device *ndev)
992 {
993 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
994 			     GID_ATTR_FIND_MASK_GID_TYPE;
995 	struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
996 	unsigned int p;
997 
998 	if (ndev)
999 		mask |= GID_ATTR_FIND_MASK_NETDEV;
1000 
1001 	rdma_for_each_port(device, p) {
1002 		struct ib_gid_table *table;
1003 		unsigned long flags;
1004 		int index;
1005 
1006 		table = device->port_data[p].cache.gid;
1007 		read_lock_irqsave(&table->rwlock, flags);
1008 		index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1009 		if (index >= 0) {
1010 			const struct ib_gid_attr *attr;
1011 
1012 			get_gid_entry(table->data_vec[index]);
1013 			attr = &table->data_vec[index]->attr;
1014 			read_unlock_irqrestore(&table->rwlock, flags);
1015 			return attr;
1016 		}
1017 		read_unlock_irqrestore(&table->rwlock, flags);
1018 	}
1019 
1020 	return ERR_PTR(-ENOENT);
1021 }
1022 EXPORT_SYMBOL(rdma_find_gid);
1023 
1024 int ib_get_cached_pkey(struct ib_device *device,
1025 		       u8                port_num,
1026 		       int               index,
1027 		       u16              *pkey)
1028 {
1029 	struct ib_pkey_cache *cache;
1030 	unsigned long flags;
1031 	int ret = 0;
1032 
1033 	if (!rdma_is_port_valid(device, port_num))
1034 		return -EINVAL;
1035 
1036 	read_lock_irqsave(&device->cache_lock, flags);
1037 
1038 	cache = device->port_data[port_num].cache.pkey;
1039 
1040 	if (index < 0 || index >= cache->table_len)
1041 		ret = -EINVAL;
1042 	else
1043 		*pkey = cache->table[index];
1044 
1045 	read_unlock_irqrestore(&device->cache_lock, flags);
1046 
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL(ib_get_cached_pkey);
1050 
1051 int ib_get_cached_subnet_prefix(struct ib_device *device,
1052 				u8                port_num,
1053 				u64              *sn_pfx)
1054 {
1055 	unsigned long flags;
1056 
1057 	if (!rdma_is_port_valid(device, port_num))
1058 		return -EINVAL;
1059 
1060 	read_lock_irqsave(&device->cache_lock, flags);
1061 	*sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1062 	read_unlock_irqrestore(&device->cache_lock, flags);
1063 
1064 	return 0;
1065 }
1066 EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1067 
1068 int ib_find_cached_pkey(struct ib_device *device,
1069 			u8                port_num,
1070 			u16               pkey,
1071 			u16              *index)
1072 {
1073 	struct ib_pkey_cache *cache;
1074 	unsigned long flags;
1075 	int i;
1076 	int ret = -ENOENT;
1077 	int partial_ix = -1;
1078 
1079 	if (!rdma_is_port_valid(device, port_num))
1080 		return -EINVAL;
1081 
1082 	read_lock_irqsave(&device->cache_lock, flags);
1083 
1084 	cache = device->port_data[port_num].cache.pkey;
1085 
1086 	*index = -1;
1087 
1088 	for (i = 0; i < cache->table_len; ++i)
1089 		if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1090 			if (cache->table[i] & 0x8000) {
1091 				*index = i;
1092 				ret = 0;
1093 				break;
1094 			} else
1095 				partial_ix = i;
1096 		}
1097 
1098 	if (ret && partial_ix >= 0) {
1099 		*index = partial_ix;
1100 		ret = 0;
1101 	}
1102 
1103 	read_unlock_irqrestore(&device->cache_lock, flags);
1104 
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(ib_find_cached_pkey);
1108 
1109 int ib_find_exact_cached_pkey(struct ib_device *device,
1110 			      u8                port_num,
1111 			      u16               pkey,
1112 			      u16              *index)
1113 {
1114 	struct ib_pkey_cache *cache;
1115 	unsigned long flags;
1116 	int i;
1117 	int ret = -ENOENT;
1118 
1119 	if (!rdma_is_port_valid(device, port_num))
1120 		return -EINVAL;
1121 
1122 	read_lock_irqsave(&device->cache_lock, flags);
1123 
1124 	cache = device->port_data[port_num].cache.pkey;
1125 
1126 	*index = -1;
1127 
1128 	for (i = 0; i < cache->table_len; ++i)
1129 		if (cache->table[i] == pkey) {
1130 			*index = i;
1131 			ret = 0;
1132 			break;
1133 		}
1134 
1135 	read_unlock_irqrestore(&device->cache_lock, flags);
1136 
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1140 
1141 int ib_get_cached_lmc(struct ib_device *device,
1142 		      u8                port_num,
1143 		      u8                *lmc)
1144 {
1145 	unsigned long flags;
1146 	int ret = 0;
1147 
1148 	if (!rdma_is_port_valid(device, port_num))
1149 		return -EINVAL;
1150 
1151 	read_lock_irqsave(&device->cache_lock, flags);
1152 	*lmc = device->port_data[port_num].cache.lmc;
1153 	read_unlock_irqrestore(&device->cache_lock, flags);
1154 
1155 	return ret;
1156 }
1157 EXPORT_SYMBOL(ib_get_cached_lmc);
1158 
1159 int ib_get_cached_port_state(struct ib_device   *device,
1160 			     u8                  port_num,
1161 			     enum ib_port_state *port_state)
1162 {
1163 	unsigned long flags;
1164 	int ret = 0;
1165 
1166 	if (!rdma_is_port_valid(device, port_num))
1167 		return -EINVAL;
1168 
1169 	read_lock_irqsave(&device->cache_lock, flags);
1170 	*port_state = device->port_data[port_num].cache.port_state;
1171 	read_unlock_irqrestore(&device->cache_lock, flags);
1172 
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL(ib_get_cached_port_state);
1176 
1177 /**
1178  * rdma_get_gid_attr - Returns GID attributes for a port of a device
1179  * at a requested gid_index, if a valid GID entry exists.
1180  * @device:		The device to query.
1181  * @port_num:		The port number on the device where the GID value
1182  *			is to be queried.
1183  * @index:		Index of the GID table entry whose attributes are to
1184  *                      be queried.
1185  *
1186  * rdma_get_gid_attr() acquires reference count of gid attributes from the
1187  * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1188  * reference to gid attribute regardless of link layer.
1189  *
1190  * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1191  * code.
1192  */
1193 const struct ib_gid_attr *
1194 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index)
1195 {
1196 	const struct ib_gid_attr *attr = ERR_PTR(-EINVAL);
1197 	struct ib_gid_table *table;
1198 	unsigned long flags;
1199 
1200 	if (!rdma_is_port_valid(device, port_num))
1201 		return ERR_PTR(-EINVAL);
1202 
1203 	table = rdma_gid_table(device, port_num);
1204 	if (index < 0 || index >= table->sz)
1205 		return ERR_PTR(-EINVAL);
1206 
1207 	read_lock_irqsave(&table->rwlock, flags);
1208 	if (!is_gid_entry_valid(table->data_vec[index]))
1209 		goto done;
1210 
1211 	get_gid_entry(table->data_vec[index]);
1212 	attr = &table->data_vec[index]->attr;
1213 done:
1214 	read_unlock_irqrestore(&table->rwlock, flags);
1215 	return attr;
1216 }
1217 EXPORT_SYMBOL(rdma_get_gid_attr);
1218 
1219 /**
1220  * rdma_put_gid_attr - Release reference to the GID attribute
1221  * @attr:		Pointer to the GID attribute whose reference
1222  *			needs to be released.
1223  *
1224  * rdma_put_gid_attr() must be used to release reference whose
1225  * reference is acquired using rdma_get_gid_attr() or any APIs
1226  * which returns a pointer to the ib_gid_attr regardless of link layer
1227  * of IB or RoCE.
1228  *
1229  */
1230 void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1231 {
1232 	struct ib_gid_table_entry *entry =
1233 		container_of(attr, struct ib_gid_table_entry, attr);
1234 
1235 	put_gid_entry(entry);
1236 }
1237 EXPORT_SYMBOL(rdma_put_gid_attr);
1238 
1239 /**
1240  * rdma_hold_gid_attr - Get reference to existing GID attribute
1241  *
1242  * @attr:		Pointer to the GID attribute whose reference
1243  *			needs to be taken.
1244  *
1245  * Increase the reference count to a GID attribute to keep it from being
1246  * freed. Callers are required to already be holding a reference to attribute.
1247  *
1248  */
1249 void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1250 {
1251 	struct ib_gid_table_entry *entry =
1252 		container_of(attr, struct ib_gid_table_entry, attr);
1253 
1254 	get_gid_entry(entry);
1255 }
1256 EXPORT_SYMBOL(rdma_hold_gid_attr);
1257 
1258 /**
1259  * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1260  * which must be in UP state.
1261  *
1262  * @attr:Pointer to the GID attribute
1263  *
1264  * Returns pointer to netdevice if the netdevice was attached to GID and
1265  * netdevice is in UP state. Caller must hold RCU lock as this API
1266  * reads the netdev flags which can change while netdevice migrates to
1267  * different net namespace. Returns ERR_PTR with error code otherwise.
1268  *
1269  */
1270 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1271 {
1272 	struct ib_gid_table_entry *entry =
1273 			container_of(attr, struct ib_gid_table_entry, attr);
1274 	struct ib_device *device = entry->attr.device;
1275 	struct net_device *ndev = ERR_PTR(-ENODEV);
1276 	u8 port_num = entry->attr.port_num;
1277 	struct ib_gid_table *table;
1278 	unsigned long flags;
1279 	bool valid;
1280 
1281 	table = rdma_gid_table(device, port_num);
1282 
1283 	read_lock_irqsave(&table->rwlock, flags);
1284 	valid = is_gid_entry_valid(table->data_vec[attr->index]);
1285 	if (valid) {
1286 		ndev = rcu_dereference(attr->ndev);
1287 		if (!ndev ||
1288 		    (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0)))
1289 			ndev = ERR_PTR(-ENODEV);
1290 	}
1291 	read_unlock_irqrestore(&table->rwlock, flags);
1292 	return ndev;
1293 }
1294 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1295 
1296 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data)
1297 {
1298 	u16 *vlan_id = data;
1299 
1300 	if (is_vlan_dev(lower_dev))
1301 		*vlan_id = vlan_dev_vlan_id(lower_dev);
1302 
1303 	/* We are interested only in first level vlan device, so
1304 	 * always return 1 to stop iterating over next level devices.
1305 	 */
1306 	return 1;
1307 }
1308 
1309 /**
1310  * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1311  *			     of a GID entry.
1312  *
1313  * @attr:	GID attribute pointer whose L2 fields to be read
1314  * @vlan_id:	Pointer to vlan id to fill up if the GID entry has
1315  *		vlan id. It is optional.
1316  * @smac:	Pointer to smac to fill up for a GID entry. It is optional.
1317  *
1318  * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1319  * (if gid entry has vlan) and source MAC, or returns error.
1320  */
1321 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1322 			    u16 *vlan_id, u8 *smac)
1323 {
1324 	struct net_device *ndev;
1325 
1326 	rcu_read_lock();
1327 	ndev = rcu_dereference(attr->ndev);
1328 	if (!ndev) {
1329 		rcu_read_unlock();
1330 		return -ENODEV;
1331 	}
1332 	if (smac)
1333 		ether_addr_copy(smac, ndev->dev_addr);
1334 	if (vlan_id) {
1335 		*vlan_id = 0xffff;
1336 		if (is_vlan_dev(ndev)) {
1337 			*vlan_id = vlan_dev_vlan_id(ndev);
1338 		} else {
1339 			/* If the netdev is upper device and if it's lower
1340 			 * device is vlan device, consider vlan id of the
1341 			 * the lower vlan device for this gid entry.
1342 			 */
1343 			netdev_walk_all_lower_dev_rcu(attr->ndev,
1344 					get_lower_dev_vlan, vlan_id);
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1351 
1352 static int config_non_roce_gid_cache(struct ib_device *device,
1353 				     u8 port, int gid_tbl_len)
1354 {
1355 	struct ib_gid_attr gid_attr = {};
1356 	struct ib_gid_table *table;
1357 	int ret = 0;
1358 	int i;
1359 
1360 	gid_attr.device = device;
1361 	gid_attr.port_num = port;
1362 	table = rdma_gid_table(device, port);
1363 
1364 	mutex_lock(&table->lock);
1365 	for (i = 0; i < gid_tbl_len; ++i) {
1366 		if (!device->ops.query_gid)
1367 			continue;
1368 		ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1369 		if (ret) {
1370 			dev_warn(&device->dev,
1371 				 "query_gid failed (%d) for index %d\n", ret,
1372 				 i);
1373 			goto err;
1374 		}
1375 		gid_attr.index = i;
1376 		add_modify_gid(table, &gid_attr);
1377 	}
1378 err:
1379 	mutex_unlock(&table->lock);
1380 	return ret;
1381 }
1382 
1383 static int
1384 ib_cache_update(struct ib_device *device, u8 port, bool enforce_security)
1385 {
1386 	struct ib_port_attr       *tprops = NULL;
1387 	struct ib_pkey_cache      *pkey_cache = NULL, *old_pkey_cache;
1388 	int                        i;
1389 	int                        ret;
1390 
1391 	if (!rdma_is_port_valid(device, port))
1392 		return -EINVAL;
1393 
1394 	tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1395 	if (!tprops)
1396 		return -ENOMEM;
1397 
1398 	ret = ib_query_port(device, port, tprops);
1399 	if (ret) {
1400 		dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1401 		goto err;
1402 	}
1403 
1404 	if (!rdma_protocol_roce(device, port)) {
1405 		ret = config_non_roce_gid_cache(device, port,
1406 						tprops->gid_tbl_len);
1407 		if (ret)
1408 			goto err;
1409 	}
1410 
1411 	pkey_cache = kmalloc(struct_size(pkey_cache, table,
1412 					 tprops->pkey_tbl_len),
1413 			     GFP_KERNEL);
1414 	if (!pkey_cache) {
1415 		ret = -ENOMEM;
1416 		goto err;
1417 	}
1418 
1419 	pkey_cache->table_len = tprops->pkey_tbl_len;
1420 
1421 	for (i = 0; i < pkey_cache->table_len; ++i) {
1422 		ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
1423 		if (ret) {
1424 			dev_warn(&device->dev,
1425 				 "ib_query_pkey failed (%d) for index %d\n",
1426 				 ret, i);
1427 			goto err;
1428 		}
1429 	}
1430 
1431 	write_lock_irq(&device->cache_lock);
1432 
1433 	old_pkey_cache = device->port_data[port].cache.pkey;
1434 
1435 	device->port_data[port].cache.pkey = pkey_cache;
1436 	device->port_data[port].cache.lmc = tprops->lmc;
1437 	device->port_data[port].cache.port_state = tprops->state;
1438 
1439 	device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1440 	write_unlock_irq(&device->cache_lock);
1441 
1442 	if (enforce_security)
1443 		ib_security_cache_change(device,
1444 					 port,
1445 					 tprops->subnet_prefix);
1446 
1447 	kfree(old_pkey_cache);
1448 	kfree(tprops);
1449 	return 0;
1450 
1451 err:
1452 	kfree(pkey_cache);
1453 	kfree(tprops);
1454 	return ret;
1455 }
1456 
1457 static void ib_cache_event_task(struct work_struct *_work)
1458 {
1459 	struct ib_update_work *work =
1460 		container_of(_work, struct ib_update_work, work);
1461 	int ret;
1462 
1463 	/* Before distributing the cache update event, first sync
1464 	 * the cache.
1465 	 */
1466 	ret = ib_cache_update(work->event.device, work->event.element.port_num,
1467 			      work->enforce_security);
1468 
1469 	/* GID event is notified already for individual GID entries by
1470 	 * dispatch_gid_change_event(). Hence, notifiy for rest of the
1471 	 * events.
1472 	 */
1473 	if (!ret && work->event.event != IB_EVENT_GID_CHANGE)
1474 		ib_dispatch_event_clients(&work->event);
1475 
1476 	kfree(work);
1477 }
1478 
1479 static void ib_generic_event_task(struct work_struct *_work)
1480 {
1481 	struct ib_update_work *work =
1482 		container_of(_work, struct ib_update_work, work);
1483 
1484 	ib_dispatch_event_clients(&work->event);
1485 	kfree(work);
1486 }
1487 
1488 static bool is_cache_update_event(const struct ib_event *event)
1489 {
1490 	return (event->event == IB_EVENT_PORT_ERR    ||
1491 		event->event == IB_EVENT_PORT_ACTIVE ||
1492 		event->event == IB_EVENT_LID_CHANGE  ||
1493 		event->event == IB_EVENT_PKEY_CHANGE ||
1494 		event->event == IB_EVENT_CLIENT_REREGISTER ||
1495 		event->event == IB_EVENT_GID_CHANGE);
1496 }
1497 
1498 /**
1499  * ib_dispatch_event - Dispatch an asynchronous event
1500  * @event:Event to dispatch
1501  *
1502  * Low-level drivers must call ib_dispatch_event() to dispatch the
1503  * event to all registered event handlers when an asynchronous event
1504  * occurs.
1505  */
1506 void ib_dispatch_event(const struct ib_event *event)
1507 {
1508 	struct ib_update_work *work;
1509 
1510 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
1511 	if (!work)
1512 		return;
1513 
1514 	if (is_cache_update_event(event))
1515 		INIT_WORK(&work->work, ib_cache_event_task);
1516 	else
1517 		INIT_WORK(&work->work, ib_generic_event_task);
1518 
1519 	work->event = *event;
1520 	if (event->event == IB_EVENT_PKEY_CHANGE ||
1521 	    event->event == IB_EVENT_GID_CHANGE)
1522 		work->enforce_security = true;
1523 
1524 	queue_work(ib_wq, &work->work);
1525 }
1526 EXPORT_SYMBOL(ib_dispatch_event);
1527 
1528 int ib_cache_setup_one(struct ib_device *device)
1529 {
1530 	unsigned int p;
1531 	int err;
1532 
1533 	rwlock_init(&device->cache_lock);
1534 
1535 	err = gid_table_setup_one(device);
1536 	if (err)
1537 		return err;
1538 
1539 	rdma_for_each_port (device, p)
1540 		ib_cache_update(device, p, true);
1541 
1542 	return 0;
1543 }
1544 
1545 void ib_cache_release_one(struct ib_device *device)
1546 {
1547 	unsigned int p;
1548 
1549 	/*
1550 	 * The release function frees all the cache elements.
1551 	 * This function should be called as part of freeing
1552 	 * all the device's resources when the cache could no
1553 	 * longer be accessed.
1554 	 */
1555 	rdma_for_each_port (device, p)
1556 		kfree(device->port_data[p].cache.pkey);
1557 
1558 	gid_table_release_one(device);
1559 }
1560 
1561 void ib_cache_cleanup_one(struct ib_device *device)
1562 {
1563 	/* The cleanup function waits for all in-progress workqueue
1564 	 * elements and cleans up the GID cache. This function should be
1565 	 * called after the device was removed from the devices list and
1566 	 * all clients were removed, so the cache exists but is
1567 	 * non-functional and shouldn't be updated anymore.
1568 	 */
1569 	flush_workqueue(ib_wq);
1570 	gid_table_cleanup_one(device);
1571 
1572 	/*
1573 	 * Flush the wq second time for any pending GID delete work.
1574 	 */
1575 	flush_workqueue(ib_wq);
1576 }
1577