xref: /linux/drivers/infiniband/hw/hfi1/firmware.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2017 Intel Corporation.
4  */
5 
6 #include <linux/firmware.h>
7 #include <linux/mutex.h>
8 #include <linux/delay.h>
9 #include <linux/crc32.h>
10 
11 #include "hfi.h"
12 #include "trace.h"
13 
14 /*
15  * Make it easy to toggle firmware file name and if it gets loaded by
16  * editing the following. This may be something we do while in development
17  * but not necessarily something a user would ever need to use.
18  */
19 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
20 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
21 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
22 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
23 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
24 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
25 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
26 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
27 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
28 
29 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
30 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
31 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
32 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
33 
34 static uint fw_8051_load = 1;
35 static uint fw_fabric_serdes_load = 1;
36 static uint fw_pcie_serdes_load = 1;
37 static uint fw_sbus_load = 1;
38 
39 /* Firmware file names get set in hfi1_firmware_init() based on the above */
40 static char *fw_8051_name;
41 static char *fw_fabric_serdes_name;
42 static char *fw_sbus_name;
43 static char *fw_pcie_serdes_name;
44 
45 #define SBUS_MAX_POLL_COUNT 100
46 #define SBUS_COUNTER(reg, name) \
47 	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
48 	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
49 
50 /*
51  * Firmware security header.
52  */
53 struct css_header {
54 	u32 module_type;
55 	u32 header_len;
56 	u32 header_version;
57 	u32 module_id;
58 	u32 module_vendor;
59 	u32 date;		/* BCD yyyymmdd */
60 	u32 size;		/* in DWORDs */
61 	u32 key_size;		/* in DWORDs */
62 	u32 modulus_size;	/* in DWORDs */
63 	u32 exponent_size;	/* in DWORDs */
64 	u32 reserved[22];
65 };
66 
67 /* expected field values */
68 #define CSS_MODULE_TYPE	   0x00000006
69 #define CSS_HEADER_LEN	   0x000000a1
70 #define CSS_HEADER_VERSION 0x00010000
71 #define CSS_MODULE_VENDOR  0x00008086
72 
73 #define KEY_SIZE      256
74 #define MU_SIZE		8
75 #define EXPONENT_SIZE	4
76 
77 /* size of platform configuration partition */
78 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
79 
80 /* size of file of plaform configuration encoded in format version 4 */
81 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
82 
83 /* the file itself */
84 struct firmware_file {
85 	struct css_header css_header;
86 	u8 modulus[KEY_SIZE];
87 	u8 exponent[EXPONENT_SIZE];
88 	u8 signature[KEY_SIZE];
89 	u8 firmware[];
90 };
91 
92 struct augmented_firmware_file {
93 	struct css_header css_header;
94 	u8 modulus[KEY_SIZE];
95 	u8 exponent[EXPONENT_SIZE];
96 	u8 signature[KEY_SIZE];
97 	u8 r2[KEY_SIZE];
98 	u8 mu[MU_SIZE];
99 	u8 firmware[];
100 };
101 
102 /* augmented file size difference */
103 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
104 						sizeof(struct firmware_file))
105 
106 struct firmware_details {
107 	/* Linux core piece */
108 	const struct firmware *fw;
109 
110 	struct css_header *css_header;
111 	u8 *firmware_ptr;		/* pointer to binary data */
112 	u32 firmware_len;		/* length in bytes */
113 	u8 *modulus;			/* pointer to the modulus */
114 	u8 *exponent;			/* pointer to the exponent */
115 	u8 *signature;			/* pointer to the signature */
116 	u8 *r2;				/* pointer to r2 */
117 	u8 *mu;				/* pointer to mu */
118 	struct augmented_firmware_file dummy_header;
119 };
120 
121 /*
122  * The mutex protects fw_state, fw_err, and all of the firmware_details
123  * variables.
124  */
125 static DEFINE_MUTEX(fw_mutex);
126 enum fw_state {
127 	FW_EMPTY,
128 	FW_TRY,
129 	FW_FINAL,
130 	FW_ERR
131 };
132 
133 static enum fw_state fw_state = FW_EMPTY;
134 static int fw_err;
135 static struct firmware_details fw_8051;
136 static struct firmware_details fw_fabric;
137 static struct firmware_details fw_pcie;
138 static struct firmware_details fw_sbus;
139 
140 /* flags for turn_off_spicos() */
141 #define SPICO_SBUS   0x1
142 #define SPICO_FABRIC 0x2
143 #define ENABLE_SPICO_SMASK 0x1
144 
145 /* security block commands */
146 #define RSA_CMD_INIT  0x1
147 #define RSA_CMD_START 0x2
148 
149 /* security block status */
150 #define RSA_STATUS_IDLE   0x0
151 #define RSA_STATUS_ACTIVE 0x1
152 #define RSA_STATUS_DONE   0x2
153 #define RSA_STATUS_FAILED 0x3
154 
155 /* RSA engine timeout, in ms */
156 #define RSA_ENGINE_TIMEOUT 100 /* ms */
157 
158 /* hardware mutex timeout, in ms */
159 #define HM_TIMEOUT 10 /* ms */
160 
161 /* 8051 memory access timeout, in us */
162 #define DC8051_ACCESS_TIMEOUT 100 /* us */
163 
164 /* the number of fabric SerDes on the SBus */
165 #define NUM_FABRIC_SERDES 4
166 
167 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
168 #define SBUS_READ_COMPLETE 0x4
169 
170 /* SBus fabric SerDes addresses, one set per HFI */
171 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
172 	{ 0x01, 0x02, 0x03, 0x04 },
173 	{ 0x28, 0x29, 0x2a, 0x2b }
174 };
175 
176 /* SBus PCIe SerDes addresses, one set per HFI */
177 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
178 	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
179 	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
180 	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
181 	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
182 };
183 
184 /* SBus PCIe PCS addresses, one set per HFI */
185 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
186 	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
187 	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
188 	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
189 	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
190 };
191 
192 /* SBus fabric SerDes broadcast addresses, one per HFI */
193 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
194 static const u8 all_fabric_serdes_broadcast = 0xe1;
195 
196 /* SBus PCIe SerDes broadcast addresses, one per HFI */
197 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
198 static const u8 all_pcie_serdes_broadcast = 0xe0;
199 
200 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
201 	0,
202 	SYSTEM_TABLE_MAX,
203 	PORT_TABLE_MAX,
204 	RX_PRESET_TABLE_MAX,
205 	TX_PRESET_TABLE_MAX,
206 	QSFP_ATTEN_TABLE_MAX,
207 	VARIABLE_SETTINGS_TABLE_MAX
208 };
209 
210 /* forwards */
211 static void dispose_one_firmware(struct firmware_details *fdet);
212 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
213 				       struct firmware_details *fdet);
214 static void dump_fw_version(struct hfi1_devdata *dd);
215 
216 /*
217  * Read a single 64-bit value from 8051 data memory.
218  *
219  * Expects:
220  * o caller to have already set up data read, no auto increment
221  * o caller to turn off read enable when finished
222  *
223  * The address argument is a byte offset.  Bits 0:2 in the address are
224  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
225  * the lower bits are zero.
226  *
227  * Return 0 on success, -ENXIO on a read error (timeout).
228  */
229 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
230 {
231 	u64 reg;
232 	int count;
233 
234 	/* step 1: set the address, clear enable */
235 	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
236 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
237 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
238 	/* step 2: enable */
239 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
240 		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
241 
242 	/* wait until ACCESS_COMPLETED is set */
243 	count = 0;
244 	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
245 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
246 		    == 0) {
247 		count++;
248 		if (count > DC8051_ACCESS_TIMEOUT) {
249 			dd_dev_err(dd, "timeout reading 8051 data\n");
250 			return -ENXIO;
251 		}
252 		ndelay(10);
253 	}
254 
255 	/* gather the data */
256 	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
257 
258 	return 0;
259 }
260 
261 /*
262  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
263  * Return 0 on success, -errno on error.
264  */
265 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
266 {
267 	unsigned long flags;
268 	u32 done;
269 	int ret = 0;
270 
271 	spin_lock_irqsave(&dd->dc8051_memlock, flags);
272 
273 	/* data read set-up, no auto-increment */
274 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
275 
276 	for (done = 0; done < len; addr += 8, done += 8, result++) {
277 		ret = __read_8051_data(dd, addr, result);
278 		if (ret)
279 			break;
280 	}
281 
282 	/* turn off read enable */
283 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
284 
285 	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
286 
287 	return ret;
288 }
289 
290 /*
291  * Write data or code to the 8051 code or data RAM.
292  */
293 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
294 		      const u8 *data, u32 len)
295 {
296 	u64 reg;
297 	u32 offset;
298 	int aligned, count;
299 
300 	/* check alignment */
301 	aligned = ((unsigned long)data & 0x7) == 0;
302 
303 	/* write set-up */
304 	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
305 		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
306 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
307 
308 	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
309 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
310 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
311 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
312 
313 	/* write */
314 	for (offset = 0; offset < len; offset += 8) {
315 		int bytes = len - offset;
316 
317 		if (bytes < 8) {
318 			reg = 0;
319 			memcpy(&reg, &data[offset], bytes);
320 		} else if (aligned) {
321 			reg = *(u64 *)&data[offset];
322 		} else {
323 			memcpy(&reg, &data[offset], 8);
324 		}
325 		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
326 
327 		/* wait until ACCESS_COMPLETED is set */
328 		count = 0;
329 		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
330 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
331 		    == 0) {
332 			count++;
333 			if (count > DC8051_ACCESS_TIMEOUT) {
334 				dd_dev_err(dd, "timeout writing 8051 data\n");
335 				return -ENXIO;
336 			}
337 			udelay(1);
338 		}
339 	}
340 
341 	/* turn off write access, auto increment (also sets to data access) */
342 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
343 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
344 
345 	return 0;
346 }
347 
348 /* return 0 if values match, non-zero and complain otherwise */
349 static int invalid_header(struct hfi1_devdata *dd, const char *what,
350 			  u32 actual, u32 expected)
351 {
352 	if (actual == expected)
353 		return 0;
354 
355 	dd_dev_err(dd,
356 		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
357 		   what, expected, actual);
358 	return 1;
359 }
360 
361 /*
362  * Verify that the static fields in the CSS header match.
363  */
364 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
365 {
366 	/* verify CSS header fields (most sizes are in DW, so add /4) */
367 	if (invalid_header(dd, "module_type", css->module_type,
368 			   CSS_MODULE_TYPE) ||
369 	    invalid_header(dd, "header_len", css->header_len,
370 			   (sizeof(struct firmware_file) / 4)) ||
371 	    invalid_header(dd, "header_version", css->header_version,
372 			   CSS_HEADER_VERSION) ||
373 	    invalid_header(dd, "module_vendor", css->module_vendor,
374 			   CSS_MODULE_VENDOR) ||
375 	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
376 	    invalid_header(dd, "modulus_size", css->modulus_size,
377 			   KEY_SIZE / 4) ||
378 	    invalid_header(dd, "exponent_size", css->exponent_size,
379 			   EXPONENT_SIZE / 4)) {
380 		return -EINVAL;
381 	}
382 	return 0;
383 }
384 
385 /*
386  * Make sure there are at least some bytes after the prefix.
387  */
388 static int payload_check(struct hfi1_devdata *dd, const char *name,
389 			 long file_size, long prefix_size)
390 {
391 	/* make sure we have some payload */
392 	if (prefix_size >= file_size) {
393 		dd_dev_err(dd,
394 			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
395 			   name, file_size, prefix_size);
396 		return -EINVAL;
397 	}
398 
399 	return 0;
400 }
401 
402 /*
403  * Request the firmware from the system.  Extract the pieces and fill in
404  * fdet.  If successful, the caller will need to call dispose_one_firmware().
405  * Returns 0 on success, -ERRNO on error.
406  */
407 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
408 			       struct firmware_details *fdet)
409 {
410 	struct css_header *css;
411 	int ret;
412 
413 	memset(fdet, 0, sizeof(*fdet));
414 
415 	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
416 	if (ret) {
417 		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
418 			    name, ret);
419 		return ret;
420 	}
421 
422 	/* verify the firmware */
423 	if (fdet->fw->size < sizeof(struct css_header)) {
424 		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
425 		ret = -EINVAL;
426 		goto done;
427 	}
428 	css = (struct css_header *)fdet->fw->data;
429 
430 	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
431 	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
432 	hfi1_cdbg(FIRMWARE, "CSS structure:");
433 	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
434 	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
435 		  css->header_len, 4 * css->header_len);
436 	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
437 	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
438 	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
439 	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
440 	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
441 		  css->size, 4 * css->size);
442 	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
443 		  css->key_size, 4 * css->key_size);
444 	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
445 		  css->modulus_size, 4 * css->modulus_size);
446 	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
447 		  css->exponent_size, 4 * css->exponent_size);
448 	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
449 		  fdet->fw->size - sizeof(struct firmware_file));
450 
451 	/*
452 	 * If the file does not have a valid CSS header, fail.
453 	 * Otherwise, check the CSS size field for an expected size.
454 	 * The augmented file has r2 and mu inserted after the header
455 	 * was generated, so there will be a known difference between
456 	 * the CSS header size and the actual file size.  Use this
457 	 * difference to identify an augmented file.
458 	 *
459 	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
460 	 */
461 	ret = verify_css_header(dd, css);
462 	if (ret) {
463 		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
464 	} else if ((css->size * 4) == fdet->fw->size) {
465 		/* non-augmented firmware file */
466 		struct firmware_file *ff = (struct firmware_file *)
467 							fdet->fw->data;
468 
469 		/* make sure there are bytes in the payload */
470 		ret = payload_check(dd, name, fdet->fw->size,
471 				    sizeof(struct firmware_file));
472 		if (ret == 0) {
473 			fdet->css_header = css;
474 			fdet->modulus = ff->modulus;
475 			fdet->exponent = ff->exponent;
476 			fdet->signature = ff->signature;
477 			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
478 			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
479 			fdet->firmware_ptr = ff->firmware;
480 			fdet->firmware_len = fdet->fw->size -
481 						sizeof(struct firmware_file);
482 			/*
483 			 * Header does not include r2 and mu - generate here.
484 			 * For now, fail.
485 			 */
486 			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
487 			ret = -EINVAL;
488 		}
489 	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
490 		/* augmented firmware file */
491 		struct augmented_firmware_file *aff =
492 			(struct augmented_firmware_file *)fdet->fw->data;
493 
494 		/* make sure there are bytes in the payload */
495 		ret = payload_check(dd, name, fdet->fw->size,
496 				    sizeof(struct augmented_firmware_file));
497 		if (ret == 0) {
498 			fdet->css_header = css;
499 			fdet->modulus = aff->modulus;
500 			fdet->exponent = aff->exponent;
501 			fdet->signature = aff->signature;
502 			fdet->r2 = aff->r2;
503 			fdet->mu = aff->mu;
504 			fdet->firmware_ptr = aff->firmware;
505 			fdet->firmware_len = fdet->fw->size -
506 					sizeof(struct augmented_firmware_file);
507 		}
508 	} else {
509 		/* css->size check failed */
510 		dd_dev_err(dd,
511 			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
512 			   fdet->fw->size / 4,
513 			   (fdet->fw->size - AUGMENT_SIZE) / 4,
514 			   css->size);
515 
516 		ret = -EINVAL;
517 	}
518 
519 done:
520 	/* if returning an error, clean up after ourselves */
521 	if (ret)
522 		dispose_one_firmware(fdet);
523 	return ret;
524 }
525 
526 static void dispose_one_firmware(struct firmware_details *fdet)
527 {
528 	release_firmware(fdet->fw);
529 	/* erase all previous information */
530 	memset(fdet, 0, sizeof(*fdet));
531 }
532 
533 /*
534  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
535  * at all.  If called with the firmware state in FW_TRY, use alternate names.
536  * On exit, this routine will have set the firmware state to one of FW_TRY,
537  * FW_FINAL, or FW_ERR.
538  *
539  * Must be holding fw_mutex.
540  */
541 static void __obtain_firmware(struct hfi1_devdata *dd)
542 {
543 	int err = 0;
544 
545 	if (fw_state == FW_FINAL)	/* nothing more to obtain */
546 		return;
547 	if (fw_state == FW_ERR)		/* already in error */
548 		return;
549 
550 	/* fw_state is FW_EMPTY or FW_TRY */
551 retry:
552 	if (fw_state == FW_TRY) {
553 		/*
554 		 * We tried the original and it failed.  Move to the
555 		 * alternate.
556 		 */
557 		dd_dev_warn(dd, "using alternate firmware names\n");
558 		/*
559 		 * Let others run.  Some systems, when missing firmware, does
560 		 * something that holds for 30 seconds.  If we do that twice
561 		 * in a row it triggers task blocked warning.
562 		 */
563 		cond_resched();
564 		if (fw_8051_load)
565 			dispose_one_firmware(&fw_8051);
566 		if (fw_fabric_serdes_load)
567 			dispose_one_firmware(&fw_fabric);
568 		if (fw_sbus_load)
569 			dispose_one_firmware(&fw_sbus);
570 		if (fw_pcie_serdes_load)
571 			dispose_one_firmware(&fw_pcie);
572 		fw_8051_name = ALT_FW_8051_NAME_ASIC;
573 		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
574 		fw_sbus_name = ALT_FW_SBUS_NAME;
575 		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
576 
577 		/*
578 		 * Add a delay before obtaining and loading debug firmware.
579 		 * Authorization will fail if the delay between firmware
580 		 * authorization events is shorter than 50us. Add 100us to
581 		 * make a delay time safe.
582 		 */
583 		usleep_range(100, 120);
584 	}
585 
586 	if (fw_sbus_load) {
587 		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
588 		if (err)
589 			goto done;
590 	}
591 
592 	if (fw_pcie_serdes_load) {
593 		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
594 		if (err)
595 			goto done;
596 	}
597 
598 	if (fw_fabric_serdes_load) {
599 		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
600 					  &fw_fabric);
601 		if (err)
602 			goto done;
603 	}
604 
605 	if (fw_8051_load) {
606 		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
607 		if (err)
608 			goto done;
609 	}
610 
611 done:
612 	if (err) {
613 		/* oops, had problems obtaining a firmware */
614 		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
615 			/* retry with alternate (RTL only) */
616 			fw_state = FW_TRY;
617 			goto retry;
618 		}
619 		dd_dev_err(dd, "unable to obtain working firmware\n");
620 		fw_state = FW_ERR;
621 		fw_err = -ENOENT;
622 	} else {
623 		/* success */
624 		if (fw_state == FW_EMPTY &&
625 		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
626 			fw_state = FW_TRY;	/* may retry later */
627 		else
628 			fw_state = FW_FINAL;	/* cannot try again */
629 	}
630 }
631 
632 /*
633  * Called by all HFIs when loading their firmware - i.e. device probe time.
634  * The first one will do the actual firmware load.  Use a mutex to resolve
635  * any possible race condition.
636  *
637  * The call to this routine cannot be moved to driver load because the kernel
638  * call request_firmware() requires a device which is only available after
639  * the first device probe.
640  */
641 static int obtain_firmware(struct hfi1_devdata *dd)
642 {
643 	unsigned long timeout;
644 
645 	mutex_lock(&fw_mutex);
646 
647 	/* 40s delay due to long delay on missing firmware on some systems */
648 	timeout = jiffies + msecs_to_jiffies(40000);
649 	while (fw_state == FW_TRY) {
650 		/*
651 		 * Another device is trying the firmware.  Wait until it
652 		 * decides what works (or not).
653 		 */
654 		if (time_after(jiffies, timeout)) {
655 			/* waited too long */
656 			dd_dev_err(dd, "Timeout waiting for firmware try");
657 			fw_state = FW_ERR;
658 			fw_err = -ETIMEDOUT;
659 			break;
660 		}
661 		mutex_unlock(&fw_mutex);
662 		msleep(20);	/* arbitrary delay */
663 		mutex_lock(&fw_mutex);
664 	}
665 	/* not in FW_TRY state */
666 
667 	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
668 	if (fw_state == FW_EMPTY)
669 		__obtain_firmware(dd);
670 
671 	mutex_unlock(&fw_mutex);
672 	return fw_err;
673 }
674 
675 /*
676  * Called when the driver unloads.  The timing is asymmetric with its
677  * counterpart, obtain_firmware().  If called at device remove time,
678  * then it is conceivable that another device could probe while the
679  * firmware is being disposed.  The mutexes can be moved to do that
680  * safely, but then the firmware would be requested from the OS multiple
681  * times.
682  *
683  * No mutex is needed as the driver is unloading and there cannot be any
684  * other callers.
685  */
686 void dispose_firmware(void)
687 {
688 	dispose_one_firmware(&fw_8051);
689 	dispose_one_firmware(&fw_fabric);
690 	dispose_one_firmware(&fw_pcie);
691 	dispose_one_firmware(&fw_sbus);
692 
693 	/* retain the error state, otherwise revert to empty */
694 	if (fw_state != FW_ERR)
695 		fw_state = FW_EMPTY;
696 }
697 
698 /*
699  * Called with the result of a firmware download.
700  *
701  * Return 1 to retry loading the firmware, 0 to stop.
702  */
703 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
704 {
705 	int retry;
706 
707 	mutex_lock(&fw_mutex);
708 
709 	if (load_result == 0) {
710 		/*
711 		 * The load succeeded, so expect all others to do the same.
712 		 * Do not retry again.
713 		 */
714 		if (fw_state == FW_TRY)
715 			fw_state = FW_FINAL;
716 		retry = 0;	/* do NOT retry */
717 	} else if (fw_state == FW_TRY) {
718 		/* load failed, obtain alternate firmware */
719 		__obtain_firmware(dd);
720 		retry = (fw_state == FW_FINAL);
721 	} else {
722 		/* else in FW_FINAL or FW_ERR, no retry in either case */
723 		retry = 0;
724 	}
725 
726 	mutex_unlock(&fw_mutex);
727 	return retry;
728 }
729 
730 /*
731  * Write a block of data to a given array CSR.  All calls will be in
732  * multiples of 8 bytes.
733  */
734 static void write_rsa_data(struct hfi1_devdata *dd, int what,
735 			   const u8 *data, int nbytes)
736 {
737 	int qw_size = nbytes / 8;
738 	int i;
739 
740 	if (((unsigned long)data & 0x7) == 0) {
741 		/* aligned */
742 		u64 *ptr = (u64 *)data;
743 
744 		for (i = 0; i < qw_size; i++, ptr++)
745 			write_csr(dd, what + (8 * i), *ptr);
746 	} else {
747 		/* not aligned */
748 		for (i = 0; i < qw_size; i++, data += 8) {
749 			u64 value;
750 
751 			memcpy(&value, data, 8);
752 			write_csr(dd, what + (8 * i), value);
753 		}
754 	}
755 }
756 
757 /*
758  * Write a block of data to a given CSR as a stream of writes.  All calls will
759  * be in multiples of 8 bytes.
760  */
761 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
762 				    const u8 *data, int nbytes)
763 {
764 	u64 *ptr = (u64 *)data;
765 	int qw_size = nbytes / 8;
766 
767 	for (; qw_size > 0; qw_size--, ptr++)
768 		write_csr(dd, what, *ptr);
769 }
770 
771 /*
772  * Download the signature and start the RSA mechanism.  Wait for
773  * RSA_ENGINE_TIMEOUT before giving up.
774  */
775 static int run_rsa(struct hfi1_devdata *dd, const char *who,
776 		   const u8 *signature)
777 {
778 	unsigned long timeout;
779 	u64 reg;
780 	u32 status;
781 	int ret = 0;
782 
783 	/* write the signature */
784 	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
785 
786 	/* initialize RSA */
787 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
788 
789 	/*
790 	 * Make sure the engine is idle and insert a delay between the two
791 	 * writes to MISC_CFG_RSA_CMD.
792 	 */
793 	status = (read_csr(dd, MISC_CFG_FW_CTRL)
794 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
795 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
796 	if (status != RSA_STATUS_IDLE) {
797 		dd_dev_err(dd, "%s security engine not idle - giving up\n",
798 			   who);
799 		return -EBUSY;
800 	}
801 
802 	/* start RSA */
803 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
804 
805 	/*
806 	 * Look for the result.
807 	 *
808 	 * The RSA engine is hooked up to two MISC errors.  The driver
809 	 * masks these errors as they do not respond to the standard
810 	 * error "clear down" mechanism.  Look for these errors here and
811 	 * clear them when possible.  This routine will exit with the
812 	 * errors of the current run still set.
813 	 *
814 	 * MISC_FW_AUTH_FAILED_ERR
815 	 *	Firmware authorization failed.  This can be cleared by
816 	 *	re-initializing the RSA engine, then clearing the status bit.
817 	 *	Do not re-init the RSA angine immediately after a successful
818 	 *	run - this will reset the current authorization.
819 	 *
820 	 * MISC_KEY_MISMATCH_ERR
821 	 *	Key does not match.  The only way to clear this is to load
822 	 *	a matching key then clear the status bit.  If this error
823 	 *	is raised, it will persist outside of this routine until a
824 	 *	matching key is loaded.
825 	 */
826 	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
827 	while (1) {
828 		status = (read_csr(dd, MISC_CFG_FW_CTRL)
829 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
830 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
831 
832 		if (status == RSA_STATUS_IDLE) {
833 			/* should not happen */
834 			dd_dev_err(dd, "%s firmware security bad idle state\n",
835 				   who);
836 			ret = -EINVAL;
837 			break;
838 		} else if (status == RSA_STATUS_DONE) {
839 			/* finished successfully */
840 			break;
841 		} else if (status == RSA_STATUS_FAILED) {
842 			/* finished unsuccessfully */
843 			ret = -EINVAL;
844 			break;
845 		}
846 		/* else still active */
847 
848 		if (time_after(jiffies, timeout)) {
849 			/*
850 			 * Timed out while active.  We can't reset the engine
851 			 * if it is stuck active, but run through the
852 			 * error code to see what error bits are set.
853 			 */
854 			dd_dev_err(dd, "%s firmware security time out\n", who);
855 			ret = -ETIMEDOUT;
856 			break;
857 		}
858 
859 		msleep(20);
860 	}
861 
862 	/*
863 	 * Arrive here on success or failure.  Clear all RSA engine
864 	 * errors.  All current errors will stick - the RSA logic is keeping
865 	 * error high.  All previous errors will clear - the RSA logic
866 	 * is not keeping the error high.
867 	 */
868 	write_csr(dd, MISC_ERR_CLEAR,
869 		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
870 		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
871 	/*
872 	 * All that is left are the current errors.  Print warnings on
873 	 * authorization failure details, if any.  Firmware authorization
874 	 * can be retried, so these are only warnings.
875 	 */
876 	reg = read_csr(dd, MISC_ERR_STATUS);
877 	if (ret) {
878 		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
879 			dd_dev_warn(dd, "%s firmware authorization failed\n",
880 				    who);
881 		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
882 			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
883 	}
884 
885 	return ret;
886 }
887 
888 static void load_security_variables(struct hfi1_devdata *dd,
889 				    struct firmware_details *fdet)
890 {
891 	/* Security variables a.  Write the modulus */
892 	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
893 	/* Security variables b.  Write the r2 */
894 	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
895 	/* Security variables c.  Write the mu */
896 	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
897 	/* Security variables d.  Write the header */
898 	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
899 				(u8 *)fdet->css_header,
900 				sizeof(struct css_header));
901 }
902 
903 /* return the 8051 firmware state */
904 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
905 {
906 	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
907 
908 	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
909 				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
910 }
911 
912 /*
913  * Wait until the firmware is up and ready to take host requests.
914  * Return 0 on success, -ETIMEDOUT on timeout.
915  */
916 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
917 {
918 	unsigned long timeout;
919 
920 	/* in the simulator, the fake 8051 is always ready */
921 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
922 		return 0;
923 
924 	timeout = msecs_to_jiffies(mstimeout) + jiffies;
925 	while (1) {
926 		if (get_firmware_state(dd) == 0xa0)	/* ready */
927 			return 0;
928 		if (time_after(jiffies, timeout))	/* timed out */
929 			return -ETIMEDOUT;
930 		usleep_range(1950, 2050); /* sleep 2ms-ish */
931 	}
932 }
933 
934 /*
935  * Load the 8051 firmware.
936  */
937 static int load_8051_firmware(struct hfi1_devdata *dd,
938 			      struct firmware_details *fdet)
939 {
940 	u64 reg;
941 	int ret;
942 	u8 ver_major;
943 	u8 ver_minor;
944 	u8 ver_patch;
945 
946 	/*
947 	 * DC Reset sequence
948 	 * Load DC 8051 firmware
949 	 */
950 	/*
951 	 * DC reset step 1: Reset DC8051
952 	 */
953 	reg = DC_DC8051_CFG_RST_M8051W_SMASK
954 		| DC_DC8051_CFG_RST_CRAM_SMASK
955 		| DC_DC8051_CFG_RST_DRAM_SMASK
956 		| DC_DC8051_CFG_RST_IRAM_SMASK
957 		| DC_DC8051_CFG_RST_SFR_SMASK;
958 	write_csr(dd, DC_DC8051_CFG_RST, reg);
959 
960 	/*
961 	 * DC reset step 2 (optional): Load 8051 data memory with link
962 	 * configuration
963 	 */
964 
965 	/*
966 	 * DC reset step 3: Load DC8051 firmware
967 	 */
968 	/* release all but the core reset */
969 	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
970 	write_csr(dd, DC_DC8051_CFG_RST, reg);
971 
972 	/* Firmware load step 1 */
973 	load_security_variables(dd, fdet);
974 
975 	/*
976 	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
977 	 */
978 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
979 
980 	/* Firmware load steps 3-5 */
981 	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
982 			 fdet->firmware_len);
983 	if (ret)
984 		return ret;
985 
986 	/*
987 	 * DC reset step 4. Host starts the DC8051 firmware
988 	 */
989 	/*
990 	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
991 	 */
992 	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
993 
994 	/* Firmware load steps 7-10 */
995 	ret = run_rsa(dd, "8051", fdet->signature);
996 	if (ret)
997 		return ret;
998 
999 	/* clear all reset bits, releasing the 8051 */
1000 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1001 
1002 	/*
1003 	 * DC reset step 5. Wait for firmware to be ready to accept host
1004 	 * requests.
1005 	 */
1006 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1007 	if (ret) { /* timed out */
1008 		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1009 			   get_firmware_state(dd));
1010 		return -ETIMEDOUT;
1011 	}
1012 
1013 	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1014 	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1015 		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1016 	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1017 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1018 	if (ret != HCMD_SUCCESS) {
1019 		dd_dev_err(dd,
1020 			   "Failed to set host interface version, return 0x%x\n",
1021 			   ret);
1022 		return -EIO;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 /*
1029  * Write the SBus request register
1030  *
1031  * No need for masking - the arguments are sized exactly.
1032  */
1033 void sbus_request(struct hfi1_devdata *dd,
1034 		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1035 {
1036 	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1037 		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1038 		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1039 		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1040 		  ((u64)receiver_addr <<
1041 		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1042 }
1043 
1044 /*
1045  * Read a value from the SBus.
1046  *
1047  * Requires the caller to be in fast mode
1048  */
1049 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1050 		     u32 data_in)
1051 {
1052 	u64 reg;
1053 	int retries;
1054 	int success = 0;
1055 	u32 result = 0;
1056 	u32 result_code = 0;
1057 
1058 	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1059 
1060 	for (retries = 0; retries < 100; retries++) {
1061 		usleep_range(1000, 1200); /* arbitrary */
1062 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1063 		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1064 				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1065 		if (result_code != SBUS_READ_COMPLETE)
1066 			continue;
1067 
1068 		success = 1;
1069 		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1070 			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1071 		break;
1072 	}
1073 
1074 	if (!success) {
1075 		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1076 			   result_code);
1077 	}
1078 
1079 	return result;
1080 }
1081 
1082 /*
1083  * Turn off the SBus and fabric serdes spicos.
1084  *
1085  * + Must be called with Sbus fast mode turned on.
1086  * + Must be called after fabric serdes broadcast is set up.
1087  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1088  *   when using MISC_CFG_FW_CTRL.
1089  */
1090 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1091 {
1092 	/* only needed on A0 */
1093 	if (!is_ax(dd))
1094 		return;
1095 
1096 	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1097 		    flags & SPICO_SBUS ? " SBus" : "",
1098 		    flags & SPICO_FABRIC ? " fabric" : "");
1099 
1100 	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1101 	/* disable SBus spico */
1102 	if (flags & SPICO_SBUS)
1103 		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1104 			     WRITE_SBUS_RECEIVER, 0x00000040);
1105 
1106 	/* disable the fabric serdes spicos */
1107 	if (flags & SPICO_FABRIC)
1108 		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1109 			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1110 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1111 }
1112 
1113 /*
1114  * Reset all of the fabric serdes for this HFI in preparation to take the
1115  * link to Polling.
1116  *
1117  * To do a reset, we need to write to the serdes registers.  Unfortunately,
1118  * the fabric serdes download to the other HFI on the ASIC will have turned
1119  * off the firmware validation on this HFI.  This means we can't write to the
1120  * registers to reset the serdes.  Work around this by performing a complete
1121  * re-download and validation of the fabric serdes firmware.  This, as a
1122  * by-product, will reset the serdes.  NOTE: the re-download requires that
1123  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1124  * serdes.  This routine is called at the point where the link is Offline and
1125  * is getting ready to go to Polling.
1126  */
1127 void fabric_serdes_reset(struct hfi1_devdata *dd)
1128 {
1129 	int ret;
1130 
1131 	if (!fw_fabric_serdes_load)
1132 		return;
1133 
1134 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1135 	if (ret) {
1136 		dd_dev_err(dd,
1137 			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1138 		return;
1139 	}
1140 	set_sbus_fast_mode(dd);
1141 
1142 	if (is_ax(dd)) {
1143 		/* A0 serdes do not work with a re-download */
1144 		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1145 
1146 		/* place SerDes in reset and disable SPICO */
1147 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1148 		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1149 		udelay(1);
1150 		/* remove SerDes reset */
1151 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1152 		/* turn SPICO enable on */
1153 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1154 	} else {
1155 		turn_off_spicos(dd, SPICO_FABRIC);
1156 		/*
1157 		 * No need for firmware retry - what to download has already
1158 		 * been decided.
1159 		 * No need to pay attention to the load return - the only
1160 		 * failure is a validation failure, which has already been
1161 		 * checked by the initial download.
1162 		 */
1163 		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1164 	}
1165 
1166 	clear_sbus_fast_mode(dd);
1167 	release_chip_resource(dd, CR_SBUS);
1168 }
1169 
1170 /* Access to the SBus in this routine should probably be serialized */
1171 int sbus_request_slow(struct hfi1_devdata *dd,
1172 		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1173 {
1174 	u64 reg, count = 0;
1175 
1176 	/* make sure fast mode is clear */
1177 	clear_sbus_fast_mode(dd);
1178 
1179 	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1180 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1181 		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1182 	/* Wait for both DONE and RCV_DATA_VALID to go high */
1183 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1184 	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1185 		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1186 		if (count++ >= SBUS_MAX_POLL_COUNT) {
1187 			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1188 			/*
1189 			 * If the loop has timed out, we are OK if DONE bit
1190 			 * is set and RCV_DATA_VALID and EXECUTE counters
1191 			 * are the same. If not, we cannot proceed.
1192 			 */
1193 			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1194 			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1195 			     SBUS_COUNTER(counts, EXECUTE)))
1196 				break;
1197 			return -ETIMEDOUT;
1198 		}
1199 		udelay(1);
1200 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1201 	}
1202 	count = 0;
1203 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1204 	/* Wait for DONE to clear after EXECUTE is cleared */
1205 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1206 	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1207 		if (count++ >= SBUS_MAX_POLL_COUNT)
1208 			return -ETIME;
1209 		udelay(1);
1210 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1211 	}
1212 	return 0;
1213 }
1214 
1215 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1216 				       struct firmware_details *fdet)
1217 {
1218 	int i, err;
1219 	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1220 
1221 	dd_dev_info(dd, "Downloading fabric firmware\n");
1222 
1223 	/* step 1: load security variables */
1224 	load_security_variables(dd, fdet);
1225 	/* step 2: place SerDes in reset and disable SPICO */
1226 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1227 	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1228 	udelay(1);
1229 	/* step 3:  remove SerDes reset */
1230 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1231 	/* step 4: assert IMEM override */
1232 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1233 	/* step 5: download SerDes machine code */
1234 	for (i = 0; i < fdet->firmware_len; i += 4) {
1235 		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1236 			     *(u32 *)&fdet->firmware_ptr[i]);
1237 	}
1238 	/* step 6: IMEM override off */
1239 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1240 	/* step 7: turn ECC on */
1241 	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1242 
1243 	/* steps 8-11: run the RSA engine */
1244 	err = run_rsa(dd, "fabric serdes", fdet->signature);
1245 	if (err)
1246 		return err;
1247 
1248 	/* step 12: turn SPICO enable on */
1249 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1250 	/* step 13: enable core hardware interrupts */
1251 	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1252 
1253 	return 0;
1254 }
1255 
1256 static int load_sbus_firmware(struct hfi1_devdata *dd,
1257 			      struct firmware_details *fdet)
1258 {
1259 	int i, err;
1260 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1261 
1262 	dd_dev_info(dd, "Downloading SBus firmware\n");
1263 
1264 	/* step 1: load security variables */
1265 	load_security_variables(dd, fdet);
1266 	/* step 2: place SPICO into reset and enable off */
1267 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1268 	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1269 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1270 	/* step 4: set starting IMEM address for burst download */
1271 	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1272 	/* step 5: download the SBus Master machine code */
1273 	for (i = 0; i < fdet->firmware_len; i += 4) {
1274 		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1275 			     *(u32 *)&fdet->firmware_ptr[i]);
1276 	}
1277 	/* step 6: set IMEM_CNTL_EN off */
1278 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1279 	/* step 7: turn ECC on */
1280 	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1281 
1282 	/* steps 8-11: run the RSA engine */
1283 	err = run_rsa(dd, "SBus", fdet->signature);
1284 	if (err)
1285 		return err;
1286 
1287 	/* step 12: set SPICO_ENABLE on */
1288 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1289 
1290 	return 0;
1291 }
1292 
1293 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1294 				     struct firmware_details *fdet)
1295 {
1296 	int i;
1297 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1298 
1299 	dd_dev_info(dd, "Downloading PCIe firmware\n");
1300 
1301 	/* step 1: load security variables */
1302 	load_security_variables(dd, fdet);
1303 	/* step 2: assert single step (halts the SBus Master spico) */
1304 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1305 	/* step 3: enable XDMEM access */
1306 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1307 	/* step 4: load firmware into SBus Master XDMEM */
1308 	/*
1309 	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1310 	 * we only need to pick up the bytes and write them
1311 	 */
1312 	for (i = 0; i < fdet->firmware_len; i += 4) {
1313 		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1314 			     *(u32 *)&fdet->firmware_ptr[i]);
1315 	}
1316 	/* step 5: disable XDMEM access */
1317 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1318 	/* step 6: allow SBus Spico to run */
1319 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1320 
1321 	/*
1322 	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1323 	 * be swapped
1324 	 */
1325 	return run_rsa(dd, "PCIe serdes", fdet->signature);
1326 }
1327 
1328 /*
1329  * Set the given broadcast values on the given list of devices.
1330  */
1331 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1332 				 const u8 *addrs, int count)
1333 {
1334 	while (--count >= 0) {
1335 		/*
1336 		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1337 		 * defaults for everything else.  Do not read-modify-write,
1338 		 * per instruction from the manufacturer.
1339 		 *
1340 		 * Register 0xfd:
1341 		 *	bits    what
1342 		 *	-----	---------------------------------
1343 		 *	  0	IGNORE_BROADCAST  (default 0)
1344 		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1345 		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1346 		 */
1347 		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1348 			     (u32)bg1 << 4 | (u32)bg2 << 16);
1349 	}
1350 }
1351 
1352 int acquire_hw_mutex(struct hfi1_devdata *dd)
1353 {
1354 	unsigned long timeout;
1355 	int try = 0;
1356 	u8 mask = 1 << dd->hfi1_id;
1357 	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1358 
1359 	if (user == mask) {
1360 		dd_dev_info(dd,
1361 			    "Hardware mutex already acquired, mutex mask %u\n",
1362 			    (u32)mask);
1363 		return 0;
1364 	}
1365 
1366 retry:
1367 	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1368 	while (1) {
1369 		write_csr(dd, ASIC_CFG_MUTEX, mask);
1370 		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1371 		if (user == mask)
1372 			return 0; /* success */
1373 		if (time_after(jiffies, timeout))
1374 			break; /* timed out */
1375 		msleep(20);
1376 	}
1377 
1378 	/* timed out */
1379 	dd_dev_err(dd,
1380 		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1381 		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1382 
1383 	if (try == 0) {
1384 		/* break mutex and retry */
1385 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1386 		try++;
1387 		goto retry;
1388 	}
1389 
1390 	return -EBUSY;
1391 }
1392 
1393 void release_hw_mutex(struct hfi1_devdata *dd)
1394 {
1395 	u8 mask = 1 << dd->hfi1_id;
1396 	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1397 
1398 	if (user != mask)
1399 		dd_dev_warn(dd,
1400 			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1401 			    (u32)user, (u32)mask);
1402 	else
1403 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1404 }
1405 
1406 /* return the given resource bit(s) as a mask for the given HFI */
1407 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1408 {
1409 	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1410 }
1411 
1412 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1413 				       const char *func)
1414 {
1415 	dd_dev_err(dd,
1416 		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1417 		   func);
1418 }
1419 
1420 /*
1421  * Acquire access to a chip resource.
1422  *
1423  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1424  */
1425 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1426 {
1427 	u64 scratch0, all_bits, my_bit;
1428 	int ret;
1429 
1430 	if (resource & CR_DYN_MASK) {
1431 		/* a dynamic resource is in use if either HFI has set the bit */
1432 		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1433 		    (resource & (CR_I2C1 | CR_I2C2))) {
1434 			/* discrete devices must serialize across both chains */
1435 			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1436 					resource_mask(1, CR_I2C1 | CR_I2C2);
1437 		} else {
1438 			all_bits = resource_mask(0, resource) |
1439 						resource_mask(1, resource);
1440 		}
1441 		my_bit = resource_mask(dd->hfi1_id, resource);
1442 	} else {
1443 		/* non-dynamic resources are not split between HFIs */
1444 		all_bits = resource;
1445 		my_bit = resource;
1446 	}
1447 
1448 	/* lock against other callers within the driver wanting a resource */
1449 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1450 
1451 	ret = acquire_hw_mutex(dd);
1452 	if (ret) {
1453 		fail_mutex_acquire_message(dd, __func__);
1454 		ret = -EIO;
1455 		goto done;
1456 	}
1457 
1458 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1459 	if (scratch0 & all_bits) {
1460 		ret = -EBUSY;
1461 	} else {
1462 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1463 		/* force write to be visible to other HFI on another OS */
1464 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1465 	}
1466 
1467 	release_hw_mutex(dd);
1468 
1469 done:
1470 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1471 	return ret;
1472 }
1473 
1474 /*
1475  * Acquire access to a chip resource, wait up to mswait milliseconds for
1476  * the resource to become available.
1477  *
1478  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1479  * acquire failed.
1480  */
1481 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1482 {
1483 	unsigned long timeout;
1484 	int ret;
1485 
1486 	timeout = jiffies + msecs_to_jiffies(mswait);
1487 	while (1) {
1488 		ret = __acquire_chip_resource(dd, resource);
1489 		if (ret != -EBUSY)
1490 			return ret;
1491 		/* resource is busy, check our timeout */
1492 		if (time_after_eq(jiffies, timeout))
1493 			return -EBUSY;
1494 		usleep_range(80, 120);	/* arbitrary delay */
1495 	}
1496 }
1497 
1498 /*
1499  * Release access to a chip resource
1500  */
1501 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1502 {
1503 	u64 scratch0, bit;
1504 
1505 	/* only dynamic resources should ever be cleared */
1506 	if (!(resource & CR_DYN_MASK)) {
1507 		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1508 			   resource);
1509 		return;
1510 	}
1511 	bit = resource_mask(dd->hfi1_id, resource);
1512 
1513 	/* lock against other callers within the driver wanting a resource */
1514 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1515 
1516 	if (acquire_hw_mutex(dd)) {
1517 		fail_mutex_acquire_message(dd, __func__);
1518 		goto done;
1519 	}
1520 
1521 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1522 	if ((scratch0 & bit) != 0) {
1523 		scratch0 &= ~bit;
1524 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1525 		/* force write to be visible to other HFI on another OS */
1526 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1527 	} else {
1528 		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1529 			    __func__, dd->hfi1_id, resource);
1530 	}
1531 
1532 	release_hw_mutex(dd);
1533 
1534 done:
1535 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1536 }
1537 
1538 /*
1539  * Return true if resource is set, false otherwise.  Print a warning
1540  * if not set and a function is supplied.
1541  */
1542 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1543 			 const char *func)
1544 {
1545 	u64 scratch0, bit;
1546 
1547 	if (resource & CR_DYN_MASK)
1548 		bit = resource_mask(dd->hfi1_id, resource);
1549 	else
1550 		bit = resource;
1551 
1552 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1553 	if ((scratch0 & bit) == 0) {
1554 		if (func)
1555 			dd_dev_warn(dd,
1556 				    "%s: id %d, resource 0x%x, not acquired!\n",
1557 				    func, dd->hfi1_id, resource);
1558 		return false;
1559 	}
1560 	return true;
1561 }
1562 
1563 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1564 {
1565 	u64 scratch0;
1566 
1567 	/* lock against other callers within the driver wanting a resource */
1568 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1569 
1570 	if (acquire_hw_mutex(dd)) {
1571 		fail_mutex_acquire_message(dd, func);
1572 		goto done;
1573 	}
1574 
1575 	/* clear all dynamic access bits for this HFI */
1576 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1577 	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1578 	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1579 	/* force write to be visible to other HFI on another OS */
1580 	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1581 
1582 	release_hw_mutex(dd);
1583 
1584 done:
1585 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1586 }
1587 
1588 void init_chip_resources(struct hfi1_devdata *dd)
1589 {
1590 	/* clear any holds left by us */
1591 	clear_chip_resources(dd, __func__);
1592 }
1593 
1594 void finish_chip_resources(struct hfi1_devdata *dd)
1595 {
1596 	/* clear any holds left by us */
1597 	clear_chip_resources(dd, __func__);
1598 }
1599 
1600 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1601 {
1602 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1603 		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1604 }
1605 
1606 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1607 {
1608 	u64 reg, count = 0;
1609 
1610 	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1611 	while (SBUS_COUNTER(reg, EXECUTE) !=
1612 	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1613 		if (count++ >= SBUS_MAX_POLL_COUNT)
1614 			break;
1615 		udelay(1);
1616 		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1617 	}
1618 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1619 }
1620 
1621 int load_firmware(struct hfi1_devdata *dd)
1622 {
1623 	int ret;
1624 
1625 	if (fw_fabric_serdes_load) {
1626 		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1627 		if (ret)
1628 			return ret;
1629 
1630 		set_sbus_fast_mode(dd);
1631 
1632 		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1633 				     fabric_serdes_broadcast[dd->hfi1_id],
1634 				     fabric_serdes_addrs[dd->hfi1_id],
1635 				     NUM_FABRIC_SERDES);
1636 		turn_off_spicos(dd, SPICO_FABRIC);
1637 		do {
1638 			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1639 		} while (retry_firmware(dd, ret));
1640 
1641 		clear_sbus_fast_mode(dd);
1642 		release_chip_resource(dd, CR_SBUS);
1643 		if (ret)
1644 			return ret;
1645 	}
1646 
1647 	if (fw_8051_load) {
1648 		do {
1649 			ret = load_8051_firmware(dd, &fw_8051);
1650 		} while (retry_firmware(dd, ret));
1651 		if (ret)
1652 			return ret;
1653 	}
1654 
1655 	dump_fw_version(dd);
1656 	return 0;
1657 }
1658 
1659 int hfi1_firmware_init(struct hfi1_devdata *dd)
1660 {
1661 	/* only RTL can use these */
1662 	if (dd->icode != ICODE_RTL_SILICON) {
1663 		fw_fabric_serdes_load = 0;
1664 		fw_pcie_serdes_load = 0;
1665 		fw_sbus_load = 0;
1666 	}
1667 
1668 	/* no 8051 or QSFP on simulator */
1669 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1670 		fw_8051_load = 0;
1671 
1672 	if (!fw_8051_name) {
1673 		if (dd->icode == ICODE_RTL_SILICON)
1674 			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1675 		else
1676 			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1677 	}
1678 	if (!fw_fabric_serdes_name)
1679 		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1680 	if (!fw_sbus_name)
1681 		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1682 	if (!fw_pcie_serdes_name)
1683 		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1684 
1685 	return obtain_firmware(dd);
1686 }
1687 
1688 /*
1689  * This function is a helper function for parse_platform_config(...) and
1690  * does not check for validity of the platform configuration cache
1691  * (because we know it is invalid as we are building up the cache).
1692  * As such, this should not be called from anywhere other than
1693  * parse_platform_config
1694  */
1695 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1696 {
1697 	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1698 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1699 
1700 	if (!system_table)
1701 		return -EINVAL;
1702 
1703 	meta_ver_meta =
1704 	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1705 	+ SYSTEM_TABLE_META_VERSION);
1706 
1707 	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1708 	ver_start = meta_ver_meta & mask;
1709 
1710 	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1711 
1712 	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1713 	ver_len = meta_ver_meta & mask;
1714 
1715 	ver_start /= 8;
1716 	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1717 
1718 	if (meta_ver < 4) {
1719 		dd_dev_info(
1720 			dd, "%s:Please update platform config\n", __func__);
1721 		return -EINVAL;
1722 	}
1723 	return 0;
1724 }
1725 
1726 int parse_platform_config(struct hfi1_devdata *dd)
1727 {
1728 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1729 	struct hfi1_pportdata *ppd = dd->pport;
1730 	u32 *ptr = NULL;
1731 	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1732 	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1733 	int ret = -EINVAL; /* assume failure */
1734 
1735 	/*
1736 	 * For integrated devices that did not fall back to the default file,
1737 	 * the SI tuning information for active channels is acquired from the
1738 	 * scratch register bitmap, thus there is no platform config to parse.
1739 	 * Skip parsing in these situations.
1740 	 */
1741 	if (ppd->config_from_scratch)
1742 		return 0;
1743 
1744 	if (!dd->platform_config.data) {
1745 		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1746 		goto bail;
1747 	}
1748 	ptr = (u32 *)dd->platform_config.data;
1749 
1750 	magic_num = *ptr;
1751 	ptr++;
1752 	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1753 		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1754 		goto bail;
1755 	}
1756 
1757 	/* Field is file size in DWORDs */
1758 	file_length = (*ptr) * 4;
1759 
1760 	/*
1761 	 * Length can't be larger than partition size. Assume platform
1762 	 * config format version 4 is being used. Interpret the file size
1763 	 * field as header instead by not moving the pointer.
1764 	 */
1765 	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1766 		dd_dev_info(dd,
1767 			    "%s:File length out of bounds, using alternative format\n",
1768 			    __func__);
1769 		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1770 	} else {
1771 		ptr++;
1772 	}
1773 
1774 	if (file_length > dd->platform_config.size) {
1775 		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1776 			    __func__);
1777 		goto bail;
1778 	} else if (file_length < dd->platform_config.size) {
1779 		dd_dev_info(dd,
1780 			    "%s:File claims to be smaller than read size, continuing\n",
1781 			    __func__);
1782 	}
1783 	/* exactly equal, perfection */
1784 
1785 	/*
1786 	 * In both cases where we proceed, using the self-reported file length
1787 	 * is the safer option. In case of old format a predefined value is
1788 	 * being used.
1789 	 */
1790 	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1791 		header1 = *ptr;
1792 		header2 = *(ptr + 1);
1793 		if (header1 != ~header2) {
1794 			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1795 				   __func__, (ptr - (u32 *)
1796 					      dd->platform_config.data));
1797 			goto bail;
1798 		}
1799 
1800 		record_idx = *ptr &
1801 			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1802 
1803 		table_length_dwords = (*ptr >>
1804 				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1805 		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1806 
1807 		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1808 			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1809 
1810 		/* Done with this set of headers */
1811 		ptr += 2;
1812 
1813 		if (record_idx) {
1814 			/* data table */
1815 			switch (table_type) {
1816 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1817 				pcfgcache->config_tables[table_type].num_table =
1818 									1;
1819 				ret = check_meta_version(dd, ptr);
1820 				if (ret)
1821 					goto bail;
1822 				break;
1823 			case PLATFORM_CONFIG_PORT_TABLE:
1824 				pcfgcache->config_tables[table_type].num_table =
1825 									2;
1826 				break;
1827 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1828 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1829 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1830 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1831 				pcfgcache->config_tables[table_type].num_table =
1832 							table_length_dwords;
1833 				break;
1834 			default:
1835 				dd_dev_err(dd,
1836 					   "%s: Unknown data table %d, offset %ld\n",
1837 					   __func__, table_type,
1838 					   (ptr - (u32 *)
1839 					    dd->platform_config.data));
1840 				goto bail; /* We don't trust this file now */
1841 			}
1842 			pcfgcache->config_tables[table_type].table = ptr;
1843 		} else {
1844 			/* metadata table */
1845 			switch (table_type) {
1846 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1847 			case PLATFORM_CONFIG_PORT_TABLE:
1848 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1849 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1850 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1851 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1852 				break;
1853 			default:
1854 				dd_dev_err(dd,
1855 					   "%s: Unknown meta table %d, offset %ld\n",
1856 					   __func__, table_type,
1857 					   (ptr -
1858 					    (u32 *)dd->platform_config.data));
1859 				goto bail; /* We don't trust this file now */
1860 			}
1861 			pcfgcache->config_tables[table_type].table_metadata =
1862 									ptr;
1863 		}
1864 
1865 		/* Calculate and check table crc */
1866 		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1867 			       (table_length_dwords * 4));
1868 		crc ^= ~(u32)0;
1869 
1870 		/* Jump the table */
1871 		ptr += table_length_dwords;
1872 		if (crc != *ptr) {
1873 			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1874 				   __func__, (ptr -
1875 				   (u32 *)dd->platform_config.data));
1876 			ret = -EINVAL;
1877 			goto bail;
1878 		}
1879 		/* Jump the CRC DWORD */
1880 		ptr++;
1881 	}
1882 
1883 	pcfgcache->cache_valid = 1;
1884 	return 0;
1885 bail:
1886 	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1887 	return ret;
1888 }
1889 
1890 static void get_integrated_platform_config_field(
1891 		struct hfi1_devdata *dd,
1892 		enum platform_config_table_type_encoding table_type,
1893 		int field_index, u32 *data)
1894 {
1895 	struct hfi1_pportdata *ppd = dd->pport;
1896 	u8 *cache = ppd->qsfp_info.cache;
1897 	u32 tx_preset = 0;
1898 
1899 	switch (table_type) {
1900 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1901 		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1902 			*data = ppd->max_power_class;
1903 		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1904 			*data = ppd->default_atten;
1905 		break;
1906 	case PLATFORM_CONFIG_PORT_TABLE:
1907 		if (field_index == PORT_TABLE_PORT_TYPE)
1908 			*data = ppd->port_type;
1909 		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1910 			*data = ppd->local_atten;
1911 		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1912 			*data = ppd->remote_atten;
1913 		break;
1914 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1915 		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1916 			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1917 				QSFP_RX_CDR_APPLY_SHIFT;
1918 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1919 			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1920 				QSFP_RX_EMP_APPLY_SHIFT;
1921 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1922 			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1923 				QSFP_RX_AMP_APPLY_SHIFT;
1924 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1925 			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1926 				QSFP_RX_CDR_SHIFT;
1927 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1928 			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1929 				QSFP_RX_EMP_SHIFT;
1930 		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1931 			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1932 				QSFP_RX_AMP_SHIFT;
1933 		break;
1934 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1935 		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1936 			tx_preset = ppd->tx_preset_eq;
1937 		else
1938 			tx_preset = ppd->tx_preset_noeq;
1939 		if (field_index == TX_PRESET_TABLE_PRECUR)
1940 			*data = (tx_preset & TX_PRECUR_SMASK) >>
1941 				TX_PRECUR_SHIFT;
1942 		else if (field_index == TX_PRESET_TABLE_ATTN)
1943 			*data = (tx_preset & TX_ATTN_SMASK) >>
1944 				TX_ATTN_SHIFT;
1945 		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1946 			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1947 				TX_POSTCUR_SHIFT;
1948 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1949 			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1950 				QSFP_TX_CDR_APPLY_SHIFT;
1951 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1952 			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1953 				QSFP_TX_EQ_APPLY_SHIFT;
1954 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1955 			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1956 				QSFP_TX_CDR_SHIFT;
1957 		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1958 			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1959 				QSFP_TX_EQ_SHIFT;
1960 		break;
1961 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1962 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1963 	default:
1964 		break;
1965 	}
1966 }
1967 
1968 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1969 					  int field, u32 *field_len_bits,
1970 					  u32 *field_start_bits)
1971 {
1972 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1973 	u32 *src_ptr = NULL;
1974 
1975 	if (!pcfgcache->cache_valid)
1976 		return -EINVAL;
1977 
1978 	switch (table) {
1979 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1980 	case PLATFORM_CONFIG_PORT_TABLE:
1981 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1982 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1983 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1984 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1985 		if (field && field < platform_config_table_limits[table])
1986 			src_ptr =
1987 			pcfgcache->config_tables[table].table_metadata + field;
1988 		break;
1989 	default:
1990 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1991 		break;
1992 	}
1993 
1994 	if (!src_ptr)
1995 		return -EINVAL;
1996 
1997 	if (field_start_bits)
1998 		*field_start_bits = *src_ptr &
1999 		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2000 
2001 	if (field_len_bits)
2002 		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2003 		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2004 
2005 	return 0;
2006 }
2007 
2008 /* This is the central interface to getting data out of the platform config
2009  * file. It depends on parse_platform_config() having populated the
2010  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2011  * validate the sanity of the cache.
2012  *
2013  * The non-obvious parameters:
2014  * @table_index: Acts as a look up key into which instance of the tables the
2015  * relevant field is fetched from.
2016  *
2017  * This applies to the data tables that have multiple instances. The port table
2018  * is an exception to this rule as each HFI only has one port and thus the
2019  * relevant table can be distinguished by hfi_id.
2020  *
2021  * @data: pointer to memory that will be populated with the field requested.
2022  * @len: length of memory pointed by @data in bytes.
2023  */
2024 int get_platform_config_field(struct hfi1_devdata *dd,
2025 			      enum platform_config_table_type_encoding
2026 			      table_type, int table_index, int field_index,
2027 			      u32 *data, u32 len)
2028 {
2029 	int ret = 0, wlen = 0, seek = 0;
2030 	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2031 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2032 	struct hfi1_pportdata *ppd = dd->pport;
2033 
2034 	if (data)
2035 		memset(data, 0, len);
2036 	else
2037 		return -EINVAL;
2038 
2039 	if (ppd->config_from_scratch) {
2040 		/*
2041 		 * Use saved configuration from ppd for integrated platforms
2042 		 */
2043 		get_integrated_platform_config_field(dd, table_type,
2044 						     field_index, data);
2045 		return 0;
2046 	}
2047 
2048 	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2049 					     &field_len_bits,
2050 					     &field_start_bits);
2051 	if (ret)
2052 		return -EINVAL;
2053 
2054 	/* Convert length to bits */
2055 	len *= 8;
2056 
2057 	/* Our metadata function checked cache_valid and field_index for us */
2058 	switch (table_type) {
2059 	case PLATFORM_CONFIG_SYSTEM_TABLE:
2060 		src_ptr = pcfgcache->config_tables[table_type].table;
2061 
2062 		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2063 			if (len < field_len_bits)
2064 				return -EINVAL;
2065 
2066 			seek = field_start_bits / 8;
2067 			wlen = field_len_bits / 8;
2068 
2069 			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2070 
2071 			/*
2072 			 * We expect the field to be byte aligned and whole byte
2073 			 * lengths if we are here
2074 			 */
2075 			memcpy(data, src_ptr, wlen);
2076 			return 0;
2077 		}
2078 		break;
2079 	case PLATFORM_CONFIG_PORT_TABLE:
2080 		/* Port table is 4 DWORDS */
2081 		src_ptr = dd->hfi1_id ?
2082 			pcfgcache->config_tables[table_type].table + 4 :
2083 			pcfgcache->config_tables[table_type].table;
2084 		break;
2085 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2086 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2087 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2088 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2089 		src_ptr = pcfgcache->config_tables[table_type].table;
2090 
2091 		if (table_index <
2092 			pcfgcache->config_tables[table_type].num_table)
2093 			src_ptr += table_index;
2094 		else
2095 			src_ptr = NULL;
2096 		break;
2097 	default:
2098 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2099 		break;
2100 	}
2101 
2102 	if (!src_ptr || len < field_len_bits)
2103 		return -EINVAL;
2104 
2105 	src_ptr += (field_start_bits / 32);
2106 	*data = (*src_ptr >> (field_start_bits % 32)) &
2107 			((1 << field_len_bits) - 1);
2108 
2109 	return 0;
2110 }
2111 
2112 /*
2113  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2114  * to the SBus firmware is needed before updating the PCIe firmware.
2115  *
2116  * Note: caller must be holding the SBus resource.
2117  */
2118 int load_pcie_firmware(struct hfi1_devdata *dd)
2119 {
2120 	int ret = 0;
2121 
2122 	/* both firmware loads below use the SBus */
2123 	set_sbus_fast_mode(dd);
2124 
2125 	if (fw_sbus_load) {
2126 		turn_off_spicos(dd, SPICO_SBUS);
2127 		do {
2128 			ret = load_sbus_firmware(dd, &fw_sbus);
2129 		} while (retry_firmware(dd, ret));
2130 		if (ret)
2131 			goto done;
2132 	}
2133 
2134 	if (fw_pcie_serdes_load) {
2135 		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2136 		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2137 				     pcie_serdes_broadcast[dd->hfi1_id],
2138 				     pcie_serdes_addrs[dd->hfi1_id],
2139 				     NUM_PCIE_SERDES);
2140 		do {
2141 			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2142 		} while (retry_firmware(dd, ret));
2143 		if (ret)
2144 			goto done;
2145 	}
2146 
2147 done:
2148 	clear_sbus_fast_mode(dd);
2149 
2150 	return ret;
2151 }
2152 
2153 /*
2154  * Read the GUID from the hardware, store it in dd.
2155  */
2156 void read_guid(struct hfi1_devdata *dd)
2157 {
2158 	/* Take the DC out of reset to get a valid GUID value */
2159 	write_csr(dd, CCE_DC_CTRL, 0);
2160 	(void)read_csr(dd, CCE_DC_CTRL);
2161 
2162 	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2163 	dd_dev_info(dd, "GUID %llx",
2164 		    (unsigned long long)dd->base_guid);
2165 }
2166 
2167 /* read and display firmware version info */
2168 static void dump_fw_version(struct hfi1_devdata *dd)
2169 {
2170 	u32 pcie_vers[NUM_PCIE_SERDES];
2171 	u32 fabric_vers[NUM_FABRIC_SERDES];
2172 	u32 sbus_vers;
2173 	int i;
2174 	int all_same;
2175 	int ret;
2176 	u8 rcv_addr;
2177 
2178 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2179 	if (ret) {
2180 		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2181 		return;
2182 	}
2183 
2184 	/* set fast mode */
2185 	set_sbus_fast_mode(dd);
2186 
2187 	/* read version for SBus Master */
2188 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2189 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2190 	/* wait for interrupt to be processed */
2191 	usleep_range(10000, 11000);
2192 	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2193 	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2194 
2195 	/* read version for PCIe SerDes */
2196 	all_same = 1;
2197 	pcie_vers[0] = 0;
2198 	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2199 		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2200 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2201 		/* wait for interrupt to be processed */
2202 		usleep_range(10000, 11000);
2203 		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2204 		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2205 			all_same = 0;
2206 	}
2207 
2208 	if (all_same) {
2209 		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2210 			    pcie_vers[0]);
2211 	} else {
2212 		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2213 		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2214 			dd_dev_info(dd,
2215 				    "PCIe SerDes lane %d firmware version 0x%x\n",
2216 				    i, pcie_vers[i]);
2217 		}
2218 	}
2219 
2220 	/* read version for fabric SerDes */
2221 	all_same = 1;
2222 	fabric_vers[0] = 0;
2223 	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2224 		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2225 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2226 		/* wait for interrupt to be processed */
2227 		usleep_range(10000, 11000);
2228 		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2229 		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2230 			all_same = 0;
2231 	}
2232 
2233 	if (all_same) {
2234 		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2235 			    fabric_vers[0]);
2236 	} else {
2237 		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2238 		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2239 			dd_dev_info(dd,
2240 				    "Fabric SerDes lane %d firmware version 0x%x\n",
2241 				    i, fabric_vers[i]);
2242 		}
2243 	}
2244 
2245 	clear_sbus_fast_mode(dd);
2246 	release_chip_resource(dd, CR_SBUS);
2247 }
2248